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ABSTRACT

The task of determining the relevant parameters of a transmission scheme is known as modulation
classification. Possible parameters of interest include carrier frequency, symbol time or modulation
order. In this thesis we focus on modulation format (linear vs OFDM) and modulation order. This
task has applications in signal intelligence receivers (SIG INT), and cognitive radios. One possible
application is in military use, where friendly or non-friendly transmissions can be identified. Another
possible application is in a cognitive radio network, where knowledge of primary users transmission
scheme could be used as part of an underlay network scheme. A common approach for modulation
classification is support vector machines (SVM) with high order cumulants as features, however the
problem of classification of orthogonal frequency division multiplexing (OFDM) signals has not
been fully explored. Furthermore, deep neural networks (DNN) have made tremendous advances in
classification problems, and there has been no prior work done on using live captured data to test
modulation classification using DNN. Therefore, four linear and OFDM modulations are captured
live over a range of signal powers, and tested against with both SVM and DNN classifiers. The SVM
classifier with high order cumulant features achieved a classification rate of 99% for OFDM
modulations, but only achieved 93% accuracy for linear modulations. A convolutional neural
network (CNN) achieved 99% classification for all 8 modulations. Additionally, the CNN
generalizes better than the SVM classifier when trained over a range of SNR values. When trained in
this manner, the convolutional network significantly outperforms the SVM classifier when the SNR

value is not known at the receiver.
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Introduction

1.1 Motivation for Research

There are many uses for modulation recognition algorithms; one of its primary uses are
in a signal intelligence (SIG INT) receivers. A SIG INT receiver’s job is to monitor and
intercept foreign communication signals, and gain information regarding the message being
transmitted. To do such task, a SIG INT receiver needs to know what type of modulation
has been applied on the transmitted signal. This is where a robust modulation recognition

algorithm, which is able to classify among various modulation type, comes in useful.

Modulation algorithms can also be used in cognitive radios (CR). CR are programmed
for efficient utilization of the frequency spectrum for transmission which is being shared
among multiple users [2]. This is typically done by detecting and transmitting when the

channel is unoccupied. A modulation recognition algorithm can be used here to detect
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if a channel is in use. CR can perform more intelligently in an underlay network if the

underlying modulations of the primary users is also known.

There has been much research into modulation recognition algorithms for many differ-
ent modulation classes. This thesis will be expanding upon the research by applying neural
networks (NNet) to modulation classification. Many experimenters have already done this,
but with synthesized data. Current state of the art classifiers are support vector machine
(SVM) with high order cumulants (HOC) as its features. Neural networks are a more recent
type of classification algorithm, and their effectiveness on classifying modulation schemes

has not yet fully been explored.

1.2 Related Works

There has been some prior work into classifying OFDM modulations. In [12] the authors
design a system for OFDM signal classification. In their model a gaussianity test is done to
distinguish between OFDM and single carrier modulations. Furthermore, their system then
estimates the relevant parameters of the OFDM modulations, such as the OFDM symbol
rate, cyclic prefix interval, and number of sub carriers. They have noted that their system
is able to classify between OFDM and non OFDM signal with 80% accuracy, and their

parameter extraction accuracy is greater than 90% for SNR above 15 dB.

In [26], the authors apply convolutional neural nets (CNN) to classify several lin-
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ear modulations. Digital modulations that were classified includes BPSK, QPSK, 8PSK,
16QAM, 64QAM, BFSK, CPFSK, and PAM4. They also included 3 analog modulations:
WB-FM, AM-SSB, and AM-DSB. Their dataset was synthesized in GNU Radio using harsh
channel models. Their CNN was trained with SNR data ranging from -20dB to +20dB.

Their overall accuracy across all the SNR levels was roughly around 87%.

1.3 Problem statement

In this thesis, four linear modulations will be classified: BPSK, QAM4, QAM16, and
QAM32, along with 4 OFDM based modulation: OFDM-BPSK, OFDM-QAM4, OFDM-
QAM16, and OFDM-QAM32. Two different classifiers will be trained and tested for their
performance in classifying these modulations. The classic SVM classifier with cumulant
features are considered state of the art for the modulation classification. Neural Networks
have recently become popular for their ability to learn features from complex data sets.
To the author’s knowledge neither of these classifier have been tested to classify OFDM
modulations with live captured data. Therefore, these two classifiers will be trained and
tested with live captured data sets. They will be tested for their ability to simultaneously

classify both linear and OFDM modulations across several SNR levels.

This thesis is organized as follows. In chapter 2, a brief explanation of digital mod-

ulations will be given. Chapter 3 will describe how the data was captured and validated.
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Chapter 4 explains the classifiers that will be used, and in Chapter 5 the results will be

presented. In Chapter 6 we conclude and list the future works for interested readers.




Communication Basics

This chapter is presented to give a brief overview on modulation’s waveform design param-
eters and the types of impairment that can be seen on a signal transmitted over the air. A
typical communication system model can be seen in the figure 2.1.

Information Transmitter? — | Receiver Destination
Source J Signal Received

Signal
Message Message

Figure 2.1: A simple communication system model. Figure taken from [11].

Information Source is the message being transmitted; these are usually in the form of
a binary bit stream. Transmitter modulates the bit stream into the carrier frequency and
transmits it into the air. The signal goes through a channel, which adds impairment to the

signal. If the receiver is not synchronized with the transmitter then additional impairments
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will be seen at the receiver. Both of these subjects, modulations and impairments, will be

discussed in the next two sections.

2.1 Digital Modulations

As mentioned previously, 8 different type of digital modulation signals are classified in this
research. They can be categorized as linear and OFDM modulations. OFDM modulated
schemes are relatively new compared to linear modulation schemes like QAM, and they are

both used widely today.

2.1.1 Linear Modulations

Researchers have come up with wide variety of digital modulations for data transmission.
Most common of them all are Frequency Shift Keying (FSK) and Quadrature Amplitude
Modulations (QAM). These modulations are simple to implement in a transmitter, and
simple enough to build a receiver for. Figure 2.2 shows a typical transmitter for the 4

modulations of interest.

The bit streams are fed in from top level API (Host), which is mapped into complex
symbols by the modulator. Those symbols are then up sampled with repetition or digitally
interpolated to the sampling rate required for the transmission. Then, the complex stream is

multiplied by the local oscillator (LO), which up converts the signal to radio frequency (RF).
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Real Samples

NPar—

Bit Stream Modulator : Upsampler
i 90° shit 1

Complex Samples

Imaginary Sample

Figure 2.2: Transmitter block diagram for linear modulations.

Quadrature

This is the model that has been used to transmit linear modulations for this research. Pulse
shaping can be applied to the signal to reduce inter symbol interference (ISI), however that
is not common in modern transmitters. For this project pulse shaping is not applied, and a

rectangular pulse shape is assumed for all modulations.

Equation 2.1 shows the output values of the transmitted signal:

s(t) = I(t)cos(2m fot) — Q(t)sin(2m fot) (2.1)

where I(t) and Q(t) are the complex baseband symbols in the time domain. I stands
for in-phase, and Q stands for quadrature phase. The digital modulator maps the bits onto
symbol. It is easier to visualize the mapping by viewing it in a constellation diagram. The
constellation diagram for the 4 linear modulations are shown in figure 2.3. The symbols are

mapped based on the bit order seen on top of them.




CHAPTER 2. COMMUNICATION BASICS
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Figure 2.3: Symbol mapping for each of the 4 linear modulations. BPSK figure taken from

[29]; QAM figures taken from [8].

Higher order QAM packs more bits per symbol, hence they have higher spectral
efficiency compared to lower order QAM. One drawback is that the receiver has to be more
complex for higher order QAMs. It is easy to track the frequency offset for BPSK or QAM4

modulations, but requires power detection circuitry for higher level QAMs. Consequently

higher order QAMs tends to have higher bit error rate (BER).
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2.1.2 OFDM Modulations

Orthogonal Frequency Division Multiplexed (OFDM) modulations are multi carrier modu-
lations. These modulations are considered as wide band signals, because their bandwidth
is significantly larger compared to linear modulations due to having multiple carriers. The
main benefit of having multiple carrier system is that that it is robust against severe channel
conditions such as multipath fading [5]. Another benefit is the ability to use frequency
domain equalizer (FDE) to compensate for channel impairments. FDEs are simple to

implement, and can be learned fairly quickly with the use of training frames.

