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ABSTRACT

The task of determining the relevant parameters of a transmission scheme is known as modulation

classification. Possible parameters of interest include carrier frequency, symbol time or modulation

order. In this thesis we focus on modulation format (linear vs OFDM) and modulation order. This

task has applications in signal intelligence receivers (SIG INT), and cognitive radios. One possible

application is in military use, where friendly or non-friendly transmissions can be identified. Another

possible application is in a cognitive radio network, where knowledge of primary users transmission

scheme could be used as part of an underlay network scheme. A common approach for modulation

classification is support vector machines (SVM) with high order cumulants as features, however the

problem of classification of orthogonal frequency division multiplexing (OFDM) signals has not

been fully explored. Furthermore, deep neural networks (DNN) have made tremendous advances in

classification problems, and there has been no prior work done on using live captured data to test

modulation classification using DNN. Therefore, four linear and OFDM modulations are captured

live over a range of signal powers, and tested against with both SVM and DNN classifiers. The SVM

classifier with high order cumulant features achieved a classification rate of 99% for OFDM

modulations, but only achieved 93% accuracy for linear modulations. A convolutional neural

network (CNN) achieved 99% classification for all 8 modulations. Additionally, the CNN

generalizes better than the SVM classifier when trained over a range of SNR values. When trained in

this manner, the convolutional network significantly outperforms the SVM classifier when the SNR

value is not known at the receiver.
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1

Introduction

1.1 Motivation for Research

There are many uses for modulation recognition algorithms; one of its primary uses are

in a signal intelligence (SIG INT) receivers. A SIG INT receiver’s job is to monitor and

intercept foreign communication signals, and gain information regarding the message being

transmitted. To do such task, a SIG INT receiver needs to know what type of modulation

has been applied on the transmitted signal. This is where a robust modulation recognition

algorithm, which is able to classify among various modulation type, comes in useful.

Modulation algorithms can also be used in cognitive radios (CR). CR are programmed

for efficient utilization of the frequency spectrum for transmission which is being shared

among multiple users [2]. This is typically done by detecting and transmitting when the

channel is unoccupied. A modulation recognition algorithm can be used here to detect

1



CHAPTER 1. INTRODUCTION

if a channel is in use. CR can perform more intelligently in an underlay network if the

underlying modulations of the primary users is also known.

There has been much research into modulation recognition algorithms for many differ-

ent modulation classes. This thesis will be expanding upon the research by applying neural

networks (NNet) to modulation classification. Many experimenters have already done this,

but with synthesized data. Current state of the art classifiers are support vector machine

(SVM) with high order cumulants (HOC) as its features. Neural networks are a more recent

type of classification algorithm, and their effectiveness on classifying modulation schemes

has not yet fully been explored.

1.2 Related Works

There has been some prior work into classifying OFDM modulations. In [12] the authors

design a system for OFDM signal classification. In their model a gaussianity test is done to

distinguish between OFDM and single carrier modulations. Furthermore, their system then

estimates the relevant parameters of the OFDM modulations, such as the OFDM symbol

rate, cyclic prefix interval, and number of sub carriers. They have noted that their system

is able to classify between OFDM and non OFDM signal with 80% accuracy, and their

parameter extraction accuracy is greater than 90% for SNR above 15 dB.

In [26], the authors apply convolutional neural nets (CNN) to classify several lin-

2



CHAPTER 1. INTRODUCTION

ear modulations. Digital modulations that were classified includes BPSK, QPSK, 8PSK,

16QAM, 64QAM, BFSK, CPFSK, and PAM4. They also included 3 analog modulations:

WB-FM, AM-SSB, and AM-DSB. Their dataset was synthesized in GNU Radio using harsh

channel models. Their CNN was trained with SNR data ranging from -20dB to +20dB.

Their overall accuracy across all the SNR levels was roughly around 87%.

1.3 Problem statement

In this thesis, four linear modulations will be classified: BPSK, QAM4, QAM16, and

QAM32, along with 4 OFDM based modulation: OFDM-BPSK, OFDM-QAM4, OFDM-

QAM16, and OFDM-QAM32. Two different classifiers will be trained and tested for their

performance in classifying these modulations. The classic SVM classifier with cumulant

features are considered state of the art for the modulation classification. Neural Networks

have recently become popular for their ability to learn features from complex data sets.

To the author’s knowledge neither of these classifier have been tested to classify OFDM

modulations with live captured data. Therefore, these two classifiers will be trained and

tested with live captured data sets. They will be tested for their ability to simultaneously

classify both linear and OFDM modulations across several SNR levels.

This thesis is organized as follows. In chapter 2, a brief explanation of digital mod-

ulations will be given. Chapter 3 will describe how the data was captured and validated.

3



CHAPTER 1. INTRODUCTION

Chapter 4 explains the classifiers that will be used, and in Chapter 5 the results will be

presented. In Chapter 6 we conclude and list the future works for interested readers.

4



2

Communication Basics

This chapter is presented to give a brief overview on modulation’s waveform design param-

eters and the types of impairment that can be seen on a signal transmitted over the air. A

typical communication system model can be seen in the figure 2.1.

Figure 2.1: A simple communication system model. Figure taken from [11].

Information Source is the message being transmitted; these are usually in the form of

a binary bit stream. Transmitter modulates the bit stream into the carrier frequency and

transmits it into the air. The signal goes through a channel, which adds impairment to the

signal. If the receiver is not synchronized with the transmitter then additional impairments

5



CHAPTER 2. COMMUNICATION BASICS

will be seen at the receiver. Both of these subjects, modulations and impairments, will be

discussed in the next two sections.

2.1 Digital Modulations

As mentioned previously, 8 different type of digital modulation signals are classified in this

research. They can be categorized as linear and OFDM modulations. OFDM modulated

schemes are relatively new compared to linear modulation schemes like QAM, and they are

both used widely today.

2.1.1 Linear Modulations

Researchers have come up with wide variety of digital modulations for data transmission.

Most common of them all are Frequency Shift Keying (FSK) and Quadrature Amplitude

Modulations (QAM). These modulations are simple to implement in a transmitter, and

simple enough to build a receiver for. Figure 2.2 shows a typical transmitter for the 4

modulations of interest.

The bit streams are fed in from top level API (Host), which is mapped into complex

symbols by the modulator. Those symbols are then up sampled with repetition or digitally

interpolated to the sampling rate required for the transmission. Then, the complex stream is

multiplied by the local oscillator (LO), which up converts the signal to radio frequency (RF).

6
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Figure 2.2: Transmitter block diagram for linear modulations.

This is the model that has been used to transmit linear modulations for this research. Pulse

shaping can be applied to the signal to reduce inter symbol interference (ISI), however that

is not common in modern transmitters. For this project pulse shaping is not applied, and a

rectangular pulse shape is assumed for all modulations.

Equation 2.1 shows the output values of the transmitted signal:

s(t) = I(t)cos(2πf0t)−Q(t)sin(2πf0t) (2.1)

where I(t) and Q(t) are the complex baseband symbols in the time domain. I stands

for in-phase, and Q stands for quadrature phase. The digital modulator maps the bits onto

symbol. It is easier to visualize the mapping by viewing it in a constellation diagram. The

constellation diagram for the 4 linear modulations are shown in figure 2.3. The symbols are

mapped based on the bit order seen on top of them.

7
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(a) BPSK (b) QAM4

(c) QAM16 (d) QAM32

Figure 2.3: Symbol mapping for each of the 4 linear modulations. BPSK figure taken from
[29]; QAM figures taken from [8].

Higher order QAM packs more bits per symbol, hence they have higher spectral

efficiency compared to lower order QAM. One drawback is that the receiver has to be more

complex for higher order QAMs. It is easy to track the frequency offset for BPSK or QAM4

modulations, but requires power detection circuitry for higher level QAMs. Consequently

higher order QAMs tends to have higher bit error rate (BER).

8
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2.1.2 OFDM Modulations

Orthogonal Frequency Division Multiplexed (OFDM) modulations are multi carrier modu-

lations. These modulations are considered as wide band signals, because their bandwidth

is significantly larger compared to linear modulations due to having multiple carriers. The

main benefit of having multiple carrier system is that that it is robust against severe channel

conditions such as multipath fading [5]. Another benefit is the ability to use frequency

domain equalizer (FDE) to compensate for channel impairments. FDEs are simple to

implement, and can be learned fairly quickly with the use of training frames.

Figure 2.4: OFDM sub carriers. Figure taken from [20].

OFDM modulations are considered orthogonal because at the optimum sampling point

the contribution from adjacent carriers is exactly zero as seen in figure 2.4. This alignment,

however, is easily broken if there is a frequency offset, which is why the receiver needs

complex algorithms to ensure frequency synchronization.

9
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∆f = SamplingRate/Ncarriers (2.2)

There are many ways to implement an OFDM system; the most popular way of doing

it is by using the FFT operation. This method is also used in 802.11a wireless standard [7].

The block diagram of an OFDM system using this method is shown in figure 2.5.

Figure 2.5: OFDM transmitter and receiver. Figure taken from [15].

The input bit stream is mapped into symbols by the Constellation Mapper block on a

frame by frame basis. The complex symbols are then loaded into an IFFT block to get a

time domain representation of the input signal. Cyclic prefix addition operation is performed

by copying the last Ncp samples into the front of the frame. The frames are then serialized

10
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by a Parallel to Serial block and transmitted. At the receiver, the reverse operation is done,

with the addition of a Frequency Domain Equalizer block, which is needed to remove ISI.

OFDM signals are made up of frames. The frame size is determined by the length of

FFT and cyclic prefix. For example, in the 802.11a standard, the FFT size is 64, and the CP

size is 16. So there are 80 samples per OFDM frame [7]. There are different types of frame

that are sent periodically. For our purposes there are only three different kinds of frames:

preamble, training, and data frames. Both the preamble and the training frames are known at

the receiver, which is utilized for synchronization. The receiver uses the preamble frame to

detect frame boundaries. The training frames are used to learn the FDE coefficients. Once

the equalizer weights are learned, it is possible to extract the transmitted symbols from the

data frame.

Each FFT bin can be thought of as a separate carrier frequency. In this particular

OFDM system there are 64 carriers. Typically some of the carriers are nulled to taper the

frequency spectrum around the edges. Data frames, in 802.11a standard, are transmitted

using the loading pattern shown in figure 2.6

There are 4 pilot carriers, # 7,21,-21, and -7, that are used in the standard. The receiver

knows the values of the pilot symbols in advance, so these can be used to measure frequency

offset, and also to fix timing offset. The rest of the carriers are loaded with data symbols,

which are mapped by the appropriate modulator. Thus, out of 64 carriers, 48 are data carriers,

11
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Figure 2.6: OFDM frame loading for 802.11a standard frames. Figure taken from 802.11a
standard [7].

4 are pilot carriers, and 12 are null carriers.

The values of preamble frames are also taken from the 802.11a standard [7]. The

training frame is a custom frame that was created to train the FDE. It is loaded the same way

a data frame would be loaded, except the data sequence are BPSK symbols with alternating

bits. The symbols going into consecutive data carriers are +1, -1, +1, -1 ... Data symbols

from the training frame are used to compute the FDE coefficients.

2.2 Signal Impairments

There are a couple of signal impairments that are expected to be seen at the receiver. The

effects are different for narrow band and wide band signals. They are listed in the following

sections.

12
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2.2.1 Path Loss

The biggest noticeable impairment to be seen is the severe attenuation of the transmitted

signal while it travels over the air. This happens because signal loses its power as it covers

distance. The free space path loss is shown in equation 2.3, in which we see that the signal

loss in power is proportional to square of the distance traveled. Path loss is the biggest factor

in signal to noise ratio (SNR) degradation for over the air transmitted signal. In the setup

used for data capturing, the distance between the transmitter and receiver is not known,

however they are close enough to properly transmit and receive data. The setup will be

explained in detail in the next chapter.

FSPL = (4πd/λ)2 (2.3)

2.2.2 Carrier Frequency Offset

Typically the effect of this impairments can be seen in constellation diagram, especially for

the linear modulations. Carrier frequency offset impairment occurs due to the mismatch

between local oscillator of the transmitter and receiver, and also if either of those two are

mobile. This makes the constellation of a particular modulation to rotate. Figure 2.7 shows

an example of constellation rotation for QAM4 modulation.

There are many effective algorithms designed to mitigate this type of impairment, most

notable of them all is the costas loop that can be applied on BPSK and QAM4 modulated
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Figure 2.7: Effect of carrier frequency offset on QAM4 constellation. Figure taken from
[30].

signals [25]. Variants of this algorithm are applied for higher order QAM modulations, but

they are more complex.

This impairment has more profound effect on OFDM modulations because it breaks the

orthogonality of the carriers. The carrier starts leaking into adjacent carriers which degrades

the SNR. This impairment is termed as Inter-carrier interference (ICI). Many pilots based

techniques can be implemented to detect and mitigate this particular impairment for OFDM

signals [9] [13].
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2.2.3 Timing Offset

This has different meaning for linear and OFDM modulations. In linear modulations, this

impairment is seen when there is an offset in the clock frequency of the transmitter and

receiver. TX clock frequency determines the optimal sampling time of the signal, and if RX

has a different sampling time then the SNR is reduced. This impairment causes a shifting in

the optimal sampling point. Algorithms like early-late gate were designed to keep track of

the optimal sampling point at the receiver. Digital communications book by Michael Rice

has a dedicated chapter on timing synchronization and covers early-late gate algorithm [24].

In OFDM modulations, timing offset refers to the offset between what receiver con-

siders to be the frame boundary and the actual frame boundaries. It is important to know

where the frames are starting, otherwise the demapping of known symbols from pilot and

training will be incorrect. Typically, a correlator type algorithm can be used to match the

frame boundaries [14].

2.2.4 Multipath Fading

Another distortion that is seen, especially in a wide band signal, is multipath fading. This

arises due to multiple copies of the transmitted signal arriving at the receiver, with different

delays. See figure 2.8 for an illustration. Some of the copies can combine destructively

with the main dominant signal degrading the SNR. This problem is seen mostly in an urban
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environments where the signal paths are longer creating a relatively large delay profile.

Figure 2.8: Signal degradation due to multiple copies of the signal arriving at the recevier
with delays. Illustration taken from [3].

Fading creates dips in the frequency spectrum, which degrades the signal quality. The

setup in which all the data has been captured is an indoor environment. Therefore the delay

profile associated with that environment is small. This means that the fading shouldn’t be too

severe for narrow band signal. Wide band signal like OFDM modulations may experience

fading. It is possible that one of the data carrier may be severely attenuated, but these dips

in the spectrum can be equalized in an OFDM receiver by the FDE.
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Data Capture and Validation

This chapter will go through the infrastructure and tools used to capture data in detail. It

will also go through the methods employed to verify that the data was captured properly.

3.1 ORBIT Testbed

ORBIT stands for Open-Access Research Testbed for Next-Generation Wireless Networks

[31]. It is maitained by Rutgers University, with the intent of giving researchers and

experimenters the ability to test their algorithms and get reproducible results in a real

environment. Going from simulated data to actual real world data is an important step in

establishing the credibility of algorithm or protocols. This testbed is equipped with wide

range of radio resources including: WiFi 802.11a/b/g 802.11n 802.11ac, Bluetooth (BLE),

ZigBee, Software Defined Radio (SDR) platforms (USRP, WARP, RTL-SDR, USRP N210,

USRP X310)[31]. For this thesis a pair of SDRs were configured to transmit and capture
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live data over the air.

ORBIT lab contains several test domains in which experimenters may use the hardware

for their wireless experimentation. The biggest lab setup they have is called the Grid, which

contains 20 by 20 set of radio nodes. This grid is also equipped with an arbitrary waveform

generator, which can add synthetic noise or interference to the grid system allowing for

experimenters to create various topologies. However, for a simple job of data capturing,

the Grid is not necessary. ORBIT also provides 9 sandbox lab environment which is setup

with fewer number of radio nodes. Sandbox # 3 contains a pair of universal software radio

peripheral (USRP2) radio nodes, which was configured and used as transmitter and receiver

pair.

The best part about using ORBIT is that one can configure any of radio nodes from a

remote terminal. For this project, no hardware was touched. There are two main components

that had to be configured inside the ORBIT testbed. First was the hardware itself, which

was used to transmit and capture the data. Second was the code that generated the data to be

sent. Each code contained different message and waveform based on the modulation type

used. The next two section explains the configuration done for both.
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3.1.1 Software Defined Radios

Software defined radios (SDR) are relatively new and powerful tool for wireless experiments.

A typical transceiver contains mixers, filters, amplifiers, modulator and demodulators, which

are implemented in hardware. However, in an SDR these components are implemented in

software, which gives the experimenters a lot of flexibility in the waveform design [27]. By

a simple change of code, they can change the modulation type of the transmitter. SDRs

are good for rapidly prototyping custom wireless communication systems. This lets the

researcher implement and test his theory through an SDR relatively quickly.

As mentioned previously, a pair of USRP2s were used from sandbox # 3, provided by

ORBIT. This particular sandbox contained two USRP2 N210 nodes with SBX daughter card.

They are manufactured by Ettus Research, which is part of National Instrument, and met

the spec needed for transmitting and capturing data. The relevant specs from the USRP2

N210’s manual are listed in table 3.1.

Operating frequency 400 MHz - 4.4GHz
ADC sample rate 100 MS/s
DAC sample rate 400 MS/s
Host sample rate 25 MS/s

Clock rate 100 MHz
Bandwidth 40 MHz

Table 3.1: USRP N210 Specs [23].

The USRP2 N210’s top level schematic is shown in the figure 3.1. The Gigabit Ethernet

19



CHAPTER 3. DATA CAPTURE AND VALIDATION

Figure 3.1: Schematic of USRP2 N210. Figure taken from USRP N210 manual [23].

block on the top left is connected to the host PC in the sandbox. That is where the modulated

data is sent to, and the USRP transmits it after up conversion to RF. To create the code for

designing custom modulation, Ettus Research provides USRP Hardware Driver (UHD),

which is a library of functions that can be called using either C or Python to configure the

SDR and to transmit data from it [22]. This requires learning the library structure, which can

be done, however it is not needed. GNU Radio toolkit provides an easier way to configure

the radio nodes.
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3.1.2 GNU Radio

GNU Radio is a toolkit built specifically for SDR. It comes with a companion software

called GNU Radio Companion (GRC), which is a graphical coding platform. Similar to

MATLAB’s simulink and NI’s LABVIEW, in GRC, one can place digital communication

blocks to customize the waveform to be transmitted through a USRP. There are many useful

digital communication blocks available in GRC. Custom blocks can also be created in GRC

using out of tree (OOT) module. Figure 3.2 shows a template of a simple BPSK transmitter

block which was used to transmit BPSK modulated signal.

Figure 3.2: BPSK transmitter code in GNU Radio Companion.

There are a few important blocks shown in figure 3.2. The bits to be transmitted are pre

generated and stored in appropriately labeled files, which can be read in using File Source

block. These values are converted to complex samples using Float to Complex block. The

Repeat block upsamples the symbols with repetition to meet the transmitter’s sampling rate.
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The UHD: USRP Sink block establishes a connection between the host API and the USRP

N210 hardware through the ethernet port. The signal is fed through this block to the USRP,

however it needs to be scaled so that it doesn’t saturate. The Multiply Const block is used to

ensure that the signal values does not reach saturation. The maximum float value that UHD:

USRP Sink can accept before saturation is 1.0.

There are four important parameters that is configured via UHD: USRP Sink block:

sampling rate, carrier frequency, bandwidth, and TX gain. In the next section, the GRC code

for other modulations, QAM and OFDM will be explained. Undoubtedly this is a powerful

and convenient software to use for creating and transmitting data of various modulation.

3.2 Modulation Parameters

All of the parameters listed in this section was configured through GRC. Template code for

linear and OFDM modulation are also shown. There are two parameters which remained

fixed for both linear and OFDM based modulations, and they are listed in table 3.2.

Carrier Frequency 1 GHz
TX Gain 0/5/10 dB

Table 3.2: Fixed Modulation Parameters
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3.2.1 Linear Modulations

The GRC code for BPSK transmitter was shown in figure 3.2. The GRC code for QAM4

transmitter is shown in figure 3.3. QAM16 and QAM32 transmitter has the same blocks

except qam4_ic is substituted with qam16_ic and qam32_ic respectively. These blocks were

created using OOT module. Their implementation code can be found in the appendix. They

return a QAM symbol corresponding to integer valued symbol number. Similar to BPSK

transmission, the bits to be transmitted are pre generated for all the QAM modulations. For

QAM4 modulations, prbs.txt contains integer values ranging from 0 to 3. Accordingly, for

QAM16 the values range from 0 to 15, and for QAM32 the values range from 0 to 31.

Figure 3.3: QAM4 transmitter code in GNU Radio companion

Instead of using the Random Source block that is provided by the GNU Radio, the

random stream is fed in through a file. Through MATLAB, a list of 1000 different random

integer files were generated, each with a different seed. This allows for reproducibility of

the transmitted signal for debugging purposes. The code can be found in appendix A.1.1.
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Typically a root raise cosine (RRC) pulse shaping filter would have been applied to combat

ISI. The main reason for not using RRC is that this pulse shape is not widely used anymore

in modern systems. It would have made the classification more complex.

The modulated signal is up sampled by 20 by repetition. Up sampling by 10 was the

initial choice, but the corresponding captured signal’s pulse shape was too small to produce

an acceptable signal constellation. Since the received signal constellation was not good

enough for reception we chose an up sampling rate of 20. The input sampling rate was set to

100 KHz, and after up sampling by 20, the output rate would be 2 MHz. The TX gain value

was varied between 0, 5, and 10 dB, which will be explained in the Relative SNR section.

3.2.2 OFDM Modulations

Four OFDM modulation formats were chosen for this experiment: OFDM-BPSK, OFDM-

QAM4, OFDM-QAM16, and OFDM-QAM32 which all shared the same GRC template.

The only difference was in how the frames were loaded. The GRC template is shown in

figure 3.4.

For this setup the frames were generated in MATLAB (appendix A.1.2) and loaded

into GRC through frame.txt file. There are 3 different frames that were generated: Preamble,

Training, and Data Frames. All 3 of these frames were based on the 802.11a standard.

Preamble frames are used at the receiver for frame synchronization and timing offset
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Figure 3.4: OFDM BPSK transmitter code in GNU Radio Companion.

recovery. Training frames are used to update the FDE weights, so that the following data

frames, which contains the message, can be equalized.

In a classification problem, repetitive sequences like preambles and training frames

can be used to an advantage by the classifier. While that would improve the accuracy, it

wouldn’t be realistic. To limit the repetitions it was decided to follow up preamble and

training frames with 10 data frames. The frame sequence is shown in figure 3.5

Figure 3.5: OFDM frame sequence.

The first block that the stream sees is the IFFT block, which accepts N=64 complex

symbols at a time, and outputs a time domain signal. This signal is then passed through a
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cyclic prefix block which inserts last 16 samples into the front of time domain frame. This

signal is then multiplied by a constant such that highest possible value going into UHD:

USRP Sink block is less that 0.707. The constant factor used is different for the 4 different

OFDM modulations. The multiplicative constant value is listed in table 3.3.

Modulations scaling constant
OFDM BPSK 1/40
OFDM QAM4 1/40

OFDM QAM16 1/80
OFDM QAM32 1/110

Table 3.3: Multiplicative constant value for the OFDM modulations.

The bandwidth is set to 25 MHz. In 802.11 standard the bandwidth is 20 MHz, but

setting that bandwidth produced a CIC rolloff warning, which was generated by the SDR.

The clock rate is fixed at 100 MHz, so having a sample rate of 25 MHz is preferable

over 20 MHz. This is because 100MHz/25Mhz = 4 (even decimation number) vs

100MHz/20MHz = 5 (odd decimation number). Few captures at 20 MHz were inspected

to check for any extra impairments and none were found. It is possible that the warning

was bogus, yet some impairment may show up randomly. To keep things reproducible, the

bandwidth was set to 25 MHz. This higher bandwidth signal is still a wide band signal

so there is nothing to lose by choosing this bandwidth. Similar to linear modulations, the

transmitter gain values were varied between 0, 5 and 10 dB, which will be explained in the

next section.
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3.2.3 Relative SNR

To make the problem of classification more realistic, it was desired to have multiple SNR

data captures. There are two ways to go about doing this. The first way of changing SNR

would have been to increase the noise power. This would have been possible to do if we

were working in the ORBIT Grid, but reserving time slots for those are hard to do. Data

capturing in general takes a lot of time, so it would have been troublesome to use this method

with limited time slot.

