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Abstract

Several studies have demonstrated the advantages of using Interferometric Synthetic Aper-

ture Radar (InSAR) coherence and SAR backscatter intensity data for change detection

and flood mapping. Most of these works, however, are limited to a few case studies or use

high resolution SAR data not freely available to the public. The purpose of this study was

to determine the e↵ectiveness of fusing 10-meter resolution Sentinel-1 intensity and InSAR

coherence data across geographically diverse regions for semantic water segmentation. We

fused Sentinel-1 intensity and InSAR coherence as inputs to uni- and bi-temporal classi-

fication models cross-trained using optically derived Sentinel-2 water masks. We trained

Attention U-Net convolutional neural network models and XGBoost pixel-wise classifiers

to assess the relative improvements gained by adding the coherence data to a bi-temporal

model relative to a uni-temporal intensity-only model. We found that the bi-temporal inten-

sity and coherence fusion models improve the water intersection over union by over 3% when

aggregated over all geographical regions studied. We also found that the bi-temporal inten-

sity and coherence fusion models improve the water-class recall by over 4%, systematically

reducing the false negative rate across all the geographic regions studied. The reduction in

the water-class false negative rate comes at the expense of the false positive rate, however.

We found that the uni-temporal intensity only models outperform the bi-temporal intensity

and coherence fusion models by 1 to 2% in terms of water-class precision. With a 6-day

repeat cycle, the Sentinel-1 platform democratizes high resolution SAR data access that is

complementary to its optical counterparts. This is especially important as we continue to

develop, improve, and operationalize methods to manage and respond to natural disasters

such as extreme flooding events.
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1 Introduction

Natural disasters constantly pose risks to human livelihood, our environment and infrastruc-

ture, and have significant socioeconomic impacts. It is imperative that we develop robust

means to respond to natural disasters, and most importantly, to respond in a timely man-

ner. We cannot prevent natural disasters from occurring, but it is within our power to take

actions in order to prepare and adapt to mitigate damages associated with extreme events.

Earth Observation (EO) satellites have become an integral part of natural disaster emergency

management and response. Satellites provide a unique perspective prior, during, and after a

natural disaster occurs that we cannot get with in situ observations. The list of applications

of EO satellites for natural disaster management is very extensive. Some of these applications

include monitoring climate change, wildfires, volcanic, seismic and hurricane activity [2].

The latest Intergovernmental Panel on Climate Change (IPCC) state of the climate report

projects that the frequency of extreme weather events is in an upward trajectory. There is

strong evidence that human-induced climate change is one of the main driving forces behind

this trend. The IPCC report estimates that “50 to 75% of the global population could be

exposed to periods of life-threatening climatic conditions due to extreme heat and humidity

by 2100.” The report also projects that climate change “will increasingly put pressure on

food production and access, especially in vulnerable regions, undermining food security and

nutrition” [3] [4].

1.1 Statement of Problem

Extreme flooding events are the cause of many lives, homes, economic and infrastructure

losses every year. Flood extent mapping with EO satellites enable emergency response

teams and policy makers to prepare with proactive response mechanisms. With accurate

flood proxy maps, better evacuation plans and routes can be planned and assistance can be

directed where needed in a time-critical manner. Without accurate estimations of hazardous

1



flooded zones, emergency response bodies may misroute assistance and lose critical time.

The World Bank estimates that close to 1.5 billion people are exposed to the risk of flooding

worldwide. Moreover, up to 89% of the exposed population live in low- and middle-income

countries as shown in Figure 1. This disproportionate exposure means that any time an

extreme flooding event occurs, the disaster can potentially wipe decades of infrastructure

development and perpetuate economic hardships.

Figure 1: Flood exposed population (millions), by income group. Adapted from [5] [6]

Earth Observation applications using Synthetic Aperture Radar (SAR) satellites have gained

increased popularity recently [7]. As active microwave remote sensors, SAR platforms boast

the advantage of day and night and all-weather imaging capabilities. The typical wavelengths

(e.g., L-, C-, and X-band) used for SAR measurements are relatively unobstructed by earth’s

atmosphere and can penetrate through clouds. These advantages make SAR data a key

enabler for flood emergency response management [8].

Standing water bodies tend to reflect the radar signals away from the satellite and are

characterized by low backscatter intensity values. The low backscatter intensity typically

results in a bi-modal pixel distribution in the SAR intensity images [7]. Well known image

thresholding techniques can be used to segment this bi-modal backscatter distribution (e.g.,

Otsu’s method [9], k-Means clustering [10]), thus segmenting water pixels from non-water

pixels.

2



Interferometric Synthetic Aperture Radar (InSAR) coherence quantifies the phase noise or

quality of the phase signal in the complex-valued radar return. In repeat-pass interferometry,

the coherence of a SAR scene is computed from two SAR acquisitions obtained at di↵erent

times (i.e., with a known temporal baseline). The interferometric coherence is extracted as

the normalized cross-correlation between the two complex SAR images [7] [11].

In this study, we exploit freely accessible SAR intensity and coherence data from the Euro-

pean Space Agency’s Sentinel-1 platform [12]. We consider two time steps: before flooding

(pre-event) and during flooding (co-event) similar to [13]. A pre-event coherence map sets

a benchmark used to compare against the co-event coherence maps. When flooding occurs,

the spatial distribution and electric properties of scatterers on the surface is modified by

the presence of standing water. Thus, the coherence maps during the flood event tend to

exhibit a loss of coherence relative to their pre-event benchmarks. We use the information

from the pre- and co-event coherence maps and combine them in a bi-temporal intensity and

coherence machine learning classifier to improve water mapping accuracy. The improvement

of our bi-temporal SAR intensity and coherence models are relative to uni-temporal SAR

intensity-only models.

1.2 Previous Work

Traditional image processing techniques such as Otsu thresholding and its variants have

been used in past studies to classify water bodies using SAR imagery. Some of these al-

gorithms have been published and operationalized as full-fledged software packages that

enable widespread public use. The Hydrologic Remote Sensing Analysis for Floods (HY-

DRAFloods), for example, is an open source Python package that relies on Google Earth

Engine for deriving surface water maps from remote sensing data and includes algorithms

such as edge-Otsu [14] [15].

HydroSAR is another surface water mapping algorithm implemented in Python that uses a
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dynamic threshold followed by fuzzy-logic and a Height Above Nearest Drainage (HAND)

layer [16] to post-process and classify flood water using Sentinel-1 imagery. The HydroSAR

project is intended to be used as a near real-time flood water detection algorithm by ex-

ploiting on-demand Sentinel-1 products readily available through the Alaska Satellite Facil-

ity [17] [18] [19] [20].

Scotti et al. (2020) combine satellite imagery, hydraulic models, and markers from social

media to improve post-event flood maps [21]. In addition to traditional image processing

techniques, machine learning techniques have also gained increased popularity for SAR image

classification tasks. In [22], Katiyar et al. (2021) use the Sen1Floods11 data set [1] and train

popular convolutional neural network (CNN) architectures like the SegNet [23] and U-Net [24]

using di↵erent backscatter intensity band combinations as inputs. In [25], Peng et al. (2020)

train a self-supervised auto-encoder network with bi-temporal multi-spectral imagery. The

bi-temporal nature allows the authors to generate change maps and extract flooded areas.

Mayer et al. (2021) use an edge-Otsu dynamic threshold algorithm to automate surface

water label generation to train and tune deep learning classification models [26].

Past studies have also exploited the use of coherence data for flood mapping. Pulvirenti et

al. (2016) use COSMO-SkyMed imagery to analyze multi-temporal coherence trends and

improve flood mapping accuracy [27]. Chini et al. (2019) use Sentinel-1 InSAR coherence to

detect floodwater [28]. The authors use coherence data to extract building footprints in urban

areas (Houston, Texas) and use co-event imagery to detect changes in both intensity and

coherence. Chaabani et al. (2018) fuse TerraSAR-X and TanDEM-X backscatter intensity

and InSAR data to train a random forest classifier and extract flood extent maps using

the Richelieu River flooding in 2011 as a case study [29]. In [13], Martinis et al. combine

TerraSAR-X intensity and coherence data to train an active self-learning convolutional neural

network (CNN) for flood water classification. The study uses Hurricane Harvey as a case

study and focuses on flood water classification in urban areas.
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1.3 Objective and Methods

This study improves surface water mapping accuracy by combining Sentinel-1 backscatter

intensity and interferometric coherence data at 10-meter resolution. We cross-train using

Sentinel-1 and Sentinel-2 data using the publicly available Sen1Floods11 data set as our

backbone [1] [30]. We augment the Sen1Floods11 intensity data with pre-event intensity

data from Google Earth Engine, and on-demand InSAR products o↵ered by the Alaska

Satellite Facility [20]. The augmented Sentinel-1 intensity and interferometric coherence

data set is used as input to an XGBoost and Attention U-Net binary classifier trained

on Sentinel-2-derived water labels. A co-event intensity, a bi-temporal (pre- and co-event)

intensity, and bi-temporal intensity and coherence model is trained and benchmarked with

one another. Each model is validated against a hand-labeled data set across geographically

diverse regions. The hand-labeled data set is never used during training and serves as an

independent means to validate our models’ relative improvements.

As outlined above, previous studies have fused SAR intensity and coherence data for flood

mapping applications. However, most of the studies have focused on well-documented flood

events such as Hurricane Harvey and other urban flood events imaged with high resolution

SAR platforms. This study seeks to validate whether Sentinel-1 coherence data can system-

atically improve semantic water segmentation at 10-meter resolution across diverse geograph-

ical regions. InSAR product processing is extremely computationally expensive and requires

specialized understanding of the processing pipeline. For this study, we take advantage of

on-demand Sentinel-1 InSAR products freely available through the Alaska Satellite [20] in

an attempt to understand whether fusing SAR backscatter intensity and InSAR coherence

data can be democratized. Moreover, we note that the models trained were not designed

to optimize absolute classification performance relative to some state of the art benchmark.

Instead, the experiments were set up to assess the relative improvement gained by fusing

intensity and interferometric coherence data when compared against an intensity data-only
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model.

This report is organized as follows: Section 2 presents the fundamentals of microwave remote

sensing, synthetic aperture radar and InSAR applicable to our study. Section 3 describes the

data processing used to train the machine learning models described in Section 4. Section 5

outlines our results and discussion including trade-o↵s. We conclude with Section 6 where

potential areas of future work are explored. Finally, Appendix A presents code samples used

to train and evaluate the classification models. The entire code base used for this study can

be found in [31].

2 Background

This section describes fundamental concepts of microwave remote sensing. We start by defin-

ing electromagnetic radiation and its properties relevant to remote sensing applications. The

field of microwave remote sensing is very vast and spans many applications. In this study, we

are interested in defining the fundamental concepts with a focus on Synthetic Aperture Radar

(SAR). The information exposed in this section is adapted from [2] [7] [8] [11] [32] [33] [34] [35].

2.1 Microwave Remote Sensing

Electromagnetic Radiation Wave Interpretation

The wave nature of light describes electromagnetic (EM) radiation as energy in the form

of time varying electric and magnetic fields propagating through space. Electromagnetic

radiation propagating through vacuum travels at the speed of light (c = 3 ⇥ 108m/s) and

spans a broad spectrum of wavelengths as shown in Figure 2. The electromagnetic spectrum

ranges from radio waves with wavelengths in the order of 102 meters, visible light in the

optical range, up to gamma waves with wavelengths in the order of 10�12 meters [36].
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Figure 2: Electromagnetic Spectrum. Adapted from [36]

Complex EM Wave Description

Mathematically, an electromagnetic wave can be described by an amplitude component, a

phase component, and a time varying spatial component (i.e., a direction of travel). The

amplitude of the electromagnetic wave is related to the energy or power carried by the

radiation. The phase component describes the wave’s phase evolution as it propagates in

time and space.

Equation 1 describes a complex electromagnetic wave propagating along the z-axis in three-

dimensional space. The amplitude component of the wave is denoted by E, ! is the angular

frequency in radians per second, k is the wave number describing the spatial frequency of

the wave, and �0 is an arbitrary initial phase component.

 (z, t) = Ee
j(!t�kz+�0) (1)
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The oscillatory nature of complex electromagnetic waves as described in Equation 1 is illus-

trated in Figure 3. On the left-hand side, a phasor rotates counterclockwise as a function

of the angular frequency ! and time t. At any given time, the phasor subtends an angle �

with the a-axis. As the phasor rotates, its amplitude vector traces the sinusoidal waveform

seen on the right. The time varying phase angle, �, determines the phase of the sinusoidal

oscillations as they propagate through space. This vector representation will be useful in

later sections when we consider the combination of multiple waves, or interference.

Figure 3: Phasor representation of an EM wave. Adapted from [11]

Energy and Power of EM Radiation

The amplitude of an electromagnetic wave defines the energy it carries. In remote sensing

applications, the sensors measure the incident power, P , of the impinged radiation at the

antenna. Power is defined as energy per unit time (Watts) and is mathematically described

as the square of the wave’s amplitude divided by the impedance ⌘ of the propagating medium

as outlined in Equation 2.

P = |E(z, t)|2 = E
2
0

2⌘
[W ] (2)

In Earth observation, we are usually interested in characterizing targets over distributed
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areas (e.g., geographical regions). Thus, it is best to work with the power density defined

as power per unit area [W/m
2]. We are also interested in di↵erentiating between incident

radiation on a given area and radiation emanating from the target area. We define the total

amount of power incident on a unit area as the irradiance, E, and the total amount of power

emitted or reflected from a unit area as the exitance, M .

Moreover, because we are often interested in characterizing the electromagnetic power arriv-

ing from di↵erent directions and di↵erent frequencies, we define the spectral radiance as the

quantity of interest in many remote sensing applications. Spectral radiance is also known as

brightness or intensity and is defined as a measure of the amount of energy incident from

a given direction at a specific frequency of radiation. The spectral radiance has units of

[Wm
�2
sr

�1
Hz

�1], where sr are steradians for a solid angle defining direction. This inten-

sity measurement will be key in our understanding of the operation of a synthetic aperture

radar platform in later sections.

Wave Polarization

Electromagnetic waves oscillate orthogonal to the direction of propagation (i.e., they are

transversal). A transverse wave can be defined as the superposition of two orthogonal waves

(x- and y-direction) as outlined in Equation 3. Each of the orthogonal waves is said to have

a polarization associated with them. Figure 4 shows the orthogonal components having

displacements in the x- or y-direction are said to be horizontally or vertically polarized

respectively.
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Figure 4: Horizontal and vertical polarizations in EM waves. Adapted from [11]

E(z, t) = Ex(z, t) + Ey(z, t) (3)

Interference and Coherence

In remote sensing applications, we typically work with multiple electromagnetic waves at

the same time. Coherent waves are defined as two waves with a phase di↵erence that

remains constant over time. When multiple waves are combined or superimprosed in space,

we get interference between them. For example, if two waves with identical phase and

amplitude, A, are superimposed, the result will be a wave with double the amplitude, 2A.

This additive nature of in-phase waves is referred to as constructive interference. On the flip

side, if two waves that are out of phase (i.e., a phase di↵erence of ⇡ radians) interfere, the
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resulting amplitude will be zero. This latter case is referred to as destructive interference.

More generally, the superposition of waves will result in wave amplitudes between 0 and 2A

depending on the relative phase di↵erence between the waves. Figure 5 depicts constructive

interference on the left-most plot, destructive interference in the middle plot, and interference

when the phase di↵erence between two waves is ⇡
2 radians.

Figure 5: Constructive interference (left), destructive interference (middle), interference for

⇡
2 phase di↵erence. Adapted from [11]

Coherence

As described above, two waves are coherent if their phase di↵erence is constant over time.

Another way to define coherence is two waves with the same frequency of oscillation. Physi-

cally, coherence measures the degree of similarity between the waves over an interval of time

or space.

Mathematically, the complex coherence between two waves is defined by the complex cross-

correlation outlined in Equation 4.

�12 =< E1E
⇤
2 > (4)

Equation 4 defines coherence as an ensemble average over di↵erent realizations of the same
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electromagnetic waves, E1 and E2. However, when using satellites for Earth observation, we

have a limited amount of time to make measurements as the platform orbits the earth. This

means that we cannot gather di↵erent realizations of the same measurements. Coherence is

then estimated by making multiple measurements that are either close in time or close in

space. That is, the average is calculated over a series of measurements taken at di↵erent

times or measurements taken over a number of locations. Our coherence measurement is

then defined as shown in Equation 5 where the complex coherence of Equation 4 has been

normalized to account for time varying amplitudes of the repeated measurements.

� =

P
N E1E

⇤
2pP

N |E1|2
P

N |E2|2
(5)

In Equation 5, the subscript N means we are averaging over N observations (e.g., a collection

of pixels). Since we are normalizing by the magnitudes, coherence will vary from 0 to 1, or

from incoherent to coherent. The topic of coherence between waves is at the heart of this

study and will be revisited in later sections.

Propagation of EM Radiation

Next, we consider the propagation of electromagnetic waves through di↵erent media. The

media of propagation a↵ects a wave’s properties such as speed of propagation, attenuation,

and phase shift. The electric permittivity, ✏, the magnetic permeability, µ, and the electric

conductivity, g are used to characterize the electromagnetic properties of media.

The conductivity of a medium is related to the mobility or lack of mobility of electrons in

the material. In metals, the electrons are not bound to the atoms and are free to move

through the metal. For an ideal conductor, the electric field is zero inside the conductor,

and therefore, conductors will reflect any incident EM radiation.

In microwave remote sensing, we are concerned with the relative permittivity of media and

targets. Permittivity describes how an electric field propagates through a material. The
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permittivity of media is defined in Equation 6 where ✏r is the relative permittivity and ✏0 is

the permittivity of free space.

✏ = ✏r✏0 (6)

The relative permittivity is a complex quantity and can be expressed as outlined in Equa-

tion 7. The real part is also known as the dielectric constant of the dielectric medium. In

this representation we can think of the real part as the lossless dielectric constant while the

imaginary part describes the energy losses through the medium.

✏r = ✏
0

r � j✏
00

r (7)

The relative permittivity also defines the penetration depth of EM radiation into a medium

as shown in Equation 8. Penetration depth is defined as the distance at which the power is

reduced by a factor e. Note the linear dependence of penetration depth on the wavelength.

This means that longer wavelengths will be better at penetrating deeper into materials.

�p ⇡
�

p
✏
0
r

2⇡✏00r
(8)

2.2 Why Microwave Remote Sensing?

Earth observation from space is a key player in our ability to study and understand our

world. The applications of EO satellites are vast and include activities such as monitoring

environmental changes and earth surface dynamics, disaster management, and ship routing

to name a few. Earth observation using microwave remote sensing entails using the mi-

crowave region of the electromagnetic spectrum to measure the scattering properties of the

earth’s surface. Unlike their optical counterparts which rely on external sources of illumi-
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nation (e.g., the sun) and cannot image through clouds, microwave remote sensing satellites

can penetrate through clouds and image the earth at any time of day. These advantages

makes microwave remote sensing techniques complementary to their optical counterparts

and expand our abilities to understand our world.

We can categorize microwave remote sensing instruments as either passive or active. Passive

sensors, or radiometers, measure the microwave energy that is radiated (by thermal emission)

or reflected by Earth’s surface or the atmosphere. Active sensors such as radar systems,

have their own illumination source and transmit EM energy that is reflected o↵ objects on

Earth’s surface and measured by the sensor’s receiver. Active microwave sensors typically

use frequencies below 10 GHz, operating in the so-called microwave window. Figure 6 shows

the atmospheric attenuation over the range of the EM spectrum. Note that for wavelengths

in the 3 to 30 cm range, the EM radiation can travel relatively unobstructed through the

atmosphere with very low attenuation.

Figure 6: Atmospheric attenuation for a clear atmosphere as a function of wavelength.

Adapted from [11]
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Active Microwave Sensing

Our study uses active imaging radars for remote sensing applications and will be the main

focus in subsequent sections. There are many active microwave remote sensing applications

and platforms. For example, airborne altimeters send microwave pulses in the nadir-direction

(perpendicular to the direction of travel) and measure distance from targets by analyzing

the echos scattered back. Scatterometers, on the other hand, measure echo characteristics

such as the radar cross-section of the targets. Most practical systems use a combination of

the di↵erent types of measurements to analyze targets. In the next subsection, we explore

the fundamental principles of radar remote sensing.

2.3 What is RADAR?

The altimeter system described briefly in Section 2.2 is an example of a radar system. A

Radar (RAdio Detection and Ranging) system relies on the transmission of microwave energy

and the measurement of the echoes returned from its targets to extract range or distance

information. This is the principle of echolocation. The range information is calculated by

measuring the time of the return signal. Sonar, LIDAR, and ultrasound are examples of echo-

based remote sensing. Radar systems sense the environment in terms of surface roughness,

signal reflectivity, and relative motion (e.g., Doppler e↵ects) between the targets and the

radar platform. This is what makes microwave remote sensing platforms complementary

to optical remote sensing platforms. With microwave remote sensors, we extract surface

properties and characteristics that are not available from optical sensors.

2.3.1 Basic Radar Operation

In this section, we introduce the radar equation, the radar cross-section, and the range

resolution relationships that will be useful in our study and application of imaging radar

systems.
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Radar echoes tend to be very low-powered signals returned from the targets. This is espe-

cially true in remote sensing applications where the radar platform orbits the earth a few

hundred kilometers above the surface. Additionally, the return signals are also hindered

by noise which makes detecting the echoes more challenging. The radar equation describes

what portion of the transmitted signal is scattered from a target as will be discussed next.

The Radar Equation

For a radar system with transmit power, Pt, antenna gain, G, range to target R, and target’s

radar cross-section, �, the power scattered back from the target is given by Equation 9.

power scattered by target = PtG
�

4⇡R2
[W ] (9)

We are interested in calculating the power density at the radar’s receiver, Pr. The e↵ective

area of the receiving antenna relative to a sphere of radius R is denoted by Ae. The antenna’s

e↵ective area is equivalent to its cross-section. Moreover, because the return signals travel

an additional distance R back to the receiver, the signal power received at the antenna is

reduced by an extra factor of 4⇡R2. We can then write the received power as shown in

Equation 10.

Pr = (PtG
�

4⇡R2
)

Ae

4⇡R2
[W ] (10)

It is useful to express the radar equation in terms of its wavelength dependence. We can

relate the e↵ective area of the antenna to its gain by: Ae =
G�2

4⇡ and re-write Equation 10 as

shown in Equation 11.

Pr =
PtG

2
�
2
�

(4⇡)3R4
[W ] (11)
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From Equation 11, we note that the received signal power has a 1/R4 dependence on the

range to the target. If we double the range to the target, our received power drops by a factor

of sixteen, for example. Since our radar equation has a linear dependence on transmit power,

we can in theory counteract the 1/R4 roll-o↵ by increasing the transmit power. However,

there are practical limits (e.g., size and cost) to how much power a radar system can generate.

Increasing the receive antenna’s gain is another way to improve our received signal power, but

this increase gain would come at the expense of a heavier, larger antenna. Lastly, we focus on

the received power’s dependence to wavelength. The way that Equation 11 is written masks

the true relationship between Pr and �. Since the antenna gain, G, is proportional to 1/�2,

the received power will also have a 1/�2 dependence. This means that shorter wavelengths

result in higher received powers.

Radar cross-section (RCS)

The radar cross-section of a target describes the equivalent area seen by the radar. We can

rearrange Equation 11, and arrive at the target’s radar cross-section as shown in Equation 12.

� = Pr
(4⇡)3R4

PtG
2�2

(12)

In remote sensing, we are typically working with distributed area targets. Thus, we define

normalized radar cross-section as shown in Equation 13, where A represents the target’s

area.

�0 =
�

A
= Pr

(4⇡)3R4

APtG
2�2

(13)

Radar Range Resolution

A radar system’s ability to distinguish between two target points is referred to as the range

resolution. Following the principle of echolocation, if the two targets are physically close
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to one another such that their return echoes overlap, the radar will not be able to resolve

one echo from the other. This implies that the range resolution depends on the radar’s

transmitted pulse duration, ⌧p. Mathematically, the range resolution can be written as

shown in Equation 14, where the factor of 2 accounts for the round-trip nature of the signal

and c is the speed of light in vacuum.

⇢R =
c · ⌧p
2

[m] (14)

Given the linear relationship between range resolution and the pulse duration, we might be

tempted to decrease the pulse duration as much as possible and improve our range resolution.

However, practical systems cannot simultaneously shorten the microwave pulse duration and

generate high transmit peak powers needed to increase the received power at the antenna.

Frequency chirping is often used as a technique to balance the trade-o↵ between high transmit

powers and range resolution. Pulse chirping uses frequency modulation (FM) to encode

the transmitted signal with a unique signature. At the receiver, the return signal can be

correlated or match-filtered and decoded to separate the pulses from one another. The

premise is that even if the frequency modulated pulses overlap with one another, a unique

frequency modulated encoding will be su�cient to di↵erentiate one pulse from another at

the receiver.

The frequency modulation or chirping sweeps the signal over a predefined bandwidth, Bp.

At the receive end, the sharpness of the pulse is determined by the e↵ective pulse length, ⌧e,

which is related to the chirp’s bandwidth as shown in Equation 15.

⌧e =
1

Bp
[s] (15)

The match filtering of the encoded FM chirp is also known as pulse compression. Substituting

the e↵ective pulse length, ⌧e into Equation 14, the range resolution for the radar system is
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given by Equation 16.

⇢R =
c

2Bp
[m] (16)

Note that the range resolution is now dependent on the inverse of the chirp’s bandwidth and

not the individual pulses’ length. The wider the FM bandwidth used, the finer the range

resolution of our radar system. Moreover, note that the range resolution has no dependence

on distance to the target. In other words, a radar’s range resolution will be the same

regardless of the flying altitude.

2.4 Radar Image Formation

In this section, we consider radar imaging systems and lay the foundation for microwave

remote sensing using imaging radars.