L Af

-~

Figure 2.4: OFDM sub carriers. Figure taken from [20].

OFDM modulations are considered orthogonal because at the optimum sampling point
the contribution from adjacent carriers is exactly zero as seen in figure 2.4. This alignment,
however, is easily broken if there is a frequency offset, which is why the receiver needs

complex algorithms to ensure frequency synchronization.
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Af = SamplingRate/ N arriers 2.2)

There are many ways to implement an OFDM system; the most popular way of doing
it is by using the FFT operation. This method is also used in 802.11a wireless standard [7].

The block diagram of an OFDM system using this method is shown in figure 2.5.

Cyclic Prefix
oy Xp-Hep- 1 XD,
. OFDM
Sy Xy %o ,| Parallel signal
1 * Constell- B . i
Serial = %, | to Serial e(®
s, | -ation  |X, | IFFT >
dy, 0.0, To Mapper
- , (BPSK/
Parallel | ' | oeswoasy |Xo o
Channel
A
T
Parallel [* Constell- = ] Delete
“«— A . A requency | R . .
R 81 ation X; | Domam & FFT PR Cvelic «—| Serial to
. e
dy.dy| TO demﬂPPel Equalizer y Parallel
. N (BPSK/
Serial | S=1| QPSKQAM) ‘X_u En_l Tt Prefix .

Figure 2.5: OFDM transmitter and receiver. Figure taken from [15].

The input bit stream is mapped into symbols by the Constellation Mapper block on a
frame by frame basis. The complex symbols are then loaded into an IFFT block to get a
time domain representation of the input signal. Cyclic prefix addition operation is performed

by copying the last N, samples into the front of the frame. The frames are then serialized

10
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by a Parallel to Serial block and transmitted. At the receiver, the reverse operation is done,

with the addition of a Frequency Domain Equalizer block, which is needed to remove ISI.

OFDM signals are made up of frames. The frame size is determined by the length of
FFT and cyclic prefix. For example, in the 802.11a standard, the FFT size is 64, and the CP
size is 16. So there are 80 samples per OFDM frame [7]. There are different types of frame
that are sent periodically. For our purposes there are only three different kinds of frames:
preamble, training, and data frames. Both the preamble and the training frames are known at
the receiver, which is utilized for synchronization. The receiver uses the preamble frame to
detect frame boundaries. The training frames are used to learn the FDE coefficients. Once
the equalizer weights are learned, it is possible to extract the transmitted symbols from the

data frame.

Each FFT bin can be thought of as a separate carrier frequency. In this particular
OFDM system there are 64 carriers. Typically some of the carriers are nulled to taper the
frequency spectrum around the edges. Data frames, in 802.11a standard, are transmitted

using the loading pattern shown in figure 2.6

There are 4 pilot carriers, # 7,21,-21, and -7, that are used in the standard. The receiver
knows the values of the pilot symbols in advance, so these can be used to measure frequency
offset, and also to fix timing offset. The rest of the carriers are loaded with data symbols,

which are mapped by the appropriate modulator. Thus, out of 64 carriers, 48 are data carriers,

11
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Null — | 0 0o —
# — 1 | R
> — 2 2|

#26 —— 29 FFT 20 ——

Null —— 27 27 . .

Null — . | Time Domain Outputs
Null —— 37 37

#-26 — 38 38

#2 —— 62 62—

#1 —| 63 63 ——

Figure 2.6: OFDM frame loading for 802.11a standard frames. Figure taken from 802.11a
standard [7].

4 are pilot carriers, and 12 are null carriers.

The values of preamble frames are also taken from the 802.11a standard [7]. The
training frame is a custom frame that was created to train the FDE. It is loaded the same way
a data frame would be loaded, except the data sequence are BPSK symbols with alternating
bits. The symbols going into consecutive data carriers are +1, -1, +1, -1 ... Data symbols

from the training frame are used to compute the FDE coefficients.

2.2 Signal Impairments

There are a couple of signal impairments that are expected to be seen at the receiver. The
effects are different for narrow band and wide band signals. They are listed in the following

sections.

12
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2.2.1 Path Loss

The biggest noticeable impairment to be seen is the severe attenuation of the transmitted
signal while it travels over the air. This happens because signal loses its power as it covers
distance. The free space path loss is shown in equation 2.3, in which we see that the signal
loss in power is proportional to square of the distance traveled. Path loss is the biggest factor
in signal to noise ratio (SNR) degradation for over the air transmitted signal. In the setup
used for data capturing, the distance between the transmitter and receiver is not known,
however they are close enough to properly transmit and receive data. The setup will be

explained in detail in the next chapter.

FSPL = (4nd/\)? (2.3)

2.2.2 Carrier Frequency Offset

Typically the effect of this impairments can be seen in constellation diagram, especially for
the linear modulations. Carrier frequency offset impairment occurs due to the mismatch
between local oscillator of the transmitter and receiver, and also if either of those two are
mobile. This makes the constellation of a particular modulation to rotate. Figure 2.7 shows

an example of constellation rotation for QAM4 modulation.

There are many effective algorithms designed to mitigate this type of impairment, most

notable of them all is the costas loop that can be applied on BPSK and QAM4 modulated

13
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Figure 2.7: Effect of carrier frequency offset on QAM4 constellation. Figure taken from
[30].

signals [25]. Variants of this algorithm are applied for higher order QAM modulations, but

they are more complex.

This impairment has more profound effect on OFDM modulations because it breaks the
orthogonality of the carriers. The carrier starts leaking into adjacent carriers which degrades
the SNR. This impairment is termed as Inter-carrier interference (ICI). Many pilots based
techniques can be implemented to detect and mitigate this particular impairment for OFDM

signals [9] [13].

14
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2.2.3 Timing Offset

This has different meaning for linear and OFDM modulations. In linear modulations, this
impairment is seen when there is an offset in the clock frequency of the transmitter and
receiver. TX clock frequency determines the optimal sampling time of the signal, and if RX
has a different sampling time then the SNR is reduced. This impairment causes a shifting in
the optimal sampling point. Algorithms like early-late gate were designed to keep track of
the optimal sampling point at the receiver. Digital communications book by Michael Rice

has a dedicated chapter on timing synchronization and covers early-late gate algorithm [24].

In OFDM modulations, timing offset refers to the offset between what receiver con-
siders to be the frame boundary and the actual frame boundaries. It is important to know
where the frames are starting, otherwise the demapping of known symbols from pilot and
training will be incorrect. Typically, a correlator type algorithm can be used to match the

frame boundaries [14].

2.2.4 Multipath Fading

Another distortion that is seen, especially in a wide band signal, is multipath fading. This
arises due to multiple copies of the transmitted signal arriving at the receiver, with different
delays. See figure 2.8 for an illustration. Some of the copies can combine destructively

with the main dominant signal degrading the SNR. This problem is seen mostly in an urban

15
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environments where the signal paths are longer creating a relatively large delay profile.

Ceiling —_ Received Signals

> RX — O .
limg — 7

Combined Results

Obstruction /\
Floor Timg ——» \//

Figure 2.8: Signal degradation due to multiple copies of the signal arriving at the recevier
with delays. Illustration taken from [3].

Fading creates dips in the frequency spectrum, which degrades the signal quality. The
setup in which all the data has been captured is an indoor environment. Therefore the delay
profile associated with that environment is small. This means that the fading shouldn’t be too
severe for narrow band signal. Wide band signal like OFDM modulations may experience
fading. It is possible that one of the data carrier may be severely attenuated, but these dips

in the spectrum can be equalized in an OFDM receiver by the FDE.

16



Data Capture and Validation

This chapter will go through the infrastructure and tools used to capture data in detail. It

will also go through the methods employed to verify that the data was captured properly.

3.1 ORBIT Testbed

ORBIT stands for Open-Access Research Testbed for Next-Generation Wireless Networks
[31]. It is maitained by Rutgers University, with the intent of giving researchers and
experimenters the ability to test their algorithms and get reproducible results in a real
environment. Going from simulated data to actual real world data is an important step in
establishing the credibility of algorithm or protocols. This testbed is equipped with wide
range of radio resources including: WiFi 802.11a/b/g 802.11n 802.11ac, Bluetooth (BLE),
ZigBee, Software Defined Radio (SDR) platforms (USRP, WARP, RTL-SDR, USRP N210,

USRP X310)[31]. For this thesis a pair of SDRs were configured to transmit and capture
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live data over the air.