The other option was to keep the noise power fixed, and increase the signal power. It

was determined by looking at test captures that the noise power level was not changing

significantly from capture to capture. With the assumption that noise power is constant

through all the capture time, SNR change can be implemented by simply increasing the TX

gain value. Thus, the TX gain is varied between 0 dB, 5 dB and 10 dB to get 3 different SNR

data captures. TX gain of 15dB was also tried, but it saturated the receiver. So, this is the

method used to get relative SNR captures of 0, 5 and 10 dB. The actual SNR of the captures

is not known, but that isn’t as important as knowing how well the classifier performs with

different relative noise power levels.
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3.3 Validation

It is very important to verify that the transmitted signal is captured properly. Otherwise

the algorithms might be trained to classify bogus captures. In chapter 2 we learned about

various impairments that are introduced in an over the air transmitted signal. Thus, it is

essential to check that original message is recoverable.

One of the example function provided in the UHD was used to capture the data.

The name of that function is rx_samples_to_file.cpp [21]. This function captures the raw

baseband samples after the signal has been down converted from RF to baseband. 1 million

samples were captured for all modulations, at a sample rate of 2 Msps for linear modulations

and 25 Msps for OFDM modulations. The bandwidth was set equal to sampling rate. To

validate the data captures a MATLAB script read through them, then created and saved an

image of the constellation diagram of the raw baseband signal. These constellations were

visually inspected to ensure they were correct.

To fully validate the signal it must be synchronized. The next section presents the

constellation diagram of the unrecovered signal, which will show the impairments that was

described in chapter 2. In the following section the method used for synchronization will be

discussed along with the results.
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3.3.1 Constellation Diagrams

The constellation diagrams for all the unsynchronized linear modulations: BPSK, QAM4,

QAM16 and QAM32 are shown in figure 3.6.

(a) BPSK (b) QAM4

(c) QAM16 (d) QAM32

Figure 3.6: Unsynchronized constellation diagrams for all the linear modulations.

The TX gain was set to 0dB, so the scale of the constellation is similar across the

modulations. The constellation diagram is only made up of 20K samples to keep the

memory requirement short. There are couple of impairments visible in the constellation

diagrams. Primarily, you can see the effects of carrier frequency offset. The transmitted

29



CHAPTER 3. DATA CAPTURE AND VALIDATION

constellation has rotated by more than 360 degrees. Another impairment we can see is the

DC offset, since the constellation is not rotating around the origin.

Timing offset impairment is not easily visible, but it can be seen in BPSK and QAM4

constellations. The valid ’ring’ is the outer ring, where the actual symbols have rotated

around the origin. The inner rings that are visible are due to symbol transitioning between 1

and -1. If there was no timing offset, then there wouldn’t be an inner ring, as the transitions

are not be captured under optimum sampling times.

Notice the number of rings that are seen in each modulations. For QAM16 3 rings are

expected to be seen, and for QAM32 5 rings are expected. The rings are barely visible in

QAM32’s constellation diagram because the 4th and the 5th ring are very close. It is safe to

say that the data was captured properly. Only thing left to do is remove the impairments and

synchronize. The results of that will be presented in the next section. OFDM modulations

are inspected next in figure 3.7.

At a glance the constellation diagrams for the OFDM modulations are not as informative

to look at. The presence of DC offset is visible as the constellation are not centered around

origin. The training frame’s values are visible in OFDM BPSK and OFDM QAM4; they are

2 dis-joined outer semi circles. The training symbols without any frequency offset would

have been fixed to just one spot. The rotation seen here is evidence of frequency offset

impairment. The reason training frames are not noticeable in OFDM QAM16 and OFDM
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(a) OFDM BPSK (b) OFDM QAM4

(c) OFDM QAM16 (d) OFDM QAM32

Figure 3.7: Unsynchronized constellation diagrams for all the OFDM modulations.

QAM32 are because they are being dwarfed by the data frame symbols.

It is reasonable to assume that a classifier would have more difficulty in classifying

OFDM modulations compared to linear modulations. In the next section, the modulations

are synchronized and their results are shown.
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3.3.2 Synchronization

To fully verify that the captured signal were valid MATLAB receiver code for each modula-

tions were designed to synchronize the signal. Removing DC offset is as easy as subtracting

the mean of in-phase and quadrature phase of the signal. For linear modulations, frequency

offset can be removed if the exact offset between TX and RX LO is known. Typically

a phase locked loop (PLL) like costas loop is used, but they are harder to construct for

higher order QAMs. The other alternative is to manually apply a correction factor till the

constellation looks synchronized. The code for the receivers, which uses manual correction,

can be found in the appendix A.1.3. Figure 3.8 shows all the recovered constellations for

the linear modulations.

OFDM modulations are more complicated, and synchronizing them requires more

effort. The first thing to do is to find the frame boundaries, and this is where the preamble

comes in handy. A delay line auto correlator can be used to get good estimate on preamble

frame boundaries. A simpler method is to do a cross correlation between the transmitted

signal and the received signal. The transmitted signal was saved from within GRC using the

File Sink block, as can be seen in top right of figure 3.4. This cross correlation will show

peaks at the frame boundaries. After frame boundaries are located the cyclic prefix can be

removed. Carrier frequency offset can be measured from the pilot symbols. Then, it is a

simple matter of applying a correction factor to remove the frequency offset. Before the
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(a) BPSK (b) QAM4

(c) QAM16 (d) QAM32

Figure 3.8: Synchronized constellation diagrams for all the linear modulations.

constellation can be recovered, the training frame values are extracted and used to update

FDE weights. The FDE is then applied on the data symbols to remove multipath fading.

The code can be found in appendix A.1.4. Figure 3.9 shows the synchronized constellation

diagram for all the OFDM modulations.

The constellation diagram for OFDM QAM32 does not look tight. This is because

the FDE coefficients have become stale. The FDE is updated once for 10 data frames, so

the coefficients becomes stale towards the 9th or 10th data frame. This results in the edge
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(a) OFDM BPSK (b) OFDM QAM4

(c) OFDM QAM16 (d) OFDM QAM32

Figure 3.9: Synchronized constellation diagrams for all the OFDM modulations.

constellation points becoming noisier. The goal of the project was not to build a state of the

art receiver, so this issue is not of concern. However, it is visible from these results, that the

captured data was the result of a valid transmission.

Finally, the relative SNR data captures were validated. To show that the SNR has

indeed improved for TX gain of 5dB and 10dB, a sync was performed on those BPSK

captures. Figure 3.10 illustrates the improvement in the signal due to higher SNR data

captures. Notice that the constellation points gets more concentrated as the SNR goes up.
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This can also be seen from the histogram plots, which shows that the sample variances are

decreasing as the SNR increases. This is expected since noise variance, which is determined

by the noise power, is also decreasing as the SNR increases.
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(a) Synchronized Constellation @ 0dB TX gain (b) Hist. of I samples @ 0dB TX gain

(c) Synchronized constellation @ 5dB TX gain (d) Hist. of I samples @ 5dB TX gain

(e) Synchronized constellation @ 10dB TX gain (f) Hist. of I samples @ 10dB TX gain

Figure 3.10: Synchronized constellation becomes tighter when TX gain is increased.
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Algorithms for Modulation Recognition

In this chapter a brief background information is given to explain the two different classifier

that will be tested for modulation classification. Key points about the SVMs will be discussed

in the next section, and NNet will be introduced in the following section.

4.1 Support Vector Machines

The general formula for SVM classification is shown in equation 4.1. The weights wT

and bias b parameters are adjusted such that y(x) > 0 for x in class 0, and y(x) < 0 for x

in class 1. Thus, the decision boundary is at y(x) = 0. This is only possible to do if the

data is linearly separable in the feature space. An example of support vectors and decision

boundaries is shown in figure 4.1. On the cases where data is not linearly separable, a slack

variable ξ = |tn − y(x)| is introduced. The discussion of support vector machines is beyond

the scope of this thesis. The reader is encouraged to read up on how SVM algorithm locates
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the support vectors at [1].

y(x) = wTφ(x) + b (4.1)

Figure 4.1: Two classes shown in red and blue. Contours of constant y(x) are shown through
the solid line. The decision boundary is between the support vectors which are circled in
green. Figure taken from page 331 of [1].

SVMs are a type of sparse kernel machines. A kernel φ(x) is a feature space transfor-

mation of the input x, and in a sparse kernel machine, the new input’s class is predicted

based on only a subset of training data points, which are called support vectors. Which

means, for most of the training data points wT is set to zero.

It is possible for SVM to have high generalization with small training set. They are

good at generalization, because they are optimized based on the concept of margins. A

margin is the distance between the decision boundary and any data point, see figure 4.2.

SVM’s algorithm tries to find the maximum separation between two classes by mapping the

input into a high dimensional feature space and constructing optimum separating hyperplane,

thus providing the lowest generalization error possible.
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Figure 4.2: Maximum margin between two classes and the optimal hyperplane in between.
Figure taken from [17].

For a classifier to work well it needs to be trained with good features. This classifier

generally works well for modulation classification with Higher Order Cumulants (HOC)

as its features. Cumulants are computed from the probability distribution of the signal.

For example, the first and second order cumulants are mean and variance of the signal

respectively. A captured signal typically has gaussian noise added to it, which is zero

mean. Thus, the distribution of captured signal is not much different from the distribution of

the modulated signal in it. This makes HOC less sensitive to noise [4], which means the

classifier is able to generalize across various SNR level using cumulants. One drawback of

using cumulants is that a lot of data is needed to accurately compute them.

4.2 Neural Networks

Neural Networks were initially designed around the concept of how our brain’s neuron

works. The neuron is the basic working unit of the brain, a specialized cell designed to
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transmit information to other nerve cells, muscle, or gland cells [16]. Neuron transmits

information only if is activated which happens when the input is above a threshold. Neural

networks are constructed similarly; bunch of layers of nodes which are activated by the

input that has been adjusted using adaptable weights.

Neural Networks are popular because they are able to extract relevant features out

of raw input data and perform classification or regression work. NNets are considered

as a black box algorithm because the extracted features are hidden and not known to the

experimenter. The beauty of using NNet is in its ability to extract information that the

experimenter may not know about. They may even perform better than traditional classifier

which are trained with optimal features. The drawback of NNets is that the model may

require a lot of weights for certain type of tasks. NNets may be known as black box, but it

doesn’t mean that they will work with just any input. If the input signal is not good for the

architecture then the network will not learn anything. There are two architectures of NNet

that are worth talking about and they are presented in the next two sections.

4.2.1 Multi Layer Perceptrons

Multi Layer Perceptrons (MLP) consists of multiple layers of neurons. The output of each

layer is fed into the next layer. The neuron itself contains a non linear activation function,

which may activate based on the input value. Figure 4.3 shows a 3 layer MLP.

40



CHAPTER 4. ALGORITHMS FOR MODULATION RECOGNITION

Figure 4.3: 3 layer MLP.

In figure 4.3 there are total of 6 neurons, 3 at the hidden layer and another 3 at the

output layer. 3 input samples are being fed into 3 neurons at the hidden layer. Each neuron

receives three weighted inputs from the previous layer, which are summed and fed to an

activation function of choice. Typical activation functions include sigmoid, rectifier linear

unit (ReLU), and tanh.

Figure 4.4: Inside neuron h0 of figure 4.3.
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The key here is that the weights Whi and Woh are adaptive and learned by the neural

network. The way to do that is by using back propagation. First a loss function which is

differentiable w.r.t all the weights is constructed based on output error. Then, an optimizer of

choice is used to minimize the loss function. This is usually done by some kind of iterative

gradient descent (GD) algorithm. The weights are updated based on the gradient. The

gradient always points towards the positive slope, therefore to minimize the loss, the weights

are updated based on negative of gradient. Typical weight update equation can be seen in

Eq 4.2.

w(τ + 1) = w(τ)− η∆E(w(τ)) (4.2)

In equation 4.2, w are the weights in the neural networks, and ∆E(w) is the gradient

of neural network with respect to the weights. Neural Networks are updated iteratively, and

τ represents the iteration time steps. Learning rate η adjusts the rate at which the weights

adapt and reach the gradient’s minima. With a high η value it is possible to overshoot and

miss the minima. Making η low would guarantee reaching the minima, however that might

take forever to converge. A better approach is to start with high η value so that it converges

faster, and then gradually lower the value so that it doesn’t overshoot the minima.

A complete discussion of MLP is beyond the scope of this thesis. The reader is

encourage to learn more about them in the following book about deep learning [6].
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4.2.2 Convolutional Neural Networks

Another popular architecture of neural network are convolutional neural networks (CNN).

These were built for image classification. Image classifications are harder to do with MLP

because the image has to be flattened into a layer. Most of the spatial information is lost due

to flattenning, which causes MLP to perform poorly with image like input. In an image the

fact the two pixels are next to each other means something; that is spatial information that

would have been lost when flattened. The CNN allows for more robust feature extraction for

image like input samples. The structure of a CNN net is shown in figure 4.5.

Figure 4.5: Simple convolutional neural network. Figure taken from [18].

Convolutional network works by applying 2d convolutions on small patches of the

input image (shown in gray). The patches are then shifted around the original input image

based on the stride parameter. With stride value of 1 and proper padding around the edges,

the second layer’s feature map can have the same size as the input image. In the example

shown above, 4 different sets of weights are applied on the input image, which results in 4
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convolution feature maps. The CNN can adapt the weights such that they extract different

features from the input image. For example, one of the feature map may extract edges, and

another one may extract circular shapes. This type of multi-level feature extraction allows

CNN to classify images with high accuracy. For classification problems, the network is

usually terminated with a fully connected layer, so it helps to reduce the dimensionality of

the features maps as the network goes deep.

Activation functions are usually applied after the 2d convolution functions. After that,

if needed, the feature map’s dimensionality are reduced. There are a few ways to reduce the

dimensions of the feature maps. The most obvious way to do so is by increasing stride value.

By setting the stride to 2, one can roughly lower the dimension by half. Max Pooling is

another way to lower the dimension. Max pooling takes a patch of the input and returns the

max value within that patch. A 2x2 Max pooling with stride 2 will reduced the dimension of

the feature map by half, see figure 4.6.

Figure 4.6: Max Pooling example. Figure taken from [28]

If the NNet is being build for classification, then eventually the feature map is flattened
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and applied to an MLP layer with a softmax activation function. A complete discussion of

CNN is also beyond the scope of this thesis. The reader is encourage to learn more about

them in the following book about deep learning [6].
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Modulation Classification

In this chapter the results of the two different classifiers, SVM and NNets, are presented.

Both classifiers had to be tuned to get good classification accuracy, which is also discussed

in this chapter. SVM is considered as the baseline classifier, and its performance is evaluated

first. NNet are then tested to see if they can perform better.

5.1 SVM

Pattern recognition toolbox (PRT) was used to build the SVM classifier. PRT is built for use

in MATLAB [19]. It contains many classifiers, including multi-class SVM, and provides

functions that helps with data visualization.

Cumulants up to 8th order were used as features for the SVM classifier. They were

extracted from I and Q samples separately, so each training example contained a total of 16

features (appendix A.1.6). To accurately estimate higher order cumulants large number of
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data samples are required. Each captured signal contained only 1 million samples, so the

estimates could only be made from those.

The computation time for calculating the estimates were rather high, and since there

were 1000 captures for each modulation and noise power level it was decided to have the

cumulants estimated from a reduced sample set. Two different estimates were made, one

from 200K and another from 50K I & Q samples. The performance may differ based on the

accuracy of the cumulant estimates.

Some pre processing steps were taken to improve the input feature space. Firstly, the

received samples were severely attenuated; the maximum value for most of the high TX

gain signal was somewhere around 0.1. Cumulant estimates based on such small sample

values were too little for the classifier to work with. The classifier performed better with

cumulant estimates from normalized captured signal.

The entire feature set’s mean was subtracted to bring the mean to zero, and the variance

was also scaled to one. This was mostly done because of the next step, which was running

the features through principal component analysis (PCA). PCA rearranges the correlated

feature space into non correlated feature space. It is typically done so that SVM can find the

optimum hyperplane with ease. From the testing it was seen that PCA improved training

time and classification results.
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There are two hyper parameters for SVM: cost and gamma (γ). Cost parameter

determines the sparsity of the model. A higher cost value will produce more non-zero

weights on the data points, whereas a low cost value will tend to produce more zero weights.

The optimal value for cost depends on the separation of classes in the feature space. If the

classes are heavily mixed then a higher cost value will be needed to get good classification.

The risk of having a high cost value is that the classifier might overfit to training data and

perform poorly against test set.

The γ parameter is associated with the type of kernel used in SVM. For this classifier,

the gaussian radial basis function (RBF) kernel is used, since it performed better compared

to others. This is a non linear kernel which transforms the input into a different feature

space. Equation 5.1 shows the transformation from which it can be seen that the value of

γ determines the transformation space. Optimal γ value should produce a more separable

feature space.

k(x1, x2) = e(−(
∑

(x1−x2)2)(γ2)) (5.1)

The optimal values for these parameters are picked by exhaustive grid search. See

figure 5.1 for an example of grid search over linear modulations. Here you see that the

accuracy for the test case improves with cost value of 10 and gamma value of 0.01. It was

interesting to note that the optimal values of cost and gammas were different when tested

for linear and OFDM modulations. The final cost and gamma values which worked well for
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Figure 5.1: Grid search example for finding optimal Cost and Gamma values. This SVM
model is classifying between QAM16 and QAM32 modulations. A bigger grid search can
provide a more optimal pairs of Cost and Gamma.

both training and testing data sets are listed in table 5.1.

Modulation Linear OFDM
Cost (c) 30 10

Gamma (γ) 0.01 0.01

Table 5.1: SVM Hyper parameters.

This difference in parameter value for linear and OFDM modulations meant that a single

SVM classifier trying to simultaneously classify all 8 modulations would perform poorly. A

hierarchical approach is used instead as shown in figure 5.2. Three different SVMs will be

working together: SVM # 1 will classify between linear and OFDM modulations; SVM # 2

will classify the linear modulations, and SVM # 3 will classify the OFDM modulations.

The fist SVM classifier between linear and OFDM modulations was very easy to train.

It was able to classify between the two types of modulation with 100% accuracy.
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Figure 5.2: Hierarchical Model for SVM classification for all modulations.

Kfold validation test with k = 10 was run to quickly determine the performance of

SVM # 2 and # 3 . The reader is reminded that there were 3 different signal power levels at

0dB, 5dB, and 10 dB, as well as 2 different cumulants estimation based on 50K and 200K

samples. The Kfold validation results for linear and OFDM modulations are shown in figure

5.4, and 5.5 respectively.

Figure 5.3: Kfold validation results for SVM # 1. This SVM classified between linear and
OFDM modulations.
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(a) 200k sample estimate @ 10dB TX gain (b) 50k sample estimate @ 10dB TX gain

(c) 200k sample estimate @ 5dB TX gain (d) 50k sample estimate @ 5dB TX gain

(e) 200k sample estimate @ 0dB TX gain (f) 50k sample estimate @ 0dB TX gain

Figure 5.4: Kfold validation results for linear modulations (SVM # 2).
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(a) 200k sample estimate @ 10dB TX gain (b) 50k sample estimate @ 10dB TX gain

(c) 200k sample estimate @ 5dB TX gain (d) 50k sample estimate @ 5dB TX gain

(e) 200k sample estimate @ 0dB TX gain (f) 50k sample estimate @ 0dB TX gain

Figure 5.5: Kfold validation results for OFDM modulations (SVM # 3).
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There are a few interesting things to note for the linear modulation classifier. Higher

SNR modulations and more accurately estimated cumulants are easier to classify. There is a

4 to 5% improvement in classification performance with cumulant estimates of 200K over

50K samples. Across the board, the linear modulation classifier has trouble with higher order

QAMs. One thing to note here is that it is possible to improve the classification performance

for any of the case by tuning the hyper parameters. Since SVM is being tested for all cases

simultaneously the hyper parameters should remain fixed.

The OFDM modulation classifier performed really well across the board. Surprisingly,

OFDM modulations are easier to classify with cumulants. Before we move on to test the

classifier’s ability to generalize over multiple SNR data, it is worth looking at the feature

space to understand the classifier’s performance.

Figure 5.6 shows the decision boundaries for linear and OFDM modulations when

classifying with just 2 PCA-feature. Notice that OFDM classes are cleanly separable with

just 2 features. Linear modulation classes, however, have lots of mis-classfication regions

between QAM16 and QAM32. This particular classifier, with just 2 features, got an accuracy

of 72%. There are 16 features in total, so it is possible to get better decision boundaries in

higher dimensional feature space, which is why the overall accuracy rate for linear with all

features is around 93% as was seen in figure 5.4.

Hierarchical approach of classifying OFDM and linear modulation is showing decent
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(a) Linear SVM Classifier (b) OFDM SVM Classifer

Figure 5.6: Decision boundaries for the classes in linear and OFDM modulations. The
classifier is taken from one of the ten models in the Kfold validation test.

results. For completeness, a single SVM classifier is built and trained with all modulations.

The cost parameters is set to 30 which is suitable for linear modulations. The Kfold results

for this classifier is shown in figure 5.7.

It is clear to see from figure 5.7 that a single SVM classifier is not good at simultaneously

classifying both linear and OFDM modulations. Since the cost value is biased towards linear

modulations, it is able to classify them better. It is interesting to see that OFDM modulations

are poorly classified here, since so far SVM was able to classify them with high accuracy.

In the next test, we get to gauge the SVM classifier’s ability to generalize across multiple

SNR levels. In this test the classifiers are trained with data from all SNR levels. 200K and

50K cumulant estimates are run in separate tests. The results for linear modulations are

shown in figure 5.8, and the results for OFDM modulations are shown in figure 5.9. The

result with all modulations are presented in figure 5.10.
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(a) 200k sample estimate @ 10dB TX gain (b) 50k sample estimate @ 10dB TX gain

(c) 200k sample estimate @ 5dB TX gain (d) 50k sample estimate @ 5dB TX gain

(e) 200k sample estimate @ 0dB TX gain (f) 50k sample estimate @ 0dB TX gain

Figure 5.7: Kfold validation results for all modulations together.

The OFDM classifier performs well again, as expected from its earlier performance.

The classifier for linear modulations performs fairly well as well. In this test the SVM is
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(a) 200k sample estimate results. (b) 50k sample estimate results.

Figure 5.8: Kfold results for linear modulations when SVM is fed with data from all TX
gain levels.

(a) 200k sample estimate results. (b) 50k sample estimate results.

Figure 5.9: Kfold results for OFDM modulations when SVM fed with data from all TX gain
levels.

given more observations to train with. There are 3000 observations per modulation to do

Kfold testing with. Previously, there were only 1000 observations per modulation. Still

there is 4% to 6% mis-classifications for higher order QAMs which is bad. Single SVM

which is trained with all modulations and all SNR levels consistently performs poorly.

From looking at figures on OFDM constellations one would expect the classifiers to
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(a) 200k sample estimate @ all of TX Gain (b) 50k sample estimate @ all of TX Gain

Figure 5.10: Kfold results when SVM is fed with data from all modulations and TX gain
levels.

perform poorly against them. This result is unexpected, yet the issues seen with linear

modulations shows the limits of SVM classifier. They are very much dependent on the

choice of features the experimenter selects. NNet which is able to extract its own features is

tested next.

5.2 NNet

There are many type of architectures of NNets, and more are being invented. For classifica-

tion problem architectures like MLP and Convolutional NNets can be used. First, a MLP

network is built and tested with the raw I & Q samples as the inputs. Then, a convolutional

NNet is tried to see if that performs better.
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5.2.1 MLP Results

For testing MLP architecture, a simple 3 layer network was built with ReLU activation

functions in the neurons. See figure 5.11 for the MLP model. Ninput raw I and Q samples

are fed in at the input layer, which are then multiplied by weights Whi and fed to the hidden

layer. At each neurons in the hidden layer, the weighted inputs are summed and a bias value

is added. This summation is passed through a ReLU activation function, and pushed on

to the output layer after being multiplied by weights Woh. At the output layer, a softmax

activation function is used so that the output of all nodes sum to 1. This is a classic way to

do classification using MLP.

Figure 5.11: Multi Layer Perceptrion Model

Cross Entropy is the most commonly used loss function for classification problems.