2.4.1 Side-Looking Airborne Radar Systems (SLAR)

The radar altimeters described in Section 2.2 and most airborne or space-borne optical

sensors image the earth by pointing their sensors towards nadir (perpendicular to the azimuth

direction). In contrast, imaging radars point their antenna at a look angle, ✓l, away from

nadir as depicted in Figure 7. This side-looking geometry allows the imaging platform to

di↵erentiate objects that are at the same distance from the imaging sensor as shown in

Figure 8. If the antenna were pointed in the nadir direction, as in Figure 8, the return

signals from objects A and B arrive at the radar system at the same time and the radar

would not be able to di↵erentiate object A from B.
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Figure 7: Side-Looking Airborne Radar (SLAR) viewing geometry. Adapted from [32]

Figure 8: Di↵erent airborne radar viewing geometries. Nadir-direction (left) and side-looking

direction (right). Adapted from [7]

Figure 7 depicts the geometry of a SLAR imaging platform. The radar system points its

antenna at an angle to the surface as it flights along the azimuth or along-track direction.
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As the SLAR transmits a series of microwave pulses of length, ⌧p, the pulses illuminate an

instantaneous area on the ground denoted as the swath in the figure. The slant range, R,

refers to the round-trip distance the microwave pulses travel from the sensor to the target

surface and back. Note that the slant range is di↵erent from the true ground range projected

on the surface. In order to derive the true ground range from the slant range, we need to

account for the surface characteristics (e.g., curvature, elevation, etc.) of the target and

calibrate the radar return signal.

The size of the radar footprint on the ground depends on the wavelength, �, the size of the

radar’s antenna, L, and the distance of the sensor from the ground, R. Defining the antenna

beam width as � = �/L, we can define the radar’s footprint as shown in Equation 17.

S ⇡ �

L
R = � ·R [m] (17)

As the SLAR platform flies along the azimuth direction, the return signals are processed by

arrival time in azimuth and range direction. This process allows us to form a two-dimensional

image of the surface. Note from Figure 7 that echoes received from the near-range of the

platform arrive earlier than those from the far-range edge of the swath. This introduces

challenges when interpreting and extracting information from the SLAR images. Another

challenge introduced by the side looking geometry is that some of the transmitted energy

is reflected away (in the specular direction) from the targets. This results in smaller radar

cross-sections or backscatter intensity at the receiver.

Ground Range Resolution

The ground range resolution is defined as the minimum ground distance needed to di↵er-

entiate one object from another. From Figure 9, we can define the ground range resolution

as a function of the range resolution from Equation 16 and the local incidence angle, ✓i, as

outlined in Equation 18.
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⇢G =
⇢R

sin ✓i
[m] (18)

Figure 9: Slant range resolution and ground range resolution relationship. Adapted from [11]

Note that the ground resolution depends on the local incidence angle, and therefore, is not

constant across the swath. As the incidence angle increases, the ground resolution gets

progressively better. The near edge of an image has poorer ground resolution than the far

edge of the swath.

Azimuth Resolution

The azimuth resolution is defined as the ability of the radar to distinguish two points within

the same swath, but at di↵erent azimuth angles. The azimuth resolution depends on the

antenna’s beam width in the azimuth direction as outlined in Equation 19.

⇢AZ = SAZ ⇡ �

LAZ
R = � ·R [m] (19)

From Equation 19, note that the azimuth resolution decreases as the distance from the imag-
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ing system to the ground, R, increases. This result poses a challenge for space borne imaging

platforms where the distance between the sensor and the ground is in the order of hundreds

of kilometers. We could in theory increase the antenna’s size, but we quickly run into im-

practical antenna lengths for space-borne systmes. The synthetic aperture principle was

introduced in the 1950’s to alleviate these drawbacks of SLAR systems as will be described

in Section 2.5.

2.5 Synthetic Aperture Radar (SAR) Imaging Systems

In order to overcome the azimuth range resolution challenges outlined above, a synthetic

aperture radar imaging system synthesizes a larger antenna aperture from a shorter physical

antenna. Figure 10 shows a diagram of a SAR imaging platform. Similar to the SLAR

systems, as the space-borne or airborne SAR platform moves in the along-track direction,

the short antenna emits microwave pulses that are reflected back from objects on the earth’s

surface. Each pulse illuminates a footprint of size S on the ground, which is typically in the

order of several kilometers for space-borne SAR systems. The aperture synthesis concept

relies on the fact that subsequent transmitted pulses have overlapping footprints for a given

target, P , on the surface. The overlapping echoes are post-processed to create a resulting

image as if it was acquired with a larger physical antenna. The length LSA of this synthesized

antenna can be calculated by Equation 20. Figure 2.5 shows an example of a C-band SAR

image acquired by the Sentinel-1 mission over New York City.

LSA =
�

L
·R0 = � ·R0 [m] (20)
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Figure 10: Synthetic Aperture Radar (SAR) platform viewing geometry. Adapted from [32]
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Figure 11: Sentinel-1 SAR image over New York City on February 3rd, 2022. Sentinel-1

GRD data processed by ASF [20]

2.5.1 A Doppler Interpretation of Synthetic Aperture Radar (SAR)

This section provides a Doppler interpretation of the synthetic aperture radar concept

adapted from [11].

Figure 12 depicts another look at the geometry of a space-borne synthetic aperture radar

system. The antenna footprints are designed wide enough in the azimuth direction so that

consecutive pulses overlap. As the satellite moves in the azimuth direction, the radar returns

from the front part of the beam are Doppler-shifted to higher frequencies relative to the

transmit signal’s frequency. On the other hand, the radar returns from the tail part of

the beam are shifted to lower frequencies. These frequency shifts result in a per pulse

frequency spread similar to a chirp or frequency modulation. At the receiver, the chirps are

match-filtered to determine which pulse the echo originated from. This technique is known

as azimuth compression. Instead of cross-correlating the chirp from a single pulse echo as
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in pulse compression, the cross-correlation is now performed over a collection of returned

overlapping signals. This collection of overlapping signals is post-processed to synthesize a

larger virtual antenna.

There are challenges with azimuth compression, however. In range compression, the radar

transmitter controls the FM chirp transmitted. In azimuth compression, the radar system

lacks precise transmit signal control. There is no definite or repeatable reference to cross-

correlate with since the frequency shifts depend upon the imaging geometry and structure

of the targets on the surface. In practice, the reference signal is usually determined by

a combination of known platform parameters and correction functions that are constantly

updated.

Figure 12: Geometry of a Synthetic Aperture Radar (SAR) platform. Adapted from [11]

Nonetheless, with the azimuth compression interpretation described above, the azimuth res-
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olution for a SAR system can be calculated. Similar to the range compression equations,

the equivalent pulse width for the azimuth resolution is related to the inverse of the chirp’s

bandwidth. The e↵ective azimuth pulse length, ⇢t is given in Equation 21, where BD is the

Doppler shift bandwidth.

⇢t =
1

BD
[s] (21)

Given the sensor’s flight speed, the azimuthal spatial resolution can be calculated as shown

in Equation 22. The only unknown is the Doppler bandwidth, BD.

⇢a =
Vs

BD
[m] (22)

Figure 13 depicts the SAR platform’s geometry from the sensor’s perspective. That is,

the satellite is stationary and the target is moving relative to the satellite. The relative

velocity of the target as observed by the sensor is given by Vrel = Vs sin ✓a. The maximum

Doppler shift is obtained when the target enters or leaves the radar beam. The minimum

Doppler shift occurs when the target is perpendicular to the sensor at position x0. Because

of symmetry, we can define fD as the maximum Doppler frequency shift, and thus our range

of echo frequencies will be (f0 � fD) to (f0 + fD) where f0 is the transmit signal’s center

frequency.
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Figure 13: Geometry of a Synthetic Aperture Radar (SAR) platform from the sensor’s

perspective. Adapted from [11]

The Doppler frequency shift is outlined in Equation 23 where the factor of 2 is due to the

fact that the signal is Doppler-shifted twice.

fD = 2
Vrel

�
[Hz] (23)

From Equation 23, we can calculate the Doppler bandwidth as shown in Equation 24 below.
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BD = (f0 + fD)� (f0 � fD)

= 2fD

=
4Vrel

�

=
4Vs sin ✓a

�

(24)

Because the angle, ✓a is half the beam width of the antenna of length, D, it follows from

Equation 25 and the small angle approximation:

sin ✓a ⇡ ✓a =
1

2

�

D
(25)

Substituting Equations 24 and 25 into Equation 22, the azimuth range resolution is given

by Equation 26.

⇢a =
Vs

BD

=
2�DVs

4�Vs

=
D

2

(26)

The result summarized by Equation 26 implies that a SAR system has an azimuth resolution

equal to half the length of the antenna. Moreover, the smaller the antenna, the better the

azimuth resolution. Note that the azimuth resolution does not depend on the distance of

the sensor to the target nor does it depend on the wavelength of the signal. This result may

seem counter-intuitive, but recall that in a SAR system, the azimuth compression is what

determines the resolution, and not the actual angular beam width of the antenna. In fact,

the larger the range of Doppler frequencies, the better the azimuthal resolution. These are
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promising results, but there are practical limitations in real-world systems that degrade the

theoretical predictions

It is important to note that in the Doppler interpreation of SAR systems, we’ve used the

frequency shift to define the Doppler bandwidth. However, in practice, the radar system

does not measure the frequency directly. Instead, the relative phase di↵erences between

transmit and received signals are measured.

2.5.2 SAR Radar Equation

The radar equation presented in Equation 11 in Section 2.3.1 describes the received power

at the antenna of the radar system. If we rewrite the radar equation as a signal to noise

ratio (SNR), where N0 is the instrument noise, we arrive at the SAR radar equation outlined

in Equation 27. However, this equation is only relevant for a single received echo. For

a practical SAR system, the aperture synthesis process relies on the coherent addition of

multiple received echoes. If we consider n overlapping echoes, the SNR gets multiplied by a

factor of n such that SNRSAR = n · SNRsingle.

Pr

N0
=

PtG
2
�
2
�

(4⇡)3R4N0
(27)

For a given target, the number of echoes received, n, is the length of time the target remains

illuminated by the radar beam multiplied by the pulse repetition frequency (PRF) as outlined

in Equation 28.

n =
R�

2Vs⇢a
PRF (28)

Substituting Equation 28 into Equation 27 yields Equation 29, where the radar cross section,

�, has been normalized by the antenna’s footprint area such that � = �0⇢R⇢a.
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Pr

N0
=

PtG
2
�
3
�0⇢RPRF

(4⇡)3R3N02Vs
(29)

Equation 29 implies that to maintain a high signal to noise ratio, we need a high pulse

repetition frequency and a low platform velocity. This results in increasing the number of

echoes received for any target within the scene.

2.5.3 SAR Distortions - Radiometric Distortions

Syntehtic aperture radar images exhibit a number of distortions that need to be accounted

for in order to extract meaningful information from them. Some of the distortions are

caused by the side-looking geometry of the platforms while others are caused by the way

that electromagnetic radiation interacts with the targets on the surface. This section will

summarize the main radiometric and geometric distortions that impair SAR systems and

some of the techniques used to address them.

Speckle Noise

SAR images are characterized by a salt and pepper-like noise appearance known as speckle

noise. Figure 14 shows a C-band Sentinel-1 SAR image before and after speckle noise filtering.

When a SAR system illuminates the surface, scatterers within a SAR resolution cell (pixel)

reflect energy with random phase shifts back to the sensor. The receiver superimposes all

the individual returns within the resolution cell. Because of the heterogeneous distribution

of scatterers from one pixel to the next, the amplitude and phase of the radar returns will

experience random fluctuations from pixel to pixel. These random fluctuations cause the

salt-and-pepper appearance of SAR images.
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Figure 14: SAR image with speckle noise (left) and SAR image after Lee Filter with 7x7

window (right). Sentinel-1 GRD data processed by ASF [20] and post-processed with Python

(right)

In order to understand the nature of speckle noise, let’s consider a vegetated surface. The

distribution of scatterers (e.g., trees, crops, etc.) is highly unlikely to be uniform throughout

the distributed area and the variations from patch to patch induces an interference pattern

in the image. Moreover, the side-looking geometry of the SAR system implies that the

relative position of the instrument for each patch is di↵erent from pixel to pixel. This causes

the non-deterministic fluctuations of amplitude and phase of the returned signals described

above.

Speckle can also be understood using the vector diagram shown in Figure 15. Each vector

in the diagram represents the return from the individual scatterers within a SAR pixel. The

random amplitude and phase fluctuations of each vector results in the interference pattern
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causing the speckled appearance.

Figure 15: Vector representation of speckle. Adapted from [11]

Speckle Distribution

For a more detailed treatment of the mathematics behind speckle, the reader is referred

to [11]. The intensity distribution of a SAR acquisition can be modeled by an exponential

distribution as outlined in Equation 30. This distribution is sometimes called the speckle

distribution.

pdf(I|�0) =
1

�0
exp(� 1

�0
) (30)

Note that the speckle distribution is a conditional distribution. That is, it depends on

the normalized radar cross-section of the target. As the radar cross-section of the target
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increases, the speckle distribution starts to approach a uniform distribution. A larger radar

cross-section results in the target appearing brighter in the radar image. Because of its

dependence on radar cross-section and its multiplicative nature, speckle noise is di�cult to

deal with for practical applications. If we wanted to eliminate speckle noise completely from

a radar image, the true radar cross section of the target must be known. Estimating the

true radar cross section of targets is a di�cult endeavor.

Dealing with Speckle with Multi-looking

Given the close resemblance of speckle noise to salt-and-pepper noise, we may be tempted to

smooth out the image using spatial averaging. Median filters are typically used to smooth

salt-and-pepper noise, for example [10]. However, in order to preserve the information con-

tained in a SAR image, we must ensure that any averaging is done only over pixels that are

of the same target. Otherwise, we could be averaging measurements from di↵erent targets

and masking the true physical information contained in the radar return of each individual

target. In other words, we would compute a false radar cross section measurement.

How can we deal with speckle noise? A technique used to reduce speckle entails making

independent measurements of the distributed targets as we make the SAR acquisitions. As

the SAR platform illuminates the targets, the azimuthal beam is split into L sub-beams

similar to the aperture synthesis concept. However, we now have L smaller apertures to

work with. Figure 16 shows this so-called multi-look geometry. Each sub-beam creates an

image with a smaller azimuthal resolution relative to the full beam. This multi-look process

basically makes L measurements of the same SAR pixel, and thus, ensures that we are

averaging the radar cross-section over the same target area. The higher the number of looks

over a given target, the lower the intensity variance within the pixel cell. However, this

multi-look process comes at the expense of reduced spatial resolution.
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Figure 16: SAR multi-look geometry. Adapted from [11]

2.5.4 Radiometric Distortions

SAR images are also prone to radiometric or intensity distortions originating from surface

topography. Recall that the side-looking geometry of a SAR platform induces a local inci-

dence angle with the surface. This means that di↵erent topographical inclinations will be

illuminated with di↵erent incidence angles. For example, inclined terrain facing the sensor

will have an overexposed appearance relative to areas that reflect the incoming radar energy

away from the sensor. This radiometric distortion can be corrected if the surface topography

is known.

Consider the radar cross section, �, of a pixel in a calibrated SAR image as described by

Equation 31. The normalized radar cross-section, �0, and the surface area covered by a SAR

pixel are expressed as a function of the local incidence angle, ✓i.
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The process of radiometric terrain correction entails accounting for the pixel area dependence

in Equation 31. If the pixel area is known, we can obtain an unbiased radar cross-section. A

digital elevation model (DEM) is used to calculate the equivalent area A� covered by each

SAR pixel and then normalizing the radar cross section by A� to extract a terrain normalized

cross-section.

� = �0(✓i) · A�(✓i) (31)

2.5.5 Geometric Distortions

Radiometric distortions are not the only impairments introduced by the side-looking geome-

try of SAR systems. Topographic features and surface terrain properties introduce geometric

distortions as well. The most common types of geometric distortions are foreshortening, lay-

over, and radar shadow as outlined in Figures 17 and 18.

Layover and Foreshortening

From Figure 17 we see that foreshortening results in the sensor-facing side of the mountain

appearing compressed in the SAR image. This occurs because the radar signal arrives at the

top of the mountain (point B) shortly after arriving at the base of the mountain (point A).

Layover is the extreme case of foreshortening when the radar signal arrives at the top of

the mountain before the signal reaches the base of the mountain. In the SAR image, the

mountain appears as if leaning towards the satellite.

Radar Shadow

Radar shadows are regions where there is no radar return. The lack of radar return is

caused by targets such as mountains or buildings blocking the shadow regions behind them.

Figure 18 also depict the radar shadow distortions.
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Figure 17: Foreshortening, layover, and shadow geometric distortions in side-looking radar

systems. Adapted from [32]

Figure 18: Geometric distortions in side-looking radar systems. Adapted from [11]

37



2.5.6 Dielectric properties and penetration depth of radar signals

In Section 2.1, we discussed some of the physical fundamentals of electromagnetic radiation

propagation. In this section, we revisit some of these fundamental topics from a SAR system

perspective.

Recall that the radar cross-section of a target quantifies how much energy is scattered back

from the target to the sensor. The radar cross-section depends on the target’s properties

such as the size, shape, dielectric properties, and its roughness.

Dielectric Properties

The dielectric properties of a scattering surface directly impact how much of the incident

electromagnetic energy penetrates through the surface, how much energy is reflected back,

and how much energy is absorbed by the medium. Equation 8 outlines the linear dependence

between penetration depth and the radiation’s wavelength. That is, longer wavelengths (e.g.,

L and C-band) penetrate deeper through surfaces than shorter wavelength radars (e.g., X-

band). This implies that di↵erent SAR systems are more suitable for certain types of missions

than others. For example, longer wavelengths (e.g., L and P band) are better suited to map

inundation under tree canopies since they can penetrate deeper through vegetation than

shorter wavelengths (e.g., X-band).

Figure 19 depicts penetration depth for X, C, and L-band system. We see that as the

wavelength increases, the penetration depth also increases. Note, however, that the density

of the medium and arrangement of the tree canopies or scattering surface also play a role in

the penetration depth. Moreover, moisture content also impacts the dielectric properties of

media as we will see in subsequent sections. As the moisture content increases, so does the

relative permittivity discussed in Section 2.1, and thus, the penetration depth decreases.
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Figure 19: Scattering mechanisms by wavelength. Adapted from [32]

Surface Roughness

Surface roughness influences how much of the incident electromagnetic radiation is scattered

back to the sensor. How rough a particular surface appears to a radar system depends on the

size of the wavelength relative to local surface properties. Mathematically, we can quantify

surface roughness as the standard deviation of the height deviation h from some mean height

h̄ of the surface. A surface is defined as rough if the height deviations exceed the value hrough,

as shown in Equation 32 [32].

hrough > �/(32 · cos ✓i) (32)
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The implications of Equation 32 are that a surface considered rough at X-band (⇡ 3cm

wavelength), may not be considered rough for C-band (⇡ 6cm wavelength). Figure 20 shows

surface roughness from smooth to progressively rougher surfaces.

Figure 20: EM waves reflection types. Adapted from [32]

Polarization

As described in Section 2.1, the polarization of electromagnetic radiation describes the ori-

entation of the plane of oscillation of a propagating signal. The wave’s polarization also

influences the radar cross-section measured by the SAR system. Because SAR platforms are

active microwave systems, the supported transmit and receive polarizations can be controlled.

Most modern SAR systems are linearly polarized. In dual or quad-polarized systems, the

transmitter alternates between transmitting H- and V-polarized pulses and receiving both

H and V simultaneously.

2.5.7 Scattering Mechanisms

Di↵erent surface types or scatterer arrangements result in di↵erent scattering mechanisms

as we will discuss next.

Specular reflection occurs when the incident signal is reflected away from the sensor in the

so-called specular reflection. Specular reflection is caused by smooth surfaces as illustrated
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in Figure 20. In SAR images, specular reflection is characterized by dark regions as shown

in zone 1 of Figure 22.

Rough surface scattering occurs when the incident signal is scattered in multiple direc-

tions as depicted in Figures 20 and 21. Rough surface scatterers are typically low-vegetation

fields, bare soils, and roads. Zone 2 of Figure 22 shows an example of rough surface scattering

characterized by mid-tones in the gray-scale SAR image.

Volume scattering occurs when the signal bounces multiple times through the target.

Vegetation canopies are an example of volume scatterers as shown in zone 3 of Figure 22.

Double-bounce scattering occurs when the incoming radar signal reflects from smooth

surfaces oriented at 90�. Double bounce scatterers include buildings, tree trunks, light poles

and other vertical structures as shown by the red signal trajectories in Figure 21. Zone 4 of

Figure 22 shows double-bounce scattering characterized by very bright intensities.

Figure 21: SAR scattering mechanisms. Adapted from [7]
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Figure 22: Scattering mechanisms on New York City Sentinel-1 image. Sentinel-1 GRD data

processed by ASF [20]

2.6 Interferometric Synthetic Aperture Radar (InSAR)

The phase di↵erence between two coherent signals is related to the path length di↵erence to

within a fraction of a wavelength. Thus, by measuring the phase di↵erence between two radar

return signals from the same target we can extract distance information. Interferometric

synthetic aperture radar systems rely on this principle for applications such as detecting

surface motion, measuring topography, studying land deformation, and monitoring volcanic

and seismic activity.

In Section 2.5.3, we saw that the radar cross-section of a target within a SAR resolution

cell is the superposition of all the echoes with random amplitude and phase components.

This implies that the phase of a return signal can be decomposed into a range-dependent

deterministic component and a random phase component. The goal of interferometry is to

extract the range-dependent phase component and reject the stochastic component. We can
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express the measured phase as outlined in Equation 33, where  scatt is the random phase

component.

 =  (R) +  scatt (33)

InSAR platforms make two acquisitions and combine them to cancel out the random phase

component. There are two common approaches for an InSAR system to make two mea-

surements of the same target: single-pass interferometry and repeat-pass interferometry. In

single-pass interferometry, a single SAR platform carries two antennas separated by a known

baseline distance. However, carrying two antennas on a single platform is not always feasi-

ble or practical. In repeat-pass interferometry, a SAR platform collects two measurements

during di↵erent overpasses of the instrument. The time di↵erence between passes is known

as the temporal baseline and can be as short as a few hours, to the span of months or years.

The temporal baseline depends both on the SAR platform’s orbital repeat cycle or the type

of measurements being made. For slow-moving processes such as land deformation, obser-

vations over the span of months or years are typical to detect changes with interferometric

approaches.

Figure 23 depicts the viewing geometry of a dual-system interferometry platform. Antenna

1 and Antenna 2 are separated by a baseline distance, B, and collect measurements of the

same target area from di↵erent vantage points in space. In repeat-pass interferometry with a

single antenna platform, there is an inherent spatial baseline pertaining to orbital variations

between overpasses. Figure 24 shows the di↵erent ways to quantify the baseline separation

between the two viewing positions. Typically, the perpendicular baseline, B? is used to

define the viewing geometry.
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Figure 23: Geometry for across-track interferometry. Adapted from [11]

Figure 24: Baseline geometries for across-track interferometry - horizontal and vertical com-

ponent (left), perpendicular and parallel component (middle), baseline angle and baseline

length (right). Adapted from [11]

For a given look angle, ✓l, as shown in Figure 23, the phase di↵erence measured between A1

and A2 is related to the path length di↵erence as outlined in Equation 34. The factor of 2

accounts for the round-trip nature of the radar signal.
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�R = R2 �R1 = 2(R2 �R1) [m] (34)

From Equation 34, the phase di↵erence, ��, is computed as the fraction of wavelengths as

outlined in Equation 35.

�� = 2⇡
�R

�
[rad] (35)

From Figure 23, note that the slant ranges R1 and R2 are much larger that the baseline sepa-

ration between the antennas (B << R). This magnitude di↵erences allows us to approximate

the path length di↵erence with the parallel baseline distance depicted in the middle of Fig-

ure 35. Following this geometric train of thought, we can approximate the phase di↵erence

as shown in Equation 36.

�R ⇡ Bk = B sin(↵� ✓l), B << R

�� = kB sin(↵� ✓l) [rad]
(36)

Equation 36 expresses the interferometric phase di↵erence as a function of B, k, ↵, ✓l.

However, B, k, and ↵ are constants, which means that the the absolute phase di↵erence is

only a function of the look angle, ✓l. That is, the interferometric phase di↵erence provides

information about the look angle of a signal. This additional knowledge of the pixel’s look

angle allows us to compute a true ground range and a height (altitude). This is one of the

key applications of InSAR.

The InSAR measurements produce a phase interferogram. It is a plot of the relative phase

di↵erences for each SAR pixel. Figure 25 shows an example interferogram computed from two

Sentinel-1 acquisitions over Sri-Lanka in 2017. The lines of equal color in the interferofram
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represent contours of equal look angle. However, given the cyclical nature of phase, there is

an ambiguity in defining an absolute look direction. In order to remove the ambiguity, an

interferogram that accounts for the reference surface alone is computed and subtracted from

the measured interferogram. This calibration step is known as ‘Flat-Earth’ correction. Once

the flat-earth component has been subtracted out, a measure of height above the reference

surface is computed to extract topographic information.

Figure 25: Interferogram over Sri-Lanka. Primary image date: May 12th (top-left), sec-

ondary image date (top-right): May 24th 2017, interferogram (bottom-left), and coherence

map (bottom-right). Sentinel-1 data processed by ASF [20]
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Interferometric Coherence Magnitude

In Section 2.1, we defined coherence as a measure of similarity between two waves. In other

words, with knowledge of one wave, can we estimate the other? We also saw that interfero-

metric coherence is calculated as a complex cross-correlation between two SAR acquisitions.

The process of correlation ensures that only SAR pixels with valid radar cross-section mea-

surements will be treated as confident measurements and reject noisy measurements. That

is, pixels with low backscatter intensity will inherently yield low correlation values.