ORBIT lab contains several test domains in which experimenters may use the hardware
for their wireless experimentation. The biggest lab setup they have is called the Grid, which
contains 20 by 20 set of radio nodes. This grid is also equipped with an arbitrary waveform
generator, which can add synthetic noise or interference to the grid system allowing for
experimenters to create various topologies. However, for a simple job of data capturing,
the Grid is not necessary. ORBIT also provides 9 sandbox lab environment which is setup
with fewer number of radio nodes. Sandbox # 3 contains a pair of universal software radio
peripheral (USRP2) radio nodes, which was configured and used as transmitter and receiver

pair.

The best part about using ORBIT is that one can configure any of radio nodes from a
remote terminal. For this project, no hardware was touched. There are two main components
that had to be configured inside the ORBIT testbed. First was the hardware itself, which
was used to transmit and capture the data. Second was the code that generated the data to be
sent. Each code contained different message and waveform based on the modulation type

used. The next two section explains the configuration done for both.
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3.1.1 Software Defined Radios

Software defined radios (SDR) are relatively new and powerful tool for wireless experiments.
A typical transceiver contains mixers, filters, amplifiers, modulator and demodulators, which
are implemented in hardware. However, in an SDR these components are implemented in
software, which gives the experimenters a lot of flexibility in the waveform design [27]. By
a simple change of code, they can change the modulation type of the transmitter. SDRs
are good for rapidly prototyping custom wireless communication systems. This lets the

researcher implement and test his theory through an SDR relatively quickly.

As mentioned previously, a pair of USRP2s were used from sandbox # 3, provided by
ORBIT. This particular sandbox contained two USRP2 N210 nodes with SBX daughter card.
They are manufactured by Ettus Research, which is part of National Instrument, and met
the spec needed for transmitting and capturing data. The relevant specs from the USRP2

N210’s manual are listed in table 3.1.

Operating frequency | 400 MHz - 4.4GHz
ADC sample rate 100 MS/s
DAC sample rate 400 MS/s
Host sample rate 25 MS/s

Clock rate 100 MHz
Bandwidth 40 MHz

Table 3.1: USRP N210 Specs [23].

The USRP2 N210’s top level schematic is shown in the figure 3.1. The Gigabit Ethernet
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Figure 3.1: Schematic of USRP2 N210. Figure taken from USRP N210 manual [23].
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block on the top left is connected to the host PC in the sandbox. That is where the modulated

data is sent to, and the USRP transmits it after up conversion to RF. To create the code for

designing custom modulation, Ettus Research provides USRP Hardware Driver (UHD),

which is a library of functions that can be called using either C or Python to configure the

SDR and to transmit data from it [22]. This requires learning the library structure, which can

be done, however it is not needed. GNU Radio toolkit provides an easier way to configure

the radio nodes.
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3.1.2 GNU Radio

GNU Radio is a toolkit built specifically for SDR. It comes with a companion software
called GNU Radio Companion (GRC), which is a graphical coding platform. Similar to
MATLAB?’s simulink and NI's LABVIEW, in GRC, one can place digital communication
blocks to customize the waveform to be transmitted through a USRP. There are many useful
digital communication blocks available in GRC. Custom blocks can also be created in GRC
using out of tree (OOT) module. Figure 3.2 shows a template of a simple BPSK transmitter

block which was used to transmit BPSK modulated signal.

Frequency
FFT Siaei 1,024k

Center Fraquency (Hz)i 0
Bondwidth [Hali 2H

UHD1 USRP Sin
Samp Rate (Spsl 20
ChOi Center Freq (Hali 16
ChOi Gsin (dB) 10
ChOi Bandwidth (Hzli 2M
Length tag namer

QT GUI Tab Widget
m Tab=i 2

Num Taba
Label 01 Spectrum  Fil= Souree Int Ta Flost

Label 11 Time Sink :ﬂ‘" :"":"’b"“‘ Scales 1 Repest Multiply Const

sbel 21 Constellation =S Flost To Complex =

Lobel 2 Constelln e nterpol ationt 20 Gonstants 707 21 4m

Figure 3.2: BPSK transmitter code in GNU Radio Companion.

There are a few important blocks shown in figure 3.2. The bits to be transmitted are pre
generated and stored in appropriately labeled files, which can be read in using File Source
block. These values are converted to complex samples using Float to Complex block. The

Repeat block upsamples the symbols with repetition to meet the transmitter’s sampling rate.
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The UHD: USRP Sink block establishes a connection between the host API and the USRP
N210 hardware through the ethernet port. The signal is fed through this block to the USRP,
however it needs to be scaled so that it doesn’t saturate. The Multiply Const block is used to
ensure that the signal values does not reach saturation. The maximum float value that UHD:

USRP Sink can accept before saturation is 1.0.

There are four important parameters that is configured via UHD: USRP Sink block:
sampling rate, carrier frequency, bandwidth, and TX gain. In the next section, the GRC code
for other modulations, QAM and OFDM will be explained. Undoubtedly this is a powerful

and convenient software to use for creating and transmitting data of various modulation.

3.2 Modulation Parameters

All of the parameters listed in this section was configured through GRC. Template code for
linear and OFDM modulation are also shown. There are two parameters which remained

fixed for both linear and OFDM based modulations, and they are listed in table 3.2.

Carrier Frequency 1 GHz
TX Gain 0/5/10 dB

Table 3.2: Fixed Modulation Parameters

22



CHAPTER 3. DATA CAPTURE AND VALIDATION

3.2.1 Linear Modulations

The GRC code for BPSK transmitter was shown in figure 3.2. The GRC code for QAM4
transmitter is shown in figure 3.3. QAM16 and QAM32 transmitter has the same blocks
except gam4_ic is substituted with gam16_ic and gam32_ic respectively. These blocks were
created using OOT module. Their implementation code can be found in the appendix. They
return a QAM symbol corresponding to integer valued symbol number. Similar to BPSK
transmission, the bits to be transmitted are pre generated for all the QAM modulations. For
QAM4 modulations, prbs.txt contains integer values ranging from 0 to 3. Accordingly, for

QAM16 the values range from 0 to 15, and for QAM32 the values range from 0 to 31.

QT GUI Time Sink
Number of Point=i 1.024k
Sample Rater 2M

Autoscale Yes

QT GUI Frequency Sink
FFT Siae 1.024k

Center Frequency [Ha)i 0
Bandwidth [(Hz)i 2M

QT GUI Constellation Sink
Number of Paintsi 1.024k

Autoscale: Yes

¥

Minimumi 0 — it oot
Varishle Maximumi 4 ] qama_ic o (I AT
- Interpalztion: 20 Constanti 707.214m
D1 sps Num Samples: 1k
¥olue 20 Repest: ez
Varizble File Source
1D fe File [ractfprhs.txt

Veluz 16 Repeat: Yez

UHDI USRP Sink
Samp Rate (Speh M
Chii Center Freq (Hzli 16
Choi Gain (dE) 10

Chon Bandwidth (Hali 2M
Length tag name:

Figure 3.3: QAM4 transmitter code in GNU Radio companion

Instead of using the Random Source block that is provided by the GNU Radio, the
random stream is fed in through a file. Through MATLAB, a list of 1000 different random
integer files were generated, each with a different seed. This allows for reproducibility of

the transmitted signal for debugging purposes. The code can be found in appendix A.1.1.
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Typically a root raise cosine (RRC) pulse shaping filter would have been applied to combat
ISI. The main reason for not using RRC is that this pulse shape is not widely used anymore

in modern systems. It would have made the classification more complex.

The modulated signal is up sampled by 20 by repetition. Up sampling by 10 was the
initial choice, but the corresponding captured signal’s pulse shape was too small to produce
an acceptable signal constellation. Since the received signal constellation was not good
enough for reception we chose an up sampling rate of 20. The input sampling rate was set to
100 KHz, and after up sampling by 20, the output rate would be 2 MHz. The TX gain value

was varied between 0, 5, and 10 dB, which will be explained in the Relative SNR section.

3.2.2 OFDM Modulations

Four OFDM modulation formats were chosen for this experiment: OFDM-BPSK, OFDM-
QAM4, OFDM-QAMI16, and OFDM-QAM32 which all shared the same GRC template.
The only difference was in how the frames were loaded. The GRC template is shown in

figure 3.4.