The equation for the loss function is shown in equation 5.2. Cross entropy is typically
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evaluated over 2 distribution p and q, and it measures the similarity between those two

probabilities. A softmax function is used across the output layer to turn the output into a

probability distribution. Thus the loss value is equal to the cross entropy of the output of the

MLP and a one hot encoding of the classes.

H(p, q) = −
∑
n

Y _(n)log(Y (n)) (5.2)

In equation 5.2, Y _ is the ground truth, and Y is the output of the MLP. Two different

optimizers were tried to minimize the loss: Gradient Descent (GD), and Adaptive Moment

Estimation (Adam). GD optimizer was explained in Chapter 4. Adam optimizer algorithm

updates the weights based on the mean and variance of the gradient of previous iterations

[10]. This is different from GD in which the weight are updated based only on current

iteration’s gradient. The weight update equation for Adam is shown in equation 5.3.

θt ← θt−1 − α×mt/(
√
vt + ε) (5.3)

In equation 5.3, α is the learning rate parameter, mt and vt are the estimates of the

mean and variance of the gradients. Adam’s update rule is similar to GD, and it has shown to

perform well compared to other GD optimizers. The reader is encourage to read the Adam

paper for additional information [10].

MLP was, however, unable to perform well with the raw I & Q samples. The parameters
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of the networks, Ninput, Nfc1, Nout were changed around, but none could give a good result.

See figure 5.12 for the accuracy and loss function for an example MLP model.

(a) Training and validation accuracy. (b) Training and validation loss function.

Figure 5.12: MLP model results with Ninput=1024, Nfc1=512, Nout=2. This model was
attempting to classify between BPSK and QAM4 modulated signals.

From figure 5.12 we see that MLP was unable to perform for a binary classification

between BPSK and QAM4. The validation accuracy hovered around 50% while the training

loss function went down to zero. This leads to the conclusion that MLP architecture is not

fit to work with raw I & Q samples as its input. It is easy to see why by looking at a few

inputs of BPSK and QAM4 modulation signals in figure 5.13.

The frequency offset makes these signal difficult for a MLP architecture to classify.

Each input from within a modulation class is quite different because of frequency offset.

It is easy for us to see which modulation is not BPSK, because of the sudden dips in the

signal, but that is spatial information which is lost on an MLP architecture. A convolutional

NNet however, should be able to extract spatial information from the input so that might
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(a) BPSK example 1. (b) BPSK example 2.

(c) QAM4 example 1. (d) QAM4 examples 2.

Figure 5.13: 1024 I samples from BPSK and QAM4 modulations.

fare better with this type of input.

5.2.2 CNN Results

There has been prior work done on modulation classification using convolutional NNet

(CNN) [26]. A similar model is built for testing with few changes in parameters. The

template for the CNN model can be seen in figure 5.14.
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Figure 5.14: Conv Net Model Template
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Table 5.2 list the parameter values for the two different models that was built. The last

row shows the total number of adaptive parameters used in the build when 1024 I and Q

samples are fed in.

Parameters Model # 1 Model # 2
N1 16 32
N2 32 64

Nfc1 256 1024
Total Adaptive Parameters 2.1mil 16.8mil

Table 5.2: Model Parameters

The input is a 2xN image, with the first column containing N I samples, and the

second column containing N Q samples. This way the input looks like an image with its

spatial information preserved. There were two techniques applied in the model to improve

performance: batch normalization (BN) and dropout.

BN is a pre-processing step. There are some algorithms that learn faster if the input has

zero mean and unit variance, such is also the case for CNN. BN is applied in between each

convolutional layer of CNN. It is usually not applied at the input layer, because we want the

CNN to be able to extract features from raw input. BN has two steps to it. First the input is

normalized using equation 5.4. Then, the normalized input is scaled by γ and shifted by β

as seen in equation 5.5.

x̂ = (xi − µ)/
√
σ2 + ε (5.4)
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BN(x) = γx̂+ β (5.5)

γ and β are adaptable parameters. Which means that if BN was the wrong thing to do

in a particular layer, then CNN can reverse the effect of BN by setting γ to 1/
√
σ2 + ε and

β to µ. ε is small value of 1e-3 placed to avoid division by zero error. The effects of BN can

be seen in figure 5.15. Notice that without BN the weights take longer to minimize the loss

function. BN makes it okay to have a higher learning rate, which means faster convergence.

Both of the models uses rectifier linear unit (ReLU) activation functions, so the γ term is

removed in the BN process. Scaling the x by γ would have minimal effect on the output.

(a) without Batch Normalization (b) with Batch Normalization

Figure 5.15: Training and validation cross entropy loss function for OFDM modulation
classification with Model # 1.

In machine learning algorithms, regularization is applied so that the model does not

overfit to training data. When a model is overfit to training data, it performs poorly on

validation and testing set. Models with a lot of degrees of freedom can overfit easily, and a
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CNN is not an exception to that rule. Dropout is a form of regularization that is typically

applied in NNets. When the model is trained with, lets say 50% dropout, then half of all the

adaptive parameters, such as weights and biases, are zeroed out at random. Those weights

do not contribute to the result, nor do they get updated in that training iteration. Figure

5.16 shows the impact of dropout. Without dropout the validation accuracy levels off early

even though the training accuracy keeps improving. That is a symptom of an overfit model.

Adding dropout regularizes the model and we can see that the validation accuracy conitnues

to improve as well. For all the models, the dropout was set to 50%.

(a) without dropout (b) with 50% dropout

Figure 5.16: Training and Validation accuracy for OFDM modulation classification with
Model # 1.

There were a few choices for activation functions. Two populars ones are shown in

figure 5.17. There is a problem with deep NNets called vanishing gradient which occurs

when the gradients goes to zero. To avoid such problem, ReLUs are good because their

gradient cannot go to zero for positive input. With sigmoids the gradient can still go to zero
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for both positive and negative inputs. Another benefit of using ReLU is that we get to omit

the γ term from BN, because rescaling the normalize input x̂ with γ would have minimal

effect on the activation output.

(a) Sigmoid (b) Rectifier Linear Unit

Figure 5.17: Activations functions.

For NNets there were lot more examples available for training. At max, only 1024 I &

Q samples are fed into the network, but each example file contains 1e6 I & Q samples. 20

blocks of N I & Q samples were extracted from each file, where N could be 256, 512, and

1024. For each case value of N there was 20,000 examples to train and test with.

Model # 1 was giving promising results till the test in which it is trained with multiple

SNR data. The results are shown for both models, because it gives us insight into the

flexibility of NNets. In the first test, the CNN is fed with three different sets of modulations:

linear modulations only, OFDM modulations only, and All modulations. The results for

both models at all noise power level is shown in figure 5.18
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(a) M1 @ 10dB TX gain. (b) M2 @ 10dB TX gain.

(c) M1 @ 5dB TX gain. (d) M2 @ 5dB TX gain.

(e) M1 @ 0dB TX gain. (f) M2 @ 0dB TX gain.

Figure 5.18: CNN performance with each SNR data. NNet Model # 1 (M1) is on the left;
NNet Model #2 (M2) is on the right. These models are trained for 5 epoch with batch size
of 50. Roughly 16K examples per class used for training, and roughly 2K examples per
class where used as test set.

The linear modulations are very easily classifiable with just 256 I and Q samples. The

classification rate is above 99% for all cases! This is definitely an improvement over SVM

which could only achieve 93% accuracy on linear modulations with 200K sample estimates.

To classify OFDM modulations at the same rate, at least 1024 I and Q samples are needed.

With 1024 samples the network is able to see an entire set of OFDM frames, which are only

960 samples wide. It is possible that CNN is able to localize one of the repetitive frames

like preamble or training frames. The results of the last column "All" is consistent in that it

is the average of linear and OFDM modulation results. SVM would not have been able to
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simultaneously classify both types of modulation with this high of an accuracy. Overall, we

see that CNN has significantly higher performance than the SVM classifier.

The confusion matrix for few of the poor classification rate cases are shown in figure

5.19. In these poor performance cases higher order modulations are misclassified more. In

the All modulation case, OFDM QAM16 and OFDM QAM32 are heavily misclassified.

The raw samples of those modulations are very similar, which explains the mis classification

with limited sample size.

(a) 10 dB TX gain with N = 256 (b) 0 dB TX gain with N = 256

(c) 10 dB TX gain with N = 256

Figure 5.19: CNN confusion matrix from model # 2 for a) linear, b) OFDM and c) All
modulation cases with the specified parameters. These are the poor performance cases in
their respective categories.

In the last test, both of the models were tested for their classification ability with

multiple SNR data. They were fed with examples from all TX gain levels. Figure 5.20

presents the results.
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(a) Model # 1 Classification Rate (b) Model # 2 Classification Rate

Figure 5.20: CNN performance of both models when trained with examples from all TX
gain level. These models were trained for 10 epoch with batch size of 100. Roughly 16K
examples per class and TX gain level were used for training. Tested against roughly 2K
examples per class and TX gain level.

Notice that Model # 1 is unable to perform well with this observation set. The training

and validation accuracy graphs from one of the runs is shown in figure 5.21. Notice how the

validation accuracy plateaus. This is a symptom of a NNet that is unable to learn. One way

to fix that is by adding more degrees of freedom, i.e. more weights. So that is how model #

2 was designed. After adding more weights, the new model was able to easily learn the data

set, and we get a network that can now work with multiple SNR data.

(a) Model # 1 plateaus at 77%. (b) Model # 2 continues learning.

Figure 5.21: Training and validation accuracy values for CNN Models.

The confusion matrix for one of poor classification rate case is shown in figure 5.22 a).
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Here also OFDM QAM16 and OFDM QAM32 are heavily misclassified. The confusion

matrix for model # 2 which is trained with all SNR level and all modulations with 1024

I & Q samples is shown in 5.22 b). CNN can be seen to simultaneously classify all 8

modulations with multiple SNR level really well with just 1024 I & Q samples.

(a) OFDM Modulations with N = 256

(b) All Modulations with N = 1024

Figure 5.22: CNN confusion matrix of model # 2 with all TX gain data for a) OFDM
worse performance case, and b) All modulations best performance case with the specified
parameters.

5.3 Comparison

In this section SVM and NNets results are summarized and a comparison is made between

the two. The side by side comparison table for SVM and CNN model # 2 is presented in

figure 5.23.

In SVM two samples sizes were selected, 50K and 200K. It was seen that classification
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with higher sample size estimate showed 5% improvement over the smaller sample size esti-

mate. SVM classifier performed well when it was classifying linear and OFDM modulations

separately. SVM could not simultaneously classify both linear and OFDM modulations. In

the SNR generalization test it was found that SVM generalized well across multiple SNR,

even showing a little improvement for linear modulations.

MLP architecture was unsuitable for raw baseband I & Q samples. CNN architecture

was much more suited for these inputs. They performed well in classifying linear modula-

tions with just 256 I & Q samples. OFDM modulations could also be classified with high

accuracy, but required at least 1024 I & Q samples. CNN were also good at simultaneous

classification of both linear and OFDM modulations. It also generalized well in the multiple

SNR case.

(a) with TX gain 0dB (b) with TX gain 5dB

(c) with TX gain 10dB (d) with all TX gain data

Figure 5.23: Performance of SVM and CNN at different TX gain level, and with all TX gain
level.
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It is clear to see that for overall performance across the board, CNN is the winner.

The obvious drawback to using the CNN model is huge number of weights that is used.

The biggest number of weights is between the second convolution layer and the first fully

connected layer. It should be possible to reduce the number of weights, by adding more

sub sampling layers like convolutional or max pooling, without losing the classification

accuracy. This is something worth investigating in future.
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Conclusion and Future Work

The biggest takeaway from these experiments is that NNet is more flexible for the task

of modulation recognition. For a SVM classifier to perform well, it needs to be trained

with good features, which is up to the experimenter. A proper NNet can easily learn

useful features from complex data set if it has the right architecture and enough adaptable

parameters. With just 1024 I & Q samples, CNN’s classification accuracy was consistently

above 99%. SVM is still very powerful in the hands of an experienced experimenter who

knows what features works best. However, a robust SIG INT or CR receiver would probably

do better with a NNet’s flexibility with a complex data set.

There are many things to try out to continue this experiment. It would be interesting to

see how well these classifiers perform with changes in the modulation parameters. For linear

modulations experimenters can try adding different pulse shaping filters at the transmitter.

They may also try varying the no. of samples per symbol, and symbol time. For OFDM
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modulations, they can change the FFT size, or make the frame sequence longer, for example

putting 20 data frames instead of 10 data frames between preamble and training frames.

They can also try removing preamble and training frames all together to check if CNN

performs well without these repetitive frames. SVM’s capability can be too limited with

cumulants, so experimenter may try using wavelet features which are also very good at

modulation classification. Experimenters can also try adding other types of modulations to

increase the complexity for the classifiers. As suggested in last chapter, experimenters can

also focus on reducing the number of weights in CNN by adding extra sub sampling layers.

The intention of doing this thesis was to see if NNets were viable for modulation

classification of OFDM modulations. Even though the number of parameters involved in

the complete model are too high, it is clear to see from the results that CNN can perform

excellently at classifying OFDM modulations.
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Relevant Source Code

A.1 MATLAB Code
A.1.1 Linear modulation bit generator
BPSK bit generator
% g e n e r a t e random i n t s
f o r s eed = 1:1000
rng ( seed ) ;
p r b s = r a n d i ( [ 0 , 1 ] , 1 0 0 0 0 , 1 )∗2 −1 ;

% s t o r e t h a t a s i n t
f i l e I D = fopen ( [ ’ prbs_ ’ , num2s t r ( s eed ) , ’ . t x t ’ ] , ’w ’ ) ;
f w r i t e ( f i l e I D , prbs , ’ i n t ’ ) ;
f c l o s e ( f i l e I D ) ;
end

QAM symbol generator
% g e n e r a t e random i n t e g e r s from 0 t o M−1
f o r seed = 1:1000
rng ( seed ) ;

M = 4 ; % 16 f o r QAM16, 32 f o r QAM32
p r b s = r a n d i ( [ 0 ,M−1 ] , 1 0 0 0 0 , 1 ) ;

% s t o r e t h a t a s i n t
f i l e I D = fopen ( [ ’ qam4_sym_ ’ , num2s t r ( s eed ) , ’ . t x t ’ ] , ’w ’ ) ; % f o r QAM4

%f i l e I D = fopen ( [ ’ qam16_sym_ ’ , num2s t r ( s eed ) , ’ . t x t ’ ] , ’w ’ ) ; % f o r QAM16
%f i l e I D = fopen ( [ ’ qam32_sym_ ’ , num2s t r ( s eed ) , ’ . t x t ’ ] , ’w ’ ) ; % f o r QAM32
f w r i t e ( f i l e I D , prbs , ’ i n t ’ ) ;
f c l o s e ( f i l e I D ) ;
end

A.1.2 OFDM frame sequence generator
c l c ; c l e a r a l l ; c l o s e a l l ;

%% Premable
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N = 6 4 ;
p r e a m b l e V a l s = ( 1 . 4 7 2 + 1 i ∗1.472)∗ [ −1 , −1, 1 , 1 , 1 , 1 , 1 , −1, 1 , −1, −1, 1 ] ;
p r e a m b l e I d x = [ 5 : 4 : 2 5 , 4 1 : 4 : 6 1 ] ;
p reamble = z e r o s (N , 1 ) ;
p reamble ( p r e a m b l e I d x ) = p r e a m b l e V a l s ;
preambleFrame = preamble ;

%% T r a i n i n g

n u l l C a r r i e r s = [ 0 , 2 7 : 3 7 ] + 1 ;
p i l o t C a r r i e r s = [ 7 , 2 1 , 4 3 , 5 7 ] + 1 ;
d a t a C a r r i e r s = [ 1 : 6 , 8 : 2 0 , 2 2 : 2 6 , 3 8 : 4 2 , 4 4 : 5 6 , 5 8 : 6 3 ] + 1 ;

% a l t e n a t i v e ones + 1 , −1 , + 1 , . . . on d a t a c a r r i e r s
t r a i n V a l s = ones ( 2 , l e n g t h ( d a t a C a r r i e r s ) / 2 ) ;
t r a i n V a l s ( 2 , : ) = −1.∗ t r a i n V a l s ( 2 , : ) ;
t r a i n V a l s = t r a i n V a l s ( : ) ;

% T r a i n f rame
t r a i n i n g = z e r o s (N , 1 ) ;
t r a i n i n g ( d a t a C a r r i e r s ) = t r a i n V a l s ;
t r a i n i n g F r a m e = complex ( t r a i n i n g , z e r o s (N , 1 ) ) ;

f o r s eed = 1:1000
rng ( seed ) ;

%% Data Frame

% g e n e r a t e random bpsk syms
nDataFrames = 10000 ;
p r b s = r a n d i ( [ 0 , 1 ] , l e n g t h ( d a t a C a r r i e r s )∗ nDataFrames ,1)∗2 −1;
prbsSym = complex ( prbs , z e r o s ( s i z e ( p r b s ) ) ) ; % f o r OFDM BPSK
% Un comment t h i s f o r OFDM QAM4
%p r b s = r a n d i ( [ 0 , 3 ] , l e n g t h ( d a t a C a r r i e r s )∗ nDataFrames , 1 ) ;
% prbsSym = qammod ( prbs , 4 ) ;
% Un comment t h i s f o r OFDM QAM16
%p r b s = r a n d i ( [ 0 , 1 5 ] , l e n g t h ( d a t a C a r r i e r s )∗ nDataFrames , 1 ) ;
% prbsSym = qammod ( prbs , 1 6 ) ;
% Un comment t h i s f o r OFDM QAM16
%p r b s = r a n d i ( [ 0 , 3 1 ] , l e n g t h ( d a t a C a r r i e r s )∗ nDataFrames , 1 ) ;
% prbsSym = qammod ( prbs , 3 2 ) ;

%% I n t e r l e a v e f r a me s

frameNo = 0 ;
i d x = 1 ;
d a t a I d x = 1 ;
f o r k = 1 : nDataFrames

i f ( mod ( frameNo , 1 0 ) == 1)
Out ( i d x : idx−1+N) = preambleFrame ;
i d x = i d x + N;
Out ( i d x : idx−1+N) = t r a i n i n g F r a m e ;
i d x = i d x + N;

end

da taFrame = complex ( z e r o s (N, 1 ) , z e r o s (N , 1 ) ) ;
da taFrame ( p i l o t C a r r i e r s ) = complex ( 1 , 0 ) ;
da taFrame ( d a t a C a r r i e r s ) = prbsSym ( d a t a I d x : d a t a I d x −1+ l e n g t h ( d a t a C a r r i e r s ) ) ;
d a t a I d x = d a t a I d x + l e n g t h ( d a t a C a r r i e r s ) ;
Out ( i d x : idx−1+N) = da taFrame ;
i d x = i d x + N;

frameNo = frameNo + 1 ;
end

% s t o r e t h a t a s f l o a t
o u t R e a l = r e a l ( Out ) ;
out Imag = imag ( Out ) ;
outFrame = [ o u t R e a l ; out Imag ] ;
outFrame = outFrame ( : ) ;

f i l e I D = fopen ( [ ’ f rame_802_bpsk_ ’ , num2s t r ( s eed ) , ’ . t x t ’ ] , ’w ’ ) ;
f w r i t e ( f i l e I D , outFrame , ’ f l o a t ’ ) ;
f c l o s e a l l ;
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end

A.1.3 Linear modulation receiver
c l c ; c l e a r a l l ; c l o s e a l l ;

%% Read r e c e i v e d s i g n a l

% f i l e I n = fopen ( ’ bpsk_cap1 . da t ’ , ’ r ’ ) ;
f i l e I n = fopen ( ’ bpsk_cap2 . da t ’ , ’ r ’ ) ;
i n v a r = f r e a d ( f i l e I n , ’ f l o a t ’ ) ;
f c l o s e a l l ;

%% S p l i t i n t o I and Q samples

bb_samp = i n v a r ( 1 : 1 e5 ) ;

I = bb_samp ( 1 : 2 : end ) ;
Q = bb_samp ( 2 : 2 : end ) ;

%% Remove DC O f f s e t

I = I − mean ( I ) ;
Q = Q − mean (Q ) ;

%% Unrecovered C o n s t e l l a t i o n Diagram
f i g u r e , p l o t ( I , Q, ’ x ’ ) ; t i t l e ( ’ Un r e c o v e r e d Const ’ ) ;
f i g u r e , pwelch ( I +1 i .∗Q , [ ] , [ ] , [ ] , 1e6 , ’ c e n t e r e d ’ ) ; t i t l e ( ’ Rx Spectrum ’ ) ;

%% C o n s t e l l a t i o n r e c o v e r y by s u p p l y i n g a f r e q o f f s e t c o r r e c t i o n f a c t o r

b b _ s i g = I + 1 i ∗Q; % baseband s i g n a l
f s = 2 e6 ; % s am p l i n g r a t e
t = ( 0 : l e n g t h ( I ) −1)/ f s ; % t ime s c a l e

% f r e c = 309 ; %bpsk_cap1 . d a t
% deg = −60;
f r e c = 2 1 7 . 5 ; %bpsk_cap2 . d a t
deg = 7 7 ;
recLO = exp(−1 i .∗2∗ p i ∗ f r e c .∗ t . ’ ) ; % c o r r e c t i o n te rm
rxRec = b b _ s i g .∗ recLO .∗ exp (1 i .∗ deg∗ p i / 1 8 0 ) ; % r e c o v e r e d te rm

%% Recovered C o n s t e l l a t i o n Diagram

N = l e n g t h ( rxRec ) ;
N1 = f l o o r ( 0 . 2 5∗N ) ;
N2 = f l o o r ( 0 . 5∗N ) ;
f i g u r e , p l o t ( rxRec ( 1 : N1 ) , ’ xr ’ ) ; t i t l e ( ’ Recovered Const ’ ) ;
ho ld on ,
p l o t ( rxRec ( N1 : N2 ) , ’xm ’ ) ;
p l o t ( rxRec ( N2 :N) , ’ xg ’ ) ;

%% Eye diagram
s p s = 2 0 ; % samples p e r symbol
r x_ ey e = r e s h a p e ( rxRec ( 4 1 : end ) , s p s ∗2 , [ ] ) ;
f i g u r e , p l o t ( r e a l ( r x_ ey e ) , ’ x ’ ) ; t i t l e ( ’ In Phase Eye Diagram ’ ) ;

%% Decimated C o n s t e l l a t i o n Diagram
s t a r t _ p h a s e = 25+ s p s ;
bb_dc = rxRec ( s t a r t _ p h a s e : s p s : end ) ;
f i g u r e , p l o t ( bb_dc , ’x ’ ) ; t i t l e ( ’ Decimated C o n s t e l l a t i o n ’ ) ;

%% Remove edge p o i n t s

% edge = 1 8 ; %bpsk_cap1
edge = 2 2 ; %bpsk_cap2
bb_dc = rxRec ( edge : end ) ;
N = f l o o r ( l e n g t h ( bb_dc ) / ( s p s ) ) ;
bb_eye = r e s h a p e ( bb_dc ( 1 :N∗ s p s ) , sps , N ) ;
b b _ e y e _ t r u n c = bb_eye ( 4 : 1 9 , : ) ;

b b _ e y e _ t r u n c = b b _ e y e _ t r u n c ( : ) ;
N = l e n g t h ( b b _ e y e _ t r u n c ) ;
N1 = f l o o r ( 0 . 3 3∗N ) ;
N2 = f l o o r ( 0 . 6 6∗N ) ;
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f i g u r e , p l o t ( b b _ e y e _ t r u n c ( 1 : N1 ) , ’ xr ’ ) ; t i t l e ( ’ Recovered Cons t w i t h o u t edge samples ’ ) ;
g r i d on ;
ho ld on ,
p l o t ( b b _ e y e _ t r u n c ( N1 : N2 ) , ’xm ’ ) ;
p l o t ( b b _ e y e _ t r u n c ( N2 :N) , ’ xg ’ ) ;
a x i s (0 .06∗ [ −1 ,1 , −1 ,1 ] )

A.1.4 OFDM modulation receiver
c l c ; c l e a r a l l ; c l o s e a l l ;

%% Read c a p t u r e d f i l e and t r a n s m i t t e d f i l e

% c a p t u r e d f i l e example
no i syF = fopen ( ’ ofdm_bpsk_100 . da t ’ , ’ r ’ ) ; % Noisy F i l e
n o i s y D a t a = f r e a d ( noisyF , ’ f l o a t ’ ) ;
n o i s y D a t a = n o i s y D a t a ( 1 : 1 e6 ) ;