Equation 37 shows the normalized complex coherence between two SAR acquisitions. The

brackets refer to a spatial average as opposed to a temporal average for the two SAR images.

Similar to our discussion on multi-look filtering, the satellite platform has a limited time span

over the image targets, and thus, cannot obtain many realizations of the same measurement

with a single overpass. Thus, under an ergodic process assumption, we replace the time

average with a spatial average over a small spatial window. The unerlying assumption is

that imaged target properties remain constant. Equation 38 outlines the N-sample windows

normalized coherence, where u1 and u2 are the single-look complex pixel values and N is the

number of pixels.

� =
< E(t1)E(t2)⇤ >p

< |E(t1)|2 > · < |E(t2)|2 >
(37)

|�[i, k]| = |
P

N u1[i, k] · u⇤
2[i, k]|pP

N |u1[i, k]|2 ·
P

N |u2[i, k]|2
(38)

Note that � is a complex number. The phase angle of � gives us the phase di↵erence

between acquisitions, whereas the magnitude, |�|, gives us a measure of ‘meaningfulness’ of

the measurement. Coherence values range from 0 to 1. In other words, if the coherence

magnitude equals 1, the averaged pixels are fully coherent. On the flip side, a coherence

magnitude of 0 represents uncorrelated pixels. Coherence measurements are at the heart of
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our study and will be the topic of subsequent sections.

2.6.1 Decorrelation

What happens when the target surface changes between InSAR acquisitions? Our InSAR

measurements decorrelate. That is, they become less similar. System noise is the first source

of decorrelation since it is intrinsic to the SAR platform and not the imaged targets. Given

its random nature, noise will not be correlated between SAR acquisitions, and it is therefore

an impairment that cannot be avoided. Noise decorrelation is directly proportional to the

signal to noise ratio. In areas of low backscatter energy, decorrelation will be greater. For

example, areas of radar shadow lack cross-section measurements, and thus, the coherence

magnitude will approach zero. This yields any phase di↵erence calculations over these areas

meaningless. Similarly, other targets with low signal measurements (e.g., specular reflection)

are hindered by SNR and will exhibit noise decorrelation.

Baseline decorrelation occurs when the baseline between acquisitions starts to increase.

For non-zero baseline geometries, as the baseline separation increases, the return signals

become less similar and start to decorrelate.

Temporal decorrelation occurs when the targets change between repeat passes. If the

targets are not changing much with time, the coherence will remain high. Urban environ-

ments exhibit high temporal correlation values, for example. On the flip side, vegetated

terrain exhibits low temporal correlation values due to the random motion of leaves, crop

and vegetation growth, etc.

In remote sensing applications, our goal is very often to detect changes in the imaged land-

scapes. Decorrelation is therefore a key enabler for change detection. Natural processes such

as rain and wind a↵ect the environment between satellite passes. Anthropogenic activity is

another source of potential landscape change. In all of these cases, if the physical changes are

larger than the size of the wavelengths used, they will impact the coherence measurements.
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We can exploit the coherence changes over time to monitor changes on the surface.

2.6.2 InSAR Limitations

As summarized in Section 2.6, InSAR techniques have many useful remote sensing applica-

tions. However, InSAR techniques run into a number of limitations that make their use and

applications challenging.

The main source of limitations for InSAR is phase decorrelation. Shorter wavelength exhibit

more rapid decorrelation than longer wavelengths. This means that we need to consider

the platform’s design when applying InSAR techniques. Another major limitation of InSAR

techniques is the relatively low coherence values in highly vegetated areas. Volume scatterers

tend to reflect signals in multiple directions and are more likely to depolarize and decorrelate

the radar signals. Future SAR missions, like NISAR [7] [37] will operate at L-band which is

more robust to decorrelation over vegetated terrain due to the longer wavelengths.

Temporal phase decorrelation is another limitation of InSAR techniques. As the temporal

baseline increases, the more prone an area is to experience change, and thus, decorrelate

between acquisitions. Temporal decorrelation makes studying slow-changing phenonema

more challenging. Surface deformation is an example of a typically slow-moving process that

is noticeable only over extended periods of time (e.g., months or years).

Temporal decorrelation can also be caused by surface disturbances cause by weather events.

Rain water temporarily changes the soil moisture content of the terrain and leads to temporal

decorrelation. Likewise, flooding events change the structure of the target terrain resulting

in temporal decorrelation.

Lastly, atmospheric distortions are another source of decorrelation. The vacuum to atmo-

sphere boundary imposes a change in refractive index which results in a phase delay in the

signal. This phase delay can distort our interferometric measurements.
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2.7 Sentinel-1 Platform

This section provides an overview of the Copernicus Sentinel-1 SAR platform adapted

from [12] [38] and [39].

The Sentinel-1 mission operated by the European Space Agency (ESA) is comprised of

twin synthetic aperture radar satellites (Sentinel-1A and Sentinel-1B) orbiting the earth

180° apart. The SAR mission generates products that are openly accessible to the public.

Each of the twin satellites carries a C-band SAR sensor with dual-polarization capabilities

(VV+VH, HH+HV, HH, VV). The Sentinel-1 satellites have a 12-day repeat cycle at Equator

which brings the revisit times down to 6 days between passes for a given scene or region on

earth.

The Sentinel-1 mission acquires earth-observation products in a few di↵erent modes as out-

lined in Figure 26 and summarized in Figure 27. Of particular importance to our study

are the Single Look Complex (SLC) products and Ground Range Detected Products (GRD)

from the Sentinel-1 mission. The SLC products preserve the phase information and enable

interferometry calculations including coherence estimations. The GRD products enable ac-

curate geo-referenced radar cross-section measurements in the form of Sentinel-1 intensity

images. For a more detailed treatment of the Sentinel-1 products, the reader is referred

to [12] and [39].

Figure 26: Copernicus Sentinel-1 core products. Adapted from [38]
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Figure 27: Sentinel-1 acquisition modes. Adapted from [39]

2.8 Surface Water Mapping with SAR Intensity

Synthetic aperture radar intensity data is useful for surface water mapping. Standing water

bodies reflect the incoming radar signals away from the sensor resulting in low backscattered

energy. The result is a SAR image with a bi-modal intensity distribution. Traditional image

processing techniques can then be used to segment the water pixels. Figure 28 shows our New

York City Sentinel-1 example along with its intensity distribution. Note that the histogram

exhibits a bi-modal distribution that can be easily segmented to extract the water pixels

in the image. Next, we consider three flooding scenarios and discuss the SAR backscatter

signature associated with each scenario. The discussion that follows is adapted from [7]

and [35].
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Figure 28: Sentinel-1 bi-modal distribution. Sentinel-1 GRD data processed by ASF [20]

Open Lands

The first environment we consider are open lands. Figure 29 depicts the relative soil moisture

as a function of time on the left-hand plot and the radar cross-section as a function of time

on the right-hand plot. As precipitation increases with time, the soil moisture increases

monotonically until it reaches a saturation point. Once the soil is saturated, flooding occurs

and water starts to accumulate over the surface. On the right-hand plot, we see that the

radar cross-section or intensity initially increases in tandem with the increase in relative soil

moisture. The increase in radar cross-section is due to the temporary increase in electrical

conductivity associated with the moist soil. However, as the soil saturates and water starts

to accumulate, we see a sudden drop in the radar cross section attributed to the specular

reflection of the microwave signals.
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Figure 29: Surface water mapping in open lands. Adapted from [7]

Flooding under Vegetation Canopies

The second scenario is flooding under vegetation canopies as shown in Figure 30. The

left-hand diagram shows dry terrain before the onset of rain. We get the typical volume

scattering from tree canopies and rough surface scattering from dry soil. As water starts

to accumulate, double-bounce scattering from the water-trunk boundary starts to dominate

the backscattered energy.

Correlating our pictorial observations to Figure 31, we see a monotonic increase in soil

moisture up to a saturation point when flooding occurs. The radar intensity also increases

monotonically due to the change in electrical properties in the soil. For this scenario, however,

when the double bounce scattering between the water-tree boundary starts to occur, the

radar return is enhanced and appears very bright in our SAR image.
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Figure 30: Surface water mapping under vegetation canopies. Adapted from [7]

Figure 31: Surface water mapping under vegetation canopies. Adapted from [7]

Flooding in Crop Lands

The last scenario is flooding in crop lands. Figure 32 shows a progression of events as rain

starts to flood crop lands. As shown in diagram B, as rain starts to accumulate but not

completely submerge the vegetation, we get a double bounce e↵ect that improves the radar

backscatter intensity. As the flooding onsets and the crops are submerged, specular reflection

dominates and the radar cross section drops as shown in Figure 33.
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Figure 32: Surface water mapping in crop lands. Adapted from [7]

Figure 33: Surface water mapping in crop lands. Adapted from [7]
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3 Data Processing and Preparation

This section describes the data set used in our study. Section 3.1 provides an overview of the

Sen1Floods11 public data set used as the backbone for our experiments. Section 3.2 describes

our methodology for augmenting the Sen1Floods11 data set with bi-temporal intensity and

interferometry Sentinel-1 data.

3.1 Sen1Floods11 Data set

Sen1Floods11 is a georeferenced surface water data set for eleven flood events generated by

Cloud to Street, a Public Benefit Corporation [40]. The flood events occurred between 2016

and 2019 and are spread around the world. The Sen1Floods11 data set contains classified

permanent water, flood water, and Sentinel-1 backscatter intensity data (VV- and VH-

polarized at 10-meter spatial resolution). In total, the data set is comprised of 4,831 chips

(512 x 512) with a 446 chip subset quality controlled and hand-labeled with surface water

from the flood events. The remaining 4,385 chips are labeled with two threshold-based

methods and are considered weakly-labeled. The first weak label modality is extracted from

the Sentinel-1 intensity imagery by applying an Otsu variance maximization threshold in

the VV-band. The second weak label modality is extracted by thresholding the Sentinel-

2-derived Normalized Di↵erence Vegetation Index (NDVI) and the Modified Normalized

Di↵erence Water Index (MNDWI) [1] [30].

3.2 Data Set Augmentation

The Sen1Floods11 data set described in Section 3.1 serves as the backbone for our study’s

data set. We consider a subset of seven of the flood events included in the Sen1Floods11 data

set. Figure 34 outlines the geographical distribution of the flood events considered in this

study while Table 1 summarizes the geographical regions along with pertinent metadata.
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Figure 34: Geographical regions from where flood data was sampled [1]

Country S2 date S1 Co-event date S1 Pre-event date Rel. Orbit Orbit

USA 2019-05-22 2019-05-22 2019-04-16 136 Ascending

KHM 2018-08-04 2018-08-05 2018-07-24 26 Ascending

BOL 2018-02-15 2018-02-15 2018-02-03 156 Descending

IND 2016-08-12 2016-08-12 2016-06-01 77 Descending

PRY 2018-10-31 2018-10-31 2018-10-19 68 Ascending

COL 2018-08-23 2018-08-22 2018-07-17 106 Ascending

LKA 2017-05-28 2017-05-39 2017-05-12 19 Descending

Table 1: Flood event metadata for regions used in this study [1]

Figure 35 shows six di↵erent Sen1Floods11 scenes sampled across di↵erent regions. The left-

most column shows the true color Sentinel-2 scene followed by the VV-polarized Sentinel-1

57



co-event intensity. The false color composite shown in the figure combines the VV- and

VH-polarized channels to highlight the water bodies in dark shades of blue similar to the

approach used in [41]. Lastly, hand-labels for each scene are shown on the right-most column.

The Sen1Floods11 imagery provides the co-event intensity chips used to train our models. We

augment the co-event intensity data by downloading pre-event intensity chips from Google

Earth Engine [14] overlapping the spatial extent of the co-event chips. Specifically, Sentinel-1

Interferometric Wide (IW) Swath Ground Range Detected (GRD) prodcuts are downloaded

to augment the co-event intensity chips. The Level-1 GRD products available from Google

Earth Engine are processed to backscatter coe�cients (�0) in decibels (dB). Google Earth

Engine uses the Sentinel-1 Toolbox [42] to carry the sequence of processing steps outlined in

Algorithm 1 to produce GRD products [43]. Table 1 summarizes the pre-event and co-event

Sentinel-1 scene dates used in our experiments and Figure 36 shows an example of a pre-

and co-event Sentinel-1 intensity chip at 10-meter resolution.
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Figure 35: Sentinel-2 true color composite, Sentinel-1 (VV) intensity, Sentinel-1 false color

composite (R: VV , G: VH, B: VV / VH), Hand-label. Sentinel-1 and Sentinel-2 data

processed by GEE [14] and post-processed with Python
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Algorithm 1 Google Earth Engine Sentinel-1 GRD Processing [43]
1. Apply orbit file to update orbit data
2. GRD border noise removal to remove low intensity noise and invalid data on the
scenes
3. Thermal noise removal to mitigate additive noise in the merging of Sentinel-1
sub-swaths
4. Radiometric calibration to compute backscatter intensity using sensor calibration
parameters
5. Terrain correction (orthorectification) to convert data from ground range geom-
etry to geocoded �0 using a DEM (e.g., SRTM 30 meter or ASTER DEM)

Figure 36: Pre-event intensity (left) and co-event intensity (right) pairs (VV-polarized top,

VH-polarized bottom) [30]. Sentinel-1 data processed by GEE [14].

In addition to augmenting the co-event intensity data, interferometric coherence data is gen-
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erated for both the pre- and co-event scenarios. As described in Section 2.6, interferometry

requires a co-registered pair of single look complex (SLC) Sentinel-1 images. In order to

augment the Sen1Floods11 data set, we identify suitable pre- and co-event image pairs using

Alaska Satellite Facility’s Vertex Data Search platform [20]. Table 2 outlines the temporal,

Bt, and perpendicular, Bp baselines for the image pairs used to generate the coherence maps.

The interferometric coherence maps were generated using the on-demand HyP3 platform

hosted by the Alaska Satellite Facility (ASF) [44] [20]. HyP3 o↵ers on-demand InSAR

products processed using the GAMMA Remote Sensing software [45] at no cost. The InSAR

products are o↵ered at both 40-meter and 80-meter resolutions. The resolution is set based

on the number of multi-looks used in the HyP3 processing pipeline. The processing steps

used to generate the InSAR products are summarized in Algorithm 2.

Country
Pre-event InSAR

Bt (days)

Pre-event InSAR

Bp Range (m)

Co-event InSAR

Bt (days)

Co-event InSAR

Bp Range (m)

USA 12 5 - 6 12 21 - 22

KHM 12 114 - 117 12 37 - 38

BOL 12 24 - 29 12 4 - 6

IND 24 7 - 11 24 9 - 14

PRY 12 21 - 32 12 38 - 40

COL 12 46 - 50 12 0.2 - 1.1

LKA 12 76 - 80 6 71 - 80

Table 2: Temporal and perpendicular baselines for InSAR Products. Data retrieved from

ASF [20]

61



Algorithm 2 InSAR Processing Pipeline [20]
Pre-Processing

1: Ingest SLC data into GAMMA format

2: Get DEM file covering the area, apply geoid correction and resample/reproject as re-

quired

3: Calculate overlapping bursts for input scenes

4: Mosaic swaths and bursts together

InSAR Processing

5: Prepare initial look-up table and simulated unwrapped image

- Derive lookup table for SLC/MLI co-registration (considering terrain heights)

- Simulate unwrapped interferometric phase using DEM height, and deformation rate

using orbit state vectors

6: Interferogram creation, matching, refinement

- Initial co-registration with look-up table

- Iterative co-registration with look-up table

- Removal of curved earth and topographic phase

7: Determine a co-registration o↵set based on the burst overlap (spectral diversity method)

- Single iteration co-registration with look-up table

8: Phase unwrapping and coherence map generation

9: Generation of displacement maps from unwrapped di↵erential phase

Post-Processing

10: Generation of geocoded GeoTIFF outputs

For this study, we are interested in as high a spatial resolution as possible. Thus, 40-meter

coherence maps were ordered from the HyP3 platform for each of the geographical regions

in our study. The 40-meter coherence maps were re-sampled to 10-meter resolution using

a nearest neighbor interpolation algorithm. The Python bindings for GDAL were used for
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re-sampling [46]. Since coherence data represents phase noise, nearest neighbor interpolation

proved to be the most appropriate re-sampling algorithm for our experiments. Any other

non-linear re-sampling algorithm tends to generate smoothed versions of the coherence maps

and thereby reduces the spatial context needed to extract meaningful information from the

coherence maps.

Figure 37 displays a pre- and co-event intensity and coherence pair from our augmented

data set. Coherence values range from 0 to 1, with darker patches in the coherence map

corresponding to more incoherent regions relative to the brighter patches. Note that the co-

event coherence map exhibits a loss of coherence in the regions where flood water is present.

In our case, the loss of coherence can be attributed to the spatial modification induced by

the flood water relative to the pre-event benchmark. When flood water stagnates, there is

a loss of coherence where the water accumulates, which correlates with what we see from

Figure 37. The reference Sentinel-2 weak label for the flood scene shown in Figure 37 is

shown in Figure 38. From the water mask, we confirm that the areas corresponding to lower

coherence values in the co-event map are indeed caused by the presence of flood water.
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Figure 37: Pre-event intensity (VV) and coherence (top), co-event intensity (VV) and co-

herence (bottom). Data processed by GEE and ASF [14] [20].
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Figure 38: Co-event intensity (VV) (left), co-event coherence (middle), Sentinel-2 weak label

(right). Data processed by GEE and ASF, and post-processed with Python [14] [20].

Figure 39 shows a collection of bi-temporal intensity and coherence pairs from our augmented

data set. A visual inspection of the co-event intensity chips quickly highlights the presence of

flood water as the darker patches in the SAR image. We note that most of the dark patches

in the co-event intensity images are not present in the pre-event scenes. The false color

composites shown in the image further highlight the flooded areas in cyan tones. The cyan

regions represent areas where the co-event intensity is lower than the pre-event intensity.

Lastly, we observe a drop in coherence for each scene.
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Figure 39: From left to right: co-event intensity (VH), pre-event intensity (VH), false color

composite (R: co-event, G: pre-event, B: pre-event, adapted from [13]), pre-event coherence,

co-event coherence, hand-label. Sentinel data processed by GEE and ASF and post-processed

with Python [14] [20].

4 Methods

This section describes the machine learning models trained for our semantic water segmen-

tation experiments. We note that the models trained were not designed to optimize absolute

classification performance relative to some state of the art benchmark. Instead, the experi-

ments were set up to assess the relative improvement gained by fusing intensity and inter-

ferometric coherence data when compared against an intensity data-only model. Section 4.1

describes the di↵erent scenarios or input data combinations we train. Section 4.2 describes

the XGBoost, U-Net, and Attention U-Net architectures. Lastly, Section 4.3 concludes with

the training methodology used for each model.

66



4.1 Model Scenarios

We train three di↵erent scenarios with di↵erent data combinations for flood water classifi-

cation. Table 3 outlines the di↵erent data combinations along with the number of bands or

channels (e.g., co-event VV-polarization, co-event VH-polarization, etc.) for each scenario.

These scenarios are similar to three of the scenarios trained by [13] where the authors use

TerraSAR-X data and use Hurricane Harvey as a test case. Note that the Sentinel-1 inten-

sity chips contain both VV- and VH-polarized GRD products for both the pre- and co-event

data sets. Figures 40, 41, and 42 depict block diagrams for each scenario.

Scenario Description
Number of

channels

Scenario I Co-event intensity 2

Scenario II
Pre-event intensity +

Co-event Intensity
4

Scenario III
Pre-event intensity and coherence +

Co-event intensity and coherence
6

Table 3: Experiment scenarios

Figure 40: Scenario 1: Uni-temporal intensity scenario block diagram
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Figure 41: Scenario 2: Bi-temporal intensity scenario block diagram

Figure 42: Scenario 3: Bi-temporal intensity and coherence scenario block diagram

4.2 Models

4.2.1 XGBoost

Ensemble Algorithms and Boosting

Ensemble algorithms build a collection of individual statistical predictors or weak learners.

The collection of weak learners’ predictions are aggregated together to make a final predic-

tion. For classification algorithms, the final prediction can be the majority vote amongst

all of the weak learners. Each of the weak learners in the ensemble can be an individual
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classification tree, for example. These weak learners typically work on a subset of the fea-

ture space and are not very good predictors by themselves. The premise behind limiting the

feature space is to minimize the potential for overfitting to strong features. For example,

if we create an ensemble of decision trees where all of the individual constituent trees are

allowed to use all of the features in the data set, any strong predictor in the feature space

will dominate and bias the predictions for the entire ensemble [47] [48].

Boosting is a technique that incrementally improves the classification or prediction results of

a statistical algorithm. In the context of decision tree ensembles, boosting works by growing

the trees sequentially using information from previously grown trees. Each tree is grown with

a slightly modified version of the entire data set. The incremental nature of the boosting

algorithms means that learning happens slowly and minimizes the potential for overfitting.

The increments at each step consider the residuals or errors from the previously grown tree to

direct the next increment or iteration. The following discussion of tree algorithms is adapted

from [47] [48] and [49]. For a more in-depth treatment of the topic, the reader is referred to

these sources.

Tree Algorithms

Regression and classification trees make predictions by splitting the space of predictor vari-

ables into disjoint regions Rj, j = 1, 2, ..., J . A constant �j is assigned to each of the disjoint

regions and the predictive rule is set as outlined in Equation 39.

x 2 Rj =) f(x) = �j (39)

Given the partition of the predictor space into disjoint regions, Rj, and their corresponding

decision rules, a decision tree can be expressed as outlined in Equation 40. The decision tree

solution is an optimization problem to find the optimal ⇥, where ⇥ = {Rj, �j}J1 .
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T (x;⇥) =
JX

j=1

�jI(x 2 Rj) (40)

A boosted decision tree model is a sum of M individual decision trees as outlined in Equa-

tion 41.

fM(x) =
MX

m=1

T (x;⇥m) (41)

In order to grow the boosted tree model and find the optimal ⇥ parameters, we must solve

the optimization problem outlined in Equation 42.

⇥̂ = arg min�jm

X

xi2Rjm

L(yi, fm�1(xi) + �jm) (42)

Numerical methods such as steepest descent or gradient boosting can be used to approximate

the solution to Equation 42. For any di↵erentiable loss function, we can pose a gradient

descent algorithm with the goal of minimizing the loss in using our tree to predict ground

truth.

With gradient boosting, at each step of the tree growing process, the solution is the one

that maximally reduces 42 given the current model fm�1. Hastie et al show that using the

gradient of our loss function and our tree at step m, we can use squared error to measure

closeness. The iterative approach reduces to fitting the three to the residuals between our

prediction fm�1(xi) and the ground truth yi [47].

4.2.2 U-Net

The U-Net is a convolutional neural network (CNN) architecture used for semantic seg-

mentation (i.e., pixel-wise classification) tasks. It was first introduced for biomedical image

segmentation, and has gained increased popularity in many domains outside of the biomed-
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ical fields due to its ability to accurately segment images. The U-net architecture follows an

encoder-decoder pattern. The encoder network applies subsequent convolutional blocks fol-

lowed by max-pooling operations to reduce the input feature maps’ resolution. The encoder’s

main objective is to learn a latent feature map from the input images somewhat similar to

an object detection network. The encoded feature map is then fed into a decoder network

that expands the feature maps back to the input image size. The expansion is accomplished

by 2-D transpose convolutional blocks. These convolutional blocks interpolate and upsample

our feature maps in a controlled manner. Moreover, the U-Net architecture incorporates skip

connections from the high resolution encoder layers to combine them with the upsampled

layers in the decoder. The original U-Net architecture published by Ronneberger et al is

shown in Figure 43 [24].

Figure 43: U-Net architecture. Adapted from [24]
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4.2.3 Attention U-Net

The Attention U-Net architecture is a modification of the original U-Net architecture de-

scribed in Section 4.2.2. The new architecture shown in Figure 44 introduces attention gates

in the skip connections between the encoder and decoder paths. The attention gates’ pur-

pose is to learn how to focus on the important features in the input images to improve the

semantic segmentation performance of the model. For the architecture used in this study,

the attention gates are trained to focus on local relevant regions as opposed to focusing on

global image properties. The inclusion of the attention gates does not drastically increase

the training overhead compared to a traditional U-Net architecture and can be optimized

with standard gradient descent algorithms. For a more in-depth treatment of the Attention

U-Net architecture, the reader is referred to [50].

Figure 44: Attention U-Net architecture. Adapted from [50]

We focus on training Attention U-Net models in our study. Initial exploratory experiments

showed that the Attention U-Net results outperformed the traditional U-Net results.

4.3 Data Set Statistics and Model Training

As outlined in Section 3.2, we subset the Sen1Floods11 data set to train our models. Prior

to training, the data set was pruned to remove chips with non-valid data pixels instead
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of masking them during model training. This allowed us to train more consistently across

neural networks and tree-based models. Moreover, the not-valid pixels in our labels are

mapped to not-water pixels. This allowed us to train a binary classification model without

worrying about a third, ‘not-valid’ class. The pruned training, validation, and test set splits

per region are summarized in Table 4. Overall, we augment and train using roughly 50% of

the Sen1Floods11 data set. Moreover, we maintain the exact same train, validation, and test

set splits across all models trained. Lastly, the chips from the Sri-Lanka region were

not used during training or validation of our models. Instead, we reserved the

Sri-Lanka chips for model generalization analyses as will be outlined in Section 5.