For this setup the frames were generated in MATLAB (appendix A.1.2) and loaded
into GRC through frame.txt file. There are 3 different frames that were generated: Preamble,
Training, and Data Frames. All 3 of these frames were based on the 802.11a standard.

Preamble frames are used at the receiver for frame synchronization and timing offset
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Filer irootframe trt

Figure 3.4: OFDM BPSK transmitter code in GNU Radio Companion.

recovery. Training frames are used to update the FDE weights, so that the following data

frames, which contains the message, can be equalized.

In a classification problem, repetitive sequences like preambles and training frames
can be used to an advantage by the classifier. While that would improve the accuracy, it
wouldn’t be realistic. To limit the repetitions it was decided to follow up preamble and

training frames with 10 data frames. The frame sequence is shown in figure 3.5

960 samples

L L Data - Training Data e @

80 80 80
samples samples samples

Figure 3.5: OFDM frame sequence.

The first block that the stream sees is the IFF'T block, which accepts N=64 complex

symbols at a time, and outputs a time domain signal. This signal is then passed through a
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cyclic prefix block which inserts last 16 samples into the front of time domain frame. This
signal is then multiplied by a constant such that highest possible value going into UHD:
USRP Sink block is less that 0.707. The constant factor used is different for the 4 different

OFDM modulations. The multiplicative constant value is listed in table 3.3.

Modulations scaling constant
OFDM BPSK 1740
OFDM QAM4 1/40

OFDM QAM16 1/80
OFDM QAM32 1/110

Table 3.3: Multiplicative constant value for the OFDM modulations.

The bandwidth is set to 25 MHz. In 802.11 standard the bandwidth is 20 MHz, but
setting that bandwidth produced a CIC rolloff warning, which was generated by the SDR.
The clock rate is fixed at 100 MHz, so having a sample rate of 25 MHz is preferable
over 20 MHz. This is because 100M Hz/25Mhz = 4 (even decimation number) vs
100M Hz/20M Hz = 5 (odd decimation number). Few captures at 20 MHz were inspected
to check for any extra impairments and none were found. It is possible that the warning
was bogus, yet some impairment may show up randomly. To keep things reproducible, the
bandwidth was set to 25 MHz. This higher bandwidth signal is still a wide band signal
so there is nothing to lose by choosing this bandwidth. Similar to linear modulations, the
transmitter gain values were varied between 0, 5 and 10 dB, which will be explained in the

next section.
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3.2.3 Relative SNR

To make the problem of classification more realistic, it was desired to have multiple SNR
data captures. There are two ways to go about doing this. The first way of changing SNR
would have been to increase the noise power. This would have been possible to do if we
were working in the ORBIT Grid, but reserving time slots for those are hard to do. Data
capturing in general takes a lot of time, so it would have been troublesome to use this method

with limited time slot.

The other option was to keep the noise power fixed, and increase the signal power. It
was determined by looking at test captures that the noise power level was not changing
significantly from capture to capture. With the assumption that noise power is constant
through all the capture time, SNR change can be implemented by simply increasing the TX
gain value. Thus, the TX gain is varied between 0 dB, 5 dB and 10 dB to get 3 different SNR
data captures. TX gain of 15dB was also tried, but it saturated the receiver. So, this is the
method used to get relative SNR captures of 0, 5 and 10 dB. The actual SNR of the captures
is not known, but that isn’t as important as knowing how well the classifier performs with

different relative noise power levels.
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3.3 Validation

It is very important to verify that the transmitted signal is captured properly. Otherwise
the algorithms might be trained to classify bogus captures. In chapter 2 we learned about
various impairments that are introduced in an over the air transmitted signal. Thus, it is

essential to check that original message is recoverable.

One of the example function provided in the UHD was used to capture the data.
The name of that function is rx_samples_to_file.cpp [21]. This function captures the raw
baseband samples after the signal has been down converted from RF to baseband. 1 million
samples were captured for all modulations, at a sample rate of 2 Msps for linear modulations
and 25 Msps for OFDM modulations. The bandwidth was set equal to sampling rate. To
validate the data captures a MATLAB script read through them, then created and saved an
image of the constellation diagram of the raw baseband signal. These constellations were

visually inspected to ensure they were correct.

To fully validate the signal it must be synchronized. The next section presents the
constellation diagram of the unrecovered signal, which will show the impairments that was
described in chapter 2. In the following section the method used for synchronization will be

discussed along with the results.
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3.3.1 Constellation Diagrams

The constellation diagrams for all the unsynchronized linear modulations: BPSK, QAM4,

QAMI16 and QAM32 are shown in figure 3.6.

(a) BPSK

B o i e

() QAM16 (d) QAM32

Figure 3.6: Unsynchronized constellation diagrams for all the linear modulations.

The TX gain was set to 0dB, so the scale of the constellation is similar across the
modulations. The constellation diagram is only made up of 20K samples to keep the
memory requirement short. There are couple of impairments visible in the constellation

diagrams. Primarily, you can see the effects of carrier frequency offset. The transmitted
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constellation has rotated by more than 360 degrees. Another impairment we can see is the

DC offset, since the constellation is not rotating around the origin.

Timing offset impairment is not easily visible, but it can be seen in BPSK and QAM4
constellations. The valid ’ring’ is the outer ring, where the actual symbols have rotated
around the origin. The inner rings that are visible are due to symbol transitioning between 1
and -1. If there was no timing offset, then there wouldn’t be an inner ring, as the transitions

are not be captured under optimum sampling times.

Notice the number of rings that are seen in each modulations. For QAMI16 3 rings are
expected to be seen, and for QAM32 5 rings are expected. The rings are barely visible in
QAM32’s constellation diagram because the 4" and the 5" ring are very close. It is safe to
say that the data was captured properly. Only thing left to do is remove the impairments and
synchronize. The results of that will be presented in the next section. OFDM modulations

are inspected next in figure 3.7.

At a glance the constellation diagrams for the OFDM modulations are not as informative
to look at. The presence of DC offset is visible as the constellation are not centered around
origin. The training frame’s values are visible in OFDM BPSK and OFDM QAM4; they are
2 dis-joined outer semi circles. The training symbols without any frequency offset would
have been fixed to just one spot. The rotation seen here is evidence of frequency offset

impairment. The reason training frames are not noticeable in OFDM QAM16 and OFDM
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(c) OFDM QAM16 (d) OFDM QAM32

Figure 3.7: Unsynchronized constellation diagrams for all the OFDM modulations.

QAM32 are because they are being dwarfed by the data frame symbols.

It is reasonable to assume that a classifier would have more difficulty in classifying
OFDM modulations compared to linear modulations. In the next section, the modulations

are synchronized and their results are shown.
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3.3.2 Synchronization

To fully verify that the captured signal were valid MATLAB receiver code for each modula-
tions were designed to synchronize the signal. Removing DC offset is as easy as subtracting
the mean of in-phase and quadrature phase of the signal. For linear modulations, frequency
offset can be removed if the exact offset between TX and RX LO is known. Typically
a phase locked loop (PLL) like costas loop is used, but they are harder to construct for
higher order QAMs. The other alternative is to manually apply a correction factor till the
constellation looks synchronized. The code for the receivers, which uses manual correction,
can be found in the appendix A.1.3. Figure 3.8 shows all the recovered constellations for

the linear modulations.

OFDM modulations are more complicated, and synchronizing them requires more
effort. The first thing to do is to find the frame boundaries, and this is where the preamble
comes in handy. A delay line auto correlator can be used to get good estimate on preamble
frame boundaries. A simpler method is to do a cross correlation between the transmitted
signal and the received signal. The transmitted signal was saved from within GRC using the
File Sink block, as can be seen in top right of figure 3.4. This cross correlation will show
peaks at the frame boundaries. After frame boundaries are located the cyclic prefix can be
removed. Carrier frequency offset can be measured from the pilot symbols. Then, it is a

simple matter of applying a correction factor to remove the frequency offset. Before the
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Figure 3.8: Synchronized constellation diagrams for all the linear modulations.

constellation can be recovered, the training frame values are extracted and used to update
FDE weights. The FDE is then applied on the data symbols to remove multipath fading.
The code can be found in appendix A.1.4. Figure 3.9 shows the synchronized constellation

diagram for all the OFDM modulations.