% t r a n s m i t t e d f i l e example
c l e a n F = fopen ( ’ ofdm_bpsk_c lean_100 . da t ’ , ’ r ’ ) ; % Tx F i l e % c u r r e n t f o r m a t .
c l e a n D a t a = f r e a d ( c leanF , ’ f l o a t ’ ) ;

%% S p l i t i n t o I and Q samples

% Baseband samples
I n o i s y = n o i s y D a t a ( 1 : 2 : end ) ;
Qnoisy = n o i s y D a t a ( 2 : 2 : end ) ;
b b n o i s y = I n o i s y + 1 i .∗ Qnoisy ;
n o i s y F s = 25 e6 ;

I c l e a n = c l e a n D a t a ( 1 : 2 : end ) ;
Qclean = c l e a n D a t a ( 2 : 2 : end ) ;
bbClean = I c l e a n + 1 i .∗ Qclean ;
c l e a n F s = 25 e6 ;

%% Unrecovered c o n s t e l l a t i o n d i a g r a m s

f i g u r e , pwelch ( bbnoisy , [ ] , [ ] , [ ] , no i syFs , ’ c e n t e r e d ’ ) ; t i t l e ( ’ Baseband Spectrum ’ ) ;
f i g u r e , p l o t ( bbnoisy , ’x ’ ) ; t i t l e ( ’ C o n s t e l l a t i o n diagram ’ )

%% Remove DC o f f s e t

I = r e a l ( b b n o i s y ) − mean ( r e a l ( b b n o i s y ) ) ;
Q = imag ( b b n o i s y ) − mean ( imag ( b b n o i s y ) ) ;
b b n o i s y = I + 1 i .∗Q;

%% Frequency o f f s e t c o r r e c t i o n

% A d j u s t t h i s so t h a t t h e p i l o t ’ s h o r i z o n t a l .
f r e c = 250 ;
deg = −120;
t = ( ( 0 : numel ( b b n o i s y ) −1 ) / ( n o i s y F s ) ) . ’ ;
b b n o i s y = b b n o i s y ( : ) . ∗ exp(−1 i ∗2∗ p i ∗ f r e c .∗ t )∗ exp (1 i .∗ deg∗ p i / 1 8 0 ) ;

%% Preamble based Frame d e t e c t i o n ( b e t t e r way l i s t e d ahead )

rx = b b n o i s y ;
N = 6 4 ;
L = 1 6 ;

% Find Frame B o u n d a r i e s u s i n g p r e a m b l e s
P = z e r o s ( l e n g t h ( rx )−(N+L ) , 1 ) ;
R = z e r o s ( l e n g t h ( rx )−(N+L ) , 1 ) ;
c o r r = z e r o s ( l e n g t h ( rx )−(N+L ) , 1 ) ;
f o r i = 1 : l e n g t h ( rx )−(N+L )

% p r e a m b l e s a r e i d e n t i c a l h a l v e s
samp1 = rx ( i : i −1+N / 2 ) ;
samp2 = rx ( i +N/ 2 : i +N/2−1+N / 2 ) ;

P ( i ) = sum ( samp1 .∗ c o n j ( samp2 ) ) ;
R( i ) = sum ( abs ( samp2 . ^ 2 ) ) ;
c o r r ( i ) = P ( i ) / R( i ) ;

end

f i g u r e , s tem ( abs ( c o r r ( 1 : 2 5 0 0 ) ) ) ;
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t i t l e ( ’ Preamble d e t e c t i o n ’ ) ;

%% C o r r e l a t i o n a g a i n s t c l e a n s i g n a l t o g e t Frame boundary

[ r , l a g s ] = x c o r r ( bbnoisy , bbClean ) ;
f i g u r e , p l o t ( l a g s , abs ( r ) ) ;
t i t l e ( ’ c o r r e l a t i o n a g a i n s t t r a n s m i t t e d s i g n a l ’ ) ;

% Use t h e peak i n d e x as t h e s t a r t I d x and add 80 t o i t

%% Remove C y c l i c P r e f i x

s t a r t I d x = 18109+80; % s t a r t o f p reamble f rame
nFrames = 400 ; % number o f f r a m es t o e x t r a c t from t h e s i g n a l
bbFrames = r e s h a p e ( b b n o i s y ( s t a r t I d x : s t a r t I d x −1+(N+L)∗ nFrames ) , (N+L ) , [ ] ) ; % f ra m es

bbSig = bbFrames ( L+1: end , : ) ; % cp removed from f r a me s

%% E x t r a c t t r a i i n g symbols t o compute FDE c o e f f e c i e n t s

% Frame Sequence P | T | D x 10 | P | T | D x 10 | P . . .

t r a i n F r a m e I d x = [ 2 : 1 2 : nFrames ] ;
t r a i n F r a m e s = bbSig ( : , t r a i n F r a m e I d x ) ;

% T r a i n Frame Format
n u l l C a r r i e r s = [ 0 , 2 7 : 3 7 ] + 1 ;
p i l o t C a r r i e r s = [ 7 , 2 1 , 4 3 , 5 7 ] + 1 ;
d a t a C a r r i e r s = [ 1 : 6 , 8 : 2 0 , 2 2 : 2 6 , 3 8 : 4 2 , 4 4 : 5 6 , 5 8 : 6 3 ] + 1 ;

t r a i n F f t O u t = f f t ( t r a i n F r a m e s ,N ) ;
t r a i n V a l s = t r a i n F f t O u t ( d a t a C a r r i e r s , : ) ;

% t r a i n V a l s v a l u e s s h o u l d be a l t e r n a t i n g ones i f t h e r e a r e no i m p a i r m e n t s
n u l l V a l s = t r a i n F f t O u t ( n u l l C a r r i e r s , : ) ;
f i g u r e , p l o t ( t r a i n V a l s , ’ x ’ ) ;
t i t l e ( ’ T r a i n Vals ’ ) ;

f i g u r e , p l o t ( n u l l V a l s , ’ x ’ ) ;
t i t l e ( ’ Nu l l Vals ’ ) ;

%% E x t r a c t Data P i l o t s t o check f r e q u e n c y o f f s e t

d a t a F r a m e I d x = 1 : nFrames ;
d a t a F r a m e I d x ( 1 : 1 2 : end ) = [ ] ;
d a t a F r a m e I d x ( 1 : 1 1 : end ) = [ ] ;
d a t a F r a m e s = bbSig ( : , d a t a F r a m e I d x ) ;

d a t a F f t O u t = f f t ( da taFrames ,N ) ;
p i l o t V a l s = d a t a F f t O u t ( p i l o t C a r r i e r s , : ) ;
f i g u r e , p l o t ( a n g l e ( p i l o t V a l s ( 1 , : ) ) ∗ 1 8 0 / pi , ’ x ’ ) ;
t i t l e ( ’ P i l o t Phase ’ ) ;
ho ld on ,
p l o t ( a n g l e ( p i l o t V a l s ( 2 , : ) ) ∗ 1 8 0 / pi , ’ rx ’ ) ;
p l o t ( a n g l e ( p i l o t V a l s ( 3 , : ) ) ∗ 1 8 0 / pi , ’ mx ’ ) ;
p l o t ( a n g l e ( p i l o t V a l s ( 4 , : ) ) ∗ 1 8 0 / pi , ’ gx ’ ) ;
l e g e n d ( ’ 1 s t ’ , ’ 2 nd ’ , ’ 3 rd ’ , ’ 4 th ’ ) ;
y l im ( [ −3 6 0 , 3 6 0 ] ) ;
% I f t h e r e i s a f r e q o f f s e t t h e n t h e s e a n g l e s w i l l n o t be h o r i z o n t a l .
% add f r e q o f f s e t c o r r e c t i o n te rm t i l l t h e y a r e h o r i z o n t a l .

%% FDE c o e f f s based on T r a i n i n g Frames

% z e r o f o r c i n g e q u a l i z e r
e q u a l i z e r = z e r o s (N, s i z e ( t r a i n V a l s , 2 ) ) ;
e q u a l i z e r ( d a t a C a r r i e r s , : ) = 1 . / ( t r a i n V a l s ) ;
e q u a l i z e r ( d a t a C a r r i e r s ( 2 : 2 : end ) , : ) = e q u a l i z e r ( d a t a C a r r i e r s ( 2 : 2 : end ) , : )∗ −1 ;

%% E q u a l i z e d a t a f rame

eqIdx = 1 ;
dataEQ = z e r o s ( s i z e ( d a t a F r a m e s ) ) ;
f o r k = 1 : s i z e ( da taFrames , 2 )

c u r r E q u a l i z e r = e q u a l i z e r ( : , eq Idx ) ;
dataEQ ( : , k ) = d a t a F f t O u t ( : , k ) . ∗ c u r r E q u a l i z e r ;
i f ( mod ( k , 1 0 ) = = 0 )
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% one t r a i n i n g f rame f o r e v e r y 10 d a t a f r a m es .
% i n c r e m e n t a f t e r 10 d a t a f r a m es have been e q u a l i z e d .
eq Idx = eqIdx +1;

end
end

d a t a O u t = dataEQ ( d a t a C a r r i e r s , : ) ;
f i g u r e , p l o t ( da taOut , ’ x ’ ) ; t i t l e ( ’ Recovered C o n s t e l l a t i o n A f t e r E q u a l i z e r ’ ) ;
y l im ( [ − 1 . 5 , 1 . 5 ] )
x l im ( [ − 1 . 5 , 1 . 5 ] )

A.1.5 Cumulant function
f u n c t i o n [ rcum ] = compute_cumulan t s ( da t a , ncumulan t )

%ncumulan t r e p r e s e n t t o t a l number o f c u m u l a n t s t o be c a l c u l a t e d .

cum = z e r o s ( ncumulant , 1 ) ;

cum ( 1 ) = mean ( d a t a ) ;

% p r e compute non c e n t r a l moments
mom = z e r o s ( ncumulant , 1 ) ;
f o r n = 1 : ncumulan t

mom( n ) = mean ( d a t a . ^ n ) ;
end

f o r n = 2 : ncumulan t
y = 0 ;
f o r m = 1 : n−1

i f ( ( n−m) ~= 0)
y = y + nchoosek ( n−1,m−1)∗cum (m)∗mom( n−m) ;

e l s e
y = y + nchoosek ( n−1,m−1)∗cum (m) ;

end
end

cum ( n ) = mom( n ) − y ;

end
rcum = cum ;

end

A.1.6 Cumulant script for captured data
% Computes c u m u l a n t s o f c a p t u r e d d a t a f o r a l l o f t h e 8 m o d u l a t i o n s .
% I g n o r e s t r a n s i e n t s a t t h e b e g i n i n g .
% change sample s i z e between 50k and 200k

c l c ; c l e a r a l l ; c l o s e a l l ;
f o r m a t long ;
home = ’ p a t h _ t o _ h o m e _ d i r ’ ;

% Unnormal ized d i r
unnorm_di r = ’ p a t h _ t o _ s a v e _ l o c a t i o n _ f o r _ u n n o r m a l i z e _ c u m u l a n t s ’ ;
% n o r m a l i z e d d i r
no rm_di r = ’ p a t h _ t o _ s a v e _ l o c a t i o n _ f o r _ n o r m a l i z e d _ c u m u l a n t s ’ ;

% s w i t c h
t y p e = ’ unnorma l i zed ’ ; % u n n o r m a l i z e d o r n o r m a l i z e d

% do CTRL + H and r e p l a c e bpsk wi th qam4 or a n o t h e r m o d u l a t i o n s and r e r u n
% t h e f i l e
%% bpsk c a p t u r e s
t i c
cd ( home )

% cd i n t o d i r e c t o r y wi th raw c a p t u r e s
cd p l u s 1 0 / bpsk

bpsk_cum = z e r o s ( 1 0 0 0 , 1 6 ) ; % p l a c e h o l d e r , 1000 examples p e r m o d u l a t i o n c l a s s
h = w a i t b a r ( 0 , ’ P l e a s e w a i t . . . ’ ) ;
f o r i = 1 :1000
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w a i t b a r ( i / 1 0 0 0 , h , s p r i n t f ( ’ comput ing cumulan t on %d ’ , i ) ) ;
% r e a d c a p t u r e d d a t a
f i l e n a m e = [ ’ bpsk_10dB_ ’ , num2s t r ( i ) , ’ . da t ’ ] ;
i n f i l e = fopen ( f i l e n a m e , ’ r ’ ) ;
i n v a r = f r e a d ( i n f i l e , ’ f l o a t ’ ) ;
f c l o s e ( i n f i l e ) ;

% s p l i t i n t o I and Q
I = i n v a r ( 1 : 2 : end ) ;
Q = i n v a r ( 2 : 2 : end ) ;
bb = I + 1 i .∗Q;
bb = bb (1000 :999+50 e3 ) ; % 50k sample e s t i m a t e
%bb = bb (1000 :999+50 e3 ) ; % 200k sample e s t i m a t e

% compute c u m u l a n t s f o r I and Q samples ( un n o r m a l i z e d c u m u l a n t s )
bpsk_cum ( i , 1 : 8 ) = compute_cumulan t s ( r e a l ( bb ) , 8 ) ;
bpsk_cum ( i , 9 : 1 6 ) = compute_cumulan t s ( imag ( bb ) , 8 ) ;

% save
i f ( s t r c mp ( type , ’ unnorma l i zed ’ ) )
cd ( unnorm_di r ) ;
cd bpsk ;
f i l e n a m e = [ ’ bpsk_10dB_cumulant_unnorm . mat ’ ] ;

end

i f ( s t r c mp ( type , ’ no rma l i zed ’ ) )
cd ( norm_di r ) ;
cd bpsk ;
f i l e n a m e = [ ’ bpsk_10dB_cumulant_norm . mat ’ ] ;

% n o r m a l i z e t h e s i g n a l
bb_norm = bb . / max ( abs ( bb ) ) ;
% compute c u m u l a n t s
bpsk_cum ( i , 1 : 8 ) = compute_cumulan t s ( r e a l ( bb_norm ) , 8 ) ;
bpsk_cum ( i , 9 : 1 6 ) = compute_cumulan t s ( imag ( bb_norm ) , 8 ) ;

end

cd ( home )
cd p l u s 1 0 / bpsk

end
c l o s e ( h ) ;
t o c

% cd i n t o where you want t o save t h e f i l e
cd ( ’ p a t h _ t o _ s a v e _ l o c a t i o n \ c u m u l a n t s \ s e p a r a t e \ 5 0 k ’ ) ;
%cd ( ’ p a t h _ t o _ s a v e _ l o c a t i o n \ c u m u l a n t s \ s e p a r a t e \200 k ’ ) ;
s ave ( f i l e n a m e , ’ bpsk_cum ’ ) ;

A.1.7 SVM for single SNR data
c l c ; c l e a r ; c l o s e a l l ;
a d d p a t h ( ’ . . / S u b f u n c t i o n s ’ )
a d d p a t h ( g e n p a t h ( ’ . . / PRT−maste r ’ ) )
l o a d f i g _ p o s . mat

home = pwd ;
% p a t h t o where t h e c u m u l a n t s a r e s t o r e d
d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \200 k \ o r i g i n a l ’ ;

%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \200 k \ p lus5 ’ ;
%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \200 k \ p lus10 ’ ;
%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \ 5 0 k \ o r i g i n a l ’ ;
%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \ 5 0 k \ p lus5 ’ ;
%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \ 5 0 k \ p lus10 ’ ;

cd ( d a t a _ d i r )

s t andardMods = { ’ bpsk ’ , ’qam4 ’ , ’ qam16 ’ , ’ qam32 ’ } ;
ofdmMods = { ’ ofdm_bpsk ’ , ’ ofdm_qam4 ’ , ’ ofdm_qam16 ’ , ’ ofdm_qam32 ’ } ;
a l lMods = [ s t andardMods ofdmMods ] ;

modsClass = a l lMods ;
normVal = ’ norm ’ ; % norm or unnorm

% Load c u m u l a n t s
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Nmod = l e n g t h ( modsClass ) ;
CumData = z e r o s (1000∗Nmod , 1 6 ) ;
f o r i = 1 :Nmod

f i l e n a m e = [ modsClass { i } , ’ _cumulant_ ’ , normVal , ’ . mat ’ ] ; % f o r 0dB caps
%f i l e n a m e = [ modsClass { i } , ’ _5dB_cumulant_ ’ , normVal , ’ . mat ’ ] ; % f o r 5dB caps
%f i l e n a m e = [ modsClass { i } , ’ _10dB_cumulant_ ’ , normVal , ’ . mat ’ ] ; % f o r 10dB caps
l o a d ( f i l e n a m e ) ;
CumData ( ( i −1)∗1000+1: i ∗1 0 0 0 , : ) = d a t a ; % 1000 examples p e r m o d u l a t i o n c l a s s

end

%% OFDM vs Non OFDM (SVM 1)

s t a n d a r d D a t a = CumData ( 1 : 4 0 0 0 , : ) ;
OfdmData = CumData ( 4 0 0 1 : 8 0 0 0 , : ) ;

d a t a = [ s t a n d a r d D a t a ; OfdmData ] ;
t a r g e t = z e r o s ( 8 0 0 0 , 1 ) ;
t a r g e t ( 4 0 0 1 : end ) = 1 ;

ds = p r t D a t a S e t C l a s s ( da t a , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ;
pcaNorm = pca . t r a i n ( dsNorm ) ;
dsPca = pcaNorm . run ( ds ) ;
dsPca . c lassNames {1} = ’ S t anda rd ’ ;
dsPca . c lassNames {2} = ’OFDM’ ;

c l a s s i f i e r = pr tC las sBina ryToMaryOneVsAl l ; % C r e a t e a c l a s s i f i e r
c l a s s i f i e r . b a s e C l a s s i f i e r = p r t C l a s s L i b S v m ; % S e t t h e b i n a r y
c l a s s i f i e r . i n t e r n a l D e c i d e r = p r t D e c i s i o n M a p ;

yOutKfo lds = c l a s s i f i e r . k f o l d s ( dsPca , 1 0 ) ;
yOutKfo lds . c l assNames {1} = ’ S t anda rd ’ ;
yOutKfo lds . c l assNames {2} = ’OFDM’ ;
p r t S c o r e C o n f u s i o n M a t r i x ( yOutKfolds , dsPca ) ;

%% S t a n d a r d Only

s t a n d a r d D a t a = CumData ( 1 : 4 0 0 0 , : ) ;
d a t a = s t a n d a r d D a t a ;
t a r g e t = z e r o s ( 4 0 0 0 , 1 ) ;
t a r g e t ( 1 0 0 1 : 2 0 0 0 ) = 1 ;
t a r g e t ( 2 0 0 1 : 3 0 0 0 ) = 2 ;
t a r g e t ( 3 0 0 1 : 4 0 0 0 ) = 3 ;

ds = p r t D a t a S e t C l a s s ( da t a , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ;
pcaNorm = pca . t r a i n ( dsNorm ) ;
dsPca = pcaNorm . run ( dsNorm ) ;
dsPca . c lassNames {1} = ’BPSK ’ ;
dsPca . c lassNames {2} = ’QAM4’ ;
dsPca . c lassNames {3} = ’QAM16’ ;
dsPca . c lassNames {4} = ’QAM32’ ;

c l a s s i f i e r = pr tC las sBina ryToMaryOneVsAl l ; % C r e a t e a c l a s s i f i e r
c l a s s i f i e r . b a s e C l a s s i f i e r = p r t C l a s s L i b S v m ; % S e t t h e b i n a r y
c l a s s i f i e r . b a s e C l a s s i f i e r . c o s t = 3 0 ; % Cost p a r a m e t e r
c l a s s i f i e r . b a s e C l a s s i f i e r . gamma = 0 . 0 1 ; % Gamme p a r a m e t e r
c l a s s i f i e r . i n t e r n a l D e c i d e r = p r t D e c i s i o n M a p ;

[ yOutKfolds , T r a i n e d A c t i o n s , CrossValKeys ] = c l a s s i f i e r . k f o l d s ( dsPca , 1 0 ) ;
yOutKfo lds . c l assNames {1} = ’BPSK ’ ;
yOutKfo lds . c l assNames {2} = ’QAM4’ ;
yOutKfo lds . c l assNames {3} = ’QAM16’ ;
yOutKfo lds . c l assNames {4} = ’QAM32’ ;
p r t S c o r e C o n f u s i o n M a t r i x ( yOutKfolds , dsPca ) ;

%% OFDM Only
OfdmData = CumData ( 4 0 0 1 : 8 0 0 0 , : ) ;
d a t a = OfdmData ;
t a r g e t = z e r o s ( 4 0 0 0 , 1 ) ;
t a r g e t ( 1 0 0 1 : 2 0 0 0 ) = 1 ;
t a r g e t ( 2 0 0 1 : 3 0 0 0 ) = 2 ;
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t a r g e t ( 3 0 0 1 : 4 0 0 0 ) = 3 ;

ds = p r t D a t a S e t C l a s s ( da t a , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ;
pcaNorm = pca . t r a i n ( dsNorm ) ;
dsPca = pcaNorm . run ( dsNorm ) ;
dsPca . c lassNames {1} = ’OFDM BPSK ’ ;
dsPca . c lassNames {2} = ’OFDM QAM4’ ;
dsPca . c lassNames {3} = ’OFDM QAM16’ ;
dsPca . c lassNames {4} = ’OFDM QAM32’ ;

c l a s s i f i e r = pr tC las sBina ryToMaryOneVsAl l ; % C r e a t e a c l a s s i f i e r
c l a s s i f i e r . b a s e C l a s s i f i e r = p r t C l a s s L i b S v m ; % S e t t h e b i n a r y
c l a s s i f i e r . b a s e C l a s s i f i e r . c o s t = 1 0 ; % c o s t p a r a m e t e r
c l a s s i f i e r . b a s e C l a s s i f i e r . gamma = 0 . 0 1 ; % gamma p a r a m e t e r
c l a s s i f i e r . i n t e r n a l D e c i d e r = p r t D e c i s i o n M a p ;

yOutKfo lds = c l a s s i f i e r . k f o l d s ( dsPca , 1 0 ) ;
yOutKfo lds . c l assNames {1} = ’OFDM BPSK ’ ;
yOutKfo lds . c l assNames {2} = ’OFDM QAM4’ ;
yOutKfo lds . c l assNames {3} = ’OFDM QAM16’ ;
yOutKfo lds . c l assNames {4} = ’OFDM QAM32’ ;
p r t S c o r e C o n f u s i o n M a t r i x ( yOutKfolds , dsPca ) ;

%% A l l

d a t a = CumData ;
t a r g e t = z e r o s ( 8 0 0 0 , 1 ) ;
t a r g e t ( 1 0 0 1 : 2 0 0 0 ) = 1 ;
t a r g e t ( 2 0 0 1 : 3 0 0 0 ) = 2 ;
t a r g e t ( 3 0 0 1 : 4 0 0 0 ) = 3 ;
t a r g e t ( 4 0 0 1 : 5 0 0 0 ) = 4 ;
t a r g e t ( 5 0 0 1 : 6 0 0 0 ) = 5 ;
t a r g e t ( 6 0 0 1 : 7 0 0 0 ) = 6 ;
t a r g e t ( 7 0 0 1 : 8 0 0 0 ) = 7 ;

ds = p r t D a t a S e t C l a s s ( da t a , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ;
pcaNorm = pca . t r a i n ( dsNorm ) ;
dsPca = pcaNorm . run ( dsNorm ) ;
dsPca . c lassNames {1} = ’BPSK ’ ;
dsPca . c lassNames {2} = ’QAM4’ ;
dsPca . c lassNames {3} = ’QAM16’ ;
dsPca . c lassNames {4} = ’QAM32’ ;
dsPca . c lassNames {5} = ’OFDM BPSK ’ ;
dsPca . c lassNames {6} = ’OFDM QAM4’ ;
dsPca . c lassNames {7} = ’OFDM QAM16’ ;
dsPca . c lassNames {8} = ’OFDM QAM32’ ;

c l a s s i f i e r = pr tC las sBina ryToMaryOneVsAl l ; % C r e a t e a c l a s s i f i e r
c l a s s i f i e r . b a s e C l a s s i f i e r = p r t C l a s s L i b S v m ; % S e t t h e b i n a r y
c l a s s i f i e r . b a s e C l a s s i f i e r . c o s t = 3 0 ; % S e t t h e b i n a r y
c l a s s i f i e r . b a s e C l a s s i f i e r . gamma = 0 . 0 1 ; % S e t t h e b i n a r y
c l a s s i f i e r . i n t e r n a l D e c i d e r = p r t D e c i s i o n M a p ;

yOutKfo lds = c l a s s i f i e r . k f o l d s ( dsPca , 1 0 ) ;
yOutKfo lds . c l assNames {1} = ’BPSK ’ ;
yOutKfo lds . c l assNames {2} = ’QAM4’ ;
yOutKfo lds . c l assNames {3} = ’QAM16’ ;
yOutKfo lds . c l assNames {4} = ’QAM32’ ;
yOutKfo lds . c l assNames {5} = ’OFDM BPSK ’ ;
yOutKfo lds . c l assNames {6} = ’OFDM QAM4’ ;
yOutKfo lds . c l assNames {7} = ’OFDM QAM16’ ;
yOutKfo lds . c l assNames {8} = ’OFDM QAM32’ ;
p r t S c o r e C o n f u s i o n M a t r i x ( yOutKfolds , dsPca ) ;