Region Train Chips Val Chips Test Chips Hand-labeled Chips

USA 300 68 76 60

Mekong 906 155 189 27

Colombia 362 60 77 0

Paraguay 212 38 40 61

India 315 55 59 63

Bolivia 121 16 19 10

Sri-Lanka 0 0 185 41

Total 2216 392 645 262

Table 4: Train, validation, and test data set splits

4.3.1 Data Set Statistics

This section summarizes our data set statistics. Table 5 summarizes our pixel distribution for

both the Sentinel-2 weakly labeled data set as well as the hand-labeled data set (including

Sri-Lanka). Note that the data set is highly imbalanced with the not-water category far

outweighing the water class. We do not assign class weights during model training, however.
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Data Set Not-Water Pixels Water Pixels Not-Valid Pixels

S2 Weakly Labeled 82.14% 13.03% 4.83%

Hand-Labeled 82.87% 9.71% 7.42%

Table 5: Pixel class distribution

Table 6 summarizes the average coherence across all chips per region for both the pre-event

and co-event time steps. Note that in most regions, the pre-event coherence is higher than

the co-event coherence as expected during a flooding event. However, for regions such as

Bolivia, the pre-event coherence is not significantly higher than the co-event coherence.

Moreover, we note that in Paraguay the co-event coherence is actually higher than the pre-

event coherence. One potential explanation for this reversal in coherence magnitude may be

due to the presence of vegetation in the scenes. As explained in Section 2, highly vegetated

regions tend to exhibit high temporal decorrelation due to the randomness inherent in the

scatterers’ motion. In fact, most if not all of the scenes contained in the Sen1Floods11 data

set used are not urban scenes. This poses a challenge when trying to exploit the coherence

data given the intrinsically lower correlation of the scenes. Nonetheless, we move forward

with our experiments to assess the relative improvements gained by fusing the coherence and

intensity data.

Figure 45 shows the average pre-event and co-event coherence magnitude for 25 sample

scenes. We can see a pattern of higher average pre-event coherence for most of the sampled

scenes.
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Figure 45: Average coherence for 25 scenes

USA Mekong Colombia Bolivia Paraguay India

Pre-event 64.92% 38.64% 43.80% 24.88% 28.13% 29.59%

Co-event 49.31% 37.09% 37.71% 24.62% 33.04% 27.33%

Table 6: Average coherence by region

4.3.2 Model Training

We train our Attention U-Net models with a batch size of 10 input scenes for 30 epochs

using an Adam optimizer [51] with an initial learning rate of 1e�4, momentum parameters

�1 = 0.9, �2 = 0.999, and exponential decay rate of 0.96. Each model was trained using

TensorFlow [52] on an NVIDIA RTX 3090 GPU. Training time for the 10-meter resolution

models took approximately 3 hours per model scenario.

The only data augmentation used with our U-Net models were random 90� flips. We leverage

the publicly available Keras U-Net Collection repository published in [53]. Our Attention

U-Net models use the VGG-16 [54] architecture as the encoder’s backbone, with weights

randomly initialized. That is, we do not perform transfer learning and instead train our
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model weights from scratch. Training our model weights from scratch minimizes our risk of

negative transfer given the uniqueness of our input data set. We use batch normalization

and ReLU activations for both the convolutional layers and the attention gates and Sigmoid

activation at the output.

We train our XGBoost models using the XGBoost python package [55] with GPU acceler-

ation. Each XGBoost classifier is trained with 100 boosting rounds (nestimators), a learning

rate (⌘) of 0.3, and maximum tree depth of 6. The training was performed in a serial manner

by splitting the data set in two batches that each fit in GPU memory. The first batch was

fit to an initial model that is subsequently loaded for training continuation with the second

data set batch. No data augmentation was used for the XGBoost models. Moreover, we use

the raw intensity and coherence data pixels as inputs to the XGBoost classifiers. In other

words, no feature engineering was performed for the XGBoost models. Training time for

each XGBoost model averaged around 3 minutes on the same NVIDIA RTX 3090 GPU used

to train the Attention U-Net models.

5 Results and Discussion

In this section, we summarize experiment results for the XGBoost and Attention U-Net

models trained using the 10-meter resolution intensity and coherence data set described in

Section 3. As mentioned in Section 3.2, the on-demand InSAR products o↵ered by the HyP3

platform are available in 40- or 80-meter resolution. Since our objective is to train models

with as high a spatial resolution as possible, the results presented below will only consider the

10-meter experiments. However, it is worth noting that 40-meter resolution models

were also trained as part our initial exploratory experiments with coherence

data. The relative improvements obtained with 40-meter resolution data are in

line with the 10-meter resolution results outlined in this section.
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5.1 Metrics

This section provides definitions for metrics we will use to analyze our classification results.

Section 4.3.1 highlighted the fact that our data set is highly imbalanced. This means that

the majority class in our data set (not-water class) will mask the water-class pixels, and

thus, overall accuracy is not the most informative metric to assess our results. We use

intersection over union as our evaluation metric of choice. Intersection over union is

defined as the overlap between the predicted and ground truth labels divided

by the union of the predicted and ground truth labels. Equation 43 outlines the

definition mathematically, where TP , FP , and FN are true positive, false positive, and false

negative rates respectively. When considering all classes, it is customary to report a mean

IoU, which is the average of the individual classes’ IoU [56].

IoU =
TP

TP + FP + FN
(43)

Moreover, we also report precision, recall, and f-1 score metrics. Scikit-learn’s documentation

provides the following intuitive definition of precision and recall: “Precision is the ability of

the classifier not to label as positive a sample that is negative, and recall is the ability of the

classifier to find all the positive samples” [57].

Precision is the ratio of correctly predicted positive observations to the total predicted

positive observations. High precision relates to a low false positive rate. Precision

answers the following question: of all the water pixels labeled, how many are actually true

water pixels?

Precision =
TP

TP + FP
(44)

Recall is the ratio of correctly predicted positive observations to the total number of obser-
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vations in the pertaining class. Recall answers the following question: of all the water pixels,

how many did we label as water?

Recall =
TP

TP + FN
(45)

F1-score is the weighted harmonic mean of precision and recall.

F1 =
2 precision⇥ recall

precision+ recall
(46)

5.2 Classification Results

Classification results are presented for two di↵erent test sets. The first test set is a held-out

subset of our Sentinel-2 weakly-labeled chips. This weakly-labeled test set is similar to the

weak labels used during training (i.e., optical bands thresholds). The second test set is a

hand-labeled subset of the 446 chips included with the Sen1Floods11 data set. This report

includes the weakly-labeled held-out test set results for completeness. However, we focus

most of our results discussions around the hand-labeled test set results. The hand-labeled

test set represents the best way to validate our hypothesis because the labels

are completely independent from the training pipeline. This means that the hand-

labeled test set allows us to both assess our water classification improvements as well as to

answer the question: how well does the model generalize and agree with independent data?

The reader is encouraged to review both test set results.

5.2.1 A note on Sentinel-1-derived labels

Section 3.1 described that the Sen1Floods11 data set contains Sentinel-1-derived weak la-

bels generated with an Otsu threshold of the VV-polarized intensity band. It is worth

noting that this study ran exploratory experiments using the Sentinel-1 weak labels from
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the Sen1Floods11 data set. However, our models were very prone to quickly overfit to the

co-event band and the Sentinel-1 weak labels. These results are almost expected since the

weak labels were originally generated from the same co-event data used as input to the clas-

sification models. In other words, our semantic segmentation models were asked to learn

what threshold was used to generate the weak labels.

Similarly, HYDRAFloods [15] and HydroSAR-generated [18] labels were used as part of

our exploratory experiments. Both publicly available Python libraries introduced in Sec-

tion 1 use Sentinel-1 intensity data to segment water pixels. The results obtained with

the HYDRAFloods and HydroSAR-generated labels are in line with those obtained with

the Sen1Floods11 Sentinel-1 weak labels. Our models quickly learnt the thresholds used to

segment the water pixels, and did not exploit the coherence information.

Instead, we shifted our focus and co-trained using the Sentinel-2-derived weak labels in

the Sen1Floods11 data set. This approach allowed us to fuse di↵erent sensor and data

modalities to test our models’ robustness for semantic water segmentation and the relative

improvements gained by introducing the coherence data.

5.2.2 Attention U-Net Results for all Geographical Regions

This section presents the Attention U-Net model’s classification results aggregated over all

the geographical regions studied. Intersection over union results for the di↵erent model

scenarios are summarized in Tables 7 and 8 for the weakly-labeled held-out test set and

the hand-labeled test set, respectively. Figure 46 summarizes the IoU results graphically.

Tables 9 and 10 summarize overall classification results including precision, recall, and the

f1-score metrics.

Considering the co-event and bi-temporal intensity models, our first observation is that

adding the pre-event intensity data to the co-event intensity model does not improve the

IoU results for the Attention U-Net architecture. This is true for both the weakly-labeled
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held-out test set and the hand-labeled test set (Tables 7 and 8). In fact, our results show

that the co-event intensity model outperforms the bi-temporal intensity model in terms of

IoU. This observation is further supported by the water-class precision, recall, and f1-scores

presented in Tables 9 and 10. This indicates that the co-event intensity bands are the

most relevant features for mapping surface water. This is in agreement with what we

would expect given that the co-event scenes will exhibit di↵erent spatial distributions from

the pre-event scenes due to the presence of flood water.

How does interferometric coherence impact our segmentation results?

Considering the hand-labeled data set results for our Attention U-Net models, with the

addition of the multi-temporal coherence information, our overall water IoU

increases from 54.57% with the co-event intensity model to 57.86% with the bi-

temporal intensity and coherence model (Table 8); a 3.29% improvement. This

represents the single largest IoU improvement across the weakly-labeled and hand-labeled

data sets (see Figure 46). This means that our bi-temporal intensity and coherence model

performs better with the hand-labeled data set than with the Sentinel-2 weak label modality

used for training. We also see a total mIoU increase from 70.29% with the co-event

intensity model to 72.31% with the bi-temporal intensity and coherence model,

further validating our hypothesis.

In terms of our model’s ability to recall the water pixels, Table 10 highlights that our bi-

temporal intensity and coherence model outperforms the co-event and bi-temporal intensity

models. Comparing the co-event intensity model to the bi-temporal intensity

and coherence model, we see that the water recall increases from 59.60% to

63.93%, respectively. This means that the addition of bi-temporal coherence data

helps our model reduce the false negative rate. That is, we reduce the percentage

of pixels falsely classified as not-water. On the other hand, Table 10 also highlights that

our bi-temporal intensity model outperforms the bi-temporal intensity and coherence model
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in water precision; 88.28% versus 85.90%, respectively. This means that the bi-temporal

intensity model is better at minimizing the false positives rate. In other words, our bi-

temporal intensity and coherence model tends to over-estimate the water-class

pixels relative to the co-event and bi-temporal intensity models. Lastly, Table 10

also highlights that our bi-temporal intensity and coherence model outperforms the co-event

and bi-temporal intensity models in terms of the f1-score.

Figure 46: IoU Results for 10-meter Attention U-Net Models

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Total mIoU 66.11% 64.50% 66.60%

Not Water IoU 69.29% 68.66% 69.64%

Water IoU 62.93% 60.33% 63.56%

Table 7: IoU results for Attention U-Net models, held-out test set for all geographical regions
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Total mIoU 70.29% 67.70% 72.31%

Not Water IoU 86.01% 85.13% 86.76%

Water IoU 54.57% 50.27% 57.86%

Table 8: IoU results for Attention U-Net models, hand-labeled test set for all geographical

regions

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Overall Accuracy 93.83% 93.65% 93.94%

Mean IoU 66.11% 64.50% 66.60%

Water Precision 77.66% 80.20% 77.79%

Water Recall 76.84% 70.89% 77.66%

Water f1-score 77.25% 75.26% 77.72%

Not Water Precision 96.35% 95.49% 96.48%

Not Water Recall 96.51% 97.24% 96.50%

Not Water f1-score 96.43% 96.36% 96.49%

Table 9: Overall classification results for Attention U-Net models, held-out test set for all

geographical regions
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Overall Accuracy 95.29% 94.94% 95.58%

Mean IoU 70.29% 67.70% 72.31%

Water Precision 86.63% 88.28% 85.90%

Water Recall 59.60% 53.86% 63.93%

Water f1-score 70.61% 66.90% 73.30%

Not Water Precision 95.90% 95.35% 96.32%

Not Water Recall 99.04% 99.25% 98.90%

Not Water f1-score 97.44% 97.26% 97.59%

Table 10: Overall classification results for Attention U-Net models, hand-labeled test set for

all geographical regions

5.2.3 XGBoost Results for all Geographical Regions

This section presents the XGBoost model’s classification results aggregated over all the

geographical regions studied. Intersection over union results for the di↵erent model scenarios

are summarized in Tables 11 and 12 for the weakly-labeled held-out test set and the hand-

labeled test set, respectively. Figure 47 summarizes the IoU results graphically. Tables 13

and 14 summarize overall classification results including precision, recall, and the f1-score

metrics.

In terms of water IoU performance, in contrast to our Attention U-Net results, our XG-

Boost’s bi-temporal intensity model outperforms our XGBoost co-event intensity model.

Table 12 summarizes an incremental water IoU improvement from 52.36% to 53.20% for

the hand-labeled data set. Adding the bi-temporal coherence data improves our

water IoU results from 52.36% for the co-event intensity model to 55.87% for the

bi-temporal intensity and coherence model; a 3.51% improvement. This relative
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water IoU improvement is in line with the results obtained with the bi-temporal instensity

and coherence Attention U-Net model.

In terms of our XGBoost models’ ability to recall water pixels, Table 14 shows that our bi-

temporal intensity and coherence model outperforms the co-event and bi-temporal intensity

models. We see a water recall improvement from 60.16% for the co-event intensity

model to 65.57% for the bi-temporal intensity and coherence model. On the other

hand, our XGBoost co-event and bi-temporal intensity models outperform our bi-temporal

intensity and coherence model in the water precision metric. Finally, our bi-temporal in-

tensity and coherence model outperforms both co-event and bi-temporal intensity models in

terms of f1-scores. These results are also in line with the results obtained with the Attention

U-Net models further validating our hypothesis.

Figure 47: mIoU for 10-meter XGBoost Models
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Total mIoU 61.46% 62.36% 64.20%

Not Water IoU 66.06% 66.59% 67.62%

Water IoU 56.86% 58.13% 60.77%

Table 11: IoU results for XGBoost models, held-out test set for all geographical regions

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Total mIoU 68.80% 69.30% 70.89%

Not Water IoU 85.23% 85.39% 85.92%

Water IoU 52.36% 53.20% 55.87%

Table 12: IoU results for XGBoost models, hand-labeled test set for all geographical regions
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Overall Accuracy 92.85% 93.02% 93.34%

Mean IoU 61.46% 62.36% 64.20%

Water Precision 76.18% 76.08% 75.43%

Water Recall 69.16% 71.13% 75.77%

Water f1-score 72.50% 73.52% 75.60%

Not Water Precision 95.21% 95.49% 96.18%

Not Water Recall 96.59% 96.47% 96.11%

Not Water f1-score 95.89% 95.98% 96.14%

Table 13: Overall classification results for XGBoost models, held-out test set for all geo-

graphical regions

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Overall Accuracy 94.87% 94.93% 95.14%

Mean IoU 68.80% 69.30% 70.89%

Water Precision 80.15% 79.85% 79.06%

Water Recall 60.16% 61.45% 65.57%

Water f1-score 68.73% 69.45% 71.69%

Not Water Precision 95.98% 96.10% 96.50%

Not Water Recall 98.46% 98.40% 98.20%

Not Water f1-score 97.20% 97.24% 97.34%

Table 14: Overall classification results for XGBoost models, hand-labeled test set for all

geographical regions
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5.2.4 Classification Results Aggregated by Geographical Region

This section outlines classification results aggregated by geographical regions. The classifi-

cation results encompass the weakly labeled held-out test set and the hand-labeled test set

for completeness. Note that the Sen1Floods11 data set does not have hand-labeled data

for Colombia. Our discussion will focus on the hand-labeled data set results. We start by

summarizing IoU, water precision, recall and f1-score results. We then consider our mod-

els’ ability to generalize to geographical regions di↵erent from the regions used to train our

models.

For the Attention U-Net models, Table 16 along with Figure 48 summarize regional IoU

results. Tables 18, 20, and 22 along with Figures 49, 50, and 51 summarize the water

precision, recall, and f1-score results for the Attention U-Net models.

For the XGBoost models, Table 24 along with Figure 52 summarize regional IoU results.

Tables 26, 28, and 30 along with Figures 53, 54, and 55 summarize the water precision,

recall, and f1-score results for the XGBoost models.

Attention U-Net: Geographical Results

Table 16 summarizes the geographical water IoU results for the hand-labeled data set. Our

results highlight that our bi-temporal intensity and coherence data models out-

perform the co-event and bi-temporal intensity models for all regions studied.

Out of all regions, Sri-Lanka exhibits the greatest incremental improvement and will be con-

sidered in greater detail in our generalization section. On the other hand, we note that our

IoU results over India exhibit the least amount of improvement by adding the bi-temporal

coherence data, followed by the Mekong region. One potential explanation for these results

over India is that the average interferometric coherence for both pre-event and co-event

scenes is relatively low; 29.59% and 27.33% respectively (see Section 4.3). These low coher-

ence values may be indicative that our scenes over India are highly vegetated areas where

coherence is intrinsically low. Moreover, recall from Table 2 that the temporal baselines for
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the InSAR coherence maps over India are 24 days for the pre- and co-event pairs. The rel-

atively longer temporal baselines for India compared to the rest of the geographical regions

may induce a temporal decorrelation as described in Section 2.6.1.

Table 18 summarizes the water precision results for the hand-labeled data set aggregated

by regions. We note that for most regions, with the exception of Bolivia, our bi-temporal

intensity model outperforms our co-event intensity model as well as our bi-temporal intensity

and coherence data. In fact, even though the results are mixed (e.g., Sri-Lanka and the

USA) the bi-temporal intensity and coherence model seems to under-perform compared to

the co-event intensity model in terms of water precision. These results are in line with

the aggregated results for all regions outlined above. Our bi-temporal intensity and

coherence model tends to overestimate the water pixels. These results are further

validated visually by the label overlap plots in Section 5.2.10. We see that our Attention

U-Net bi-temporal intensity and coherence model tends to lead in terms of false positives

(orange regions).

On the flip side, Table 20 highlights that our bi-temporal intensity and coherence model

outperforms both the co-event and bi-temporal intensity models in terms of water recall

for the hand-labeled data set. This means that our bi-temporal intensity and co-

herence model has the lower false negative rate over all regions. These results

can also be visually verified by the label overlap plots in Section 5.2.10. We see that our

bi-temporal intensity and coherence model exhibit the least amount of false negative regions

(gray regions).

Lastly, we note from Table 22 that our bi-temporal intensity and coherence model outper-

forms the co-event and bi-temporal intensity models in terms of the f1-score for all regions.

XGBoost: Geographical Results

Table 24 summarizes the geographical water IoU results for the hand-labeled data set for the

XGBoost models. Similar to our Attention U-Net results, the bi-temporal inten-
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sity and coherence XGBoost model outperforms the co-event and bi-temporal

intensity model across all regions. We further verify that our IoU results over India

exhibit the least amount of improvement by adding the bi-temporal coherence data to our

model.

The water precision results of the XGBoost models summarized in Table 26 are a bit more

mixed than our Attention U-Net results. We note that the co-event intensity model leads

the water precision results over India, Paraguay, and the Mekong regions. The bi-temporal

intensity and coherence model outperforms its counterparts over USA and Sri-Lanka. Lastly,

the bi-temporal intensity model outperforms water precision over Bolivia. These results can

be visualized with the label overlap plots from Section 5.2.11.

Table 28 summarizes the water recall results by region for the hand-labeled data set. We

note that our bi-temporal intensity and coherence model outperforms the co-

event and bi-temporal intensity model over all regions. In Section 5.2.11, we can

visually verify that our bi-temporal intensity and coherence model exhibits the lower false

negative rate (gray regions) out of the three models considered.

Lastly, as was the case for the Attention U-Net models, we note from Table 30 that our bi-

temporal intensity and coherence model outperforms the co-event and bi-temporal intensity

model in terms of the f1-score for all regions.

5.2.5 Assessing our model’s ability to generalize

Next, we assess our models’ ability to generalize to a geographical region di↵erent from the

regions used during model training. Sri-Lanka was chosen as the generalization region with

41 hand-labeled chips. Our first observation from Table 16 is that our Attention U-Net

co-event intensity model provides unsatisfactory generalization capabilities. Adding the pre-

event intensity layers improved the water IoU results, but the generalization results are still

sub-par at 13.66%. The largest water IoU improvement gain is obtained with the
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bi-temporal intensity and coherence model obtaining a water IoU of 39.49%.

Our XGBoost models’ results summarized in Table 24 also confirm that our largest per-

formance gains are obtained with the bi-temporal intensity and coherence model. Our

bi-temporal intensity and coherence XGBoost model obtains a water IoU of

48.94% beating the Attention U-Net generalization capabilities. In fact, all of the

XGBoost models outperform the Attention U-Net models with the generalization data set.

If our ultimate goal is to operationalize a flood water detection model, these results pose

good news. Training an XGBoost model carries significantly lower overhead compared to a

CNN model like the Attention U-Net models trained in this study (assuming the same GPU

is used for training).

We note from Tables 18, 20, and 22 for the Attention U-Net models and Tables 26, 28,

and 30 for the XGBoost models that our bi-temporal intensity and coherence XGBoost model

outperforms all of its counterparts in terms of water recall, and f1-score over Sri-Lanka with

the exception of water precision for the Attention U-Net models. The bi-temporal intensity

model outperforms the co-event intensity and bi-temporal intensity and coherence model

in terms of water precision. Moreover, our XGBoost bi-temporal intensity and coherence

model outperforms the Attention U-Net bi-temporal intensity and coherence model in terms

of water recall and f1-score. Sections 5.2.8 and ?? compare the Attention U-Net and XGBoost

models in more detail.

The label overlap plots shown in Sections 5.2.10 and 5.2.11 validate our quantitative results

over Sri-Lanka. If we consider our XGBoost label overlap plot from Figure 67, we see show

the improving progression visually. We note that the bi-temporal intensity and coherence

model has the highest true positive and true negative rates. This model also boasts the

lowest false negative rate.
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5.2.6 Attention U-Net: Water IoU, Precision, Recall and F1-Score

Figure 48: Water IoU for Attention U-Net models aggregated by geographical region, held-

out test set (left) and hand-labeled test set (right)

Co-event

Int.

Pre- and co-event Int. Pre- and co-event Int.

and Coh.

USA 51.15% 48.17% 53.91%

Mekong 70.95% 68.09% 70.92%

Bolivia 13.90% 22.76% 35.82%

India 41.81% 38.99% 42.19%

Paraguay 69.59% 64.90% 69.99%

Colombia 51.06% 49.47% 52.30%

Sri-Lanka 2.35% 11.34% 42.43%

Table 15: Water IoU for Attention U-Net models aggregated by geographical region, held-

out test set
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Co-event

Int.

Pre- and co-event Int. Pre- and co-event Int.

and Coh.

USA 51.51% 51.43% 57.22%

Mekong 76.88% 67.13% 77.25%

Bolivia 09.61% 19.06% 37.96%

India 45.14% 40.52% 45.80%

Paraguay 54.13% 51.33% 58.19%

Sri-Lanka 1.09% 13.66% 39.49%

Table 16: Water IoU for Attention U-Net models aggregated by geographical region, hand-

labeled test set

Figure 49: Water Precision for Attention U-Net models aggregated by geographical region,

held-out test set (left) and hand-labeled test set (right)
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 49.08% 53.12% 51.93%

India 65.76% 68.99% 65.79%

Mekong 80.83% 84.19% 82.36%

Paraguay 94.04% 95.00% 92.74%

USA 84.37% 87.79% 85.43%

Sri-Lanka 69.52% 79.04% 76.89%

Table 17: Water precision for Attention U-Net models aggregated by geographical region,

held-out test set

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 73.82% 72.92% 68.94%

India 81.49% 83.66% 80.00%

Mekong 89.87% 90.09% 90.04%

Paraguay 93.60% 94.88% 92.78%

USA 80.49% 86.69% 84.66%

Sri-Lanka 85.51% 98.49% 94.56%

Table 18: Attention U-Net water precision aggregated by geographical region, hand-labeled

test set
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Figure 50: Water Recall for Attention U-Net Models aggregated by geographical region,

held-out test set (left) and hand-labeled test set (right)

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 16.25% 28.47% 53.59%

India 53.45% 47.29% 54.04%

Mekong 85.31% 78.07% 83.62%

Paraguay 72.80% 67.20% 74.06%

USA 56.50% 51.63% 59.36%

Sri-Lanka 2.38% 11.69% 48.64%

Table 19: Water recall for Attention U-Net models aggregated by geographical region, held-

out test set
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 9.95% 20.51% 45.78%

India 50.29% 44.00% 51.72%

Mekong 84.18% 72.48% 84.46%

Paraguay 56.21% 52.79% 60.95%

USA 58.86% 55.84% 63.83%

Sri-Lanka 1.09% 13.69% 40.41%

Table 20: Water recall for Attention U-Net models aggregated by geographical region, hand-

labeled test set

Figure 51: Water F1-Score for Attention U-Net Models aggregated by geographical region,

held-out test set (left) and hand-labeled test set (right)
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 24.41% 37.08% 52.75%

India 58.97% 56.11% 59.34%

Mekong 83.01% 81.02% 82.99%

Paraguay 82.07% 78.72% 82.35%

USA 67.68% 65.02% 70.05%

Sri-Lanka 4.60% 20.37% 59.58%

Table 21: Attention U-Net water f1-score aggregated by geographical region, held-out test

set

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 17.54% 32.02% 55.03%

India 62.20% 57.67% 62.83%

Mekong 86.93% 80.33% 87.16%

Paraguay 70.24% 67.84% 73.57%

USA 68.00% 67.93% 72.79%

Sri-Lanka 2.16% 24.03% 56.62%

Table 22: Water f1-score for Attention U-Net models aggregated by geographical region,

hand-labeled test set
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5.2.7 XGBoost: Water IoU, Recall, Precision and F1-Score

Figure 52: Water IoU for Attention XGBoost models aggregated by geographical regions,

held-out test set (left) and hand-labeled test set (right)

Co-event

Int.