The constellation diagram for OFDM QAM32 does not look tight. This is because
the FDE coefficients have become stale. The FDE is updated once for 10 data frames, so

the coefficients becomes stale towards the 9th or 10th data frame. This results in the edge
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Figure 3.9: Synchronized constellation diagrams for all the OFDM modulations.

constellation points becoming noisier. The goal of the project was not to build a state of the
art receiver, so this issue is not of concern. However, it is visible from these results, that the

captured data was the result of a valid transmission.

Finally, the relative SNR data captures were validated. To show that the SNR has
indeed improved for TX gain of 5dB and 10dB, a sync was performed on those BPSK
captures. Figure 3.10 illustrates the improvement in the signal due to higher SNR data

captures. Notice that the constellation points gets more concentrated as the SNR goes up.
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This can also be seen from the histogram plots, which shows that the sample variances are
decreasing as the SNR increases. This is expected since noise variance, which is determined

by the noise power, is also decreasing as the SNR increases.

35



CHAPTER 3. DATA CAPTURE AND VALIDATION

bpsk normalized -- 0dB

08|
06|
04ar
02}
- @
021
04F
06

08

(a) Synchronized Constellation @ 0dB TX gain

bpsk normalized -- 5dB
1

08
06
041
02 1
' )
02} 1
04
06

08

] L L L L L L L L L
-1 08 -06 -04 -02 1] 02 04 06 08 1

(c) Synchronized constellation @ 5dB TX gain

bpsk normalized -- 10dB

|
08
06
045
0z2r 1
| @ 4
021 N
041
06

081

] L L L L L L L L L
-1 08 06 -04 02 0 02 04 06 0.8 1

(e) Synchronized constellation @ 10dB TX gain

Hist of Inphase values, bpsk 0dB
4000

3500

3000

2500

2000 -

1500

1000

500

-0.4 -02 o 02 04

(b) Hist. of I samples @ 0dB TX gain

Hist of Inphase values, bpsk 5dB

7000

6000 -

5000 -

4000 -

3000

2000 -

1000

o
-1 08 06 04 02 o 02 04 06 08 1

(d) Hist. of I samples @ 5dB TX gain

Hist of Inphase values, bpsk 10dB
8000 T T T : T T .

7000

6000

5000

4000

3000

2000

1000

0 n . . n . . n .
-1 0.8 06 -04 02 o 02 04 06 08 1

(f) Hist. of I samples @ 10dB TX gain

Figure 3.10: Synchronized constellation becomes tighter when TX gain is increased.

36



Algorithms for Modulation Recognition

In this chapter a brief background information is given to explain the two different classifier
that will be tested for modulation classification. Key points about the SVMs will be discussed

in the next section, and NNet will be introduced in the following section.

4.1 Support Vector Machines

The general formula for SVM classification is shown in equation 4.1. The weights w’
and bias b parameters are adjusted such that y(z) > 0 for z in class 0, and y(x) < 0 for =
in class 1. Thus, the decision boundary is at y(z) = 0. This is only possible to do if the
data is linearly separable in the feature space. An example of support vectors and decision
boundaries is shown in figure 4.1. On the cases where data is not linearly separable, a slack
variable £ = |t,, — y(z)| is introduced. The discussion of support vector machines is beyond

the scope of this thesis. The reader is encouraged to read up on how SVM algorithm locates
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the support vectors at [1].

y(x) =wlo(x) +b 4.1)

Figure 4.1: Two classes shown in red and blue. Contours of constant y(x) are shown through
the solid line. The decision boundary is between the support vectors which are circled in
green. Figure taken from page 331 of [1].

SVMs are a type of sparse kernel machines. A kernel ¢(z) is a feature space transfor-
mation of the input z, and in a sparse kernel machine, the new input’s class is predicted

based on only a subset of training data points, which are called support vectors. Which

means, for most of the training data points w” is set to zero.

It is possible for SVM to have high generalization with small training set. They are
good at generalization, because they are optimized based on the concept of margins. A
margin is the distance between the decision boundary and any data point, see figure 4.2.
SVM’s algorithm tries to find the maximum separation between two classes by mapping the
input into a high dimensional feature space and constructing optimum separating hyperplane,

thus providing the lowest generalization error possible.
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X2 \\ o

Figure 4.2: Maximum margin between two classes and the optimal hyperplane in between.
Figure taken from [17].

For a classifier to work well it needs to be trained with good features. This classifier
generally works well for modulation classification with Higher Order Cumulants (HOC)
as its features. Cumulants are computed from the probability distribution of the signal.
For example, the first and second order cumulants are mean and variance of the signal
respectively. A captured signal typically has gaussian noise added to it, which is zero
mean. Thus, the distribution of captured signal is not much different from the distribution of
the modulated signal in it. This makes HOC less sensitive to noise [4], which means the
classifier is able to generalize across various SNR level using cumulants. One drawback of

using cumulants is that a lot of data is needed to accurately compute them.

4.2 Neural Networks

Neural Networks were initially designed around the concept of how our brain’s neuron

works. The neuron is the basic working unit of the brain, a specialized cell designed to
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transmit information to other nerve cells, muscle, or gland cells [16]. Neuron transmits
information only if is activated which happens when the input is above a threshold. Neural
networks are constructed similarly; bunch of layers of nodes which are activated by the

input that has been adjusted using adaptable weights.

Neural Networks are popular because they are able to extract relevant features out
of raw input data and perform classification or regression work. NNets are considered
as a black box algorithm because the extracted features are hidden and not known to the
experimenter. The beauty of using NNet is in its ability to extract information that the
experimenter may not know about. They may even perform better than traditional classifier
which are trained with optimal features. The drawback of NNets is that the model may
require a lot of weights for certain type of tasks. NNets may be known as black box, but it
doesn’t mean that they will work with just any input. If the input signal is not good for the
architecture then the network will not learn anything. There are two architectures of NNet

that are worth talking about and they are presented in the next two sections.

4.2.1 Multi Layer Perceptrons

Multi Layer Perceptrons (MLP) consists of multiple layers of neurons. The output of each
layer is fed into the next layer. The neuron itself contains a non linear activation function,

which may activate based on the input value. Figure 4.3 shows a 3 layer MLP.
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Input Layer Hidden Layer Output Layer

Figure 4.3: 3 layer MLP.

In figure 4.3 there are total of 6 neurons, 3 at the hidden layer and another 3 at the
output layer. 3 input samples are being fed into 3 neurons at the hidden layer. Each neuron
receives three weighted inputs from the previous layer, which are summed and fed to an
activation function of choice. Typical activation functions include sigmoid, rectifier linear
unit (ReLU), and tanh.

Neuron

Activation
Function

Figure 4.4: Inside neuron h of figure 4.3.
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The key here is that the weights W},; and W,,;, are adaptive and learned by the neural
network. The way to do that is by using back propagation. First a loss function which is
differentiable w.r.t all the weights is constructed based on output error. Then, an optimizer of
choice is used to minimize the loss function. This is usually done by some kind of iterative
gradient descent (GD) algorithm. The weights are updated based on the gradient. The
gradient always points towards the positive slope, therefore to minimize the loss, the weights
are updated based on negative of gradient. Typical weight update equation can be seen in

Eq4.2.

w(T + 1) =w(r) — nAE(w(r)) 4.2)

In equation 4.2, w are the weights in the neural networks, and AE(w) is the gradient
of neural network with respect to the weights. Neural Networks are updated iteratively, and
T represents the iteration time steps. Learning rate 7 adjusts the rate at which the weights
adapt and reach the gradient’s minima. With a high 7 value it is possible to overshoot and
miss the minima. Making 7 low would guarantee reaching the minima, however that might
take forever to converge. A better approach is to start with high 7 value so that it converges

faster, and then gradually lower the value so that it doesn’t overshoot the minima.

A complete discussion of MLP is beyond the scope of this thesis. The reader is

encourage to learn more about them in the following book about deep learning [6].
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4.2.2 Convolutional Neural Networks

Another popular architecture of neural network are convolutional neural networks (CNN).
These were built for image classification. Image classifications are harder to do with MLP
because the image has to be flattened into a layer. Most of the spatial information is lost due
to flattenning, which causes MLP to perform poorly with image like input. In an image the
fact the two pixels are next to each other means something; that is spatial information that
would have been lost when flattened. The CNN allows for more robust feature extraction for

image like input samples. The structure of a CNN net is shown in figure 4.5.