%% gamme and c s e a r c h g r i d

% Thi s can on ly work wi th b i n a r y c l a s s i f i c a t i o n

Data = CumData ( 2 0 0 1 : 4 0 0 0 , : ) ; % qam16 & qam32
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t a r g e t = z e r o s ( 2 0 0 0 , 1 ) ;
t a r g e t ( 1 0 0 1 : 2 0 0 0 ) = 1 ;

ds = p r t D a t a S e t C l a s s ( Data , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ; % c r e a t e PCA s e l f e c t
pcaNorm = pca . t r a i n ( dsNorm ) ; % t r a i n PCA
dsPca = pcaNorm . run ( dsNorm ) ; % c r e a t e new d a t a s e t based on PCA
ds = dsPca ;

gammaVec = l o g s p a c e ( −2 ,1 ,10 ) ;
cos tVec = l o g s p a c e ( −2 ,1 ,10 ) ;

auc = nan ( l e n g t h ( gammaVec ) , l e n g t h ( cos tVec ) ) ;
k f o l d s I n d s = ds . getKFoldKeys ( 3 ) ;
f o r gammaInd = 1 : l e n g t h ( gammaVec ) ;

f o r c o s t I n d = 1 : l e n g t h ( cos tVec ) ;

% c l a s s i f i e r i s d e f i n e d i n p r e v i o u s s e c t i o n s
c = c l a s s i f i e r ;
c . b a s e C l a s s i f i e r . c o s t = cos tVec ( c o s t I n d ) ;
c . b a s e C l a s s i f i e r . gamma = gammaVec ( gammaInd ) ;
yOut = c r o s s V a l i d a t e ( c , ds , k f o l d s I n d s ) ;
auc ( gammaInd , c o s t I n d ) = p r t S c o r e A u c ( yOut ) ;

imagesc ( auc , [ . 1 1 ] ) ;
c o l o r b a r
drawnow ;

end
end
t i t l e ( ’AUC vs . Gamma Index ( V e r t i c a l ) and Cos t Index ( H o r i z o n t a l ) ’ ) ;

A.1.8 SVM for multiple SNR data
c l c ; c l e a r ; c l o s e a l l ;
a d d p a t h ( ’ . . / S u b f u n c t i o n s ’ )
a d d p a t h ( g e n p a t h ( ’ . . / PRT−maste r ’ ) )
l o a d f i g _ p o s . mat

home = pwd ;
% p a t h t o where t h e c u m u l a n t s a r e s t o r e d
d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \200 k \ o r i g i n a l ’ ;

%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \200 k \ p lus5 ’ ;
%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \200 k \ p lus10 ’ ;
%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \ 5 0 k \ o r i g i n a l ’ ;
%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \ 5 0 k \ p lus5 ’ ;
%d a t a _ d i r = ’ p a t h _ t o _ c u m u l a n t s _ d i r \ c u m u l a n t s \ s e p a r a t e \ 5 0 k \ p lus10 ’ ;

cd ( d a t a _ d i r )

s t andardMods = { ’ bpsk ’ , ’qam4 ’ , ’ qam16 ’ , ’ qam32 ’ } ;
ofdmMods = { ’ ofdm_bpsk ’ , ’ ofdm_qam4 ’ , ’ ofdm_qam16 ’ , ’ ofdm_qam32 ’ } ;
a l lMods = [ s t andardMods ofdmMods ] ;

modsClass = a l lMods ;
normVal = ’ norm ’ ; % norm or unnorm

% Load c u m u l a n t s
Nmod = l e n g t h ( modsClass ) ;
CumData = z e r o s (1000∗Nmod , 1 6 ) ;
f o r i = 1 :Nmod

f i l e n a m e = [ modsClass { i } , ’ _cumulant_ ’ , normVal , ’ . mat ’ ] ; % f o r 0dB caps
%f i l e n a m e = [ modsClass { i } , ’ _5dB_cumulant_ ’ , normVal , ’ . mat ’ ] ; % f o r 5dB caps
%f i l e n a m e = [ modsClass { i } , ’ _10dB_cumulant_ ’ , normVal , ’ . mat ’ ] ; % f o r 10dB caps
l o a d ( f i l e n a m e ) ;
CumData ( ( i −1)∗1000+1: i ∗1 0 0 0 , : ) = d a t a ; % 1000 examples p e r m o d u l a t i o n c l a s s

end

%% OFDM vs Non OFDM (SVM 1)

s t a n d a r d D a t a = CumData ( 1 : 4 0 0 0 , : ) ;
OfdmData = CumData ( 4 0 0 1 : 8 0 0 0 , : ) ;

d a t a = [ s t a n d a r d D a t a ; OfdmData ] ;
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t a r g e t = z e r o s ( 8 0 0 0 , 1 ) ;
t a r g e t ( 4 0 0 1 : end ) = 1 ;

ds = p r t D a t a S e t C l a s s ( da t a , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ;
pcaNorm = pca . t r a i n ( dsNorm ) ;
dsPca = pcaNorm . run ( ds ) ;
dsPca . c lassNames {1} = ’ S t anda rd ’ ;
dsPca . c lassNames {2} = ’OFDM’ ;

c l a s s i f i e r = pr tC las sBina ryToMaryOneVsAl l ; % C r e a t e a c l a s s i f i e r
c l a s s i f i e r . b a s e C l a s s i f i e r = p r t C l a s s L i b S v m ; % S e t t h e b i n a r y
c l a s s i f i e r . i n t e r n a l D e c i d e r = p r t D e c i s i o n M a p ;

yOutKfo lds = c l a s s i f i e r . k f o l d s ( dsPca , 1 0 ) ;
yOutKfo lds . c l assNames {1} = ’ S t anda rd ’ ;
yOutKfo lds . c l assNames {2} = ’OFDM’ ;
p r t S c o r e C o n f u s i o n M a t r i x ( yOutKfolds , dsPca ) ;

%% S t a n d a r d Only

s t a n d a r d D a t a = CumData ( 1 : 4 0 0 0 , : ) ;
d a t a = s t a n d a r d D a t a ;
t a r g e t = z e r o s ( 4 0 0 0 , 1 ) ;
t a r g e t ( 1 0 0 1 : 2 0 0 0 ) = 1 ;
t a r g e t ( 2 0 0 1 : 3 0 0 0 ) = 2 ;
t a r g e t ( 3 0 0 1 : 4 0 0 0 ) = 3 ;

ds = p r t D a t a S e t C l a s s ( da t a , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ;
pcaNorm = pca . t r a i n ( dsNorm ) ;
dsPca = pcaNorm . run ( dsNorm ) ;
dsPca . c lassNames {1} = ’BPSK ’ ;
dsPca . c lassNames {2} = ’QAM4’ ;
dsPca . c lassNames {3} = ’QAM16’ ;
dsPca . c lassNames {4} = ’QAM32’ ;

c l a s s i f i e r = pr tC las sBina ryToMaryOneVsAl l ; % C r e a t e a c l a s s i f i e r
c l a s s i f i e r . b a s e C l a s s i f i e r = p r t C l a s s L i b S v m ; % S e t t h e b i n a r y
c l a s s i f i e r . b a s e C l a s s i f i e r . c o s t = 3 0 ; % Cost p a r a m e t e r
c l a s s i f i e r . b a s e C l a s s i f i e r . gamma = 0 . 0 1 ; % Gamme p a r a m e t e r
c l a s s i f i e r . i n t e r n a l D e c i d e r = p r t D e c i s i o n M a p ;

[ yOutKfolds , T r a i n e d A c t i o n s , CrossValKeys ] = c l a s s i f i e r . k f o l d s ( dsPca , 1 0 ) ;
yOutKfo lds . c l assNames {1} = ’BPSK ’ ;
yOutKfo lds . c l assNames {2} = ’QAM4’ ;
yOutKfo lds . c l assNames {3} = ’QAM16’ ;
yOutKfo lds . c l assNames {4} = ’QAM32’ ;
p r t S c o r e C o n f u s i o n M a t r i x ( yOutKfolds , dsPca ) ;

%% OFDM Only
OfdmData = CumData ( 4 0 0 1 : 8 0 0 0 , : ) ;
d a t a = OfdmData ;
t a r g e t = z e r o s ( 4 0 0 0 , 1 ) ;
t a r g e t ( 1 0 0 1 : 2 0 0 0 ) = 1 ;
t a r g e t ( 2 0 0 1 : 3 0 0 0 ) = 2 ;
t a r g e t ( 3 0 0 1 : 4 0 0 0 ) = 3 ;

ds = p r t D a t a S e t C l a s s ( da t a , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ;
pcaNorm = pca . t r a i n ( dsNorm ) ;
dsPca = pcaNorm . run ( dsNorm ) ;
dsPca . c lassNames {1} = ’OFDM BPSK ’ ;
dsPca . c lassNames {2} = ’OFDM QAM4’ ;
dsPca . c lassNames {3} = ’OFDM QAM16’ ;
dsPca . c lassNames {4} = ’OFDM QAM32’ ;

c l a s s i f i e r = pr tC las sBina ryToMaryOneVsAl l ; % C r e a t e a c l a s s i f i e r
c l a s s i f i e r . b a s e C l a s s i f i e r = p r t C l a s s L i b S v m ; % S e t t h e b i n a r y
c l a s s i f i e r . b a s e C l a s s i f i e r . c o s t = 1 0 ; % c o s t p a r a m e t e r
c l a s s i f i e r . b a s e C l a s s i f i e r . gamma = 0 . 0 1 ; % gamma p a r a m e t e r
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c l a s s i f i e r . i n t e r n a l D e c i d e r = p r t D e c i s i o n M a p ;

yOutKfo lds = c l a s s i f i e r . k f o l d s ( dsPca , 1 0 ) ;
yOutKfo lds . c l assNames {1} = ’OFDM BPSK ’ ;
yOutKfo lds . c l assNames {2} = ’OFDM QAM4’ ;
yOutKfo lds . c l assNames {3} = ’OFDM QAM16’ ;
yOutKfo lds . c l assNames {4} = ’OFDM QAM32’ ;
p r t S c o r e C o n f u s i o n M a t r i x ( yOutKfolds , dsPca ) ;

%% A l l

d a t a = CumData ;
t a r g e t = z e r o s ( 8 0 0 0 , 1 ) ;
t a r g e t ( 1 0 0 1 : 2 0 0 0 ) = 1 ;
t a r g e t ( 2 0 0 1 : 3 0 0 0 ) = 2 ;
t a r g e t ( 3 0 0 1 : 4 0 0 0 ) = 3 ;
t a r g e t ( 4 0 0 1 : 5 0 0 0 ) = 4 ;
t a r g e t ( 5 0 0 1 : 6 0 0 0 ) = 5 ;
t a r g e t ( 6 0 0 1 : 7 0 0 0 ) = 6 ;
t a r g e t ( 7 0 0 1 : 8 0 0 0 ) = 7 ;

ds = p r t D a t a S e t C l a s s ( da t a , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ;
pcaNorm = pca . t r a i n ( dsNorm ) ;
dsPca = pcaNorm . run ( dsNorm ) ;
dsPca . c lassNames {1} = ’BPSK ’ ;
dsPca . c lassNames {2} = ’QAM4’ ;
dsPca . c lassNames {3} = ’QAM16’ ;
dsPca . c lassNames {4} = ’QAM32’ ;
dsPca . c lassNames {5} = ’OFDM BPSK ’ ;
dsPca . c lassNames {6} = ’OFDM QAM4’ ;
dsPca . c lassNames {7} = ’OFDM QAM16’ ;
dsPca . c lassNames {8} = ’OFDM QAM32’ ;

c l a s s i f i e r = pr tC las sBina ryToMaryOneVsAl l ; % C r e a t e a c l a s s i f i e r
c l a s s i f i e r . b a s e C l a s s i f i e r = p r t C l a s s L i b S v m ; % S e t t h e b i n a r y
c l a s s i f i e r . b a s e C l a s s i f i e r . c o s t = 3 0 ; % S e t t h e b i n a r y
c l a s s i f i e r . b a s e C l a s s i f i e r . gamma = 0 . 0 1 ; % S e t t h e b i n a r y
c l a s s i f i e r . i n t e r n a l D e c i d e r = p r t D e c i s i o n M a p ;

yOutKfo lds = c l a s s i f i e r . k f o l d s ( dsPca , 1 0 ) ;
yOutKfo lds . c l assNames {1} = ’BPSK ’ ;
yOutKfo lds . c l assNames {2} = ’QAM4’ ;
yOutKfo lds . c l assNames {3} = ’QAM16’ ;
yOutKfo lds . c l assNames {4} = ’QAM32’ ;
yOutKfo lds . c l assNames {5} = ’OFDM BPSK ’ ;
yOutKfo lds . c l assNames {6} = ’OFDM QAM4’ ;
yOutKfo lds . c l assNames {7} = ’OFDM QAM16’ ;
yOutKfo lds . c l assNames {8} = ’OFDM QAM32’ ;
p r t S c o r e C o n f u s i o n M a t r i x ( yOutKfolds , dsPca ) ;

%% gamme and c s e a r c h g r i d

% Thi s can on ly work wi th b i n a r y c l a s s i f i c a t i o n

Data = CumData ( 2 0 0 1 : 4 0 0 0 , : ) ; % qam16 & qam32
t a r g e t = z e r o s ( 2 0 0 0 , 1 ) ;
t a r g e t ( 1 0 0 1 : 2 0 0 0 ) = 1 ;

ds = p r t D a t a S e t C l a s s ( Data , t a r g e t ) ;
dsNorm = r t ( pr tPreProcZmuv , ds ) ;
pca = p r t P r e P r o c P c a ( ’ nComponents ’ , 1 6 ) ; % c r e a t e PCA s e l f e c t
pcaNorm = pca . t r a i n ( dsNorm ) ; % t r a i n PCA
dsPca = pcaNorm . run ( dsNorm ) ; % c r e a t e new d a t a s e t based on PCA
ds = dsPca ;

gammaVec = l o g s p a c e ( −2 ,1 ,10 ) ;
cos tVec = l o g s p a c e ( −2 ,1 ,10 ) ;

auc = nan ( l e n g t h ( gammaVec ) , l e n g t h ( cos tVec ) ) ;
k f o l d s I n d s = ds . getKFoldKeys ( 3 ) ;
f o r gammaInd = 1 : l e n g t h ( gammaVec ) ;

86



APPENDIX A. RELEVANT SOURCE CODE

f o r c o s t I n d = 1 : l e n g t h ( cos tVec ) ;

% c l a s s i f i e r i s d e f i n e d i n p r e v i o u s s e c t i o n s
c = c l a s s i f i e r ;
c . b a s e C l a s s i f i e r . c o s t = cos tVec ( c o s t I n d ) ;
c . b a s e C l a s s i f i e r . gamma = gammaVec ( gammaInd ) ;
yOut = c r o s s V a l i d a t e ( c , ds , k f o l d s I n d s ) ;
auc ( gammaInd , c o s t I n d ) = p r t S c o r e A u c ( yOut ) ;

imagesc ( auc , [ . 1 1 ] ) ;
c o l o r b a r
drawnow ;

end
end
t i t l e ( ’AUC vs . Gamma Index ( V e r t i c a l ) and Cos t Index ( H o r i z o n t a l ) ’ ) ;

A.2 GNU Radio Code
A.2.1 qam4_ic implementation in OOT module
Implementation header file
/∗ −∗− c++ −∗− ∗ /
/∗
∗ C o p y r i g h t 2017 <+YOU OR YOUR COMPANY+ >.
∗
∗ Thi s i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify
∗ i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
∗ t h e F ree S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 3 , o r ( a t your o p t i o n )
∗ any l a t e r v e r s i o n .
∗
∗ Thi s s o f t w a r e i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
∗ b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
∗
∗ You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
∗ a l o n g wi th t h i s s o f t w a r e ; s e e t h e f i l e COPYING . I f not , w r i t e t o
∗ t h e F ree S o f t w a r e Founda t ion , I n c . , 51 F r a n k l i n S t r e e t ,
∗ Boston , MA 02110−1301 , USA.
∗ /

# i f n d e f INCLUDED_MYNEWMOD_QAM4_IC_IMPL_H
# d e f i n e INCLUDED_MYNEWMOD_QAM4_IC_IMPL_H

# i n c l u d e <mynewmod / qam4_ic . h>

namespace g r {
namespace mynewmod {

c l a s s qam4_ic_impl : p u b l i c qam4_ic
{

p r i v a t e :
/ / Noth ing t o d e c l a r e i n t h i s b l o c k .

p u b l i c :
qam4_ic_impl ( ) ;
~ qam4_ic_impl ( ) ;

/ / Where a l l t h e a c t i o n r e a l l y happens
vo id f o r e c a s t ( i n t n o u t p u t _ i t e m s , g r _ v e c t o r _ i n t &n i n p u t _ i t e m s _ r e q u i r e d ) ;

i n t g e n e r a l _ w o r k ( i n t n o u t p u t _ i t e m s ,
g r _ v e c t o r _ i n t &n i n p u t _ i t e m s ,
g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &i n p u t _ i t e m s ,
g r _ v e c t o r _ v o i d _ s t a r &o u t p u t _ i t e m s ) ;

} ;
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} / / namespace mynewmod
} / / namespace g r

# e n d i f /∗ INCLUDED_MYNEWMOD_QAM4_IC_IMPL_H ∗ /

Implementation source file
/∗ −∗− c++ −∗− ∗ /
/∗
∗ C o p y r i g h t 2017 <+YOU OR YOUR COMPANY+ >.
∗
∗ Thi s i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify
∗ i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
∗ t h e F ree S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 3 , o r ( a t your o p t i o n )
∗ any l a t e r v e r s i o n .
∗
∗ Thi s s o f t w a r e i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
∗ b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
∗
∗ You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
∗ a l o n g wi th t h i s s o f t w a r e ; s e e t h e f i l e COPYING . I f not , w r i t e t o
∗ t h e F ree S o f t w a r e Founda t ion , I n c . , 51 F r a n k l i n S t r e e t ,
∗ Boston , MA 02110−1301 , USA.
∗ /

# i f d e f HAVE_CONFIG_H
# i n c l u d e " c o n f i g . h "
# e n d i f

# i n c l u d e < g n u r a d i o / i o _ s i g n a t u r e . h>
# i n c l u d e " qam4_ic_impl . h "

namespace g r {
namespace mynewmod {

qam4_ic : : s p t r
qam4_ic : : make ( )
{

r e t u r n g n u r a d i o : : g e t _ i n i t i a l _ s p t r
( new qam4_ic_impl ( ) ) ;

}

/∗
∗ The p r i v a t e c o n s t r u c t o r
∗ /

qam4_ic_impl : : qam4_ic_impl ( )
: g r : : b l o c k ( " qam4_ic " ,

g r : : i o _ s i g n a t u r e : : make ( 1 , 1 , s i z e o f ( i n t ) ) ,
g r : : i o _ s i g n a t u r e : : make ( 1 , 1 , s i z e o f ( gr_complex ) ) )

{}

/∗
∗ Our v i r t u a l d e s t r u c t o r .
∗ /

qam4_ic_impl : : ~ qam4_ic_impl ( )
{
}

vo id
qam4_ic_impl : : f o r e c a s t ( i n t n o u t p u t _ i t e m s , g r _ v e c t o r _ i n t &n i n p u t _ i t e m s _ r e q u i r e d )
{

n i n p u t _ i t e m s _ r e q u i r e d [ 0 ] = n o u t p u t _ i t e m s ;
}

i n t
qam4_ic_impl : : g e n e r a l _ w o r k ( i n t n o u t p u t _ i t e m s ,

g r _ v e c t o r _ i n t &n i n p u t _ i t e m s ,
g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &i n p u t _ i t e m s ,
g r _ v e c t o r _ v o i d _ s t a r &o u t p u t _ i t e m s )

{
c o n s t i n t ∗ i n = ( c o n s t i n t ∗ ) i n p u t _ i t e m s [ 0 ] ;
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gr_complex ∗ o u t = ( gr_complex ∗ ) o u t p u t _ i t e m s [ 0 ] ;

f o r ( i n t i = 0 ; i < n o u t p u t _ i t e m s ; i ++)
{

s w i t c h ( i n [ i ] )
{

c a s e 0 :
o u t [ i ] = gr_complex (−1 ,−1);
b r e a k ;

c a s e 1 :
o u t [ i ] = gr_complex ( −1 ,1 ) ;
b r e a k ;

c a s e 2 :
o u t [ i ] = gr_complex (1 , −1) ;
b r e a k ;

c a s e 3 :
o u t [ i ] = gr_complex ( 1 , 1 ) ;
b r e a k ;

d e f a u l t :
o u t [ i ] = gr_complex ( 0 , 0 ) ;

}
}

/ / Do <+ s i g n a l p r o c e s s i n g +>
/ / T e l l r u n t i m e sys tem how many i n p u t i t e m s we consumed on
/ / each i n p u t s t r e a m .
consume_each ( n o u t p u t _ i t e m s ) ;

/ / T e l l r u n t i m e sys tem how many o u t p u t i t e m s we produced .
r e t u r n n o u t p u t _ i t e m s ;

}

} /∗ namespace mynewmod ∗ /
} /∗ namespace g r ∗ /

Implementation XML file
<?xml v e r s i o n ="1 .0"? >
<block >

<name>qam4_ic < / name>
<key >mynewmod_qam4_ic < / key >
< c a t e g o r y >mynewmod </ c a t e g o r y >
< impor t > i m p o r t mynewmod </ impor t >
<make>mynewmod . qam4_ic ( ) < / make>
< s ink >

<name>in < / name>
< type > i n t < / type >

</ s ink >
< sou rce >

<name>out < / name>
< type >complex < / type >

</ sou rce >
</ b lock >

A.2.2 qam16_ic implementation in OOT module
Implementation header file
/∗ −∗− c++ −∗− ∗ /
/∗
∗ C o p y r i g h t 2017 <+YOU OR YOUR COMPANY+ >.
∗
∗ Thi s i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify
∗ i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
∗ t h e F ree S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 3 , o r ( a t your o p t i o n )
∗ any l a t e r v e r s i o n .
∗
∗ Thi s s o f t w a r e i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
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∗ b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
∗
∗ You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
∗ a l o n g wi th t h i s s o f t w a r e ; s e e t h e f i l e COPYING . I f not , w r i t e t o
∗ t h e F ree S o f t w a r e Founda t ion , I n c . , 51 F r a n k l i n S t r e e t ,
∗ Boston , MA 02110−1301 , USA.
∗ /

# i f n d e f INCLUDED_MYNEWMOD_QAM16_IC_IMPL_H
# d e f i n e INCLUDED_MYNEWMOD_QAM16_IC_IMPL_H

# i n c l u d e <mynewmod / qam16_ic . h>

namespace g r {
namespace mynewmod {

c l a s s qam16_ic_impl : p u b l i c qam16_ic
{

p r i v a t e :
/ / Noth ing t o d e c l a r e i n t h i s b l o c k .

p u b l i c :
qam16_ic_impl ( ) ;
~ qam16_ic_impl ( ) ;

/ / Where a l l t h e a c t i o n r e a l l y happens
vo id f o r e c a s t ( i n t n o u t p u t _ i t e m s , g r _ v e c t o r _ i n t &n i n p u t _ i t e m s _ r e q u i r e d ) ;

i n t g e n e r a l _ w o r k ( i n t n o u t p u t _ i t e m s ,
g r _ v e c t o r _ i n t &n i n p u t _ i t e m s ,
g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &i n p u t _ i t e m s ,
g r _ v e c t o r _ v o i d _ s t a r &o u t p u t _ i t e m s ) ;