Pre- and co-event Int. Pre- and co-event Int.

and Coh.

USA 47.09% 51.56% 53.30%

Mekong 63.16% 64.33% 67.32%

Bolivia 34.01% 36.22% 39.43%

India 40.93% 41.92% 42.93%

Paraguay 68.50% 67.99% 69.72%

Colombia 45.26% 46.67% 49.80%

Sri-Lanka 37.95% 44.84% 53.13%

Table 23: Water IoU for XGBoost models aggregated by geographical region, held-out test

set
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Co-event

Int.

Pre- and co-event Int. Pre- and co-event Int.

and Coh.

USA 49.32% 52.87% 55.06%

Mekong 68.85% 69.16% 72.95%

Bolivia 30.30% 30.89% 37.45%

India 44.53% 46.13% 47.74%

Paraguay 49.61% 48.35% 51.78%

Sri-Lanka 22.72% 33.54% 48.94%

Table 24: Water IoU for XGBoost models aggregated by geographical region, hand-labeled

test set

Figure 53: Water Precision for XGBoost models aggreagted by region, held-out test set (left)

and hand-labeled test set (right)
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 48.79% 47.79% 46.38%

India 66.37% 63.71% 61.16%

Mekong 82.96% 82.72% 81.72%

Paraguay 92.37% 91.52% 88.30%

USA 66.35% 72.88% 80.31%

Sri-Lanka 69.96% 71.03% 69.23%

Table 25: Water precision for XGBoost models aggregated by geographical region, held-out

test set

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 50.71% 51.13% 49.72%

India 78.89% 76.88% 73.12%

Mekong 90.24% 90.03% 89.82%

Paraguay 82.18% 78.97% 78.33%

USA 67.52% 72.89% 79.25%

Sri-Lanka 83.17% 89.16% 90.35%

Table 26: Water precision for XGBoost models aggreagted by geographical region, hand-

labeled test set
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Figure 54: Water Recall for XGBoost models aggregated by geographical region, held-out

test set (left) and hand-labeled test set (right)

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 52.88% 59.94% 72.48%

India 51.64% 55.06% 59.03%

Mekong 72.57% 74.31% 79.26%

Paraguay 72.61% 72.57% 76.81%

USA 61.86% 63.79% 61.31%

Sri-Lanka 45.34% 54.87% 69.55%

Table 27: Water recall for XGBoost models aggregated by geographical region, held-out test

set
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 42.95% 43.84% 60.29%

India 50.56% 53.56% 57.90%

Mekong 74.39% 74.89% 79.52%

Paraguay 55.59% 55.50% 60.44%

USA 64.66% 65.82% 64.34%

Sri-Lanka 23.82% 34.97% 51.64%

Table 28: Water recall for XGBoost models aggregated by geographical region, hand-labeled

test set

Figure 55: Water F1-Score for XGBoost models aggregated by geographical region, held-out

test set (left) and hand-labeled test set (right)
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Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 50.75% 53.18% 56.56%

India 58.08% 59.07% 60.08%

Mekong 77.42% 78.29% 80.47%

Paraguay 81.30% 80.95% 82.16%

USA 64.03% 68.04% 69.54%

Sri-Lanka 55.02% 61.92% 69.39%

Table 29: Water f1-score for XGBoost models aggreagted by geographical region, held-out

test set

Co-event

Intensity

Pre- and co-event Int. Pre- and co-event Int.

and Coherence

Bolivia 46.51% 47.20% 54.50%

India 61.62% 63.13% 64.63%

Mekong 81.55% 81.77% 84.36%

Paraguay 66.32% 65.18% 68.23%

USA 66.06% 69.17% 71.02%

Sri-Lanka 37.03% 50.24% 65.72%

Table 30: Water f1-score for XGBoost models aggregated by geographical region, hand-

labeled test set

5.2.8 Attention U-Net and XGBoost Results Comparison

In this section, we compare the Attention U-Net classification results to the XGBoost results.

Tables 31, 32, and 33 outline the results aggregated over all geographical regions studied for

the hand-labeled data set. The tables summarize overall accuracy, mean IoU, water precision,
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water recall, and water f1-score metrics. From Table 33, we conclude that the Attention U-

Net bi-temporal intensity and coherence model outperforms its XGBoost counterpart in

terms of mean IoU, water f1-score and water precision. A higher water precision score

implies that the Attention U-Net model is better at reducing the false positive rate than

the XGBoost model. We see a 6.84% delta between the Attention U-Net and XGBoost’s

precision scores. On the other hand, the XGBoost model outperforms the Attention U-Net

model in terms of the water recall metric (a 1.74% improvement). This implies that the

XGBoost model is better a reducing the false negative rate. Moreover, Table 31 outlines

the results for the uni-temporal intensity model. These results align with the results just

described for the bi-temporal intensity and coherence model. On the flip side, Table 32

highlights that the XGBoost bi-temporal intensity model outperforms its Attention U-Net

counterpart in terms of mean IoU, water recall, and water f1-score. Tables 34, 35, and 36

summarize the IoU results for the Attention U-Net and XGBoost models. From Table ??,

we see that the Attention U-Net bi-temporal intensity and coherence model outperforms its

XGBoost counterpart by about 1.99% in terms of water IoU.

Attention U-Net

Co-event intensity

XGBoost

Co-event intensity

Overall Accuracy 95.29% 94.87%

Mean IoU 70.29% 68.80%

Water Precision 86.63% 80.15%

Water Recall 59.60% 60.16%

Water f1-score 70.61% 68.73%

Table 31: Attention U-Net versus XGBoost results for co-event intensity models - all geo-

graphical regions
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Attention U-Net

Pre- and co-event intensity

XGBoost

Pre- and co-event intensity

Overall Accuracy 94.94% 94.93%

Mean IoU 67.70% 69.30%

Water Precision 88.28% 79.85%

Water Recall 53.86% 61.45%

Water f1-score 66.90% 69.45%

Table 32: Attention U-Net versus XGBoost results for pre- and co-event intensity models -

all geographical regions

Attention U-Net Pre- and

co-event Int. and Coh.

XGBoost Pre- and

co-event Int. and Coh.

Overall Accuracy 95.58% 95.14%

Mean IoU 72.31% 70.89%

Water Precision 85.90% 79.06%

Water Recall 63.93% 65.57%

Water f1-score 73.30% 71.69%

Table 33: Attention U-Net versus XGBoost results for pre- and co-event intensity and co-

herence models - all geographical regions

Attention U-Net

Co-event intensity

XGBoost

Co-event intensity

Total mIoU 70.29% 68.80%

Not Water IoU 86.01% 85.23%

Water IoU 54.57% 52.36%

Table 34: Attention U-Net versus XGBoost IoU results for co-event intensity models - all

geographical regions
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Attention U-Net Pre- and

co-event intensity

XGBoost Pre- and

co-event intensity

Total mIoU 67.70% 69.30%

Not Water IoU 85.13% 85.39%

Water IoU 50.27% 53.20%

Table 35: Attention U-Net versus XGBoost IoU results for pre- and co-event intensity models

- all geographical regions

Attention U-Net Pre- and

co-event Int. and Coh.

XGBoost Pre- and

co-event Int. and Coh.

Total mIoU 72.31% 70.89%

Not Water IoU 86.76% 85.92%

Water IoU 57.86% 55.87%

Table 36: Attention U-Net versus XGBoost IoU results for pre- and co-event intensity and

coherence models - all geographical regions

5.2.9 Attention U-Net and XGBoost Results Comparison for Generalization

Data Set

In this section, we compare the Attention U-Net results to its XGBoost counterparts for the

generalization data set over Sri-Lanka. Tables 37, 38, and 39 summarize the water IoU,

recall, precision and f1-score for the generalization data set. We conclude that all of the

XGBoost models are better than their Attention U-Net counterparts in terms of the water

IoU, recall and f1-score metrics. In the case of the bi-temporal intensity and coherence model

(see Table 39), the XGBoost models outperform the Attention U-Net by 9 to 11% in terms of

water IoU, recall, and f1-score. This means that the XGBoost models are significantly better

at reducing the false negative rate than the Attention U-Net models. On the other hand,

we conclude that the Attention U-Net model is better at water precision than its XGBoost
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counterparts. This implies that the Attention U-Net models are better than the XGBoost

models at reducing the false positive rate.

Attention U-Net

Co-event intensity

XGBoost

Co-event intensity

Water IoU 1.09% 22.72%

Water Recall 1.09% 23.82%

Water f1-score 2.16% 37.03%

Water Precision 85.51% 83.17%

Table 37: Attention U-Net versus XGBoost IoU results for co-event intensity - generalization

data set

Attention U-Net Pre- and

co-event Int.

XGBoost Pre- and

co-event Int.

Water IoU 13.66% 33.54%

Water Recall 13.69% 34.97%

Water f1-score 24.03% 50.24%

Water Precision 98.49% 89.16%

Table 38: Attention U-Net versus XGBoost IoU results for pre- and co-event intensity -

generalization data set
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Attention U-Net Pre- and

co-event Int. and Coh.

XGBoost Pre- and

co-event Int. and Coh.

Water IoU 39.49% 48.94%

Water Recall 40.41% 51.64%

Water f1-score 56.62% 65.72%

Water Precision 94.56% 90.35%

Table 39: Attention U-Net versus XGBoost IoU results for pre- and co-event intensity -

generalization data set
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5.2.10 Label Overlap: Attention U-Net

Figure 56: Label Overlap for Attention U-Net Models, USA
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Figure 57: Label Overlap for Attention U-Net Models, Mekong
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Figure 58: Label Overlap for Attention U-Net Models, Bolivia
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Figure 59: Label Overlap for Attention U-Net Models, Paraguay
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Figure 60: Label Overlap for Attention U-Net Models, India
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Figure 61: Label Overlap for Attention U-Net Models, Sri-Lanka
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5.2.11 Label Overlap: XGBoost

Figure 62: Label Overlap for XGBoost Models, USA
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Figure 63: Label Overlap for XGBoost Models, Mekong
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Figure 64: Label Overlap for XGBoost Models, Bolivia
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Figure 65: Label Overlap for XGBoost Models, Paraguay
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Figure 66: Label Overlap for XGBoost Models, India
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Figure 67: Label Overlap for XGBoost Models, Sri-Lanka
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6 Conclusions and Recommendations

In this study, Sentinel-1 synthetic aperture radar intensity and interferometric coherence

data were fused in binary classification models to improve semantic segmentation of water

pixels at 10-meter spatial resolution. We considered three di↵erent model scenarios: a co-

event intensity, a bi-temporal intensity, and a bi-temporal intensity and coherence model.

For each scenario semantic segmentation models were trained to assess the relative improve-

ment gained by fusing intensity and interferometry data cross-trained with Sentinel-2 derived

water masks. The semantic segmentation models include an Attention U-Net model capable

of accounting for the spatial distribution of the Sentinel-1 scenes and a pixel-wise XGBoost

classifier. By fusing SAR intensity with interferometric coherence, we exploited the spa-

tial decorrelation in the coherence maps during a flooding event compared to the coherence

before the flooding event. The data set used in this study leverages the publicly available

georeferenced Sen1Floods11 data set [1]. We augmented the co-event Sentinel-1 intensity

data provided by the Sen1Floods11 team with pre-event intensity data from Google Earth

Engine [14] and InSAR products produced on-demand by the Alaska Satellite Facility [20].

Our experiment results showed that fusing the Sentinel-1 intensity data with the interferom-

etry data improves water intersection over union results by up to 3.29% with the Attention

U-Net model and up to 3.51% with the XGBoost model.

Moreover, the results presented in Section 5 highlight that our Attention U-Net and XGBoost

models systematically reduce the water-class false negative rate. Water recall improves by

4.33% for the Attention U-Net model and by 5.41% for the XGBoost model relative to the

co-event intensity models. Reducing the water-class false negative rate is important in flood

mapping applications because this means we are not incorrectly labeling non-flooded pixels.

On the other hand, the co-event and bi-temporal intensity models tend to reduce the false

positive rate compared to the bi-temporal intensity and coherence models. This means that

with the introduction of the coherence data, our bi-temporal intensity and coherence models
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tend to over-estimate water pixels more than the co-event and bi-temporal intensity models.

In practice, over-estimating flooded pixels is less risky than under-estimating them. This

could mean that aid may be sent to a potentially flooded area as opposed to no aid being

sent at all.

Lastly, our results also highlighted the XGBoost models’ ability to outperform the Attention

U-Net models with our generalization data set in terms of water IoU, recall, and f1-score.

Convolutional neural network models are attractive because the convolutional operations are

able to account for the spatial variation in the satellite images. However, the advantages

gained by the CNN models come at the expense of loss of feature interpretability. In our

study, raw pixel data was used as input features to our XGBoost models. This means that

we could potentially assess the relative improvements gained by adding each data modality.

Moreover, the training time needed to fit an XGBoost model is orders of magnitude lower

than the training time required to train a CNN model. In our experiments, training the

biggest XGBoost model took approximately 3 minutes compared to about 3 hours needed to

train the Attention U-Net models using the same GPU. Training time can be a di↵erentiating

factor when trying to respond quickly to extreme flooding events.

6.1 Future Work

As outlined in Section 1, our study sought to answer whether it is feasible to fuse Sentinel-1

10-meter intensity and coherence data and improve semantic water segmentation for flood

mapping. Generating InSAR products is extremely computationally expensive and time

consuming. We have shown that exploiting the InSAR on-demand product o↵erings from

the Alaska Satellite Facility, it is feasible to acquire the necessary data modalities needed

for our data fusion approach and obtain promising results. Next, we o↵er potential areas of

future work.

• Model tuning - This study focused on answering the question: can we get relative
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improvements by introducing the interferometry data? We were not concerned with

designing models that outperformed a state of the art semantic segmentation model.

Potential future work may include hyperparameter tuning to improve the water seg-

mentation results.

We could also consider using network architectures that more fully exploit the temporal

nature of the bi-temporal data for change detection. Additionally, class weights and

other data augmentation techniques may be exploited to address the class imbalance

observed in our training data set.

• Urban environments - The Sen1Floods11 data set leveraged in this study only

includes non-urban flooding events. As outlined in Section 1 past studies have proven

the benefits of using interferometry data for urban flood mapping. These studies

have mainly used InSAR data from privately-operated SAR platforms. The Sentinel-

1 mission democratizes our SAR data access. Extreme flooding events pose major

risks to human livelihood. The intersection of freely available Sentinel-1 data and high

performance computing InSAR processing through ASF enable a unique advantage

for operationalization purposes. Future work may include augmenting our data set to

include flood events over urban regions imaged with the Sentinel-1 platform.

• Conditional models - Another potential area of future work may include using the

interferometry data as a conditioning feature for a segmentation model.
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A Code Samples

This section includes code samples for our training and evaluation pipelines. A more com-
prehensive repository including utility modules and Jupyter notebooks are available in our
GitHub repository [31].

A.1 XGBoost Training Pipeline
1 """
2 Improving Semantic Water Segmentation by Fusing Sentinel -1 Intensity and

Interferometric Synthetic Aperture Radar
3 (InSAR) Coherence Data
4

5 Author: Ernesto Colon
6 The Cooper Union for the Advancement of Science and Art
7 Spring 2022
8

9 XGBoost Model Training
10 """
11

12 # Import libraries
13

14 import sys
15 sys.path.append(’..’)
16 from utils import dataset_gen
17 import xgboost as xgb
18 import time
19

20 """
21 Define function to train the XGBoost models in two steps or batches. The

data set is large (~28GB for scenario 3) and
22 does not fit in GPU memory. Depending on the GPU memory size , the training

pipeline may require training in more than
23 two stages.
24 """
25

26

27 def xgb_batch_train(X_train , Y_train , save_fname):
28 """
29 Function to serialize the XGBoost training for large data sets. This

function only handles two batches
30 since the data set we’re using can be split in half and fit in the RTX

3090’s memory.
31

32 :param X_train: 2D-ndarray with shape (num_pix , num_feat) with input
features

33 :param Y_train: 2D-ndarray with shape (num_pix ,) with labels
34 :param save_fname: string with path and filename to save the final

model
35 :return: None
36 """
37

38 start_time = time.time()
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39

40 # create first model instance
41 model_1 = xgb.XGBClassifier(use_label_encoder=False , tree_method=’

gpu_hist ’)
42

43 # fit first model
44 model_1.fit(X_train[’batch_1 ’], Y_train[’batch_1 ’])
45

46 # create second model instance
47 model_2 = xgb.XGBClassifier(use_label_encoder=False , tree_method=’

gpu_hist ’)
48

49 # fit second model
50 model_2.fit(X_train[’batch_2 ’], Y_train[’batch_2 ’], xgb_model=model_1)
51

52 print("--- %s seconds ---" % (time.time() - start_time))
53

54 # Save model
55 model_2.save_model(save_fname)
56

57

58 if __name__ == "__main__":
59

60 ###############################################################
61 # Load previously saved dataset splits
62 ###############################################################
63

64 # Define dictionary with filepaths
65 base_dir = "base_dir_path"
66

67 train_val_test_pths = {’train_fn_df ’: f"{base_dir }\\ train_fn_df_fname"
,

68 ’val_fn_df ’: f"{base_dir }\\ val_fn_df_fname",
69 ’test_fn_df ’: f"{base_dir }\\ test_fn_df_fname"}
70

71 train_samples , val_samples , test_samples , train_size , val_size ,
test_size = \

72 dataset_gen.xgboost_load_ds_samples(train_val_test_pths[’
train_fn_df ’],

73 train_val_test_pths[’val_fn_df
’],

74 train_val_test_pths[’
test_fn_df ’])

75

76 ###############################################################
77 # Create dictionaries to store the training and test data sets
78 ###############################################################
79

80 batches = [’batch_1 ’, ’batch_2 ’]
81 scenarios = [’scenario_1 ’, ’scenario_2 ’, ’scenario_3 ’]
82

83 X_train_dict = {scenario: {} for scenario in scenarios}
84 Y_train_dict = {scenario: {} for scenario in scenarios}
85
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86 X_test_dict = {scenario: {} for scenario in scenarios}
87 Y_test_dict = {scenario: {} for scenario in scenarios}
88

89 ###############################################################
90 # Split the training data set into batches for sequential training
91 ###############################################################
92

93 train_split_idx_low = [0, int(len(train_samples) / 2)]
94 train_split_idx_high = [int(len(train_samples) / 2), len(train_samples

)]
95

96 test_split_idx_low = [0, int(len(test_samples) / 2)]
97 test_split_idx_high = [int(len(test_samples) / 2), len(test_samples)]
98

99 ###############################################################
100 # Select the scenario to be trained
101 train_scenario = 1
102 ###############################################################
103

104 # logic to determine whether the current scenario includes coherence
data or not

105 if train_scenario == 1:
106 int_flag = True
107 else:
108 int_flag = False
109 if train_scenario == 3:
110 coh_flag = True
111 else:
112 coh_flag = False
113

114 ###############################################################
115 # Training Pipeline
116 ###############################################################
117

118 current_scenario = train_scenario
119

120 # Generate data sets for the current scenario
121 for idx , batch in enumerate(batches):
122 X_train_dict[f"scenario_{current_scenario}"][ batch],\
123 Y_train_dict[f"scenario_{current_scenario}"][ batch], _, _ =\
124 dataset_gen.rf_xgb_ds_generator(train_samples[

train_split_idx_low[idx]: train_split_idx_high[idx]],
125 coh_flag=coh_flag ,
126 int_flag=int_flag)
127

128 X_test_dict[f"scenario_{current_scenario}"], Y_test_dict[f"
scenario_{current_scenario}"], _, _ =\

129 dataset_gen.rf_xgb_ds_generator(test_samples[
test_split_idx_low[idx]: test_split_idx_high[idx]],

130 coh_flag=coh_flag ,
131 int_flag=int_flag)
132

133 ###############################################################
134 # XGBoost training
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135 ###############################################################
136

137 # Define path and file name to save the trained model
138 xgboost_model_pth = "xgboost_model_pth"
139 fname = f"{xgboost_model_pth }\\ scenario_{current_scenario }\\

xgb_10m_raw_pix_feat_scen_{current_scenario }.model"
140

141 # start the stage -wise training pipeline
142 xgb_batch_train(X_train_dict[f"scenario_{current_scenario}"],

Y_train_dict[f"scenario_{current_scenario}"], fname)

A.2 Attention U-Net Training Pipeline
1 """
2

3 Improving Semantic Water Segmentation by Fusing Sentinel -1 Intensity and
Interferometric Synthetic Aperture Radar

4 (InSAR) Coherence Data
5

6 ** Author: Ernesto Colon**
7 **The Cooper Union for the Advancement of Science and Art**
8

9 #### Attention Unet -2D Model Training
10 """
11

12 ###############################################################
13 # Import libraries
14 ###############################################################
15

16 import tensorflow as tf
17 import time
18 from utils import dataset_gen
19 import matplotlib.pyplot as plt
20 import sys
21 sys.path.append(’..’)
22

23 ###############################################################
24 # Define function to plot train and validation loss
25 ###############################################################
26

27 def plot_train_val_loss(model_history):
28 """
29 Function to plot training and validation loss
30 """
31 loss = model_history.history[’loss’]
32 val_loss = model_history.history[’val_loss ’]
33

34 plt.figure ()
35 plt.plot(model_history.epoch , loss , ’r’, label=’Training loss’)
36 plt.plot(model_history.epoch , val_loss , ’bo’, label=’Validation loss’)
37 plt.title(’Training and Validation Loss’)
38 plt.xlabel(’Epoch’)
39 plt.ylabel(’Loss Value’)
40 plt.ylim([0, 1])
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41 plt.legend ()
42 plt.show()
43

44

45 if __name__ == "__main__":
46 ###############################################################
47 # check that a GPU is enabled
48 ###############################################################
49

50 device_name = tf.test.gpu_device_name ()
51 if device_name != ’/device:GPU:0’:
52 raise SystemError(’GPU device not found ’)
53 print(’Found GPU at: {}’.format(device_name))
54

55 ###############################################################
56 # Load the train , validation , and test dataframes
57 ###############################################################
58

59 # Define dictionary with filepaths
60 base_dir = "base_dir_path"
61

62 train_val_test_pths = {’train_fn_df ’: f"{base_dir }\\ ds_train_split_10m
.csv",

63 ’val_fn_df ’: f"{base_dir }\\ ds_val_split_10m.csv
",

64 ’test_fn_df ’: f"{base_dir }\\ ds_test_split_10m.
csv"}

65

66 train_val_fn_df , test_fn_df , train_size , val_size , test_size = \
67 dataset_gen.unet_load_ds_df(train_val_test_pths[’train_fn_df ’],
68 train_val_test_pths[’val_fn_df ’],
69 train_val_test_pths[’test_fn_df ’])
70

71 ###############################################################
72 # We generate datasets for the following scenarios:
73

74 # - Scenario 1: Co-event intensity data only
75 # - Scenario 2: Pre - and co-event intensity data only
76 # - Scenario 3: Pre - and co-event intensity and coherence data
77 ###############################################################
78

79 # Define dictionaries to hold the datasets - the keys will be the
different scenarios

80 X_train_dict = {}
81 Y_train_dict = {}
82

83 X_val_dict = {}
84 Y_val_dict = {}
85

86 X_test_dict = {}
87 Y_test_dict = {}
88

89 Y_pred_dict = {}
90
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91 # Define scenario number to scenario name mapping
92 scenario_dict = {1: ’co_event_intensity_only ’,
93 2: ’pre_co_event_intensity ’,
94 3: ’pre_co_event_int_coh ’}
95

96 scenario_num_bands = {1: 2,
97 2: 4,
98 3: 6}
99

100 # Define the number of bands per scenario
101 num_bands_dict = {’co_event_intensity_only ’: 2,
102 ’pre_co_event_intensity ’: 4,
103 ’pre_co_event_int_coh ’: 6}
104

105 IMG_SIZE = 512
106

107 # define dictionaries to hold the datasets
108 train_val_samples_dict = {}
109 test_samples_dict = {}
110

111 # Loop through each scenario and create the tensorflow data loaders
112 scenarios = [1, 2, 3]
113

114 for scenario in scenarios:
115 # Create the samples list given the dataframes with file paths as

input
116 train_val_samples_dict[f"scenario_{scenario}"], test_samples_dict[

f"scenario_{scenario}"] = \
117 dataset_gen.create_samples_list ({’scenario ’: scenario_dict[

scenario],
118 ’test_df ’: test_fn_df ,
119 ’train_val_df ’:

train_val_fn_df })
120

121 # Create data sets dictionary
122 X_train_dict[f"scenario_{scenario}"], X_val_dict[f"scenario_{

scenario}"], X_test_dict[f"scenario_{scenario}"] = \
123 dataset_gen.unet_ds_creation ({’train_val_list ’:

train_val_samples_dict[f"scenario_{scenario}"],
124 ’test_list ’: test_samples_dict[f

"scenario_{scenario}"]})
125

126 # Batch the tensorflow train , val , and test data set generators
127 X_train_dict[f"scenario_{scenario}"] = \
128 X_train_dict[f"scenario_{scenario}"]. batch (10).prefetch(tf.

data.experimental.AUTOTUNE)
129

130 X_val_dict[f"scenario_{scenario}"] = \
131 X_val_dict[f"scenario_{scenario}"].batch (10).prefetch(tf.data.

experimental.AUTOTUNE)
132

133 X_test_dict[f"scenario_{scenario}"] = X_test_dict[f"scenario_{
scenario}"].batch (1)

134
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135 #
##############################################################################################

136 # Attention U-Net Models
137

138 # For this study , we leverage the publicly available Keras UNet
Collection linked below.