-
Convolution Pooling Connected

(feature maps) Layer

Figure 4.5: Simple convolutional neural network. Figure taken from [18].

Convolutional network works by applying 2d convolutions on small patches of the
input image (shown in gray). The patches are then shifted around the original input image
based on the stride parameter. With stride value of 1 and proper padding around the edges,
the second layer’s feature map can have the same size as the input image. In the example

shown above, 4 different sets of weights are applied on the input image, which results in 4
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convolution feature maps. The CNN can adapt the weights such that they extract different
features from the input image. For example, one of the feature map may extract edges, and
another one may extract circular shapes. This type of multi-level feature extraction allows
CNN to classify images with high accuracy. For classification problems, the network is
usually terminated with a fully connected layer, so it helps to reduce the dimensionality of

the features maps as the network goes deep.

Activation functions are usually applied after the 2d convolution functions. After that,
if needed, the feature map’s dimensionality are reduced. There are a few ways to reduce the
dimensions of the feature maps. The most obvious way to do so is by increasing stride value.
By setting the stride to 2, one can roughly lower the dimension by half. Max Pooling is
another way to lower the dimension. Max pooling takes a patch of the input and returns the
max value within that patch. A 2x2 Max pooling with stride 2 will reduced the dimension of

the feature map by half, see figure 4.6.

Single depth_slice

X 1112 (4
max pool with 2x2 filters
5(6 |78 and stride 2 6 | 8
13[2][1]0 3|4
1123 |4
y

Figure 4.6: Max Pooling example. Figure taken from [28]

If the NNet is being build for classification, then eventually the feature map is flattened
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and applied to an MLP layer with a softmax activation function. A complete discussion of
CNN is also beyond the scope of this thesis. The reader is encourage to learn more about

them in the following book about deep learning [6].
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Modulation Classification

In this chapter the results of the two different classifiers, SVM and NNets, are presented.
Both classifiers had to be tuned to get good classification accuracy, which is also discussed
in this chapter. SVM is considered as the baseline classifier, and its performance is evaluated

first. NNet are then tested to see if they can perform better.

5.1 SVM

Pattern recognition toolbox (PRT) was used to build the SVM classifier. PRT is built for use
in MATLAB [19]. It contains many classifiers, including multi-class SVM, and provides

functions that helps with data visualization.

Cumulants up to 8™ order were used as features for the SVM classifier. They were
extracted from I and Q samples separately, so each training example contained a total of 16
features (appendix A.1.6). To accurately estimate higher order cumulants large number of

46



CHAPTER 5. MODULATION CLASSIFICATION

data samples are required. Each captured signal contained only 1 million samples, so the

estimates could only be made from those.

The computation time for calculating the estimates were rather high, and since there
were 1000 captures for each modulation and noise power level it was decided to have the
cumulants estimated from a reduced sample set. Two different estimates were made, one
from 200K and another from 50K I & Q samples. The performance may differ based on the

accuracy of the cumulant estimates.

Some pre processing steps were taken to improve the input feature space. Firstly, the
received samples were severely attenuated; the maximum value for most of the high TX
gain signal was somewhere around 0.1. Cumulant estimates based on such small sample
values were too little for the classifier to work with. The classifier performed better with

cumulant estimates from normalized captured signal.

The entire feature set’s mean was subtracted to bring the mean to zero, and the variance
was also scaled to one. This was mostly done because of the next step, which was running
the features through principal component analysis (PCA). PCA rearranges the correlated
feature space into non correlated feature space. It is typically done so that SVM can find the
optimum hyperplane with ease. From the testing it was seen that PCA improved training

time and classification results.
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There are two hyper parameters for SVM: cost and gamma (7). Cost parameter
determines the sparsity of the model. A higher cost value will produce more non-zero
weights on the data points, whereas a low cost value will tend to produce more zero weights.
The optimal value for cost depends on the separation of classes in the feature space. If the
classes are heavily mixed then a higher cost value will be needed to get good classification.
The risk of having a high cost value is that the classifier might overfit to training data and

perform poorly against test set.

The ~ parameter is associated with the type of kernel used in SVM. For this classifier,
the gaussian radial basis function (RBF) kernel is used, since it performed better compared
to others. This is a non linear kernel which transforms the input into a different feature
space. Equation 5.1 shows the transformation from which it can be seen that the value of
~ determines the transformation space. Optimal v value should produce a more separable

feature space.

k(zy,15) = e~ (z1=22)*)(4%)) (5.1)

The optimal values for these parameters are picked by exhaustive grid search. See
figure 5.1 for an example of grid search over linear modulations. Here you see that the
accuracy for the test case improves with cost value of 10 and gamma value of 0.01. It was
interesting to note that the optimal values of cost and gammas were different when tested

for linear and OFDM modulations. The final cost and gamma values which worked well for
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AUC vs. Gamma Index (Vertical) and Cost Index (Horizontal)
1

[X. Y] [101] 09
Index: 1
[R.G.B]: [0.9725 0.9804 0.05008] 08

Figure 5.1: Grid search example for finding optimal Cost and Gamma values. This SVM
model is classifying between QAM16 and QAM32 modulations. A bigger grid search can
provide a more optimal pairs of Cost and Gamma.

both training and testing data sets are listed in table 5.1.

Modulation | Linear | OFDM
Cost (¢) 30 10
Gamma (y) | 0.01 0.01

Table 5.1: SVM Hyper parameters.

This difference in parameter value for linear and OFDM modulations meant that a single
SVM classifier trying to simultaneously classify all § modulations would perform poorly. A
hierarchical approach is used instead as shown in figure 5.2. Three different SVMs will be
working together: SVM # 1 will classify between linear and OFDM modulations; SVM # 2

will classify the linear modulations, and SVM # 3 will classify the OFDM modulations.

The fist SVM classifier between linear and OFDM modulations was very easy to train.

It was able to classify between the two types of modulation with 100% accuracy.
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Figure 5.2: Hierarchical Model for SVM classification for all modulations.
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Kfold validation test with k = 10 was run to quickly determine the performance of
SVM # 2 and # 3 . The reader is reminded that there were 3 different signal power levels at
0dB, 5dB, and 10 dB, as well as 2 different cumulants estimation based on 50K and 200K
samples. The Kfold validation results for linear and OFDM modulations are shown in figure

5.4, and 5.5 respectively.

Figure 5.3: Kfold validation results for SVM # 1. This SVM classified between linear and
OFDM modulations.
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Figure 5.4: Kfold validation results for linear modulations (SVM # 2).
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Figure 5.5: Kfold validation results for OFDM modulations (SVM # 3).
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There are a few interesting things to note for the linear modulation classifier. Higher
SNR modulations and more accurately estimated cumulants are easier to classify. There is a
4 to 5% improvement in classification performance with cumulant estimates of 200K over
50K samples. Across the board, the linear modulation classifier has trouble with higher order
QAMs. One thing to note here is that it is possible to improve the classification performance
for any of the case by tuning the hyper parameters. Since SVM is being tested for all cases

simultaneously the hyper parameters should remain fixed.

The OFDM modulation classifier performed really well across the board. Surprisingly,
OFDM modulations are easier to classify with cumulants. Before we move on to test the
classifier’s ability to generalize over multiple SNR data, it is worth looking at the feature

space to understand the classifier’s performance.

Figure 5.6 shows the decision boundaries for linear and OFDM modulations when
classifying with just 2 PCA-feature. Notice that OFDM classes are cleanly separable with
just 2 features. Linear modulation classes, however, have lots of mis-classfication regions
between QAM16 and QAM32. This particular classifier, with just 2 features, got an accuracy
of 72%. There are 16 features in total, so it is possible to get better decision boundaries in
higher dimensional feature space, which is why the overall accuracy rate for linear with all

features is around 93% as was seen in figure 5.4.

Hierarchical approach of classifying OFDM and linear modulation is showing decent
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®  OFDM QAM4
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PC Score 2
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(a) Linear SVM Classifier (b) OFDM SVM Classifer

Figure 5.6: Decision boundaries for the classes in linear and OFDM modulations. The
classifier is taken from one of the ten models in the Kfold validation test.

results. For completeness, a single SVM classifier is built and trained with all modulations.
The cost parameters is set to 30 which is suitable for linear modulations. The Kfold results

for this classifier is shown in figure 5.7.