} ;

} / / namespace mynewmod
} / / namespace g r

# e n d i f /∗ INCLUDED_MYNEWMOD_QAM16_IC_IMPL_H ∗ /

Implementation source file
/∗ −∗− c++ −∗− ∗ /
/∗
∗ C o p y r i g h t 2017 <+YOU OR YOUR COMPANY+ >.
∗
∗ Thi s i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify
∗ i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
∗ t h e F ree S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 3 , o r ( a t your o p t i o n )
∗ any l a t e r v e r s i o n .
∗
∗ Thi s s o f t w a r e i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
∗ b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
∗
∗ You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
∗ a l o n g wi th t h i s s o f t w a r e ; s e e t h e f i l e COPYING . I f not , w r i t e t o
∗ t h e F ree S o f t w a r e Founda t ion , I n c . , 51 F r a n k l i n S t r e e t ,
∗ Boston , MA 02110−1301 , USA.
∗ /

# i f d e f HAVE_CONFIG_H
# i n c l u d e " c o n f i g . h "
# e n d i f

# i n c l u d e < g n u r a d i o / i o _ s i g n a t u r e . h>
# i n c l u d e " qam16_ic_impl . h "

namespace g r {
namespace mynewmod {

qam16_ic : : s p t r
qam16_ic : : make ( )
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{
r e t u r n g n u r a d i o : : g e t _ i n i t i a l _ s p t r

( new qam16_ic_impl ( ) ) ;
}

/∗
∗ The p r i v a t e c o n s t r u c t o r
∗ /

qam16_ic_impl : : qam16_ic_impl ( )
: g r : : b l o c k ( " qam16_ic " ,

g r : : i o _ s i g n a t u r e : : make ( 1 , 1 , s i z e o f ( i n t ) ) ,
g r : : i o _ s i g n a t u r e : : make ( 1 , 1 , s i z e o f ( gr_complex ) ) )

{}

/∗
∗ Our v i r t u a l d e s t r u c t o r .
∗ /

qam16_ic_impl : : ~ qam16_ic_impl ( )
{
}

vo id
qam16_ic_impl : : f o r e c a s t ( i n t n o u t p u t _ i t e m s , g r _ v e c t o r _ i n t &n i n p u t _ i t e m s _ r e q u i r e d )
{

n i n p u t _ i t e m s _ r e q u i r e d [ 0 ] = n o u t p u t _ i t e m s ;
}

i n t
qam16_ic_impl : : g e n e r a l _ w o r k ( i n t n o u t p u t _ i t e m s ,

g r _ v e c t o r _ i n t &n i n p u t _ i t e m s ,
g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &i n p u t _ i t e m s ,
g r _ v e c t o r _ v o i d _ s t a r &o u t p u t _ i t e m s )

{
c o n s t i n t ∗ i n = ( c o n s t i n t ∗ ) i n p u t _ i t e m s [ 0 ] ;
gr_complex ∗ o u t = ( gr_complex ∗ ) o u t p u t _ i t e m s [ 0 ] ;

f o r ( i n t i = 0 ; i < n o u t p u t _ i t e m s ; i ++)
{

s w i t c h ( i n [ i ] )
{

c a s e 0 :
o u t [ i ] = gr_complex (−3 ,−3);
b r e a k ;

c a s e 1 :
o u t [ i ] = gr_complex (−3 ,−1);
b r e a k ;

c a s e 2 :
o u t [ i ] = gr_complex ( −3 ,3 ) ;
b r e a k ;

c a s e 3 :
o u t [ i ] = gr_complex ( −3 ,1 ) ;
b r e a k ;

c a s e 4 :
o u t [ i ] = gr_complex (−1 ,−3);
b r e a k ;

c a s e 5 :
o u t [ i ] = gr_complex (−1 ,−1);
b r e a k ;

c a s e 6 :
o u t [ i ] = gr_complex ( −1 ,3 ) ;
b r e a k ;

c a s e 7 :
o u t [ i ] = gr_complex ( −1 ,1 ) ;
b r e a k ;

c a s e 8 :
o u t [ i ] = gr_complex (3 , −3) ;
b r e a k ;

c a s e 9 :
o u t [ i ] = gr_complex (3 , −1) ;
b r e a k ;

c a s e 1 0 :
o u t [ i ] = gr_complex ( 3 , 3 ) ;
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b r e a k ;
c a s e 1 1 :

o u t [ i ] = gr_complex ( 3 , 1 ) ;
b r e a k ;

c a s e 1 2 :
o u t [ i ] = gr_complex (1 , −3) ;
b r e a k ;

c a s e 1 3 :
o u t [ i ] = gr_complex (1 , −1) ;
b r e a k ;

c a s e 1 4 :
o u t [ i ] = gr_complex ( 1 , 3 ) ;
b r e a k ;

c a s e 1 5 :
o u t [ i ] = gr_complex ( 1 , 1 ) ;
b r e a k ;

d e f a u l t :
o u t [ i ] = gr_complex ( 0 , 0 ) ;

}
}

/ / Do <+ s i g n a l p r o c e s s i n g +>
/ / T e l l r u n t i m e sys tem how many i n p u t i t e m s we consumed on
/ / each i n p u t s t r e a m .
consume_each ( n o u t p u t _ i t e m s ) ;

/ / T e l l r u n t i m e sys tem how many o u t p u t i t e m s we produced .
r e t u r n n o u t p u t _ i t e m s ;

}

} /∗ namespace mynewmod ∗ /
} /∗ namespace g r ∗ /

Implementation XML file
<?xml v e r s i o n ="1 .0"? >
<block >

<name>qam16_ic < / name>
<key >mynewmod_qam16_ic < / key >
< c a t e g o r y >mynewmod </ c a t e g o r y >
< impor t > i m p o r t mynewmod </ impor t >
<make>mynewmod . qam16_ic ( ) < / make>
< s ink >

<name>in < / name>
< type > i n t < / type >

</ s ink >
< sou rce >

<name>out < / name>
< type >complex < / type >

</ sou rce >
</ b lock >

A.2.3 qam32_ic implementation in OOT module
Implementation header file
/∗ −∗− c++ −∗− ∗ /
/∗
∗ C o p y r i g h t 2017 <+YOU OR YOUR COMPANY+ >.
∗
∗ Thi s i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify
∗ i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
∗ t h e F ree S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 3 , o r ( a t your o p t i o n )
∗ any l a t e r v e r s i o n .
∗
∗ Thi s s o f t w a r e i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
∗ b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
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∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
∗
∗ You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
∗ a l o n g wi th t h i s s o f t w a r e ; s e e t h e f i l e COPYING . I f not , w r i t e t o
∗ t h e F ree S o f t w a r e Founda t ion , I n c . , 51 F r a n k l i n S t r e e t ,
∗ Boston , MA 02110−1301 , USA.
∗ /

# i f n d e f INCLUDED_MYNEWMOD_QAM32_IC_IMPL_H
# d e f i n e INCLUDED_MYNEWMOD_QAM32_IC_IMPL_H

# i n c l u d e <mynewmod / qam32_ic . h>

namespace g r {
namespace mynewmod {

c l a s s qam32_ic_impl : p u b l i c qam32_ic
{

p r i v a t e :
/ / Noth ing t o d e c l a r e i n t h i s b l o c k .

p u b l i c :
qam32_ic_impl ( ) ;
~ qam32_ic_impl ( ) ;

/ / Where a l l t h e a c t i o n r e a l l y happens
vo id f o r e c a s t ( i n t n o u t p u t _ i t e m s , g r _ v e c t o r _ i n t &n i n p u t _ i t e m s _ r e q u i r e d ) ;

i n t g e n e r a l _ w o r k ( i n t n o u t p u t _ i t e m s ,
g r _ v e c t o r _ i n t &n i n p u t _ i t e m s ,
g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &i n p u t _ i t e m s ,
g r _ v e c t o r _ v o i d _ s t a r &o u t p u t _ i t e m s ) ;

} ;

} / / namespace mynewmod
} / / namespace g r

# e n d i f /∗ INCLUDED_MYNEWMOD_QAM32_IC_IMPL_H ∗ /

Implementation source file
/∗ −∗− c++ −∗− ∗ /
/∗
∗ C o p y r i g h t 2017 <+YOU OR YOUR COMPANY+ >.
∗
∗ Thi s i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r modify
∗ i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
∗ t h e F ree S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 3 , o r ( a t your o p t i o n )
∗ any l a t e r v e r s i o n .
∗
∗ Thi s s o f t w a r e i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
∗ b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
∗
∗ You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
∗ a l o n g wi th t h i s s o f t w a r e ; s e e t h e f i l e COPYING . I f not , w r i t e t o
∗ t h e F ree S o f t w a r e Founda t ion , I n c . , 51 F r a n k l i n S t r e e t ,
∗ Boston , MA 02110−1301 , USA.
∗ /

# i f d e f HAVE_CONFIG_H
# i n c l u d e " c o n f i g . h "
# e n d i f

# i n c l u d e < g n u r a d i o / i o _ s i g n a t u r e . h>
# i n c l u d e " qam32_ic_impl . h "

namespace g r {
namespace mynewmod {

qam32_ic : : s p t r
qam32_ic : : make ( )
{

r e t u r n g n u r a d i o : : g e t _ i n i t i a l _ s p t r
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( new qam32_ic_impl ( ) ) ;
}

/∗
∗ The p r i v a t e c o n s t r u c t o r
∗ /

qam32_ic_impl : : qam32_ic_impl ( )
: g r : : b l o c k ( " qam32_ic " ,

g r : : i o _ s i g n a t u r e : : make ( 1 , 1 , s i z e o f ( i n t ) ) ,
g r : : i o _ s i g n a t u r e : : make ( 1 , 1 , s i z e o f ( gr_complex ) ) )

{}

/∗
∗ Our v i r t u a l d e s t r u c t o r .
∗ /

qam32_ic_impl : : ~ qam32_ic_impl ( )
{
}

vo id
qam32_ic_impl : : f o r e c a s t ( i n t n o u t p u t _ i t e m s , g r _ v e c t o r _ i n t &n i n p u t _ i t e m s _ r e q u i r e d )
{

n i n p u t _ i t e m s _ r e q u i r e d [ 0 ] = n o u t p u t _ i t e m s ;
}

i n t
qam32_ic_impl : : g e n e r a l _ w o r k ( i n t n o u t p u t _ i t e m s ,

g r _ v e c t o r _ i n t &n i n p u t _ i t e m s ,
g r _ v e c t o r _ c o n s t _ v o i d _ s t a r &i n p u t _ i t e m s ,
g r _ v e c t o r _ v o i d _ s t a r &o u t p u t _ i t e m s )

{
c o n s t i n t ∗ i n = ( c o n s t i n t ∗ ) i n p u t _ i t e m s [ 0 ] ;
gr_complex ∗ o u t = ( gr_complex ∗ ) o u t p u t _ i t e m s [ 0 ] ;

f o r ( i n t i = 0 ; i < n o u t p u t _ i t e m s ; i ++)
{

s w i t c h ( i n [ i ] )
{

c a s e 0 :
o u t [ i ] = gr_complex ( −3 ,5 ) ;
b r e a k ;

c a s e 1 :
o u t [ i ] = gr_complex ( −1 ,5 ) ;
b r e a k ;

c a s e 2 :
o u t [ i ] = gr_complex (−3 ,−5);
b r e a k ;

c a s e 3 :
o u t [ i ] = gr_complex (−1 ,−5);
b r e a k ;

c a s e 4 :
o u t [ i ] = gr_complex ( −5 ,3 ) ;
b r e a k ;

c a s e 5 :
o u t [ i ] = gr_complex ( −5 ,1 ) ;
b r e a k ;

c a s e 6 :
o u t [ i ] = gr_complex (−5 ,−3);
b r e a k ;

c a s e 7 :
o u t [ i ] = gr_complex (−5 ,−1);
b r e a k ;

c a s e 8 :
o u t [ i ] = gr_complex ( −1 ,3 ) ;
b r e a k ;

c a s e 9 :
o u t [ i ] = gr_complex ( −1 ,1 ) ;
b r e a k ;

c a s e 1 0 :
o u t [ i ] = gr_complex (−1 ,−3);
b r e a k ;

c a s e 1 1 :
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o u t [ i ] = gr_complex (−1 ,−1);
b r e a k ;

c a s e 1 2 :
o u t [ i ] = gr_complex ( −3 ,3 ) ;
b r e a k ;

c a s e 1 3 :
o u t [ i ] = gr_complex ( −3 ,1 ) ;
b r e a k ;

c a s e 1 4 :
o u t [ i ] = gr_complex (−3 ,−3);
b r e a k ;

c a s e 1 5 :
o u t [ i ] = gr_complex (−3 ,−1);
b r e a k ;

c a s e 1 6 :
o u t [ i ] = gr_complex ( 3 , 5 ) ;
b r e a k ;

c a s e 1 7 :
o u t [ i ] = gr_complex ( 1 , 5 ) ;
b r e a k ;

c a s e 1 8 :
o u t [ i ] = gr_complex (3 , −5) ;
b r e a k ;

c a s e 1 9 :
o u t [ i ] = gr_complex (1 , −5) ;
b r e a k ;

c a s e 2 0 :
o u t [ i ] = gr_complex ( 5 , 3 ) ;
b r e a k ;

c a s e 2 1 :
o u t [ i ] = gr_complex ( 5 , 1 ) ;
b r e a k ;

c a s e 2 2 :
o u t [ i ] = gr_complex (5 , −3) ;
b r e a k ;

c a s e 2 3 :
o u t [ i ] = gr_complex (5 , −1) ;
b r e a k ;

c a s e 2 4 :
o u t [ i ] = gr_complex ( 1 , 3 ) ;
b r e a k ;

c a s e 2 5 :
o u t [ i ] = gr_complex ( 1 , 1 ) ;
b r e a k ;

c a s e 2 6 :
o u t [ i ] = gr_complex (1 , −3) ;
b r e a k ;

c a s e 2 7 :
o u t [ i ] = gr_complex (1 , −1) ;
b r e a k ;

c a s e 2 8 :
o u t [ i ] = gr_complex ( 3 , 3 ) ;
b r e a k ;

c a s e 2 9 :
o u t [ i ] = gr_complex ( 3 , 1 ) ;
b r e a k ;

c a s e 3 0 :
o u t [ i ] = gr_complex (3 , −3) ;
b r e a k ;

c a s e 3 1 :
o u t [ i ] = gr_complex (3 , −1) ;
b r e a k ;

d e f a u l t :
o u t [ i ] = gr_complex ( 0 , 0 ) ;

}
}

/ / Do <+ s i g n a l p r o c e s s i n g +>
/ / T e l l r u n t i m e sys tem how many i n p u t i t e m s we consumed on
/ / each i n p u t s t r e a m .
consume_each ( n o u t p u t _ i t e m s ) ;
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/ / T e l l r u n t i m e sys tem how many o u t p u t i t e m s we produced .
r e t u r n n o u t p u t _ i t e m s ;

}

} /∗ namespace mynewmod ∗ /
} /∗ namespace g r ∗ /

Implementation XML file
<?xml v e r s i o n ="1 .0"? >
<block >

<name>qam32_ic < / name>
<key >mynewmod_qam32_ic < / key >
< c a t e g o r y >mynewmod </ c a t e g o r y >
< impor t > i m p o r t mynewmod </ impor t >
<make>mynewmod . qam32_ic ( ) < / make>
< s ink >

<name>in < / name>
< type > i n t < / type >

</ s ink >
< sou rce >

<name>out < / name>
< type >complex < / type >

</ sou rce >
</ b lock >

A.3 TensorFlow Code

A.3.1 Data capture segmentation
# For 0dB Samples
import numpy as np
import s t r u c t
import os
os . c h d i r ( ’ p a t h _ t o _ l o c a t i o n _ o f _ c a p t u r e d _ f i l e ’ )

F i l e C l a s s = [ ’ bpsk ’ , ’ qam4 ’ , ’ qam16 ’ , ’ qam32 ’ ,
’ ofdm_bpsk ’ , ’ ofdm_qam4 ’ , ’ ofdm_qam16 ’ , ’ ofdm_qam32 ’ ]

N _ l i s t = [ 5 1 2 , 1024 , 2048]

f o r f i l e s t r in F i l e C l a s s :
F i l e D i r = ’ p a t h _ t o _ l o c a t i o n _ o f _ c a p t u r e d _ f i l e / ’+ f i l e s t r
os . c h d i r ( F i l e D i r )

f o r N in N _ l i s t :
os . c h d i r ( F i l e D i r )
# load d a t a s e t s
#N = 512 # No . o f I n p u t samp les per b l o c k {N/ 2 I and Q samples }
N f i l e s = 1000 # No . o f f i l e s t o p l a y w i t h
N d i s c a r d = 2000 # No . o f i n i t i a l samples t o d i s c a r d
Nblocks = 20 # No . o f b l o c k s per f i l e

d a t a = np . z e r o s ( [ N, N f i l e s ∗Nblocks ] )

b lock_no = 0 ; # I t e r a t o r f o r b l o c k s o f 1000 samples each
f o r k in range ( N f i l e s ) :

f i l e n a m e = f i l e s t r + ’ _ ’+ s t r ( k +1)+ " . d a t "
p r i n t ( f i l e n a m e )
fh = open ( f i l e n a m e , ’ rb ’ ) ;
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# d i s c a r d M samples
f o r i in range ( N d i s c a r d ) :

s t r u c t . unpack ( ’ f ’ , fh . r e a d ( 4 ) )

# For S t a n da r d M o d u l a t i o n s we have 1 e6 I and Q samples , so t o t a l o f 2 e6 samples .
# A f t e r d i s c a r d i n g 2 e3 samples , we are l e f t w i t h 2e6−2e3 sample s .
# Only 200 e3 samples are ’ un iqu e symbo l s ’ which g i v e s us
# 200 chunks 1 e3 samples each .
# S i n c e t h a t i s t o o much memory t o work w i t h . we are
# o n l y p i c k i n g 20 b l o c k s w i t h 2 e3 samples gaps i n be tween

f o r _ in range ( Nblocks ) :
f o r i in range (N ) :

( d a t a [ i , b lock_no ] , ) = s t r u c t . unpack ( ’ f ’ , fh . r e a d ( 4 ) )

# d i s c a r d M samples
f o r i in range ( N d i s c a r d ) :

s t r u c t . unpack ( ’ f ’ , fh . r e a d ( 4 ) )

b lock_no = b lock_no + 1 ;

fh . c l o s e ( )

os . c h d i r ( ’ p a t h _ t o _ l o c a t i o n _ f o r _ s a v i n g / a r r a y _ s a v e ’ )

o u t f i l e n a m e = f i l e s t r + ’ _data_0dB_ ’ + s t r ( i n t (N / 2 ) ) + ’ . d a t ’ ;
# o u t f i l e n a m e = f i l e s t r + ’ _data_5dB_ ’ + s t r ( i n t (N / 2 ) ) + ’ . d a t ’ ;
# o u t f i l e n a m e = f i l e s t r + ’ _data_10dB_ ’ + s t r ( i n t (N / 2 ) ) + ’ . d a t ’ ;
fh = open ( o u t f i l e n a m e , ’wb ’ ) ;
np . s ave ( fh , d a t a )
fh . c l o s e ( )

p r i n t ( ’ done ! ’ )

# To Load t h e F i l e
## da ta2 = np . z e r o s ( [ N , 1 0 0 0 ] ) ;
## o u t f i l e n a m e = ’ ofdm_qam32_data_0dB_ ’ + s t r (N) + ’ . d a t ’ ;
## f h = open ( o u t f i l e n a m e , ’ rb ’ ) ;
## da ta2 = np . l oad ( f h )
## f h . c l o s e ( )
##
## p r i n t ( ’ done ! ’ )

A.3.2 MLP for single SNR data
import t e n s o r f l o w as t f
import m a t p l o t l i b . p y p l o t a s p l t
import numpy as np
import os
import random

# load d a t a s e t s
N f i l e s = 1000
N = 500 # No . o f I n p u t samples
Nblocks = 20 # No o f b l o c k per f i l e
Nmod = 4
N t r a i n = 900 ∗ Nblocks # No . t r a i n i n g da ta examples
Nval = 100 ∗ Nblocks # No . v a l i d a t i o n da ta examples
N t r a i n F i l e s = 900 # No . o f t r a i n da ta f i l e s (∗2 0 )

os . c h d i r ( ’ p a t h _ t o _ s a v e d _ f i l e s / o r i g i n a l / a r r a y _ s a v e ’ )

def l o a d _ d a t a ( f i l e n a m e ,N ) :
i n f i l e = open ( f i l e n a m e , ’ rb ’ )
tmp = np . l o a d ( i n f i l e )
tmp = tmp . T
d a t a = tmp [ : , 0 : N∗2 : 2 ]
i n f i l e . c l o s e ( )
re turn ( d a t a )

def n o r m a l i z e _ d a t a ( input ) :

97



APPENDIX A. RELEVANT SOURCE CODE

o u t p u t = ( input / max ( abs ( input ) ) )
re turn o u t p u t

N s t r = 1000
f i l e n a m e = ’ bpsk_da ta_0dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
b p s k _ d a t a = l o a d _ d a t a ( f i l e n a m e ,N)

f i l e n a m e = ’ qam4_data_0dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
qam4_data = l o a d _ d a t a ( f i l e n a m e ,N)

f i l e n a m e = ’ qam16_data_0dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
qam16_data = l o a d _ d a t a ( f i l e n a m e ,N)

f i l e n a m e = ’ qam32_data_0dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
qam32_data = l o a d _ d a t a ( f i l e n a m e ,N)

# Norma l i z e a l l da ta ( T r i e d t h i s because I though t h e i n p u t migh t be t o o s m a l l )
f o r i in range ( N f i l e s ∗Nblocks ) :

b p s k _ d a t a [ i , : ] = n o r m a l i z e _ d a t a ( b p s k _ d a t a [ i , : ] )
qam4_data [ i , : ] = n o r m a l i z e _ d a t a ( qam4_data [ i , : ] )
qam16_data [ i , : ] = n o r m a l i z e _ d a t a ( qam16_data [ i , : ] )
qam32_data [ i , : ] = n o r m a l i z e _ d a t a ( qam32_data [ i , : ] )

# s h u f f l e a r r a y
sm_index = np . a r a n g e ( 0 , N t r a i n ) ; # s m a l l i n d e x f o r each c l a s s
random . s h u f f l e ( sm_index )

# t r a i n i n g w i t h 900 ∗ 20 = 18000 examples
N t r a i n = 900 ∗ Nblocks
t r a i n _ d a t a = np . z e r o s ( [ N t r a i n ∗Nmod ,N] )
y _ t r a i n = np . z e r o s ( [ N t r a i n ∗Nmod , Nmod ] ) + 0 . 1 # Ground T r u t h
t r a i n _ d a t a [0∗ N t r a i n :1∗ N t r a i n , : ] = b p s k _ d a t a [ sm_index [ 0 : N t r a i n ] , : ]
t r a i n _ d a t a [1∗ N t r a i n :2∗ N t r a i n , : ] = qam4_data [ sm_index [ 0 : N t r a i n ] , : ]
t r a i n _ d a t a [2∗ N t r a i n :3∗ N t r a i n , : ] = qam16_data [ sm_index [ 0 : N t r a i n ] , : ]
t r a i n _ d a t a [3∗ N t r a i n :4∗ N t r a i n , : ] = qam32_data [ sm_index [ 0 : N t r a i n ] , : ]
y _ t r a i n [0∗ N t r a i n :1∗ N t r a i n , 0 ] = 1
y _ t r a i n [1∗ N t r a i n :2∗ N t r a i n , 1 ] = 1
y _ t r a i n [2∗ N t r a i n :3∗ N t r a i n , 2 ] = 1
y _ t r a i n [3∗ N t r a i n :4∗ N t r a i n , 3 ] = 1