139

140 # https :// github.com/yingkaisha/keras -unet -collection
141 #

##############################################################################################

142

143 from keras_unet_collection import models
144

145 # create dictionary to hold the models by scenario
146 attn_unet_2d_models = {}
147

148 ###############################################################
149 # Loop through scenarios and generate the models
150 ###############################################################
151

152 for scenario in scenarios:
153 # Create models for each scenario
154 print("\n*******************************************\n")
155 print(f"Generating model for scenario: {scenario}")
156

157 attn_unet_2d_models[f"scenario_{scenario}"] = models.att_unet_2d(
158 (IMG_SIZE , IMG_SIZE , scenario_num_bands[scenario ]),
159 filter_num =[64, 128, 256, 512, 1024] ,
160 n_labels=2,
161 stack_num_down =2,
162 stack_num_up =2,
163 activation=’ReLU’,
164 atten_activation=’ReLU’,
165 attention=’add’,
166 output_activation=’Sigmoid ’,
167 batch_norm=True ,
168 pool=False ,
169 unpool=False ,
170 backbone=’VGG16 ’,
171 weights=None ,
172 freeze_backbone=False ,
173 freeze_batch_norm=True ,
174 name=’attunet ’)
175

176 print("*******************************************")
177

178 # unet_2d_models[’scenario_3 ’].summary ()
179

180 # %%
181

182 # Define a learning rate schedule
183 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay (0.0001 ,

129



184

decay_steps =200,
185

decay_rate =0.96 ,
186 staircase

=True)
187

188 # Define the optimizer
189 optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule ,
190 beta_1 =0.9,
191 beta_2 =0.999 ,
192 epsilon =1e-07,
193 amsgrad=False ,
194 name=’Adam’)
195

196 # Create dictionary to store model training history
197 attn_unet_2d_train_hist = {}
198

199 ###############################################################
200 # Scenario 1 Training - Co-event Intensity Model
201 ###############################################################
202 # %%
203

204 # Compile the model
205 current_scenario = 1
206 attn_unet_2d_models[f"scenario_{current_scenario}"]. compile(
207 optimizer=optimizer ,
208 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=

False),
209 metrics =[’accuracy ’])
210

211 # Start training routine
212 train_start_time = time.time()
213

214 EPOCHS = 30
215 attn_unet_2d_train_hist[f"scenario_{current_scenario}"] = \
216 attn_unet_2d_models[f"scenario_{current_scenario}"].fit(
217 X_train_dict[f"scenario_{current_scenario}"],
218 validation_data=X_val_dict[f"scenario_{current_scenario}"],
219 epochs=EPOCHS)
220

221 print("--- %s seconds ---" % (time.time() - train_start_time))
222

223 ###############################################################
224 # Save the model weights for scenario 1
225 ###############################################################
226

227 attn_unet_2d_model_pth = "atten_unet_model_path"
228 attn_unet_2d_models[f"scenario_{current_scenario}"]. save_weights(
229 f"{attn_unet_2d_model_pth }\\ scenario_{current_scenario}"+"\\" + f"

unet2d_10m_{scenario_dict[current_scenario ]}")
230

231 # Plot training and validation loss for scenario 1
232
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233 plot_train_val_loss(attn_unet_2d_train_hist[f"scenario_{
current_scenario}"])

234

235 ###############################################################
236 # Scenario 2 Training - Pre -event and Co-event Intensity Model
237 ###############################################################
238

239 # Compile the model
240 current_scenario = 2
241 attn_unet_2d_models[f"scenario_{current_scenario}"]. compile(
242 optimizer=optimizer ,
243 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=

False),
244 metrics =[’accuracy ’])
245

246 ###############################################################
247 # Start training routine
248 ###############################################################
249 train_start_time = time.time()
250

251 EPOCHS = 30
252 attn_unet_2d_train_hist[f"scenario_{current_scenario}"] = \
253 attn_unet_2d_models[f"scenario_{current_scenario}"].fit(
254 X_train_dict[f"scenario_{current_scenario}"],
255 validation_data=X_val_dict[f"scenario_{current_scenario}"],
256 epochs=EPOCHS)
257

258 print("--- %s seconds ---" % (time.time() - train_start_time))
259

260 ###############################################################
261 # Save the model weights for scenario 2
262 ###############################################################
263

264 attn_unet_2d_models[f"scenario_{current_scenario}"]. save_weights(
265 f"{attn_unet_2d_model_pth }\\ scenario_{current_scenario}" + "\\" +

f"unet2d_10m_{scenario_dict[current_scenario ]}")
266

267 # Plot training and validation loss for scenario 2
268

269 plot_train_val_loss(attn_unet_2d_train_hist[f"scenario_{
current_scenario}"])

270

271 ###############################################################
272 # Scenario 3 Training - Pre -event and Co-event Intensity Model
273 ###############################################################
274

275 # Compile the model
276 current_scenario = 3
277 attn_unet_2d_models[f"scenario_{current_scenario}"]. compile(optimizer=

optimizer ,
278 loss=tf.

keras.losses.SparseCategoricalCrossentropy(
279

from_logits=False),
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280 metrics =[’
accuracy ’])

281

282 # Start training routine
283 train_start_time = time.time()
284

285 EPOCHS = 1
286 attn_unet_2d_train_hist[f"scenario_{current_scenario}"] = \
287 attn_unet_2d_models[f"scenario_{current_scenario}"].fit(
288 X_train_dict[f"scenario_{current_scenario}"],
289 validation_data=X_val_dict[f"scenario_{current_scenario}"],
290 epochs=EPOCHS)
291

292 print("--- %s seconds ---" % (time.time() - train_start_time))
293

294 ###############################################################
295 # Save the model weights for scenario 3
296 ###############################################################
297

298 attn_unet_2d_models[f"scenario_{current_scenario}"]. save_weights(
299 f"{attn_unet_2d_model_pth }\\ scenario_{current_scenario}" + "\\" +

f"unet2d_10m_{scenario_dict[current_scenario ]}")
300

301 # Plot training and validation loss for scenario 3
302 plot_train_val_loss(attn_unet_2d_train_hist[f"scenario_{

current_scenario}"])

A.3 XGBoost Evaluation Pipeline
1 """
2 Improving Semantic Water Segmentation by Fusing Sentinel -1 Intensity and

Interferometric Synthetic Aperture Radar
3 (InSAR) Coherence Data
4

5 Author: Ernesto Colon
6 The Cooper Union for the Advancement of Science and Art**
7 Spring 2022
8

9 XGBoost Model Inference
10 """
11

12 # Import libraries
13 import matplotlib.pyplot as plt
14 import numpy as np
15 import pandas as pd
16 import rasterio
17 from utils import metrics_utils
18 from utils import dataset_gen
19 from utils import general_utils
20 import time
21 import xgboost as xgb
22

23

24 # Define helper functions
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25

26 # Create function to generate the label overlap between ground truth and
predictions

27 def gen_lbl_overlap(y_true , y_pred):
28 """
29 Function to return a semantic map with a label overlap given ground

truth and predicted labels
30 :param y_true: ndarray with ground truth labels
31 :param y_pred: ndarray with predicted labels
32 :return: combined , an ndarray with 4 classes (1: true positive , 2:

true negatives , 3: false positives , 4: false neg)
33 """
34

35 # allocate space to store the label overlap
36 combined = np.zeros(y_pred.shape)
37

38 # true positives are labels that are predicted as water (1)
39 tp = np.logical_and(np.where(y_pred == 1, 1, 0), np.where(y_true == 1,

1, 0))
40

41 # true negatives
42 tn = np.logical_and(np.where(y_pred == 0, 1, 0), np.where(y_true == 0,

1, 0))
43

44 # false positives are labels that were labeled as 1 but that were 0 in
reality

45 fp = np.logical_and(np.where(y_pred == 1, 1, 0), np.where(y_true == 0,
1, 0))

46

47 # false negatives are labels that were labeled as 0 but were 1 in
reality

48 fn = np.logical_and(np.where(y_pred == 0, 1, 0), np.where(y_true == 1,
1, 0))

49

50 # combine all classes
51 combined[tp] = 1
52 combined[tn] = 2
53 combined[fp] = 3
54 combined[fn] = 4
55

56 return combined
57

58

59 ###############################################################
60 # Create a function to plot the label overlap
61 ###############################################################
62

63 # Generate color maps for the labels and label overlap
64

65 from utils import general_utils
66

67 wtr_cmap = general_utils.gen_cmap ([’#f7f7f7 ’, ’#67 a9cf’])
68 ovrlp_cmap = general_utils.gen_cmap ([’#67 a9cf’, ’#f7f7f7 ’, ’#ef8a62 ’, ’

#999999 ’])
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69

70 from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar
71 import matplotlib.font_manager as fm
72

73 fontprops = fm.FontProperties(size =15)
74

75

76 def display_lbl_overlap(y_true , lbl_overlap , x_test , num_plot , region ,
indices=None):

77 """
78 Function to display the label overlap
79 :param y_true: ndarray with ground truth labels
80 :param lbl_overlap: ndarray with label overlap
81 :param x_test: ndarray with Sentinel -1 co-event intensity (VH) raster
82 :param num_plot: integer , number of scenes to display
83 :param region: string with geographical region to display
84 :param indices: list of integer with indices to plot from the entire

data set
85 :return: matplotlib figure handle
86 """
87

88 fontprops = fm.FontProperties(size =12)
89

90 num_col = 5
91 fig , ax = plt.subplots(num_plot + 1, num_col , figsize =(20, 5 *

num_plot))
92 ax = ax.ravel()
93

94 if indices == None:
95 indices = range(num_plot)
96

97 for idx , raster in enumerate(indices):
98

99 ax[num_col * idx]. imshow(x_test[region ][’scenario_1_hand_lbl ’][
raster , :, :, 0], cmap=’gray’)

100 ax[num_col * idx]. set_title(f’Co -event Intensity (VH)’)
101

102 # plot ground truth
103 ax[num_col * idx + 1]. imshow(y_true[region ][’scenario_3_hand_lbl ’

][raster , :, :], cmap=wtr_cmap)
104 # ax[num_col * idx + 1]. set_title(f’Ground Truth Label , index: {

raster}’)
105 ax[num_col * idx + 1]. set_title(f’Ground Truth Label’)
106

107 # plot scenario 1
108 ax[num_col * idx + 2]. imshow(lbl_overlap[region ][’

scenario_1_hand_lbl ’][raster , :, :], cmap=ovrlp_cmap)
109 ax[num_col * idx + 2]. set_title(’Scenario 1 Label Overlap ’)
110

111 # plot scenario 2
112 ax[num_col * idx + 3]. imshow(lbl_overlap[region ][’

scenario_2_hand_lbl ’][raster , :, :], cmap=ovrlp_cmap)
113 ax[num_col * idx + 3]. set_title(’Scenario 2 Label Overlap ’)
114
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115 # plot scenario 3
116 ax[num_col * idx + 4]. imshow(lbl_overlap[region ][’

scenario_3_hand_lbl ’][raster , :, :], cmap=ovrlp_cmap)
117 ax[num_col * idx + 4]. set_title(’Scenario 3 Label Overlap ’)
118

119 for axis in ax[: num_col * num_plot ]:
120 scalebar = AnchoredSizeBar(
121 axis.transData ,
122 100,
123 ’100m’,
124 ’lower left’,
125 pad=0.1,
126 color=’black ’,
127 frameon=False ,
128 size_vertical =1,
129 fontproperties=fontprops)
130

131 axis.add_artist(scalebar)
132 axis.set_yticks ([])
133 axis.set_xticks ([]);
134

135 # Create legend
136 checkerboard = np.zeros ((512, 512))
137 checkerboard [0:256 , 0:256] = 1
138 checkerboard [256:, 0:256] = 2
139 checkerboard [0:256 , 256:] = 3
140 checkerboard [256:, 256:] = 4
141

142 ax[num_col * idx + 4 + 3]. imshow(checkerboard , cmap=ovrlp_cmap)
143 ax[num_col * idx + 4 + 3]. text(50, 128, "True Positives", fontsize =8.)

;
144 ax[num_col * idx + 4 + 3]. text(50, 384, "True Negatives", fontsize =8.)

;
145 ax[num_col * idx + 4 + 3]. text (290, 128, "False Positives", fontsize

=8.);
146 ax[num_col * idx + 4 + 3]. text (290, 384, "False Negatives", fontsize

=8.);
147 ax[num_col * idx + 4 + 3]. set_yticks ([])
148 ax[num_col * idx + 4 + 3]. set_xticks ([]);
149

150 ind_to_del = [1, 2, 4, 5]
151 for ind in ind_to_del:
152 fig.delaxes(ax[num_col * idx + 4 + ind])
153

154 return fig
155

156

157 if __name__ == "__main__":
158

159 ###############################################################
160 # Load previously saved dataset splits
161 ###############################################################
162

163 # Define dictionary with filepaths
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164 base_dir = "base_dir"
165

166 train_val_test_pths = {’train_fn_df ’: f"{base_dir }\\ ds_train_split_10m
.csv",

167 ’val_fn_df ’: f"{base_dir }\\ ds_val_split_10m.csv
",

168 ’test_fn_df ’: f"{base_dir }\\ ds_test_split_10m.
csv"}

169

170 train_samples , val_samples , test_samples , train_size , val_size ,
test_size = \

171 dataset_gen.xgboost_load_ds_samples(train_val_test_pths[’
train_fn_df ’],

172 train_val_test_pths[’val_fn_df
’],

173 train_val_test_pths[’
test_fn_df ’])

174

175 ###############################################################
176 # Define category names and a color mapping for semantic segmentation
177 ###############################################################
178

179 # Define category names
180 tgt_cat_names = {
181 0: ’Not water’,
182 1: ’Water’
183 }
184

185 # Define the colors per category
186 wtr_clrs_hex = [’#f7f7f7 ’, ’#67 a9cf’]
187

188 # Generate the labels colormap
189 wtr_cmap = general_utils.gen_cmap(wtr_clrs_hex)
190

191 # %% md
192 ###############################################################
193 # Generate data sets for inference
194 ###############################################################
195 """
196 We generate datasets for the following scenarios:
197

198 - Scenario 1: Co -event intensity data only
199 - Scenario 2: Pre - and co -event intensity data only
200 - Scenario 3: Pre - and co -event intensity and coherence data
201 """
202

203 # Define dictionaries to hold the datasets - the keys will be the
different scenarios

204 X_train_dict = {}
205 Y_train_dict = {}
206

207 X_test_dict = {}
208 Y_test_dict = {}
209

136



210 Y_pred_dict = {}
211

212 scenarios = [’scenario_1 ’, ’scenario_2 ’, ’scenario_3 ’]
213

214 # Loop through each scenario and generate / load the data sets to
memory

215 for scenario in scenarios:
216 # logic to determine whether the current scenario includes

coherence data or not
217 if scenario == ’scenario_1 ’:
218 int_flag = True
219 else:
220 int_flag = False
221 if scenario == ’scenario_3 ’:
222 coh_flag = True
223 else:
224 coh_flag = False
225

226 # generate data set
227 X_test_dict[scenario], Y_test_dict[scenario], _, _ = \
228 dataset_gen.rf_xgb_ds_generator(test_samples , coh_flag=

coh_flag , int_flag=int_flag)
229

230 ###############################################################
231 # Gather dataset parameters we’ll need later on
232 ###############################################################
233

234 num_train_samp = len(train_samples)
235 img_size = 512
236

237 num_feat_dict = {’scenario_1 ’: 2,
238 ’scenario_2 ’: 4,
239 ’scenario_3 ’: 6,
240 ’scenario_1_hand_lbl ’: 2,
241 ’scenario_2_hand_lbl ’: 4,
242 ’scenario_3_hand_lbl ’: 6}
243

244 ###############################################################
245 # Hand Labeled Dataset
246 ###############################################################
247

248 # load hand label dataset
249 hand_lbl_ds_pth = "hand_lbl_ds_pth"
250 hand_lbl_ds_fname = f"{hand_lbl_ds_pth}hand_lbl_ds_10m_res.csv"
251

252 # load csv file to dataframe
253 df_hand_lbl_samples = pd.read_csv(hand_lbl_ds_fname)
254

255 # loop through df and append sample paths to a list
256 hand_lbl_samples = list()
257

258 for idx , row in df_hand_lbl_samples.iterrows ():
259 hand_lbl_samples.append ((row[’s1’],
260 row[’pre_event_grd ’],
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261 row[’pre_event_coh ’],
262 row[’co_event_coh ’],
263 row[’hand_lbl ’]))
264

265 hand_lbl_scenarios = [f"{scenario}_hand_lbl" for scenario in scenarios
]

266

267 # Generate hand -labeled data set
268 for scenario in hand_lbl_scenarios:
269 # logic to determine whether the current scenario includes

coherence data or not
270 if scenario == ’scenario_1_hand_lbl ’:
271 int_flag = True
272 else:
273 int_flag = False
274 if scenario == ’scenario_3_hand_lbl ’:
275 coh_flag = True
276 else:
277 coh_flag = False
278

279 X_test_dict[scenario], Y_test_dict[scenario], _, _ = \
280 dataset_gen.rf_xgb_ds_generator(hand_lbl_samples , coh_flag=

coh_flag , int_flag=int_flag)
281

282 ###############################################################
283 # Visualize some image -target pairs
284 ###############################################################
285

286 # Load a number of scenes
287 scenes_list = list()
288

289 num_scenes = 5
290

291 for idx in range(num_scenes):
292 temp_list = list()
293

294 for j in range(len(train_samples[idx])):
295

296 # Open rasters with rasterio
297 with rasterio.open(train_samples[idx][j]) as src:
298 src = src.read()
299 if j == 4: # account for labels and map the not -valid

pixels to the not -water category
300 src = np.where(src == -1, 0, src)
301 temp_list.append(src)
302

303 scenes_list.append(temp_list)
304

305 ###############################################################
306 # Display the scenes
307 ###############################################################
308

309 num_col = 7
310
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311 fig , ax = plt.subplots(num_scenes , num_col , figsize =(80, num_scenes *
10))

312 ax = ax.ravel()
313

314 for i in range(len(scenes_list)):
315 # s1 co -event
316 ax[num_col * i]. imshow(scenes_list[i][0][0 , :, :], cmap=’gray’)
317 ax[num_col * i]. set_title(’S1 co -event VH’)
318

319 ax[num_col * i + 1]. imshow(scenes_list[i][0][1 , :, :], cmap=’gray’
)

320 ax[num_col * i + 1]. set_title(’S1 co -event VV’)
321

322 # s1 pre -event
323 ax[num_col * i + 2]. imshow(scenes_list[i][1][0 , :, :], cmap=’gray’

)
324 ax[num_col * i + 2]. set_title(’S1 pre -event VH’)
325

326 ax[num_col * i + 3]. imshow(scenes_list[i][1][1 , :, :], cmap=’gray’
)

327 ax[num_col * i + 3]. set_title(’S1 pre -event VV’)
328

329 # pre -event coh
330 ax[num_col * i + 4]. imshow(scenes_list[i][2][0 , :, :], cmap=’gray’

)
331 ax[num_col * i + 4]. set_title(’Pre -event coherence ’)
332

333 # co -event coh
334 ax[num_col * i + 5]. imshow(scenes_list[i][3][0 , :, :], cmap=’gray’

)
335 ax[num_col * i + 5]. set_title(’Co -event coherence ’)
336

337 # s2 label
338 ax[num_col * i + 6]. imshow(scenes_list[i][4][0 , :, :], cmap=

wtr_cmap)
339 ax[num_col * i + 6]. set_title(’S2 Label’)
340

341 for ax in ax:
342 ax.set_yticks ([])
343 ax.set_xticks ([]);
344

345 ###############################################################
346 # XGBoost Models
347 ###############################################################
348

349 # Load previously trained models
350

351 xgb_models_dir = {’scenario_1 ’: "model_scen_1_pth",
352 ’scenario_2 ’: "model_scen_2_pth",
353 ’scenario_3 ’: "model_scen_3_pth"}
354

355 xgb_classifier_models = {}
356

357 for scenario in xgb_models_dir.keys():
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358 xgb_classifier_models[scenario] = xgb.XGBClassifier(
use_label_encoder=False ,

359 tree_method=’
gpu_hist ’)

360

361 print(f"Loading model weights for scenario: {scenario }...")
362 xgb_classifier_models[scenario ]. load_model(xgb_models_dir[scenario

])
363

364 ###############################################################
365 # Make predictions with the XGBoost models
366 ###############################################################
367

368 """
369 Notes
370

371 The held -out test set is comprised of Sentinel -2 weak labels from the
Sen1Floods11 data set.

372

373 The hand -labeled data set is also provided by the Sen1Floods11 data
set , and provides an independent data set not

374 used during training.
375 """
376

377 # predict on the held -out test dataset
378

379 start_time = time.time()
380

381 # loop through each scenario
382 for scenario in xgb_classifier_models.keys():
383 Y_pred_dict[scenario] = xgb_classifier_models[scenario ]. predict(

X_test_dict[scenario ])
384

385 # Predict on the hand -labeled test dataset
386

387 for scenario in scenarios:
388 Y_pred_dict[f"{scenario}_hand_lbl"] = xgb_classifier_models[

scenario ]. predict(
389 X_test_dict[f"{scenario}_hand_lbl"])
390

391 print(f"Inference took: {time.time() - start_time} seconds")
392

393 ###############################################################
394 # Compute Metrics
395 ###############################################################
396

397 """
398 For metrics , we compute:
399

400 - Overall accuracy
401 - Mean intersection over union , mIoU
402 - Jaccard score
403 - Water precision
404 - Water recall
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405 - Water f1 -score
406 - Not -Water precision
407 - Not -Water recall
408 - Not -Water f1 -score
409

410 """
411

412 ###############################################################
413 # Held -out Test Dataset
414 ###############################################################
415

416 start_time = time.time()
417

418 summary_df = metrics_utils.summary_report(Y_test_dict , Y_pred_dict)
419

420 print(f"Process took: {time.time() - start_time} seconds")
421

422 # save summary to csv file
423 xgboost_summ_pth = "xgboost_summ_pth"
424 fname = "xgboost_summary_stats.csv"
425 summary_df.to_csv(f"{xgboost_summ_pth }\\{ fname}")
426

427 ###############################################################
428 # Computing IoU per class (i.e., water and not -water)
429 ###############################################################
430

431 miou_per_class = metrics_utils.miou_per_class(Y_test_dict , Y_pred_dict
)

432

433 # save to csv file
434 mIou_fname = "xgboost_10m_mIoU_per_class_stats.csv"
435 miou_per_class.to_csv(f"{xgboost_summ_pth }\\{ mIou_fname}")
436

437 ###############################################################
438 # Testing Models Ability to Generalize
439 ###############################################################
440

441 # We use data over the Sri -Lanka region (both weakly labeled as well
as hand -labeled) to

442 # test the models ’ ability to generalize
443

444 ###############################################################
445 # Generate generalization dataset
446 ###############################################################
447

448 # create a list with all regions for both the held -out test set and
the hand -labeled test set

449 regions = [’USA’, ’Mekong ’, ’Colombia ’, ’Paraguay ’, ’India’, ’Bolivia ’
]

450 regions_w_hand_lbl = [region for region in regions if region != "
Colombia"]

451

452 generalization_ds_pth = "generalization_ds_pth"
453

141



454 # Create empty list to store the samples ’ path
455 gen_test_samples = []
456

457 # Grab the number of samples in the data set
458 gen_test_fn_df = pd.read_csv(generalization_ds_pth)
459

460 for idx , row in gen_test_fn_df.iterrows ():
461 gen_test_samples.append(
462 (row[’s1’], row[’pre_event_grd ’], row[’pre_event_coh ’], row[’

co_event_coh ’], row[’s2_lbl ’]))
463

464 num_gen_samp = len(gen_test_samples)
465

466 # create dictionaries to store the data sets
467 gener_X_test_dict = dict()
468 gener_Y_test_dict = dict()
469

470 # Loop through each scenario
471 for scenario in scenarios:
472 # logic to determine whether the current scenario includes

coherence data or not
473 if scenario == ’scenario_1 ’:
474 int_flag = True
475 else:
476 int_flag = False
477 if scenario == ’scenario_3 ’:
478 coh_flag = True
479 else:
480 coh_flag = False
481

482 gener_X_test_dict[scenario], gener_Y_test_dict[scenario], _, _ =
dataset_gen.rf_xgb_ds_generator(

483 gen_test_samples , coh_flag=coh_flag , int_flag=int_flag)
484

485 ###############################################################
486 # Hand -Labeled Generalization Data Set
487 ###############################################################
488

489 # load hand label dataset
490 gen_hand_lbl_ds_pth = "gen_hand_lbl_ds_pth"
491

492 # read hand -labeled data set into dataframe
493 gen_df_hand_lbl_samples = pd.read_csv(gen_hand_lbl_ds_pth)
494

495 # create dict to store the data set
496 gen_hand_samples_by_region_dict = {}
497

498 # For now , we only have Sri -Lanka as the generalization region
499 regions = [’Sri -Lanka’]
500

501 for region in regions:
502 # temp list to store file paths
503 pths = list()
504
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505 # pluck the test sample paths by region
506 test_pth_region = gen_df_hand_lbl_samples[gen_df_hand_lbl_samples.

s1.str.contains(region)]
507

508 for idx , row in test_pth_region.iterrows ():
509 pths.append ((row[’s1’], row[’pre_event_grd ’], row[’

pre_event_coh ’], row[’co_event_coh ’], row[’hand_lbl ’]))
510

511 gen_hand_samples_by_region_dict[region] = pths
512

513 # Generate hand -labeled generalization test dataset
514

515 for scenario in hand_lbl_scenarios:
516 # logic to determine whether the current scenario includes

coherence data or not
517 if scenario == ’scenario_1_hand_lbl ’:
518 int_flag = True
519 else:
520 int_flag = False
521 if scenario == ’scenario_3_hand_lbl ’:
522 coh_flag = True
523 else:
524 coh_flag = False
525