Itis clear to see from figure 5.7 that a single SVM classifier is not good at simultaneously
classifying both linear and OFDM modulations. Since the cost value is biased towards linear
modulations, it is able to classify them better. It is interesting to see that OFDM modulations

are poorly classified here, since so far SVM was able to classify them with high accuracy.

In the next test, we get to gauge the SVM classifier’s ability to generalize across multiple
SNR levels. In this test the classifiers are trained with data from all SNR levels. 200K and
50K cumulant estimates are run in separate tests. The results for linear modulations are
shown in figure 5.8, and the results for OFDM modulations are shown in figure 5.9. The

result with all modulations are presented in figure 5.10.
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Figure 5.7: Kfold validation results for all modulations together.

The OFDM classifier performs well again, as expected from its earlier performance.

The classifier for linear modulations performs fairly well as well. In this test the SVM is
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Figure 5.8: Kfold results for linear modulations when SVM is fed with data from all TX
gain levels.
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Figure 5.9: Kfold results for OFDM modulations when SVM fed with data from all TX gain
levels.

given more observations to train with. There are 3000 observations per modulation to do
Kfold testing with. Previously, there were only 1000 observations per modulation. Still
there is 4% to 6% mis-classifications for higher order QAMs which is bad. Single SVM

which is trained with all modulations and all SNR levels consistently performs poorly.

From looking at figures on OFDM constellations one would expect the classifiers to
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(a) 200k sample estimate @ all of TX Gain (b) 50k sample estimate @ all of TX Gain

Figure 5.10: Kfold results when SVM is fed with data from all modulations and TX gain
levels.

perform poorly against them. This result is unexpected, yet the issues seen with linear
modulations shows the limits of SVM classifier. They are very much dependent on the
choice of features the experimenter selects. NNet which is able to extract its own features is

tested next.

5.2 NNet

There are many type of architectures of NNets, and more are being invented. For classifica-
tion problem architectures like MLLP and Convolutional NNets can be used. First, a MLP
network is built and tested with the raw I & Q samples as the inputs. Then, a convolutional

NNet is tried to see if that performs better.
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5.2.1 MLP Results

For testing MLP architecture, a simple 3 layer network was built with ReLLU activation
functions in the neurons. See figure 5.11 for the MLP model. Nj,p, raw I and Q samples
are fed in at the input layer, which are then multiplied by weights Wy; and fed to the hidden
layer. At each neurons in the hidden layer, the weighted inputs are summed and a bias value
is added. This summation is passed through a ReLLU activation function, and pushed on
to the output layer after being multiplied by weights W,,. At the output layer, a softmax
activation function is used so that the output of all nodes sum to 1. This is a classic way to

do classification using MLP.

N.

input

Input Layer Hidden Layer Output Layer

Figure 5.11: Multi Layer Perceptrion Model

Cross Entropy is the most commonly used loss function for classification problems.

The equation for the loss function is shown in equation 5.2. Cross entropy is typically
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evaluated over 2 distribution p and ¢, and it measures the similarity between those two
probabilities. A softmax function is used across the output layer to turn the output into a
probability distribution. Thus the loss value is equal to the cross entropy of the output of the

MLP and a one hot encoding of the classes.

H(p,q) = =) Y_(n)log(Y (n)) (5.2)

n

In equation 5.2, Y_ is the ground truth, and Y is the output of the MLP. Two different
optimizers were tried to minimize the loss: Gradient Descent (GD), and Adaptive Moment
Estimation (Adam). GD optimizer was explained in Chapter 4. Adam optimizer algorithm
updates the weights based on the mean and variance of the gradient of previous iterations
[10]. This is different from GD in which the weight are updated based only on current

iteration’s gradient. The weight update equation for Adam is shown in equation 5.3.

Qt <— 915—1 —a X mt/(\/’U_t+ 6) (53)

In equation 5.3, « is the learning rate parameter, m; and v; are the estimates of the
mean and variance of the gradients. Adam’s update rule is similar to GD, and it has shown to
perform well compared to other GD optimizers. The reader is encourage to read the Adam

paper for additional information [10].

MLP was, however, unable to perform well with the raw I & Q samples. The parameters
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of the networks, N;pput, N1, Nowr Were changed around, but none could give a good result.

See figure 5.12 for the accuracy and loss function for an example MLP model.

Accuracy Cross Entropy
— acc_train — train cross entropy
— acc_val — val cross entropy

6 560 IObO 15b0 ZObO ZSbO 6 560 lﬂbO leO 20‘00 25‘00
(a) Training and validation accuracy. (b) Training and validation loss function.

Figure 5.12: MLP model results with Nj;,;,,=1024, N¢,1=512, N,,=2. This model was
attempting to classify between BPSK and QAM4 modulated signals.

From figure 5.12 we see that MLP was unable to perform for a binary classification
between BPSK and QAM4. The validation accuracy hovered around 50% while the training
loss function went down to zero. This leads to the conclusion that MLP architecture is not

fit to work with raw I & Q samples as its input. It is easy to see why by looking at a few

inputs of BPSK and QAM4 modulation signals in figure 5.13.

The frequency offset makes these signal difficult for a MLP architecture to classify.
Each input from within a modulation class is quite different because of frequency offset.
It is easy for us to see which modulation is not BPSK, because of the sudden dips in the
signal, but that is spatial information which is lost on an MLP architecture. A convolutional

NNet however, should be able to extract spatial information from the input so that might
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Figure 5.13: 1024 I samples from BPSK and QAM4 modulations.

fare better with this type of input.

5.2.2 CNN Results

There has been prior work done on modulation classification using convolutional NNet
(CNN) [26]. A similar model is built for testing with few changes in parameters. The

template for the CNN model can be seen in figure 5.14.
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Figure 5.14: Conv Net Model Template
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Table 5.2 list the parameter values for the two different models that was built. The last
row shows the total number of adaptive parameters used in the build when 1024 I and Q

samples are fed in.

Parameters Model # 1 | Model # 2
N1 16 32
N2 32 64
Nfcl 256 1024
Total Adaptive Parameters 2.1mil 16.8mil

Table 5.2: Model Parameters

The input is a 2xN image, with the first column containing N I samples, and the
second column containing N Q samples. This way the input looks like an image with its
spatial information preserved. There were two techniques applied in the model to improve

performance: batch normalization (BN) and dropout.

BN is a pre-processing step. There are some algorithms that learn faster if the input has
zero mean and unit variance, such is also the case for CNN. BN is applied in between each
convolutional layer of CNN. It is usually not applied at the input layer, because we want the
CNN to be able to extract features from raw input. BN has two steps to it. First the input is
normalized using equation 5.4. Then, the normalized input is scaled by « and shifted by

as seen in equation 5.5.

= (x; —p)/Vo?+e (5.4)

=>
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BN(z) =~i + (5.5)

~ and [ are adaptable parameters. Which means that if BN was the wrong thing to do
in a particular layer, then CNN can reverse the effect of BN by setting y to 1/1/02 + ¢ and
B to p. € is small value of 1e-3 placed to avoid division by zero error. The effects of BN can
be seen in figure 5.15. Notice that without BN the weights take longer to minimize the loss
function. BN makes it okay to have a higher learning rate, which means faster convergence.
Both of the models uses rectifier linear unit (ReLLU) activation functions, so the ~ term is

removed in the BN process. Scaling the z by v would have minimal effect on the output.

Cross Entropy Cross Entropy

— train cross entropy — train cross entropy
val cross entropy val cross entropy
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(a) without Batch Normalization (b) with Batch Normalization

Figure 5.15: Training and validation cross entropy loss function for OFDM modulation
classification with Model # 1.

In machine learning algorithms, regularization is applied so that the model does not
overfit to training data. When a model is overfit to training data, it performs poorly on

validation and testing set. Models with a lot of degrees of freedom can overfit easily, and a
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CNN is not an exception to that rule. Dropout is a form of regularization that is typically
applied in NNets. When the model is trained with, lets say 50% dropout, then half of all the
adaptive parameters, such as weights and biases, are zeroed out at random. Those weights
do not contribute to the result, nor do they get updated in that training iteration. Figure
5.16 shows the impact of dropout. Without dropout the validation accuracy levels off early
even though the training accuracy keeps improving. That is a symptom of an overfit model.
Adding dropout regularizes the model and we can see that the validation accuracy conitnues

to improve as well. For all the models, the dropout was set to 50%.
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Figure 5.16: Training and Validation accuracy for OFDM modulation classification with
Model # 1.