# t e s t i n g w i t h 100 ∗ 20 = 2000 examples
Nval = 100 ∗ Nblocks # v a l i d a t i o n da ta
v a l _ d a t a = np . z e r o s ( [ Nval∗Nmod ,N] )
y _ v a l = np . z e r o s ( [ Nval∗Nmod , Nmod ] ) + 0 . 1
v a l _ d a t a [0∗ Nval :1∗ Nval , : ] = b p s k _ d a t a [ N t r a i n : , : ]
v a l _ d a t a [1∗ Nval :2∗ Nval , : ] = qam4_data [ N t r a i n : , : ]
v a l _ d a t a [2∗ Nval :3∗ Nval , : ] = qam16_data [ N t r a i n : , : ]
v a l _ d a t a [3∗ Nval :4∗ Nval , : ] = qam32_data [ N t r a i n : , : ]
y _ v a l [0∗ Nval :1∗ Nval , 0 ] = 1
y _ v a l [1∗ Nval :2∗ Nval , 1 ] = 1
y _ v a l [2∗ Nval :3∗ Nval , 2 ] = 1
y _ v a l [3∗ Nval :4∗ Nval , 3 ] = 1

# Randomize t r a i n i n g s e t
b i g _ i n d e x = np . a r a n g e ( 0 ,Nmod∗N t r a i n ) ; # b i g i n d e x f o r a l l c l a s s
random . s h u f f l e ( b i g _ i n d e x )

t r a i n _ d a t a [ : , : ] = t r a i n _ d a t a [ b i g _ i n d e x , : ]
y _ t r a i n [ : , : ] = y _ t r a i n [ b i g _ i n d e x , : ]

# model i n p u t / o u t p u t ( P l a c e h o l d e r s )
x = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , shape =[ None ,N] )
y_ = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , shape =[ None , Nmod ] )

M = 200 # F r i s t Layer Outpu t Nodes
L = 4 # Second Layer Outpu t Node
# f i r s t l a y e r
W1 = t f . V a r i a b l e ( t f . t r u n c a t e d _ n o r m a l ( [ N,M] , s t d d e v = 0 . 1 ) )
b1 = t f . V a r i a b l e ( t f . c o n s t a n t ( 0 . 1 , d t y p e = t f . f l o a t 3 2 , shape =[M] ) )
f c 1 = t f . nn . r e l u ( t f . matmul ( x ,W1) + b1 )
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# Readout l a y e r
W2 = t f . V a r i a b l e ( t f . t r u n c a t e d _ n o r m a l ( [M, L ] , s t d d e v = 0 . 1 ) )
b2 = t f . V a r i a b l e ( t f . c o n s t a n t ( 0 . 1 , d t y p e = t f . f l o a t 3 2 , shape =[L ] ) )

# model
y = ( t f . matmul ( fc1 ,W2)+ b2 ) # l i n e a r r e g r e s s i o n model
# l o s s f u n c t i o n
c r o s s _ e n t r o p y = t f . reduce_mean ( t f . nn . s o f t m a x _ c r o s s _ e n t r o p y _ w i t h _ l o g i t s ( l a b e l s =y_ ,

l o g i t s =y ) )

# T r a i n i n g Method
t r a i n _ s t e p = t f . t r a i n . G r a d i e n t D e s c e n t O p t i m i z e r ( 0 . 5 ) . min imize ( c r o s s _ e n t r o p y )

# check model pe r fo rmance
c o r r e c t _ p r e d i c t i o n = t f . e q u a l ( t f . argmax ( y , 1 ) , t f . argmax ( y_ , 1 ) )
a c c u r a c y = t f . reduce_mean ( t f . c a s t ( c o r r e c t _ p r e d i c t i o n , t f . f l o a t 3 2 ) )

# S e s s i o n
s e s s = t f . I n t e r a c t i v e S e s s i o n ( )
s e s s . run ( t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( ) )

Nbatch = 100
Nrange = i n t ( ( N t r a i n ∗Nmod ) / Nbatch )
acc = np . z e r o s ( i n t ( Nrange / 5 ) )
x e n t = np . z e r o s ( i n t ( Nrange / 5 ) )
o u t = np . z e r o s ( [ Nbatch , Nmod ] )

# T r a i n
k = 0 ;
f o r i in range ( 7 2 0 ) :

t r a i n _ s t e p _ d a t a = f e e d _ d i c t ={x : t r a i n _ d a t a [ i ∗Nbatch : ( i ∗Nbatch )+ Nbatch , : ] ,
y_ : y _ t r a i n [ i ∗Nbatch : ( i ∗Nbatch )+ Nbatch , : ] }

s e s s . run ( t r a i n _ s t e p , t r a i n _ s t e p _ d a t a )
# check p r o g r e s s
i f i%5 == 0 :

wo , yo , a , c = s e s s . run ( [W1, y , accu racy , c r o s s _ e n t r o p y ] , t r a i n _ s t e p _ d a t a )
wout = wo
o u t = yo
acc [ k ] = a
x e n t [ k ] = c
k = k + 1 ;

p l t . f i g u r e ( 1 )
p l t . p l o t ( acc , l a b e l =" acc " )
p l t . t i t l e ( ’ Accuracy ’ )
p l t . l e g e n d ( b b o x _ t o _ a n c h o r = ( 1 . 0 5 , 1 ) , l o c =2 , b o r d e r a x e s p a d = 0 . )

p l t . f i g u r e ( 2 )
p l t . p l o t ( xen t , l a b e l =" c r o s s e n t r o p y " )
p l t . t i t l e ( ’ Cross En t ropy ’ )
p l t . l e g e n d ( b b o x _ t o _ a n c h o r = ( 1 . 0 5 , 1 ) , l o c =2 , b o r d e r a x e s p a d = 0 . )

p r i n t ( a c c u r a c y . e v a l ( f e e d _ d i c t ={x : v a l _ d a t a , y_ : y _ v a l } ) )
s e s s . c l o s e ( )

A.3.3 CNN for single SNR data
import t e n s o r f l o w as t f
import m a t p l o t l i b . p y p l o t a s p l t
import numpy as np
import os
import random

# S e l e c t
modClas sS tanda rd = [ ’ bpsk ’ , ’qam4 ’ , ’ qam16 ’ , ’ qam32 ’ ]
modClassOfdm = [ ’ ofdm_bpsk ’ , ’ ofdm_qam4 ’ , ’ ofdm_qam16 ’ , ’ ofdm_qam32 ’ ]
modClassAl l = modClas sS tanda rd + modClassOfdm
N l i s t = [ 2 5 6 , 512 , 1024] # Ex : 256 I and Q samples ( t o t a l samples 256 ∗ 2)

# F i l e D i r = ’D : / J u s t i n / Documents / T h e s i s / Data_Acq / c a p t u r e s / o r i g i n a l / a r r a y _ s a v e ’
# F i l e D i r = ’D : / J u s t i n / Documents / T h e s i s / Data_Acq / c a p t u r e s / p l u s 5 / a r r a y _ s a v e ’
F i l e D i r = ’D : / J u s t i n / Documents / T h e s i s / Data_Acq / c a p t u r e s / p l u s 1 0 / a r r a y _ s a v e ’
os . c h d i r ( F i l e D i r )
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C l a s s t y p e = modClassAl l
N = N l i s t [ 2 ]

# T r a i n i n g & T e s t i n g s i z e
N f i l e s = 1000 # Fixed
Nmod = l e n ( C l a s s t y p e ) # No . o f c l a s s e s ( m o d u l a t i o n s )
Nblocks = 20 # No o f b l o c k per f i l e
N t r a i n = 800 ∗ Nblocks # No . t r a i n i n g da ta examples
Nval = 100 ∗ Nblocks # No . v a l i d a t i o n da ta examples
N t e s t = 100 ∗ Nblocks # No . v a l i d a t i o n da ta examples

# F u n c t i o n D e f i n i t i o n s
def w e i g h t _ v a r i a b l e ( shape , name ) :

i n i t i a l = t f . t r u n c a t e d _ n o r m a l ( shape , s t d d e v = 0 . 1 )
re turn t f . V a r i a b l e ( i n i t i a l , name=name )

def b i a s _ v a r i a b l e ( shape , name ) :
i n i t i a l = t f . c o n s t a n t ( 0 . 1 , shape = shape ) # P o s i t i v e b i a s because we w i l l be u s i n g RelU
re turn t f . V a r i a b l e ( i n i t i a l , name=name )

def conv2d ( x ,W, name ) :
re turn t f . nn . conv2d ( x , W, s t r i d e s = [ 1 , 1 , 1 , 1 ] , padd ing = ’SAME’ , name=name )

def max_pool_2x2 ( x , name ) :
re turn t f . nn . max_pool ( x , k s i z e = [ 1 , 2 , 2 , 1 ] , s t r i d e s = [ 1 , 2 , 2 , 1 ] ,

padd ing = ’SAME’ , name=name )

def max_pool_1x2 ( x , name ) :
re turn t f . nn . max_pool ( x , k s i z e = [ 1 , 1 , 2 , 1 ] , s t r i d e s = [ 1 , 1 , 2 , 1 ] ,

padd ing = ’SAME’ , name=name )

def l o a d _ d a t a ( f i l e n a m e ,N ) :
i n f i l e = open ( f i l e n a m e , ’ rb ’ )
tmp = np . l o a d ( i n f i l e )
tmp = tmp . T
d a t a = tmp [ : , 0 : N] # I and Q i n t e r l e a v e d
i n f i l e . c l o s e ( )
re turn ( d a t a )

def t e n s o r _ r e s h a p e ( x ) :
K = i n t ( x . shape [ 0 ] )
N = i n t ( x . shape [ 1 ] )
y = np . z e r o s ( [ K, 2 , i n t (N / 2 ) ] )
f o r i in range (K ) :

y [ i , 0 , : ] = x [ i , 0 : N: 2 ]
y [ i , 1 , : ] = x [ i , 1 : N: 2 ]

re turn ( y )

def r a n d o m i z e _ d a t a ( da t a , i n d e x ) :
tmp = np . z e r o s ( d a t a . shape )
f o r k in range ( d a t a . shape [ 0 ] ) :

tmp [ k , : ] = d a t a [ i n d e x [ k ] , : ]
re turn ( tmp )

# load d a t a s e t s
a l l D a t a = np . z e r o s ( [ Nmod , N f i l e s ∗Nblocks , 2 , N] )

# Randomize i n d e x e s
sm_index = np . a r a n g e ( 0 , N f i l e s ∗Nblocks ) ; # s m a l l i n d e x f o r each c l a s s
random . s h u f f l e ( sm_index )

N s t r = N
i = 0
f o r f i l e c l a s s in C l a s s t y p e :

# f i l e n a m e = f i l e c l a s s + ’ _data_0dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
# f i l e n a m e = f i l e c l a s s + ’ _data_5dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
f i l e n a m e = f i l e c l a s s + ’ _data_10dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
tmp = l o a d _ d a t a ( f i l e n a m e ,N∗2)
tmp = t e n s o r _ r e s h a p e ( tmp )
tmp = r a n d o m i z e _ d a t a ( tmp , sm_index )
a l l D a t a [ i , : ] = tmp
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i = i + 1

t r a i n _ d a t a = np . z e r o s ( [ Nmod∗N t r a i n , 2 , i n t (N ) ] )
y _ t r a i n = np . z e r o s ( [ Nmod∗N t r a i n , Nmod ] ) # Ground T r u t h
f o r i in range (Nmod ) :

t r a i n _ d a t a [ i ∗N t r a i n : ( i +1)∗ N t r a i n , : ] = a l l D a t a [ i , 0 : N t r a i n , : ] ;
y _ t r a i n [ i ∗N t r a i n : ( i +1)∗ N t r a i n , i ] = 1 ;

v a l _ d a t a = np . z e r o s ( [ Nmod∗Nval , 2 , i n t (N ) ] )
y _ v a l = np . z e r o s ( [ Nmod∗Nval , Nmod ] ) # Ground T r u t h
f o r i in range (Nmod ) :

v a l _ d a t a [ i ∗Nval : ( i +1)∗Nval , : ] = a l l D a t a [ i , N t r a i n : N t r a i n +Nval , : ] ;
y _ v a l [ i ∗Nval : ( i +1)∗Nval , i ] = 1 ;

t e s t _ d a t a = np . z e r o s ( [ Nmod∗N t e s t , 2 , i n t (N ) ] )
y _ t e s t = np . z e r o s ( [ Nmod∗N t e s t , Nmod ] ) # Ground T r u t h
f o r i in range (Nmod ) :

t e s t _ d a t a [ i ∗N t e s t : ( i +1)∗ N t e s t , : ] = a l l D a t a [ i , N t r a i n +Nval : , : ] ;
y _ t e s t [ i ∗N t e s t : ( i +1)∗ N t e s t , i ] = 1 ;

# Randomize t r a i n i n g s e t
b i g _ i n d e x = np . a r a n g e ( 0 ,Nmod∗N t r a i n ) ; # b i g i n d e x f o r a l l c l a s s
random . s h u f f l e ( b i g _ i n d e x )

t r a i n _ d a t a [ : , : ] = t r a i n _ d a t a [ b i g _ i n d e x , : ]
y _ t r a i n [ : , : ] = y _ t r a i n [ b i g _ i n d e x , : ]

# Randomize v a l i d a t i o n s e t
b i g _ i n d e x = np . a r a n g e ( 0 ,Nmod∗Nval ) ; # b i g i n d e x f o r a l l c l a s s
random . s h u f f l e ( b i g _ i n d e x )

v a l _ d a t a [ : , : ] = v a l _ d a t a [ b i g _ i n d e x , : ]
y _ v a l [ : , : ] = y _ v a l [ b i g _ i n d e x , : ]

# Randomize t e s t s e t because o f b a t c h n o r m a l i z a t i o n ( o n l y needed f o r e x t r e m e case )
b i g _ i n d e x = np . a r a n g e ( 0 ,Nmod∗N t e s t ) ; # b i g i n d e x f o r a l l c l a s s
random . s h u f f l e ( b i g _ i n d e x )
t e s t _ d a t a [ : , : ] = t e s t _ d a t a [ b i g _ i n d e x , : ]
y _ t e s t [ : , : ] = y _ t e s t [ b i g _ i n d e x , : ]

# #############################################################################
# #############################################################################

# Model 1
Nfc = 256 # Readout l a y e r
Ncv1 = 16
Ncv2 = 32
l r _ s t a r t = 0 .001

# Model 2
Nfc = 1024 # Readout l a y e r
Ncv1 = 32
Ncv2 = 64
l r _ s t a r t = 0 .005
e p s i l o n = 1e−3 # Batch N o r m a l i z a t i o n Denominator C o n s t a n t

# model i n p u t / o u t p u t ( P l a c e h o l d e r s )
x = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , shape =[ None , 2 , i n t (N ) ] )
y_ = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , shape =[ None , Nmod ] )
x_image = t f . r e s h a p e ( x , [−1 , 2 , i n t (N) , 1 ] )

# F i r s t Layer ( Conv −− ReLU −− Max P o o l i n g )
wi th t f . name_scope ( " l a y e r 1 " ) :

W_conv1 = w e i g h t _ v a r i a b l e ( [ 2 , 5 , 1 , Ncv1 ] , " W_conv1 " )
b_conv1 = b i a s _ v a r i a b l e ( [ Ncv1 ] , " b_conv1 " )
y1 = conv2d ( x_image , W_conv1 , " h_conv1 " ) + b_conv1
batch_m1 , b a t c h _ v 1 = t f . nn . moments ( y1 , [ 0 , 1 , 2 ] )
b e t a 1 = t f . V a r i a b l e ( t f . z e r o s ( [ Ncv1 ] ) )
y1 _h a t = ( y1−batch_m1 ) / t f . s q r t ( b a t c h _ v 1 + e p s i l o n )
y1_BN = y1 _h a t + b e t a 1
h_conv1 = t f . nn . r e l u ( y1_BN )
h_pool1 = max_pool_2x2 ( h_conv1 , " h_pool1 " )
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# Second Layer ( Conv −− ReLU −− Max P o o l i n g )
wi th t f . name_scope ( " l a y e r 2 " ) :

W_conv2 = w e i g h t _ v a r i a b l e ( [ 1 , 5 , Ncv1 , Ncv2 ] , " W_conv2 " ) # Minimal A c t i v a t i o n s
b_conv2 = b i a s _ v a r i a b l e ( [ Ncv2 ] , " b_conv2 " )
y2 = conv2d ( h_pool1 , W_conv2 , " h_conv2 " ) + b_conv2
batch_m2 , b a t c h _ v 2 = t f . nn . moments ( y2 , [ 0 , 1 , 2 ] )
y2 _h a t = ( y2−batch_m2 ) / t f . s q r t ( b a t c h _ v 2 + e p s i l o n )
b e t a 2 = t f . V a r i a b l e ( t f . z e r o s ( [ Ncv2 ] ) )
y2_BN = y2 _h a t + b e t a 2
h_conv2 = t f . nn . r e l u ( y2_BN )
h_pool2 = max_pool_1x2 ( h_conv2 , " h_pool2 " )

# F u l l y c o n n e c t e d l a y e r
wi th t f . name_scope ( " f c 1 " ) :

W_fc1 = w e i g h t _ v a r i a b l e ( [ 1∗ i n t (N/ 4 )∗ Ncv2 , Nfc ] , " W_fc1 " )
b_fc1 = b i a s _ v a r i a b l e ( [ Nfc ] , " b_ fc1 " )
h _ p o o l 2 _ f l a t = t f . r e s h a p e ( h_pool2 , [−1 , 1∗ i n t (N/ 4 )∗ Ncv2 ] )
y3 = t f . matmul ( h _ p o o l 2 _ f l a t , W_fc1 ) + b_fc1
batch_m3 , b a t c h _ v 3 = t f . nn . moments ( y3 , [ 0 ] )
y3 _h a t = ( y3−batch_m3 ) / t f . s q r t ( b a t c h _ v 3 + e p s i l o n )
b e t a 3 = t f . V a r i a b l e ( t f . z e r o s ( [ Nfc ] ) )
y3_BN = y3 _h a t + b e t a 3
h_fc1 = t f . nn . r e l u ( y3_BN )

# Dropout
keep_prob = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 )
h _ f c 1 _ d r o p = t f . nn . d r o p o u t ( h_fc1 , keep_prob )

# Readout Layer
wi th t f . name_scope ( " o u t p u t " ) :

w_fc3 = w e i g h t _ v a r i a b l e ( [ Nfc , Nmod ] , " w_fc3 " )
b_fc3 = b i a s _ v a r i a b l e ( [ Nmod ] , " b_fc3 " )
y_conv = t f . matmul ( h_fc1_drop , w_fc3 ) + b_fc3

# Loss F u n c t i o n
wi th t f . name_scope ( " Xent " ) :

c r o s s _ e n t r o p y = t f . reduce_mean ( t f . nn . s o f t m a x _ c r o s s _ e n t r o p y _ w i t h _ l o g i t s ( l a b e l s =y_ ,
l o g i t s =y_conv ) )

# T r a i n i n g Method
wi th t f . name_scope ( " T r a i n " ) :

s t e p = t f . V a r i a b l e ( 0 , t r a i n a b l e = F a l s e )
r a t e = t f . t r a i n . e x p o n e n t i a l _ d e c a y ( l r _ s t a r t , s t e p , 1 , 0 . 9 9 9 9 )
t r a i n _ s t e p = t f . t r a i n . AdamOptimizer ( r a t e ) . min imize ( c r o s s _ e n t r o p y , g l o b a l _ s t e p = s t e p )

# check model pe r fo rmance
wi th t f . name_scope ( " Accuracy " ) :

c o r r e c t _ p r e d i c t i o n = t f . e q u a l ( t f . argmax ( y_conv , 1 ) , t f . argmax ( y_ , 1 ) )
a c c u r a c y = t f . reduce_mean ( t f . c a s t ( c o r r e c t _ p r e d i c t i o n , t f . f l o a t 3 2 ) )

# #############################################################################
# #############################################################################

Nepoch = 5
Nbatch = 50
Nobs = 20
Nrange = i n t ( ( N t r a i n ∗Nmod ) / Nbatch )
a c c _ t r a i n = np . z e r o s ( i n t ( Nepoch∗Nrange / Nobs ) )
a c c _ v a l = np . z e r o s ( i n t ( Nepoch∗Nrange / Nobs ) )
x e n t _ t r a i n = np . z e r o s ( i n t ( Nepoch∗Nrange / Nobs ) )
x e n t _ v a l = np . z e r o s ( i n t ( Nepoch∗Nrange / Nobs ) )

# T r a i n i n g S e s s i o n
i n i t = t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( )
s e s s = t f . I n t e r a c t i v e S e s s i o n ( )
s e s s . run ( i n i t )
w r i t e r = t f . summary . F i l e W r i t e r ( "C : / tmp / conv_a rch1 " , s e s s . g raph ) # f o r 0 . 8
merged = t f . summary . m e r g e _ a l l ( )
acc_va l_ tmp = np . z e r o s ( [ i n t ( v a l _ d a t a . shape [ 0 ] / 4 0 0 0 ) ] )
x e n t _ v a l _ t m p = np . z e r o s ( [ i n t ( v a l _ d a t a . shape [ 0 ] / 4 0 0 0 ) ] )

# T r a i n i n g & V a l i d a t i o n
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k = 0 ;
t r a i n i n g _ i t r = 0 ;
f o r m in range ( Nepoch ) :

f o r i in range ( Nrange ) :
t r a i n _ s t e p _ d a t a = f e e d _ d i c t ={x : t r a i n _ d a t a [ i ∗Nbatch : ( i ∗Nbatch )+ Nbatch , : ] ,

y_ : y _ t r a i n [ i ∗Nbatch : ( i ∗Nbatch )+ Nbatch , : ] ,
keep_prob : 0 . 5 }

s e s s . run ( t r a i n _ s t e p , t r a i n _ s t e p _ d a t a )

# Check p r o g r e s s v a l i d a t i o n
i f t r a i n i n g _ i t r%Nobs == 0 :

a _ t r a i n , c _ t r a i n = s e s s . run ( [ accu racy , c r o s s _ e n t r o p y ] , t r a i n _ s t e p _ d a t a )
i f not ( ( Nmod==8) and ( C l a s s t y p e == modClassAl l ) and (N= = 1 0 2 4 ) ) :

f o r p in range ( i n t ( v a l _ d a t a . shape [ 0 ] / 4 0 0 0 ) ) :
a c c _ d a t a = f e e d _ d i c t ={x : v a l _ d a t a [ p ∗4000 :4000∗ ( p + 1 ) , : ] ,

y_ : y _ v a l [ p ∗4000 :4000∗ ( p + 1 ) , : ] ,
keep_prob : 1 . 0 }

a_va l , c _ v a l = s e s s . run ( [ accu racy , c r o s s _ e n t r o p y ] , a c c _ d a t a )
acc_va l_ tmp [ p ] = a _ v a l ;
x e n t _ v a l _ t m p [ p ] = c _ v a l ;

a c c _ v a l [ k ] = np . mean ( acc_va l_ tmp )
x e n t _ v a l [ k ] = np . mean ( x e n t _ v a l _ t m p )
a c c _ t r a i n [ k ] = a _ t r a i n
x e n t _ t r a i n [ k ] = c _ t r a i n
p r i n t ( " [ Epoch=" + s t r (m) + " , I t r =" + s t r ( i ) + " ] t r a i n acc : " +

s t r ( a _ t r a i n ) + " | v a l acc = " + s t r ( a _ v a l ) )
e l s e :

p r i n t ( " [ Epoch=" + s t r (m) + " , I t r =" + s t r ( i ) + " ] t r a i n acc : " +
s t r ( a _ t r a i n ) )

k = k + 1 ;

t r a i n i n g _ i t r = t r a i n i n g _ i t r +1

# Do t e s t i n g i n b l o c k s ( memory i s s u e )
Nmax = t e s t _ d a t a . shape [ 0 ]
Ns ize = 1000
Nrange = i n t (Nmax / Ns ize )

t e s t _ a c c = np . z e r o s ( [ Nrange , 1 ] )
import pandas as pd
c o n f u s i o n = np . z e r o s ( [ Nmod , Nmod ] , i n t )

f o r i in range ( Nrange ) :
t e s t _ a c c [ i ] = a c c u r a c y . e v a l ( f e e d _ d i c t ={x : t e s t _ d a t a [ i ∗Nsize : Ns ize ∗ ( i + 1 ) , : ] ,

y_ : y _ t e s t [ i ∗Nsize : Ns ize ∗ ( i + 1 ) , : ] ,
keep_prob : 1 . 0 } )