526 gener_X_test_dict[scenario], gener_Y_test_dict[scenario], _, _ =
dataset_gen.rf_xgb_ds_generator(

527 gen_hand_samples_by_region_dict[’Sri -Lanka’], coh_flag=
coh_flag , int_flag=int_flag)

528

529 ###############################################################
530 # Make Predictions on the generalization data set
531 ###############################################################
532

533 start_time = time.time()
534

535 gener_Y_pred_dict = dict()
536

537 for scenario in xgb_classifier_models.keys():
538 gener_Y_pred_dict[scenario] = xgb_classifier_models[scenario ].

predict(gener_X_test_dict[scenario ])
539

540 # Predict on the hand -labeled test dataset
541

542 for scenario in scenarios:
543 gener_Y_pred_dict[f"{scenario}_hand_lbl"] = xgb_classifier_models[

scenario ]. predict(
544 gener_X_test_dict[f"{scenario}_hand_lbl"])
545

546 print(f"Inference took: {time.time() - start_time} seconds")
547

548 ###############################################################
549 # Compute metrics for generalization data set
550 ###############################################################
551
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552 start_time = time.time()
553

554 gener_summary_df = metrics_utils.summary_report(gener_Y_test_dict ,
gener_Y_pred_dict)

555

556 print(f"Process took: {time.time() - start_time} seconds")
557

558 # save the metrics to a csv file for later recall
559 gener_summ_fname = "xgboost_10m_generalization_stats.csv"
560 gener_summary_df.to_csv(f"{xgboost_summ_pth }\\{ gener_summ_fname}")
561

562 ###############################################################
563 # Compute IoU per class for generalization dataset
564 ###############################################################
565

566 gener_miou_per_class = metrics_utils.miou_per_class(gener_Y_test_dict ,
gener_Y_pred_dict)

567

568 # save to csv
569 gener_miou_fname = "xgboost_10m_generalization_mIoU_stats.csv"
570 gener_miou_per_class.to_csv(f"{xgboost_summ_pth }\\{ gener_miou_fname}")
571

572 ###############################################################
573 # Making Inferences Aggregated by Geographical Region
574 ###############################################################
575

576 # Read csv file with the test filepaths
577 test_fn_df = pd.read_csv(train_val_test_pths[’test_fn_df ’])
578

579 test_samples_by_region_dict = {}
580 regions = [’USA’, ’Mekong ’, ’Colombia ’, ’Paraguay ’, ’India’, ’Bolivia ’

]
581

582 for region in regions:
583 pths = list()
584

585 # pluck the test sample paths by region
586 test_pth_region = test_fn_df[test_fn_df.s1.str.contains(region)]
587

588 for idx , row in test_pth_region.iterrows ():
589 pths.append ((row[’s1’], row[’pre_event_grd ’], row[’

pre_event_coh ’], row[’co_event_coh ’], row[’s2_lbl ’]))
590

591 test_samples_by_region_dict[region] = pths
592

593 # Generate the data sets per region
594 all_scenarios = scenarios + hand_lbl_scenarios
595

596 # Create schemas for the data sets
597 X_test_ds_region_dict = {region: {} for region in regions}
598 Y_test_ds_region_dict = {region: {} for region in regions}
599

600 for region in regions:
601 # Scenario 1
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602 X_test_ds_region_dict[region ][’scenario_1 ’], Y_test_ds_region_dict
[region ][’scenario_1 ’], _, _ = \

603 dataset_gen.rf_xgb_ds_generator(test_samples_by_region_dict[
region], coh_flag=False , int_flag=True)

604

605 # Scenario 2
606 X_test_ds_region_dict[region ][’scenario_2 ’], Y_test_ds_region_dict

[region ][’scenario_2 ’], _, _ = \
607 dataset_gen.rf_xgb_ds_generator(test_samples_by_region_dict[

region], coh_flag=False , int_flag=False)
608

609 # Scenario 3
610 X_test_ds_region_dict[region ][’scenario_3 ’], Y_test_ds_region_dict

[region ][’scenario_3 ’], _, _ = \
611 dataset_gen.rf_xgb_ds_generator(test_samples_by_region_dict[

region], coh_flag=True , int_flag=False)
612

613 ###############################################################
614 # Make inferences by region
615 ###############################################################
616

617 start_time = time.time()
618

619 Y_pred_region_dict = {region: {} for region in regions}
620

621 for scenario in scenarios:
622

623 for region in regions:
624 Y_pred_region_dict[region ][ scenario] = \
625 xgb_classifier_models[scenario ]. predict(

X_test_ds_region_dict[region ][ scenario ])
626

627 print(f"Inference took: {time.time() - start_time} seconds")
628

629 ###############################################################
630 # Compute predictions on hand -labeled dataset aggregated by region
631 ###############################################################
632

633 # Note: Colombia does not have hand -labeled chips **
634

635 hand_lbl_samples_region_dict = {}
636

637 # Colombia does not have any hand labels
638 regions = [’USA’, ’Mekong ’, ’Paraguay ’, ’India’, ’Bolivia ’]
639

640 for region in regions:
641 pths = list()
642

643 # pluck the test sample paths by region
644 test_pth_region = df_hand_lbl_samples[df_hand_lbl_samples.s1.str.

contains(region)]
645

646 for idx , row in test_pth_region.iterrows ():
647 pths.append ((row[’s1’], row[’pre_event_grd ’], row[’
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pre_event_coh ’], row[’co_event_coh ’], row[’hand_lbl ’]))
648

649 hand_lbl_samples_region_dict[region] = pths
650

651 for region in regions:
652 # Scenario 2
653 X_test_ds_region_dict[region ][’scenario_1_hand_lbl ’],

Y_test_ds_region_dict[region ][
654 ’scenario_1_hand_lbl ’], _, _ = \
655 dataset_gen.rf_xgb_ds_generator(hand_lbl_samples_region_dict[

region], coh_flag=False , int_flag=True)
656

657 # Scenario 4
658 X_test_ds_region_dict[region ][’scenario_2_hand_lbl ’],

Y_test_ds_region_dict[region ][
659 ’scenario_2_hand_lbl ’], _, _ = \
660 dataset_gen.rf_xgb_ds_generator(hand_lbl_samples_region_dict[

region], coh_flag=False , int_flag=False)
661

662 # Scenario 5
663 X_test_ds_region_dict[region ][’scenario_3_hand_lbl ’],

Y_test_ds_region_dict[region ][
664 ’scenario_3_hand_lbl ’], _, _ = \
665 dataset_gen.rf_xgb_ds_generator(hand_lbl_samples_region_dict[

region], coh_flag=True , int_flag=False)
666

667 ###############################################################
668 # Make inferences with the hand -labeled dataset aggregated by region
669 ###############################################################
670

671 start_time = time.time()
672

673 for scenario in scenarios:
674

675 for region in regions:
676 Y_pred_region_dict[region ][f’{scenario}_hand_lbl ’] = \
677 xgb_classifier_models[scenario ]. predict(

X_test_ds_region_dict[region ][f’{scenario}_hand_lbl ’])
678

679 print(f"Inference took: {time.time() - start_time} seconds")
680

681 ###############################################################
682 # Generate prediction summaries by region
683 ###############################################################
684

685 start_time = time.time()
686

687 regions = [’USA’, ’Mekong ’, ’Colombia ’, ’Paraguay ’, ’India’, ’Bolivia ’
]

688

689 xgboost_summ_pth = "xgboost_summ_pth"
690

691 summary_by_region = {}
692
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693 for region in regions:
694 print(f"Region: {region }\n\n")
695 summary_by_region[region] = metrics_utils.summary_report(

Y_test_ds_region_dict[region],
696

Y_pred_region_dict[region ])
697 print("\n\n")
698

699 # save to csv
700 summary_by_region[region ]. to_csv(f"{xgboost_summ_pth }\\{ region}

_summary_stats.csv")
701

702 print(f"Process took: {time.time() - start_time} seconds")
703

704 ###############################################################
705 # Compute IoU per class aggregated by region
706 ###############################################################
707

708 # Create dict to store the IoU metrics by region
709 regional_miou_per_class = {}
710

711 for region in regions:
712 print(f"Region: {region }\n\n")
713

714 regional_miou_per_class[region] = metrics_utils.miou_per_class(
Y_test_ds_region_dict[region],

715

Y_pred_region_dict[region ])
716

717 print("\n\n")
718

719 # save to csv
720 regional_miou_per_class[region ]. to_csv(f"{xgboost_summ_pth }\\{

region}_mIoU_stats.csv")
721

722 ###############################################################
723 # Generate labels and label overlap by region
724 ###############################################################
725

726 # Merge the generalization data set with the rest of the data sets
727 Y_pred_region_dict[’Sri -Lanka ’] = gener_Y_pred_dict
728

729 Y_test_ds_region_dict[’Sri -Lanka ’] = gener_Y_test_dict
730

731 X_test_ds_region_dict[’Sri -Lanka ’] = gener_X_test_dict
732

733 ###############################################################
734 # Reshape predictions for visualization **
735 ###############################################################
736

737 all_regions = list(Y_pred_region_dict.keys())
738 all_regions_hand_lbl = [region for region in all_regions if region !=

’Colombia ’]
739
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740 # Create dicts to store the ground truth , predicted labels and the
intensity rasters for visualization

741 Y_pred_hand_lbl_by_region = {}
742 Y_true_hand_lbl_by_region = {}
743 X_test_hand_lbl_by_region = {}
744

745 # scenarios to pluck
746 scen_to_pluck = [’scenario_1_hand_lbl ’, ’scenario_2_hand_lbl ’, ’

scenario_3_hand_lbl ’]
747

748 # Create schema to store the predictions and test data
749 Y_pred_hand_lbl_by_region = {region: {scen: [] for scen in

scen_to_pluck} for region in all_regions_hand_lbl}
750 Y_true_hand_lbl_by_region = {region: {scen: [] for scen in

scen_to_pluck} for region in all_regions_hand_lbl}
751 X_test_hand_lbl_by_region = {region: {scen: [] for scen in

scen_to_pluck} for region in all_regions_hand_lbl}
752

753 ###############################################################
754 # Copy the predictions and the ground truth labels
755 ###############################################################
756

757 for region in all_regions_hand_lbl:
758 for scen in scen_to_pluck:
759 try:
760 Y_pred_hand_lbl_by_region[region ][scen] =

Y_pred_region_dict[region ][scen].copy()
761

762 Y_true_hand_lbl_by_region[region ][scen] =
Y_test_ds_region_dict[region ][scen].copy()

763

764 X_test_hand_lbl_by_region[region ][scen] =
X_test_ds_region_dict[region ][scen].copy()

765 except:
766 continue
767

768 ###############################################################
769 # Compute label overlap by region
770 ###############################################################
771

772 lbl_ovrlap_by_region = {region: {scen: [] for scen in scen_to_pluck}
for region in all_regions_hand_lbl}

773

774 for region in all_regions_hand_lbl:
775 for scen in scen_to_pluck:
776 lbl_ovrlap_by_region[region ][scen] = \
777 np.reshape(gen_lbl_overlap(
778 Y_true_hand_lbl_by_region[region ][scen],
779 Y_pred_hand_lbl_by_region[region ][scen]),
780 (-1, img_size , img_size))
781

782 ###############################################################
783 # Reshape ground truth and display the label overlap
784 ###############################################################
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785

786 for region in all_regions_hand_lbl:
787 print(region)
788 for scen in scen_to_pluck:
789 Y_pred_hand_lbl_by_region[region ][scen] = np.reshape(

Y_pred_hand_lbl_by_region[region ][scen],
790 (-1,

img_size , img_size))
791

792 Y_true_hand_lbl_by_region[region ][scen] = np.reshape(
Y_true_hand_lbl_by_region[region ][scen],

793 (-1,
img_size , img_size))

794

795 X_test_hand_lbl_by_region[region ][scen] = np.reshape(
X_test_hand_lbl_by_region[region ][scen],

796 (-1,
img_size , img_size , num_feat_dict[scen]))

797

798 ###############################################################
799 # Label Overlap for Region: USA
800 ###############################################################
801

802 ovrlp_lbl_pth = "ovrlp_lbl_pth"
803 region = "USA"
804

805 idx_USA = [1, 3, 5, 8, 22]
806 fig_USA = display_lbl_overlap(Y_true_hand_lbl_by_region ,
807 lbl_ovrlap_by_region ,
808 X_test_hand_lbl_by_region ,
809 num_plot=len(idx_USA),
810 region=’USA’,
811 indices=idx_USA)
812

813 # save
814 # fig_USA.savefig(fname)
815

816 ###############################################################
817 # Label Overlap for Region: Mekong
818 ###############################################################
819

820 region = "Mekong"
821 idx_Mekong = [1, 2, 5, 7, 8]
822 fig_Mekong = display_lbl_overlap(Y_true_hand_lbl_by_region ,
823 lbl_ovrlap_by_region ,
824 X_test_hand_lbl_by_region ,
825 num_plot=len(idx_Mekong),
826 region=region ,
827 indices=idx_Mekong)
828

829 # fname = f"{ ovrlp_lbl_pth }\\{ region}_lbl_ovrlp.pdf"
830 # fig_Mekong.savefig(fname)
831

832 ###############################################################
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833 # Label Overlap for Region: Bolivia
834 ###############################################################
835

836 idx_Bolivia = [1, 2, 3, 4, 5]
837 region = "Bolivia"
838 fig_Bol = display_lbl_overlap(Y_true_hand_lbl_by_region ,
839 lbl_ovrlap_by_region ,
840 X_test_hand_lbl_by_region ,
841 num_plot=len(idx_Bolivia),
842 region=region ,
843 indices=idx_Bolivia)
844

845 # fname = f"{ ovrlp_lbl_pth }\\{ region}_lbl_ovrlp.pdf"
846 # fig_Bol.savefig(fname)
847

848 ###############################################################
849 # Label Overlap for Region: Paraguay
850 ###############################################################
851

852 region = ’Paraguay ’
853 idx_Paraguay = [0, 1, 2, 6, 7]
854 fig_Par = display_lbl_overlap(Y_true_hand_lbl_by_region ,
855 lbl_ovrlap_by_region ,
856 X_test_hand_lbl_by_region ,
857 num_plot=len(idx_Paraguay),
858 region=region ,
859 indices=idx_Paraguay)
860

861 # fname = f"{ ovrlp_lbl_pth }\\{ region}_lbl_ovrlp.pdf"
862 # fig_Par.savefig(fname)
863

864 ###############################################################
865 # Label Overlap for Region: India
866 ###############################################################
867

868 region = "India"
869 idx_India = [0, 2, 4, 6, 23]
870 fig_Ind = display_lbl_overlap(Y_true_hand_lbl_by_region ,
871 lbl_ovrlap_by_region ,
872 X_test_hand_lbl_by_region ,
873 num_plot=len(idx_India),
874 region=region ,
875 indices=idx_India)
876

877 # fname = f"{ ovrlp_lbl_pth }\\{ region}_lbl_ovrlp.pdf"
878 # fig_Ind.savefig(fname)
879

880 ###############################################################
881 # Label Overlap for Region: Sri -Lanka
882 ###############################################################
883

884 region = "Sri -Lanka"
885 idx_Sri_Lanka = [8, 9, 11, 16, 21]
886 fig_Sri = display_lbl_overlap(Y_true_hand_lbl_by_region ,
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887 lbl_ovrlap_by_region ,
888 X_test_hand_lbl_by_region ,
889 num_plot=len(idx_Sri_Lanka),
890 region=region ,
891 indices=idx_Sri_Lanka)
892

893 # fname = f"{ ovrlp_lbl_pth }\\{ region}_lbl_ovrlp.pdf"
894 # fig_Sri.savefig(fname)

A.4 Attention U-Net Evaluation Pipeline
1 """
2 Improving Semantic Water Segmentation by Fusing Sentinel -1 Intensity and

Interferometric Synthetic Aperture Radar
3 (InSAR) Coherence Data
4

5 Author: Ernesto Colon**
6 The Cooper Union for the Advancement of Science and Art**
7 Spring 2022
8

9 Attention U-Net Model Inference
10 """
11

12 # Import libraries
13 import matplotlib.pyplot as plt
14 import numpy as np
15 import pandas as pd
16 from utils import metrics_utils
17 from utils import dataset_gen
18 from utils import general_utils
19 import time
20 import tensorflow as tf
21 from keras_unet_collection import models
22

23

24 # Define helper functions
25

26 # Create function to generate the label overlap between ground truth and
predictions

27

28 def gen_lbl_overlap(y_true , y_pred):
29 """
30 Function to return a semantic map with a label overlap given ground

truth and predicted labels
31 :param y_true: ndarray with ground truth labels
32 :param y_pred: ndarray with predicted labels
33 :return: combined , an ndarray with 4 classes (1: true positive , 2:

true negatives , 3: false positives , 4: false neg)
34 """
35

36 # allocate space to store the label overlap
37 combined = np.zeros(y_pred.shape)
38

39 # true positives are labels that are predicted as water (1)
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40 tp = np.logical_and(np.where(y_pred == 1, 1, 0), np.where(y_true == 1,
1, 0))

41

42 # true negatives
43 tn = np.logical_and(np.where(y_pred == 0, 1, 0), np.where(y_true == 0,

1, 0))
44

45 # false positives are labels that were labeled as 1 but that were 0 in
reality

46 fp = np.logical_and(np.where(y_pred == 1, 1, 0), np.where(y_true == 0,
1, 0))

47

48 # false negatives are labels that were labeled as 0 but were 1 in
reality

49 fn = np.logical_and(np.where(y_pred == 0, 1, 0), np.where(y_true == 1,
1, 0))

50

51 # combine all classes
52 combined[tp] = 1
53 combined[tn] = 2
54 combined[fp] = 3
55 combined[fn] = 4
56

57 return combined
58

59 # Generate color maps for the labels and label overlap
60

61 from utils import general_utils
62

63 wtr_cmap = general_utils.gen_cmap ([’#f7f7f7 ’, ’#67 a9cf’])
64 ovrlp_cmap = general_utils.gen_cmap ([’#67 a9cf’, ’#f7f7f7 ’, ’#ef8a62 ’, ’

#999999 ’])
65

66 from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar
67 import matplotlib.font_manager as fm
68

69 fontprops = fm.FontProperties(size =15)
70

71

72 def display_lbl_overlap(y_true , lbl_overlap , x_test , num_plot , region ,
indices=None):

73 """
74 Function to display the label overlap
75 :param y_true: ndarray with ground truth labels
76 :param lbl_overlap: ndarray with label overlap
77 :param x_test: ndarray with Sentinel -1 co-event intensity (VH) raster
78 :param num_plot: integer , number of scenes to display
79 :param region: string with geographical region to display
80 :param indices: list of integer with indices to plot from the entire

data set
81 :return: matplotlib figure handle
82 """
83

84 fontprops = fm.FontProperties(size =12)

152



85

86 num_col = 5
87 fig , ax = plt.subplots(num_plot + 1, num_col , figsize =(20, 5 *

num_plot))
88 ax = ax.ravel()
89

90 if indices == None:
91 indices = range(num_plot)
92

93 for idx , raster in enumerate(indices):
94

95 ax[num_col * idx]. imshow(x_test[region ][’scenario_1_hand_lbl ’][
raster , :, :, 0], cmap=’gray’)

96 ax[num_col * idx]. set_title(f’Co -event Intensity (VH)’)
97

98 # plot ground truth
99 ax[num_col * idx + 1]. imshow(y_true[region ][’scenario_3_hand_lbl ’

][:, :, raster], cmap=wtr_cmap)
100 ax[num_col * idx + 1]. set_title(f’Ground Truth Label’)
101

102 # plot scenario 1
103 ax[num_col * idx + 2]. imshow(lbl_overlap[region ][’

scenario_1_hand_lbl ’][:, :, raster], cmap=ovrlp_cmap)
104 ax[num_col * idx + 2]. set_title(’Scenario 1 Label Overlap ’)
105

106 # plot scenario 2
107 ax[num_col * idx + 3]. imshow(lbl_overlap[region ][’

scenario_2_hand_lbl ’][:, :, raster], cmap=ovrlp_cmap)
108 ax[num_col * idx + 3]. set_title(’Scenario 2 Label Overlap ’)
109

110 # plot scenario 3
111 ax[num_col * idx + 4]. imshow(lbl_overlap[region ][’

scenario_3_hand_lbl ’][:, :, raster], cmap=ovrlp_cmap)
112 ax[num_col * idx + 4]. set_title(’Scenario 3 Label Overlap ’)
113

114 for axis in ax[: num_col * num_plot ]:
115 scalebar = AnchoredSizeBar(
116 axis.transData ,
117 100,
118 ’100m’,
119 ’lower left’,
120 pad=0.1,
121 color=’black ’,
122 frameon=False ,
123 size_vertical =1,
124 fontproperties=fontprops)
125

126 axis.add_artist(scalebar)
127 axis.set_yticks ([])
128 axis.set_xticks ([]);
129

130 # Create legend
131 checkerboard = np.zeros ((512, 512))
132 checkerboard [0:256 , 0:256] = 1
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133 checkerboard [256:, 0:256] = 2
134 checkerboard [0:256 , 256:] = 3
135 checkerboard [256:, 256:] = 4
136

137 ax[num_col * idx + 4 + 3]. imshow(checkerboard , cmap=ovrlp_cmap)
138 ax[num_col * idx + 4 + 3]. text(50, 128, "True Positives", fontsize =8.)

;
139 ax[num_col * idx + 4 + 3]. text(50, 384, "True Negatives", fontsize =8.)

;
140 ax[num_col * idx + 4 + 3]. text (290, 128, "False Positives", fontsize

=8.);
141 ax[num_col * idx + 4 + 3]. text (290, 384, "False Negatives", fontsize

=8.);
142 ax[num_col * idx + 4 + 3]. set_yticks ([])
143 ax[num_col * idx + 4 + 3]. set_xticks ([]);
144

145 ind_to_del = [1, 2, 4, 5]
146 for ind in ind_to_del:
147 fig.delaxes(ax[num_col * idx + 4 + ind])
148

149 return fig
150

151

152 if __name__ == "__main__":
153

154 ###############################################################
155 # Load previously saved dataset splits
156 ###############################################################
157

158 # Define dictionary with filepaths
159 base_dir = "base_dir_path"
160

161 train_val_test_pths = {’train_fn_df ’ : f"{base_dir }\\
ds_train_split_10m.csv",

162 ’val_fn_df ’ : f"{base_dir }\\ ds_val_split_10m.
csv",

163 ’test_fn_df ’ : f"{base_dir }\\ ds_test_split_10m.
csv"}

164

165 # Load csv files with train / val / test splits into dataframes
166 train_val_fn_df , test_fn_df , train_size , val_size , test_size =\
167 dataset_gen.unet_load_ds_df(train_val_test_pths[’train_fn_df ’],
168 train_val_test_pths[’val_fn_df ’],
169 train_val_test_pths[’test_fn_df ’])
170

171 ###############################################################
172 # Define category names and a color mapping for semantic

segmentation
173 ###############################################################
174

175 # Define category names
176 tgt_cat_names = {
177 0: ’Not water’,
178 1: ’Water’
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179 }
180

181 # Define the colors per category
182 wtr_clrs_hex = [’#f7f7f7 ’, ’#67 a9cf’]
183

184 # Generate the labels colormap
185 wtr_cmap = general_utils.gen_cmap(wtr_clrs_hex)
186

187

188 ###############################################################
189 # Generate data sets for inference
190 ###############################################################
191

192 """
193 We generate datasets for the following scenarios:
194

195 - Scenario 1: Co -event intensity data only
196 - Scenario 2: Pre - and co -event intensity data only
197 - Scenario 3: Pre - and co -event intensity and coherence data
198 """
199

200 # Define dictionaries to hold the datasets - the keys will be the
different scenarios

201 X_train_dict = {}
202 Y_train_dict = {}
203

204 X_val_dict = {}
205 Y_val_dict = {}
206

207 X_test_dict = {}
208 Y_test_dict = {}
209

210 Y_pred_dict = {}
211

212 # Define scenario number to scenario name mapping
213 scenario_dict = {1: ’co_event_intensity_only ’,
214 2: ’pre_co_event_intensity ’,
215 3: ’pre_co_event_int_coh ’}
216

217 scenario_num_bands = {1: 2,
218 2: 4,
219 3: 6}
220

221 # Define the number of bands per scenario
222 num_bands_dict = {’co_event_intensity_only ’: 2,
223 ’pre_co_event_intensity ’: 4,
224 ’pre_co_event_int_coh ’: 6}
225

226 IMG_SIZE = 512
227

228 # define dictionaries to hold the datasets
229 train_val_samples_dict = {}
230 test_samples_dict = {}
231
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232 # Loop through each scenario and create the tensorflow data loaders
233 scenarios = [1, 2, 3]
234

235 for scenario in scenarios:
236

237 # Create the samples list given the dataframes with file paths as
input

238 train_val_samples_dict[f"scenario_{scenario}"], test_samples_dict[
f"scenario_{scenario}"] = \

239 dataset_gen.create_samples_list ({’scenario ’: scenario_dict[
scenario],

240 ’test_df ’: test_fn_df ,
241 ’train_val_df ’:

train_val_fn_df })
242

243 # Create data sets dictionary
244 X_train_dict[f"scenario_{scenario}"], X_val_dict[f"scenario_{

scenario}"], X_test_dict[f"scenario_{scenario}"] =\
245 dataset_gen.unet_ds_creation ({’train_val_list ’:

train_val_samples_dict[f"scenario_{scenario}"],
246 ’test_list ’: test_samples_dict[f

"scenario_{scenario}"]})
247

248 # Batch the tensorflow train , val , and test data set generators
249 X_train_dict[f"scenario_{scenario}"] =\
250 X_train_dict[f"scenario_{scenario}"]. batch (10).prefetch(tf.

data.experimental.AUTOTUNE)
251

252 X_val_dict[f"scenario_{scenario}"] =\
253 X_val_dict[f"scenario_{scenario}"].batch (10).prefetch(tf.data.

experimental.AUTOTUNE)
254

255 X_test_dict[f"scenario_{scenario}"] = X_test_dict[f"scenario_{
scenario}"].batch (1)

256

257

258

259 ###############################################################
260 # Hand Labeled Dataset
261 ###############################################################
262

263 # load hand label dataset
264 hand_lbl_ds_pth = "hand_lbl_ds_pth"
265 hand_lbl_ds_fname = f"{hand_lbl_ds_pth}hand_lbl_ds_10m_res.csv"
266

267 df_hand_lbl_samples = pd.read_csv(hand_lbl_ds_fname)
268

269 # loop through df and append sample paths to a list
270 hand_samples = list()
271

272 for idx , row in df_hand_lbl_samples.iterrows ():
273 hand_samples.append ((row[’s1’], row[’pre_event_grd ’], row[’

pre_event_coh ’], row[’co_event_coh ’], row[’hand_lbl ’]))
274
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275

276 hand_lbl_test_samples = dict()
277

278 for scenario in scenarios:
279 hand_lbl_test_samples[f"scenario_{scenario}_hand_lbl"] =\
280 dataset_gen.create_samples_list_hand_lbl ({’scenario ’:

scenario_dict[scenario], ’test_df ’: df_hand_lbl_samples })
281

282 X_test_dict[f"scenario_{scenario}_hand_lbl"] =\
283 dataset_gen.ds_creation_hand_lbl ({’test_list ’:

hand_lbl_test_samples[f"scenario_{scenario}_hand_lbl"]})
284

285 X_test_dict[f"scenario_{scenario}_hand_lbl"] = X_test_dict[f"
scenario_{scenario}_hand_lbl"].batch (1)

286

287

288 ###############################################################
289 # Attention U-Net Models
290 ###############################################################
291

292 """
293 For this study , we leverage the publicly available Keras UNet

Collection linked below.
294

295 https :// github.com/yingkaisha/keras -unet -collection
296 """
297

298 # Load previously saved model weights
299

300 IMG_SIZE = 512
301

302 attn_unet_models_dir = {’scenario_1 ’: "model_scen_1_weights_pth",
303 ’scenario_2 ’: "model_scen_2_weights_pth",
304 ’scenario_3 ’: "model_scen_3_weights_pth"}
305

306 attn_unet_models_dict = dict()
307

308 for scenario in scenarios:
309 attn_unet_models_dict[f"scenario_{scenario}"] =\
310 models.att_unet_2d ((IMG_SIZE , IMG_SIZE , scenario_num_bands[

scenario ]),
311 filter_num =[64, 128, 256, 512, 1024] ,
312 n_labels=2,
313 stack_num_down =2,
314 stack_num_up =2,
315 activation=’ReLU’,
316 atten_activation=’ReLU’,
317 attention=’add’,
318 output_activation=’Sigmoid ’,
319 batch_norm=True ,
320 pool=False ,
321 unpool=False ,
322 backbone=’VGG16 ’,
323 weights=None ,
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324 freeze_backbone=True ,
325 freeze_batch_norm=True ,
326 name=’attunet ’)
327

328 # restore the weights
329 print(f"Loading weights for scenario: {scenario }...\n")
330 attn_unet_models_dict[f"scenario_{scenario}"]. load_weights(

attn_unet_models_dir[f"scenario_{scenario}"])
331

332

333 ###############################################################
334 # Make predictions
335 ###############################################################
336

337 # wrapping the predictions routine into a function
338 def u_net_inference(x_test_ds , test_size , model):
339 """
340 Function to make inferences using tensorflow
341

342 :param x_test_ds: tensorflow dataset pipeline for testing
343 :param test_size: number of test images in our pipeline
344 :param model: tensorflow model for inference
345 :return: y_test and y_pred are ndarrays with shape (num_pix ,)
346 """
347

348 start_time = time.time()
349

350 # Compute predictions at the same time to avoid a random shift
351 test_tgts_list = []
352 pred_tgts_list = []
353

354 for img , tgt , weights in x_test_ds.take(test_size):
355 pred = metrics_utils.create_mask(model.predict(img))
356 pred_tgts_list.append(np.squeeze(pred))
357

358 test_tgts_list.append(np.squeeze(tgt.numpy()))
359

360 y_test = np.stack(test_tgts_list , axis=-1).flatten ()
361 y_pred = np.stack(pred_tgts_list , axis=-1).flatten ()
362

363 print(f"Inference took: {time.time() - start_time} seconds\n")
364

365 return y_test , y_pred
366

367

368 ###############################################################
369 # Predicting on held -out test set and hand -labeled test set
370 ###############################################################
371 """
372 Notes
373

374 The held -out test set is comprised of Sentinel -2 weak labels from the
Sen1Floods11 data set.

375
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376 The hand -labeled data set is also provided by the Sen1Floods11 data
set , and provides an independent data set not

377 used during training.
378 """
379

380 start_time = time.time()
381

382 # loop through each scenario
383 for scenario in scenarios:
384

385 # Held -out dataset predictions
386 print(f"Predicting on held -out test dataset for scenario: {

scenario }...\n")
387 Y_test_dict[f"scenario_{scenario}"], Y_pred_dict[f"scenario_{

scenario}"] =\
388 u_net_inference(X_test_dict[f"scenario_{scenario}"],
389 test_size ,
390 attn_unet_models_dict[f"scenario_{scenario}"])
391

392 # Hand -labeled dataset predictions
393 print(f"Predicting on hand -labeled test dataset for scenario: {

scenario }...\n")
394 Y_test_dict[f"scenario_{scenario}_hand_lbl"], Y_pred_dict[f"

scenario_{scenario}_hand_lbl"] =\
395 u_net_inference(X_test_dict[f"scenario_{scenario}_hand_lbl"],
396 test_size ,
397 attn_unet_models_dict[f"scenario_{scenario}"])
398

399 print(f"\n\nTotal inference took: {time.time() - start_time} seconds")
400

401

402 ###############################################################
403 # Compute Metrics
404 ###############################################################
405

406 """
407 For metrics , we compute:
408

409 - Overall accuracy
410 - Mean intersection over union , mIoU
411 - Jaccard score
412 - Water precision
413 - Water recall
414 - Water f1 -score
415 - Not -Water precision
416 - Not -Water recall
417 - Not -Water f1 -score
418 """
419

420 ###############################################################
421 # Held -out Test Dataset
422 ###############################################################
423

424 start_time = time.time()
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425

426 summary_df = metrics_utils.summary_report(Y_test_dict , Y_pred_dict)
427

428 print(f"\n\nProcess took: {time.time() - start_time} seconds")
429

430 # save summary to csv file
431 attn_unet_summ_pth = "attn_unet_summ_pth"
432 fname = "attn_unet_10m_summary_stats.csv"
433 summary_df.to_csv(f"{attn_unet_summ_pth }\\{ fname}")
434

435

436 ###############################################################
437 # Computing IoU per class (i.e., water and not -water)
438 ###############################################################
439

440 miou_per_class = metrics_utils.miou_per_class(Y_test_dict , Y_pred_dict
)

441

442 # save to csv file
443 mIou_fname = "attn_unet_10m_mIoU_per_class_stats.csv"
444 miou_per_class.to_csv(f"{attn_unet_summ_pth }\\{ mIou_fname}")
445

446

447 ###############################################################
448 # Testing Models ’ Ability to Generalize
449 ###############################################################
450

451 # We use data over the Sri -Lanka region (both weakly labeled and hand -
labeled)

452 # to test the models ’ ability to generalize
453

454 ###############################################################
455 # Generate generalization data set
456 ###############################################################
457

458 generalization_ds_pth = "generalization_ds_pth"
459

460 # create empty list to store the samples ’ path
461 gen_test_samples = []
462

463 # load csv file into dataframe
464 gen_test_fn_df = pd.read_csv(generalization_ds_pth)
465

466 # grab number of samples in the data set
467 num_gen_samp = len(gen_test_samples)
468

469 # create dictionaries to store the tensorflow data loaders
470 gener_test_samples = {}
471

472 gener_X_test_dict = dict()
473 gener_Y_test_dict = dict()
474

475

476 for scenario in scenarios:

160



477 gener_test_samples[f"scenario_{scenario}"] =\
478 dataset_gen.create_samples_list_hand_lbl ({’scenario ’:

scenario_dict[scenario], ’test_df ’: gen_test_fn_df })
479

480 gener_X_test_dict[f"scenario_{scenario}"] =\
481 dataset_gen.ds_creation_hand_lbl ({’test_list ’:

gener_test_samples[f"scenario_{scenario}"]})
482

483 gener_X_test_dict[f"scenario_{scenario}"] = gener_X_test_dict[f"
scenario_{scenario}"].batch (1)

484

485

486 ###############################################################
487 # Hand -Labeled Generalization Data Set
488 ###############################################################
489

490 # load hand -labeled dataset
491 gen_hand_lbl_ds_pth = "gen_hand_lbl_ds_pth"
492

493 # read hand -labeled data set into dataframe
494 gen_hand_lbl_df = pd.read_csv(gen_hand_lbl_ds_pth)
495

496 # create dict to store tensorflow data loaders
497 gen_hand_samples_by_region_dict = {}
498

499 # loop through each scenario and create the tensorflow dat loaders
500 for scenario in scenarios:
501 gener_test_samples[f"scenario_{scenario}_hand_lbl"] =\
502 dataset_gen.create_samples_list_hand_lbl ({’scenario ’:

scenario_dict[scenario],’test_df ’: gen_hand_lbl_df })
503

504 gener_X_test_dict[f"scenario_{scenario}_hand_lbl"] = dataset_gen.
ds_creation_hand_lbl ({’test_list ’: gener_test_samples[f"scenario_{
scenario}_hand_lbl"]})

505 gener_X_test_dict[f"scenario_{scenario}_hand_lbl"] =
gener_X_test_dict[f"scenario_{scenario}_hand_lbl"].batch (1)

506

507 # grab the generalization data set’s size
508 gener_hand_lbl_test_size = gen_hand_lbl_df.shape [0]
509

510 ###############################################################
511 # Make Predictions on the Generalization Data Set
512 ###############################################################
513

514 # create dictionary to store the generalization data set’s predictions
515 gener_Y_pred_dict = dict()
516

517 # Keep track of how long inference takes
518 start_time = time.time()
519

520 for scenario in scenarios:
521

522 # Held -out dataset predictions
523 print(f"Predicting on held -out test dataset for scenario: {
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scenario }...\n")
524 gener_Y_test_dict[f"scenario_{scenario}"], gener_Y_pred_dict[f"

scenario_{scenario}"] =\
525 u_net_inference(gener_X_test_dict[f"scenario_{scenario}"],
526 gener_hand_lbl_test_size ,
527 attn_unet_models_dict[f"scenario_{scenario}"])
528

529 # Hand -labeled dataset predictions
530 print(f"Predicting on hand -labeled test dataset for scenario: {

scenario }...\n")
531 gener_Y_test_dict[f"scenario_{scenario}_hand_lbl"],

gener_Y_pred_dict[f"scenario_{scenario}_hand_lbl"] =\
532 u_net_inference(gener_X_test_dict[f"scenario_{scenario}

_hand_lbl"],
533 gener_hand_lbl_test_size ,
534 attn_unet_models_dict[f"scenario_{scenario}"])
535

536 print(f"\n\nTotal inference took: {time.time() - start_time} seconds")
537

538

539 ###############################################################
540 ### Compute Metrics for Generalization Data Set
541 ###############################################################
542

543 stat_time = time.time()
544

545 # Generate metrics
546 gener_summary_df = metrics_utils.summary_report(gener_Y_test_dict ,

gener_Y_pred_dict)
547

548 print(f"\n\nProcess took: {time.time() - start_time} seconds")
549

550 # save the metrics to a csv file for later recall
551 gener_summ_fname = "attn_unet_10m_generalization_stats.csv"
552 gener_summary_df.to_csv(f"{attn_unet_summ_pth }\\{ gener_summ_fname}")
553

554

555 ###############################################################
556 # Compute IoU per class for generalization dataset
557 ###############################################################
558

559 gener_miou_per_class = metrics_utils.miou_per_class(gener_Y_test_dict ,
gener_Y_pred_dict)

560

561 # save to csv
562 gener_miou_fname = "attn_unet_10m_generalization_mIoU_stats.csv"
563 gener_miou_per_class.to_csv(f"{attn_unet_summ_pth }\\{ gener_miou_fname}

")
564

565

566 ###############################################################
567 # Making Inferences Aggregated by Geographical Region
568 ###############################################################
569
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570 for scenario in scenarios:
571 gener_test_samples[f"scenario_{scenario}"] =\
572 dataset_gen.create_samples_list_hand_lbl ({’scenario ’:

scenario_dict[scenario], ’test_df ’: gen_test_fn_df })
573

574 gener_X_test_dict[f"scenario_{scenario}"] =\
575 dataset_gen.ds_creation_hand_lbl ({’test_list ’:

gener_test_samples[f"scenario_{scenario}"]})
576

577 gener_X_test_dict[f"scenario_{scenario}"] = gener_X_test_dict[f"
scenario_{scenario}"].batch (1)

578

579

580 test_samples_by_region_dict = {}
581

582 # Define the regions excluding the generalization region
583 regions = [’USA’, ’Mekong ’, ’Colombia ’, ’Paraguay ’, ’India’, ’Bolivia ’

]
584

585 # create dictionary schema to hold the tensorflow data loaders
aggregated by region

586 X_test_ds_region_dict = {region: {} for region in regions}
587

588 ds_test_size_region = {}
589

590 # loop through each of the regions
591 for region in regions:
592 # temp list to store the file paths
593 pths = list()
594

595 # pluck the test sample paths by region
596 test_pth_region = test_fn_df[test_fn_df.s1.str.contains(region)]
597

598 ds_test_size_region[region] = test_pth_region.shape [0]
599

600 for scenario in scenarios:
601 region_test_samples = dataset_gen.create_samples_list_hand_lbl

({’scenario ’: scenario_dict[scenario],
602 ’test_df ’: test_pth_region })
603

604 X_test_ds_region_dict[region ][f"scenario_{scenario}"] =\
605 dataset_gen.ds_creation_hand_lbl ({’test_list ’:

region_test_samples })
606

607 X_test_ds_region_dict[region ][f"scenario_{scenario}"] =\
608 X_test_ds_region_dict[region ][f"scenario_{scenario}"].

batch (1)
609

610

611 # Hand -labeled data set aggregated by region
612 hand_lbl_ds_test_size_region = {}
613

614 for region in regions:
615 # temp list to store the file paths
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616 pths = list()
617

618 # pluck the test sample paths by region
619 test_pth_region = df_hand_lbl_samples[df_hand_lbl_samples.s1.str.

contains(region)]
620

621 hand_lbl_ds_test_size_region[region] = test_pth_region.shape [0]
622

623 for scenario in scenarios:
624 region_test_samples = dataset_gen.create_samples_list_hand_lbl

({’scenario ’: scenario_dict[scenario],
625 ’test_df ’: test_pth_region })
626

627 X_test_ds_region_dict[region ][f"scenario_{scenario}_hand_lbl"]
=\

628 dataset_gen.ds_creation_hand_lbl ({’test_list ’:
region_test_samples })

629

630 X_test_ds_region_dict[region ][f"scenario_{scenario}_hand_lbl"]
=\

631 X_test_ds_region_dict[region ][f"scenario_{scenario}
_hand_lbl"]. batch (1)

632

633

634

635 ###############################################################
636 # Compute inferences aggregated by region
637 ###############################################################
638

639 # create dicts to store predictions and ground truth
640 Y_pred_region_dict = {region : {} for region in regions}
641 Y_test_region_dict = {region : {} for region in regions}
642

643 start_time = time.time()
644

645 for region in regions:
646 for scenario in scenarios:
647

648 # Held -out dataset predictions
649 print(f"Predicting on held -out test dataset for region: {

region}, scenario: {scenario }...\n")
650 Y_test_region_dict[region ][f"scenario_{scenario}"],

Y_pred_region_dict[region ][f"scenario_{scenario}"] =\
651 u_net_inference(X_test_ds_region_dict[region ][f"scenario_{

scenario}"],
652 ds_test_size_region[region],
653 attn_unet_models_dict[f"scenario_{scenario

}"])
654

655 # Hand -labeled dataset predictions
656 if region == ’Colombia ’:
657 continue # The Sen1Floods11 data set does not have hand

-labels for Colombia
658 else:
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659 print(f"Predicting on hand -labeled test dataset for region
:{ region}, scenario: {scenario }...\n")

660 Y_test_region_dict[region ][f"scenario_{scenario}_hand_lbl"
],\

661 Y_pred_region_dict[region ][f"scenario_{scenario}_hand_lbl"
] =\

662 u_net_inference(X_test_ds_region_dict[region ][f"
scenario_{scenario}_hand_lbl"],

663 hand_lbl_ds_test_size_region[region],
664 attn_unet_models_dict[f"scenario_{

scenario}"])
665

666 print(f"\n\nTotal inference took: {time.time() - start_time} seconds")
667

668 ###############################################################
669 # Generate prediction summaries / metrics by region
670 ###############################################################
671

672 start_time = time.time()
673

674 summary_by_region = {}
675

676 for region in regions:
677 print(f"Region: {region }\n\n")
678 summary_by_region[region] = metrics_utils.summary_report(

Y_test_region_dict[region], Y_pred_region_dict[region ])
679 print("\n\n")
680

681 # save to csv
682 summary_by_region[region ]. to_csv(f"{attn_unet_summ_pth }\\{ region}

_summary_stats.csv")
683

684 print(f"\n\nProcess took: {time.time() - start_time} seconds")
685

686

687 ###############################################################
688 # Compute IoU per class aggregated by region
689 ###############################################################
690

691 regional_miou_per_class = {}
692

693 for region in regions:
694 print(f"Region: {region }\n\n")
695

696 regional_miou_per_class[region] =\
697 metrics_utils.miou_per_class(Y_test_region_dict[region],

Y_pred_region_dict[region ])
698

699 print("\n\n")
700

701 # save to csv
702 regional_miou_per_class[region ]. to_csv(f"{attn_unet_summ_pth }\\{

region}_mIoU_stats.csv")
703
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704

705 ###############################################################
706 # Generate labels and label overlap by region
707 ###############################################################
708

709 # Combine the generalization data set predictions and ground truth
with the rest of the data set

710 Y_pred_region_dict[’Sri -Lanka ’] = gener_Y_pred_dict
711

712 Y_test_region_dict[’Sri -Lanka ’] = gener_Y_test_dict
713

714 X_test_ds_region_dict[’Sri -Lanka ’] = gener_X_test_dict
715

716 # regions with hand -labels
717 all_regions = [’USA’, ’Mekong ’, ’India ’, ’Bolivia ’, ’Paraguay ’, ’Sri -

Lanka ’]
718 Y_pred_hand_lbl_by_region = {}
719 Y_true_hand_lbl_by_region = {}
720

721 # scenarios to pluck
722 scen_to_pluck = [’scenario_1_hand_lbl ’, ’scenario_2_hand_lbl ’, ’

scenario_3_hand_lbl ’]
723

724 # create schemas to store predictions and ground truth
725 Y_pred_hand_lbl_by_region = {region : {scen : [] for scen in

scen_to_pluck} for region in all_regions}
726 Y_true_hand_lbl_by_region = {region : {scen : [] for scen in

scen_to_pluck} for region in all_regions}
727

728 X_test_hand_lbl_by_region = {}
729 X_test_hand_lbl_by_region = {region : {scen : [] for scen in

scen_to_pluck} for region in all_regions}
730

731

732 ###############################################################
733 # First , loop through the test data set and grab all the image rasters
734 ###############################################################
735

736 for region in all_regions:
737 for scen in scen_to_pluck:
738 ds_len = X_test_ds_region_dict[region ][scen]. cardinality ().

numpy ()
739 print(f"region: {region}, scen: {scen}, len: {ds_len}")
740 img_lst = list()
741 for img , tgt , weight in X_test_ds_region_dict[region ][scen].

take(ds_len):
742 img_lst.append(np.squeeze(img.numpy()))
743

744 X_test_hand_lbl_by_region[region ][scen] = np.stack(img_lst ,
axis =0)

745

746

747 ###############################################################
748 # Copy the predictions and the ground truth labels
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749 ###############################################################
750

751 for region in all_regions:
752 for scen in scen_to_pluck:
753 Y_pred_hand_lbl_by_region[region ][scen] = Y_pred_region_dict[

region ][scen].copy()
754

755 Y_true_hand_lbl_by_region[region ][scen] = Y_test_region_dict[
region ][scen].copy()

756

757

758 ###############################################################
759 # Compute label overlap by region
760 ###############################################################
761

762 lbl_ovrlap_by_region = {region : {scen : [] for scen in scen_to_pluck}
for region in all_regions}

763

764 for region in all_regions:
765 for scen in scen_to_pluck:
766

767 lbl_ovrlap_by_region[region ][scen] = np.reshape(
768 gen_lbl_overlap(
769 Y_true_hand_lbl_by_region[region ][scen],
770 Y_pred_hand_lbl_by_region[region ][scen]),
771 (img_size , img_size , -1))
772

773

774

775 ###############################################################
776 # Plot label overlap by region
777 ###############################################################
778

779 # First , reshape the labels into proper rasters for displaying
780 img_size = 512
781 num_feat_dict = {’scenario_1_hand_lbl ’: 2,
782 ’scenario_2_hand_lbl ’: 4,
783 ’scenario_3_hand_lbl ’: 6}
784

785 for region in all_regions:
786 for scen in scen_to_pluck:
787 Y_pred_hand_lbl_by_region[region ][scen] = np.reshape(

Y_pred_hand_lbl_by_region[region ][scen],
788 (img_size

, img_size , -1))
789

790 Y_true_hand_lbl_by_region[region ][scen] = np.reshape(
Y_true_hand_lbl_by_region[region ][scen],

791 (img_size
, img_size , -1))

792

793

794 ###############################################################
795 # Label Overlap for Region: USA
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796 ###############################################################
797

798 ovrlp_lbl_pth = "ovrlp_lbl_pth"
799 region = "USA"
800 fname = f"{ovrlp_lbl_pth }\\ attn_unet_{region}_lbl_ovrlp.pdf"
801

802 idx_USA = [1, 3, 5, 8, 22]
803 fig_USA = display_lbl_overlap(Y_true_hand_lbl_by_region ,
804 lbl_ovrlap_by_region ,
805 X_test_hand_lbl_by_region ,
806 num_plot=len(idx_USA),
807 region=’USA’,
808 indices=idx_USA)
809

810 # save
811 #fig_USA.savefig(fname)
812

813

814 ###############################################################
815 # Label Overlap for Region: Mekong
816 ###############################################################
817

818 region = "Mekong"
819 idx_Mekong = [1, 2, 5, 7, 8]
820 fig_Mekong = display_lbl_overlap(Y_true_hand_lbl_by_region ,
821 lbl_ovrlap_by_region ,
822 X_test_hand_lbl_by_region ,
823 num_plot=len(idx_Mekong),
824 region=region ,
825 indices=idx_Mekong)
826

827 #fname = f"{ ovrlp_lbl_pth }\\ attn_unet_{region}_lbl_ovrlp.pdf"
828 #fig_Mekong.savefig(fname)
829

830

831 ###############################################################
832 # Label Overlap for Region: Bolivia
833 ###############################################################
834

835 idx_Bolivia = [1, 2, 3, 4, 5]
836 region = "Bolivia"
837 fig_Bol = display_lbl_overlap(Y_true_hand_lbl_by_region ,
838 lbl_ovrlap_by_region ,
839 X_test_hand_lbl_by_region ,
840 num_plot=len(idx_Bolivia),
841 region=region ,
842 indices=idx_Bolivia)
843

844 fname = f"{ovrlp_lbl_pth }\\ attn_unet_{region}_lbl_ovrlp.pdf"
845 #fig_Bol.savefig(fname)
846

847

848 ###############################################################
849 # Label Overlap for Region: Paraguay
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850 ###############################################################
851

852 region = ’Paraguay ’
853 idx_Paraguay = [0, 1, 2, 6, 7]
854 fig_Par = display_lbl_overlap(Y_true_hand_lbl_by_region ,
855 lbl_ovrlap_by_region ,
856 X_test_hand_lbl_by_region ,
857 num_plot=len(idx_Paraguay),
858 region=region ,
859 indices=idx_Paraguay)
860

861

862 fname = f"{ovrlp_lbl_pth }\\ attn_unet_{region}_lbl_ovrlp.pdf"
863 #fig_Par.savefig(fname)
864

865

866 ###############################################################
867 # Label Overlap for Region: India
868 ###############################################################
869

870 region = "India"
871 idx_India = [0, 2, 4, 6, 23]
872 fig_Ind =display_lbl_overlap(Y_true_hand_lbl_by_region ,
873 lbl_ovrlap_by_region ,
874 X_test_hand_lbl_by_region ,
875 num_plot=len(idx_India),
876 region=region ,
877 indices=idx_India)
878

879 fname = f"{ovrlp_lbl_pth }\\ attn_unet_{region}_lbl_ovrlp.pdf"
880 #fig_Ind.savefig(fname)
881

882 ###############################################################
883 # Label Overlap for Region: Sri -Lanka
884 ###############################################################
885

886 region = "Sri -Lanka"
887 idx_Sri_Lanka = [8, 9, 11, 16, 21]
888 fig_Sri = display_lbl_overlap(Y_true_hand_lbl_by_region ,
889 lbl_ovrlap_by_region ,
890 X_test_hand_lbl_by_region ,
891 num_plot=len(idx_Sri_Lanka),
892 region=region ,
893 indices=idx_Sri_Lanka)
894

895 fname = f"{ovrlp_lbl_pth }\\ attn_unet_{region}_lbl_ovrlp.pdf"
896 #fig_Sri.savefig(fname)
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