# C o n f u s i o n Mat r i x
r e s = t f . s t a c k ( [ t f . argmax ( y_conv , 1 ) , t f . argmax ( y_ , 1 ) ] )
ans = r e s . e v a l ( f e e d _ d i c t ={x : t e s t _ d a t a [ i ∗Nsize : Ns ize ∗ ( i + 1 ) , : ] ,

y_ : y _ t e s t [ i ∗Nsize : Ns ize ∗ ( i + 1 ) , : ] ,
keep_prob : 1 . 0 } )

f o r p in ans . T :
c o n f u s i o n [ p [ 0 ] , p [ 1 ] ] + = 1

p r i n t ( np . mean ( t e s t _ a c c ) )
p r i n t ( pd . DataFrame ( c o n f u s i o n ) )
p r i n t ( pd . DataFrame ( c o n f u s i o n / i n t ( t e s t _ d a t a . shape [ 0 ] / Nmod ) ) )

# F i g u r e s
p l t . f i g u r e ( 1 )
p l t . p l o t ( a c c _ t r a i n , l a b e l =" a c c _ t r a i n " )
p l t . p l o t ( a c c _ v a l , l a b e l =" a c c _ v a l " )
p l t . t i t l e ( ’ Accuracy ’ )
p l t . l e g e n d ( b b o x _ t o _ a n c h o r = ( 1 . 0 5 , 1 ) , l o c =2 , b o r d e r a x e s p a d = 0 . )

p l t . f i g u r e ( 2 )
p l t . p l o t ( x e n t _ t r a i n , l a b e l =" t r a i n c r o s s e n t r o p y " )
p l t . p l o t ( x e n t _ v a l , l a b e l =" v a l c r o s s e n t r o p y " )
p l t . t i t l e ( ’ Cross En t ropy ’ )
p l t . l e g e n d ( b b o x _ t o _ a n c h o r = ( 1 . 0 5 , 1 ) , l o c =2 , b o r d e r a x e s p a d = 0 . )

s e s s . c l o s e ( )
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A.3.4 CNN for multiple SNR data
import t e n s o r f l o w as t f
import m a t p l o t l i b . p y p l o t a s p l t
import numpy as np
import os
import random

# S e l e c t
modClas sS tanda rd = [ ’ bpsk ’ , ’qam4 ’ , ’ qam16 ’ , ’ qam32 ’ ]
modClassOfdm = [ ’ ofdm_bpsk ’ , ’ ofdm_qam4 ’ , ’ ofdm_qam16 ’ , ’ ofdm_qam32 ’ ]
modClassAl l = modClas sS tanda rd + modClassOfdm
N l i s t = [ 2 5 6 , 512 , 1024] # Ex : 256 I and Q samples ( t o t a l samples 256 ∗ 2)

F i l e D i r 0 = ’D : / J u s t i n / Documents / T h e s i s / Data_Acq / c a p t u r e s / o r i g i n a l / a r r a y _ s a v e ’
F i l e D i r 5 = ’D : / J u s t i n / Documents / T h e s i s / Data_Acq / c a p t u r e s / p l u s 5 / a r r a y _ s a v e ’
F i l e D i r 1 0 = ’D : / J u s t i n / Documents / T h e s i s / Data_Acq / c a p t u r e s / p l u s 1 0 / a r r a y _ s a v e ’

C l a s s t y p e = modClassOfdm
N = N l i s t [ 0 ]

# T r a i n i n g & T e s t i n g s i z e
N f i l e s = 1000 # Fixed
Nmod = l e n ( C l a s s t y p e ) # No . o f c l a s s e s ( m o d u l a t i o n s )
Nblocks = 20 # No o f b l o c k per f i l e
N t r a i n = 800 ∗ Nblocks # No . t r a i n i n g da ta examples
Nval = 100 ∗ Nblocks # No . v a l i d a t i o n da ta examples
N t e s t = 100 ∗ Nblocks # No . v a l i d a t i o n da ta examples

# F u n c t i o n D e f i n i t i o n s
def w e i g h t _ v a r i a b l e ( shape , name ) :

i n i t i a l = t f . t r u n c a t e d _ n o r m a l ( shape , s t d d e v = 0 . 1 )
re turn t f . V a r i a b l e ( i n i t i a l , name=name )

def b i a s _ v a r i a b l e ( shape , name ) :
i n i t i a l = t f . c o n s t a n t ( 0 . 1 , shape = shape ) # P o s i t i v e b i a s because we w i l l be u s i n g RelU
re turn t f . V a r i a b l e ( i n i t i a l , name=name )

def conv2d ( x ,W, name ) :
re turn t f . nn . conv2d ( x , W, s t r i d e s = [ 1 , 1 , 1 , 1 ] , padd ing = ’SAME’ , name=name )

def max_pool_2x2 ( x , name ) :
re turn t f . nn . max_pool ( x , k s i z e = [ 1 , 2 , 2 , 1 ] , s t r i d e s = [ 1 , 2 , 2 , 1 ] ,

padd ing = ’SAME’ , name=name )

def max_pool_1x2 ( x , name ) :
re turn t f . nn . max_pool ( x , k s i z e = [ 1 , 1 , 2 , 1 ] , s t r i d e s = [ 1 , 1 , 2 , 1 ] ,

padd ing = ’SAME’ , name=name )

def l o a d _ d a t a ( f i l e n a m e ,N ) :
i n f i l e = open ( f i l e n a m e , ’ rb ’ )
tmp = np . l o a d ( i n f i l e )
tmp = tmp . T
d a t a = tmp [ : , 0 : N] # I and Q i n t e r l e a v e d
i n f i l e . c l o s e ( )
re turn ( d a t a )

def t e n s o r _ r e s h a p e ( x ) :
K = i n t ( x . shape [ 0 ] )
N = i n t ( x . shape [ 1 ] )
y = np . z e r o s ( [ K, 2 , i n t (N / 2 ) ] )
f o r i in range (K ) :

y [ i , 0 , : ] = x [ i , 0 : N: 2 ]
y [ i , 1 , : ] = x [ i , 1 : N: 2 ]

re turn ( y )

def r a n d o m i z e _ d a t a ( da t a , i n d e x ) :
tmp = np . z e r o s ( d a t a . shape )
f o r k in range ( d a t a . shape [ 0 ] ) :

tmp [ k , : ] = d a t a [ i n d e x [ k ] , : ]
re turn ( tmp )

def r a n d o m i z e _ d a t a 2 ( da t a , i n d e x ) :
tmp = np . z e r o s ( d a t a . shape )
f o r k in range ( d a t a . shape [ 1 ] ) :
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tmp [ : , k , : ] = d a t a [ : , i n d e x [ k ] , : ]
re turn ( tmp )

def n o r m a l i z e _ d a t a ( input ) :
o u t p u t = np . z e r o s ( input . shape )
f o r i in range ( input . shape [ 0 ] ) :

o u t p u t [ i , : ] = ( input [ i , : ] / max ( abs ( input [ i , : ] ) ) )
re turn o u t p u t

# load d a t a s e t s
a l l D a t a = np . z e r o s ( [ Nmod , N f i l e s ∗Nblocks ∗3 , 2 , N] )

# Randomize i n d e x e s
sm_index = np . a r a n g e ( 0 , N f i l e s ∗Nblocks ) ; # s m a l l i n d e x f o r each c l a s s
random . s h u f f l e ( sm_index )

N s t r = N
i = 0
f o r f i l e c l a s s in C l a s s t y p e :

os . c h d i r ( F i l e D i r 0 )
f i l e n a m e = f i l e c l a s s + ’ _data_0dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
tmp = l o a d _ d a t a ( f i l e n a m e ,N∗2)
tmp = t e n s o r _ r e s h a p e ( tmp )
tmp = r a n d o m i z e _ d a t a ( tmp , sm_index )
a l l D a t a [ i , 0 : N f i l e s ∗Nblocks ] = tmp
os . c h d i r ( F i l e D i r 5 )
f i l e n a m e = f i l e c l a s s + ’ _data_5dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
tmp = l o a d _ d a t a ( f i l e n a m e ,N∗2)
tmp = t e n s o r _ r e s h a p e ( tmp )
tmp = r a n d o m i z e _ d a t a ( tmp , sm_index )
a l l D a t a [ i , 1∗ N f i l e s ∗Nblocks :2∗ N f i l e s ∗Nblocks ] = tmp
os . c h d i r ( F i l e D i r 1 0 )
f i l e n a m e = f i l e c l a s s + ’ _data_10dB_ ’ + s t r ( N s t r ) + ’ . d a t ’ ;
tmp = l o a d _ d a t a ( f i l e n a m e ,N∗2)
tmp = t e n s o r _ r e s h a p e ( tmp )
tmp = r a n d o m i z e _ d a t a ( tmp , sm_index )
a l l D a t a [ i , 2∗ N f i l e s ∗Nblocks :3∗ N f i l e s ∗Nblocks ] = tmp
i = i + 1

# Randomize t h e b i g a r r a y
b i g _ a r r a y _ i n d e x = np . a r a n g e ( 0 , a l l D a t a . shape [ 1 ] )
random . s h u f f l e ( b i g _ a r r a y _ i n d e x )

a l l D a t a = r a n d o m i z e _ d a t a 2 ( a l l D a t a , b i g _ a r r a y _ i n d e x )

t r a i n _ d a t a = np . z e r o s ( [ Nmod∗N t r a i n , 2 , i n t (N ) ] )
y _ t r a i n = np . z e r o s ( [ Nmod∗N t r a i n , Nmod ] ) # Ground T r u t h
f o r i in range (Nmod ) :

t r a i n _ d a t a [ i ∗N t r a i n : ( i +1)∗ N t r a i n , : ] = a l l D a t a [ i , 0 : N t r a i n , : ] ;
y _ t r a i n [ i ∗N t r a i n : ( i +1)∗ N t r a i n , i ] = 1 ;

v a l _ d a t a = np . z e r o s ( [ Nmod∗Nval , 2 , i n t (N ) ] )
y _ v a l = np . z e r o s ( [ Nmod∗Nval , Nmod ] ) # Ground T r u t h
f o r i in range (Nmod ) :

v a l _ d a t a [ i ∗Nval : ( i +1)∗Nval , : ] = a l l D a t a [ i , N t r a i n : N t r a i n +Nval , : ] ;
y _ v a l [ i ∗Nval : ( i +1)∗Nval , i ] = 1 ;

t e s t _ d a t a = np . z e r o s ( [ Nmod∗N t e s t , 2 , i n t (N ) ] )
y _ t e s t = np . z e r o s ( [ Nmod∗N t e s t , Nmod ] ) # Ground T r u t h
f o r i in range (Nmod ) :

t e s t _ d a t a [ i ∗N t e s t : ( i +1)∗ N t e s t , : ] = a l l D a t a [ i , N t r a i n +Nval : N t r a i n +Nval+ N t e s t , : ] ;
y _ t e s t [ i ∗N t e s t : ( i +1)∗ N t e s t , i ] = 1 ;

# Randomize t r a i n i n g s e t
b i g _ i n d e x = np . a r a n g e ( 0 ,Nmod∗N t r a i n ) ; # b i g i n d e x f o r a l l c l a s s
random . s h u f f l e ( b i g _ i n d e x )

t r a i n _ d a t a [ : , : ] = t r a i n _ d a t a [ b i g _ i n d e x , : ]
y _ t r a i n [ : , : ] = y _ t r a i n [ b i g _ i n d e x , : ]

# Randomize v a l i d a t i o n s e t
b i g _ i n d e x = np . a r a n g e ( 0 ,Nmod∗Nval ) ; # b i g i n d e x f o r a l l c l a s s
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random . s h u f f l e ( b i g _ i n d e x )

v a l _ d a t a [ : , : ] = v a l _ d a t a [ b i g _ i n d e x , : ]
y _ v a l [ : , : ] = y _ v a l [ b i g _ i n d e x , : ]

# Randomize t e s t s e t because o f b a t c h n o r m a l i z a t i o n ( o n l y needed f o r e x t r e m e case )
b i g _ i n d e x = np . a r a n g e ( 0 ,Nmod∗N t e s t ) ; # b i g i n d e x f o r a l l c l a s s
random . s h u f f l e ( b i g _ i n d e x )
t e s t _ d a t a [ : , : ] = t e s t _ d a t a [ b i g _ i n d e x , : ]
y _ t e s t [ : , : ] = y _ t e s t [ b i g _ i n d e x , : ]

# #############################################################################
# #############################################################################

# Model 1
Nfc = 256 # Readout l a y e r
Ncv1 = 16
Ncv2 = 32
l r _ s t a r t = 0 .001
# Model 2
Nfc = 1024 # Readout l a y e r
Ncv1 = 32
Ncv2 = 64
e p s i l o n = 1e−3 # Batch N o r m a l i z a t i o n Denominator C o n s t a n t
l r _ s t a r t = 0 .005
# model i n p u t / o u t p u t ( P l a c e h o l d e r s )
x = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , shape =[ None , 2 , i n t (N ) ] )
y_ = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , shape =[ None , Nmod ] )
x_image = t f . r e s h a p e ( x , [−1 , 2 , i n t (N) , 1 ] )

# F i r s t Layer ( Conv −− ReLU −− Max P o o l i n g )
wi th t f . name_scope ( " l a y e r 1 " ) :

W_conv1 = w e i g h t _ v a r i a b l e ( [ 2 , 5 , 1 , Ncv1 ] , " W_conv1 " )
b_conv1 = b i a s _ v a r i a b l e ( [ Ncv1 ] , " b_conv1 " )
y1 = conv2d ( x_image , W_conv1 , " h_conv1 " ) + b_conv1
batch_m1 , b a t c h _ v 1 = t f . nn . moments ( y1 , [ 0 , 1 , 2 ] )
b e t a 1 = t f . V a r i a b l e ( t f . z e r o s ( [ Ncv1 ] ) )
y1 _h a t = ( y1−batch_m1 ) / t f . s q r t ( b a t c h _ v 1 + e p s i l o n )
y1_BN = y1 _h a t + b e t a 1
h_conv1 = t f . nn . r e l u ( y1_BN )
h_pool1 = max_pool_2x2 ( h_conv1 , " h_pool1 " )

# Second Layer ( Conv −− ReLU −− Max P o o l i n g )
wi th t f . name_scope ( " l a y e r 2 " ) :

W_conv2 = w e i g h t _ v a r i a b l e ( [ 1 , 5 , Ncv1 , Ncv2 ] , " W_conv2 " ) # Minimal A c t i v a t i o n s
b_conv2 = b i a s _ v a r i a b l e ( [ Ncv2 ] , " b_conv2 " )
y2 = conv2d ( h_pool1 , W_conv2 , " h_conv2 " ) + b_conv2
batch_m2 , b a t c h _ v 2 = t f . nn . moments ( y2 , [ 0 , 1 , 2 ] )
y2 _h a t = ( y2−batch_m2 ) / t f . s q r t ( b a t c h _ v 2 + e p s i l o n )
b e t a 2 = t f . V a r i a b l e ( t f . z e r o s ( [ Ncv2 ] ) )
y2_BN = y2 _h a t + b e t a 2
h_conv2 = t f . nn . r e l u ( y2_BN )
h_pool2 = max_pool_1x2 ( h_conv2 , " h_pool2 " )

# F u l l y c o n n e c t e d l a y e r
wi th t f . name_scope ( " f c 1 " ) :

W_fc1 = w e i g h t _ v a r i a b l e ( [ 1∗ i n t (N/ 4 )∗ Ncv2 , Nfc ] , " W_fc1 " )
b_fc1 = b i a s _ v a r i a b l e ( [ Nfc ] , " b_ fc1 " )
h _ p o o l 2 _ f l a t = t f . r e s h a p e ( h_pool2 , [−1 , 1∗ i n t (N/ 4 )∗ Ncv2 ] )
y3 = t f . matmul ( h _ p o o l 2 _ f l a t , W_fc1 ) + b_fc1
batch_m3 , b a t c h _ v 3 = t f . nn . moments ( y3 , [ 0 ] )
y3 _h a t = ( y3−batch_m3 ) / t f . s q r t ( b a t c h _ v 3 + e p s i l o n )
b e t a 3 = t f . V a r i a b l e ( t f . z e r o s ( [ Nfc ] ) )
y3_BN = y3 _h a t + b e t a 3
h_fc1 = t f . nn . r e l u ( y3_BN )

# Dropout
keep_prob = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 )
h _ f c 1 _ d r o p = t f . nn . d r o p o u t ( h_fc1 , keep_prob )

# Readout Layer
wi th t f . name_scope ( " o u t p u t " ) :
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w_fc3 = w e i g h t _ v a r i a b l e ( [ Nfc , Nmod ] , " w_fc3 " )
b_ fc3 = b i a s _ v a r i a b l e ( [ Nmod ] , " b_fc3 " )
y_conv = t f . matmul ( h_fc1_drop , w_fc3 ) + b_fc3

# Loss F u n c t i o n
wi th t f . name_scope ( " Xent " ) :

c r o s s _ e n t r o p y = t f . reduce_mean ( t f . nn . s o f t m a x _ c r o s s _ e n t r o p y _ w i t h _ l o g i t s ( l a b e l s =y_ ,
l o g i t s =y_conv ) )

# T r a i n i n g Method
wi th t f . name_scope ( " T r a i n " ) :

s t e p = t f . V a r i a b l e ( 0 , t r a i n a b l e = F a l s e )
r a t e = t f . t r a i n . e x p o n e n t i a l _ d e c a y ( l r _ s t a r t , s t e p , 1 , 0 . 9 9 9 9 )
t r a i n _ s t e p = t f . t r a i n . AdamOptimizer ( r a t e ) . min imize ( c r o s s _ e n t r o p y , g l o b a l _ s t e p = s t e p )

# check model pe r fo rmance
wi th t f . name_scope ( " Accuracy " ) :

c o r r e c t _ p r e d i c t i o n = t f . e q u a l ( t f . argmax ( y_conv , 1 ) , t f . argmax ( y_ , 1 ) )
a c c u r a c y = t f . reduce_mean ( t f . c a s t ( c o r r e c t _ p r e d i c t i o n , t f . f l o a t 3 2 ) )

# #############################################################################
# #############################################################################

Nepoch = 5
Nbatch = 100
Nobs = 20
Nrange = i n t ( ( N t r a i n ∗Nmod ) / Nbatch )
a c c _ t r a i n = np . z e r o s ( i n t ( Nepoch∗Nrange / Nobs ) )
a c c _ v a l = np . z e r o s ( i n t ( Nepoch∗Nrange / Nobs ) )
x e n t _ t r a i n = np . z e r o s ( i n t ( Nepoch∗Nrange / Nobs ) )
x e n t _ v a l = np . z e r o s ( i n t ( Nepoch∗Nrange / Nobs ) )

# T r a i n i n g S e s s i o n
i n i t = t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( )
s e s s = t f . I n t e r a c t i v e S e s s i o n ( )
s e s s . run ( i n i t )
w r i t e r = t f . summary . F i l e W r i t e r ( "C : / tmp / conv_a rch1 " , s e s s . g raph ) # f o r 0 . 8
merged = t f . summary . m e r g e _ a l l ( )
acc_va l_ tmp = np . z e r o s ( [ i n t ( v a l _ d a t a . shape [ 0 ] / 4 0 0 0 ) ] )
x e n t _ v a l _ t m p = np . z e r o s ( [ i n t ( v a l _ d a t a . shape [ 0 ] / 4 0 0 0 ) ] )
# T r a i n i n g & V a l i d a t i o n
k = 0 ;
t r a i n i n g _ i t r = 0 ;
f o r m in range ( Nepoch ) :

f o r i in range ( Nrange ) :
t r a i n _ s t e p _ d a t a = f e e d _ d i c t ={x : t r a i n _ d a t a [ i ∗Nbatch : ( i ∗Nbatch )+ Nbatch , : ] ,

y_ : y _ t r a i n [ i ∗Nbatch : ( i ∗Nbatch )+ Nbatch , : ] ,
keep_prob : 0 . 5 }

s e s s . run ( t r a i n _ s t e p , t r a i n _ s t e p _ d a t a )

# Check p r o g r e s s v a l i d a t i o n
i f t r a i n i n g _ i t r%Nobs == 0 :

a _ t r a i n , c _ t r a i n = s e s s . run ( [ accu racy , c r o s s _ e n t r o p y ] , t r a i n _ s t e p _ d a t a )
i f not ( ( Nmod==8) and ( C l a s s t y p e == modClassAl l ) and (N= = 1 0 2 4 ) ) :

f o r p in range ( i n t ( v a l _ d a t a . shape [ 0 ] / 4 0 0 0 ) ) :
a_va l , c _ v a l = s e s s . run ( [ accu racy , c r o s s _ e n t r o p y ] ,

f e e d _ d i c t ={x : v a l _ d a t a [ p ∗4000 :4000∗ ( p + 1 ) , : ] ,
y_ : y _ v a l [ p ∗4000 :4000∗ ( p + 1 ) , : ] ,
keep_prob : 1 . 0 } )

acc_va l_ tmp [ p ] = a _ v a l ;
x e n t _ v a l _ t m p [ p ] = c _ v a l ;

a c c _ v a l [ k ] = np . mean ( acc_va l_ tmp )
x e n t _ v a l [ k ] = np . mean ( x e n t _ v a l _ t m p )
a c c _ t r a i n [ k ] = a _ t r a i n
x e n t _ t r a i n [ k ] = c _ t r a i n
p r i n t ( " [ Epoch=" + s t r (m) + " , I t r =" + s t r ( i ) + " ] t r a i n acc : "

+ s t r ( a _ t r a i n ) + " | v a l acc = " + s t r ( a _ v a l ) )
e l s e :

p r i n t ( " [ Epoch=" + s t r (m) + " , I t r =" + s t r ( i ) + " ] t r a i n acc : "
+ s t r ( a _ t r a i n ) )

k = k + 1 ;
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t r a i n i n g _ i t r = t r a i n i n g _ i t r +1

# T e s t i n g S e s s i o n
# Do i t i n b l o c k s o f 4000
Nmax = t e s t _ d a t a . shape [ 0 ]
Nrange = i n t (Nmax / 4 0 0 0 )

t e s t _ a c c = np . z e r o s ( [ Nrange , 1 ] )
import pandas as pd
c o n f u s i o n = np . z e r o s ( [ Nmod , Nmod ] , i n t )

f o r i in range ( Nrange ) :
t e s t _ a c c [ i ] = a c c u r a c y . e v a l ( f e e d _ d i c t ={x : t e s t _ d a t a [ i ∗4000 :4000∗ ( i + 1 ) , : ] ,

y_ : y _ t e s t [ i ∗4000 :4000∗ ( i + 1 ) , : ] ,
keep_prob : 1 . 0 } )

# C o n f u s i o n Mat r i x
r e s = t f . s t a c k ( [ t f . argmax ( y_conv , 1 ) , t f . argmax ( y_ , 1 ) ] )
ans = r e s . e v a l ( f e e d _ d i c t ={x : t e s t _ d a t a [ i ∗4000 :4000∗ ( i + 1 ) , : ] ,

y_ : y _ t e s t [ i ∗4000 :4000∗ ( i + 1 ) , : ] ,
keep_prob : 1 . 0 } )

f o r p in ans . T :
c o n f u s i o n [ p [ 0 ] , p [ 1 ] ] + = 1

p r i n t ( np . mean ( t e s t _ a c c ) )
p r i n t ( pd . DataFrame ( c o n f u s i o n ) )
p r i n t ( pd . DataFrame ( c o n f u s i o n / i n t ( t e s t _ d a t a . shape [ 0 ] / Nmod ) ) )

# F i g u r e s
p l t . f i g u r e ( 1 )
p l t . p l o t ( a c c _ t r a i n , l a b e l =" a c c _ t r a i n " )
p l t . p l o t ( a c c _ v a l , l a b e l =" a c c _ v a l " )
p l t . t i t l e ( ’ Accuracy ’ )
p l t . l e g e n d ( b b o x _ t o _ a n c h o r = ( 1 . 0 5 , 1 ) , l o c =2 , b o r d e r a x e s p a d = 0 . )

p l t . f i g u r e ( 2 )
p l t . p l o t ( x e n t _ t r a i n , l a b e l =" t r a i n c r o s s e n t r o p y " )
p l t . p l o t ( x e n t _ v a l , l a b e l =" v a l c r o s s e n t r o p y " )
p l t . t i t l e ( ’ Cross En t ropy ’ )
p l t . l e g e n d ( b b o x _ t o _ a n c h o r = ( 1 . 0 5 , 1 ) , l o c =2 , b o r d e r a x e s p a d = 0 . )

s e s s . c l o s e ( )
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