There were a few choices for activation functions. Two populars ones are shown in
figure 5.17. There is a problem with deep NNets called vanishing gradient which occurs
when the gradients goes to zero. To avoid such problem, ReLLUs are good because their

gradient cannot go to zero for positive input. With sigmoids the gradient can still go to zero
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for both positive and negative inputs. Another benefit of using ReLU is that we get to omit
the v term from BN, because rescaling the normalize input Z with v would have minimal

effect on the activation output.

1

8 6 -4 2 0 2 4 [ 8 3 2 -1 0 1 2 3
Input Input

(a) Sigmoid (b) Rectifier Linear Unit

Figure 5.17: Activations functions.

For NNets there were lot more examples available for training. At max, only 1024 I &
Q samples are fed into the network, but each example file contains 1e6 I & Q samples. 20
blocks of N I & Q samples were extracted from each file, where /N could be 256, 512, and

1024. For each case value of N there was 20,000 examples to train and test with.

Model # 1 was giving promising results till the test in which it is trained with multiple
SNR data. The results are shown for both models, because it gives us insight into the
flexibility of NNets. In the first test, the CNN is fed with three different sets of modulations:
linear modulations only, OFDM modulations only, and All modulations. The results for

both models at all noise power level is shown in figure 5.18
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1024 99.93% 99.93% 99.93% 1024 99.99% 99.86% 99.96%
(e) M1 @ 0dB TX gain. (f) M2 @ 0dB TX gain.

Figure 5.18: CNN performance with each SNR data. NNet Model # 1 (M1) is on the left;
NNet Model #2 (M2) is on the right. These models are trained for 5 epoch with batch size
of 50. Roughly 16K examples per class used for training, and roughly 2K examples per
class where used as test set.

The linear modulations are very easily classifiable with just 256 I and Q samples. The
classification rate is above 99% for all cases! This is definitely an improvement over SVM
which could only achieve 93% accuracy on linear modulations with 200K sample estimates.
To classify OFDM modulations at the same rate, at least 1024 I and Q samples are needed.
With 1024 samples the network is able to see an entire set of OFDM frames, which are only
960 samples wide. It is possible that CNN is able to localize one of the repetitive frames
like preamble or training frames. The results of the last column "All" is consistent in that it

is the average of linear and OFDM modulation results. SVM would not have been able to
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simultaneously classify both types of modulation with this high of an accuracy. Overall, we

see that CNN has significantly higher performance than the SVM classifier.

The confusion matrix for few of the poor classification rate cases are shown in figure
5.19. In these poor performance cases higher order modulations are misclassified more. In
the All modulation case, OFDM QAM16 and OFDM QAM32 are heavily misclassified.
The raw samples of those modulations are very similar, which explains the mis classification

with limited sample size.

OFDM BPSK

QAm4 OFDM QAM4
QAM16 0 OFDM QAM16 0
0AM32 0 OFDM QAM32 0
Acc=99.15% BPSK Acc=86.46% | OFDM BPSK
(a) 10 dB TX gain with N = 256 (b) 0 dB TX gain with N = 256
0.1 0 0 0 0 0
QAM4 0
Qam1e 0
QAM32 0
OFDM BPSK 0
OFDM QAMA4 0
OFDM QAM16 0 0.9
OFDM QAM32 0 0 0 0 0.05
Acc =93.1% BPSK Qama Qam16 QAm32 OFDM BPSK | OFDM QAM4 |OFDM QAM16 | OFDM QAM32

(c) 10 dB TX gain with N =256
Figure 5.19: CNN confusion matrix from model # 2 for a) linear, b) OFDM and c) All
modulation cases with the specified parameters. These are the poor performance cases in
their respective categories.
In the last test, both of the models were tested for their classification ability with

multiple SNR data. They were fed with examples from all TX gain levels. Figure 5.20

presents the results.
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77.71% 77.05% 79.40% 99.11% 82.23% 90.33%

512 79.11% 84.48% 83.96% 512 99.46% 90.11% 94.93%
1024 78.43% 99.93% 95.88% 1024 99.82% 99.95% 99.65%
(a) Model # 1 Classification Rate (b) Model # 2 Classification Rate

Figure 5.20: CNN performance of both models when trained with examples from all TX
gain level. These models were trained for 10 epoch with batch size of 100. Roughly 16K
examples per class and TX gain level were used for training. Tested against roughly 2K
examples per class and TX gain level.

Notice that Model # 1 is unable to perform well with this observation set. The training
and validation accuracy graphs from one of the runs is shown in figure 5.21. Notice how the
validation accuracy plateaus. This is a symptom of a NNet that is unable to learn. One way
to fix that is by adding more degrees of freedom, i.e. more weights. So that is how model #
2 was designed. After adding more weights, the new model was able to easily learn the data

set, and we get a network that can now work with multiple SNR data.

Accuracy Accuracy

1.0 — acc_ftrain
— acc_val

— acc_train
094 —— acc_val

0.9+
0.8
0.8
0.71
0.7 4
0.64
0.6
0.5
0.5
0.4+
0.4
034

03]
0 50 100 10 200 250 30 0 s 10 150 200 250 300

(a) Model # 1 plateaus at 77%. (b) Model # 2 continues learning.

Figure 5.21: Training and validation accuracy values for CNN Models.

The confusion matrix for one of poor classification rate case is shown in figure 5.22 a).
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Here also OFDM QAMI16 and OFDM QAM32 are heavily misclassified. The confusion
matrix for model # 2 which is trained with all SNR level and all modulations with 1024
I & Q samples is shown in 5.22 b). CNN can be seen to simultaneously classify all 8

modulations with multiple SNR level really well with just 1024 I & Q samples.

OFDM BPSK
OFDM QAM4
OFDM QAM16 0

OFDM QAM32 0.2

Acc=82.23% | OFDM BPSK

QAM4
QAM16
QAM32

OFDM BPSK
OFDM QAM4

OFDM QAM16

OFDM QAM32 0

Acc =99.65% BPSK

o|lo|o|o|o|o

QAM32 OFDM BPSK | OFDM QAM4

(b) All Modulations with N = 1024

OFDM QAM16 | OFDM QAM32

Figure 5.22: CNN confusion matrix of model # 2 with all TX gain data for a) OFDM
worse performance case, and b) All modulations best performance case with the specified
parameters.

5.3 Comparison

In this section SVM and NNets results are summarized and a comparison is made between
the two. The side by side comparison table for SVM and CNN model # 2 is presented in

figure 5.23.

In SVM two samples sizes were selected, SOK and 200K. It was seen that classification
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with higher sample size estimate showed 5% improvement over the smaller sample size esti-
mate. SVM classifier performed well when it was classifying linear and OFDM modulations
separately. SVM could not simultaneously classify both linear and OFDM modulations. In
the SNR generalization test it was found that SVM generalized well across multiple SNR,

even showing a little improvement for linear modulations.

MLP architecture was unsuitable for raw baseband I & Q samples. CNN architecture
was much more suited for these inputs. They performed well in classifying linear modula-
tions with just 256 I & Q samples. OFDM modulations could also be classified with high
accuracy, but required at least 1024 I & Q samples. CNN were also good at simultaneous

classification of both linear and OFDM modulations. It also generalized well in the multiple

SNR case.
0dB TX gain SVM CNN 5dB TX gain SVM CNN
Estimate Sample Size Input Size Estimate Sample Size Input Size
Modulation 50k 200k 2% 512 1024 Modulation 50k 200k 2% 512 104
Linear 89.35 94.83 9920 9950  99.99 Linear 88.55 92.95 9970 9963  100.00
OFDM 99.98 100.00 9225 97.08  99.86 OFDM 98.52 99.80 8736 9357  100.00
ALL 78.24 7990 9588 9853 999 ALL 7563 7835 9363 9703 9998
(a) with TX gain 0dB (b) with TX gain 5dB
10dB TX gain VM CNN All dB TX gain VM CNN
. . . Estimate Sample Size Input Size
Estimate Sample Size Input Size 5
Modulation 50 w0 2 512 104 el ol Wk | 6 | s 1M
linear | 85.83 990 9970 9991 10000 Linear 9149 9728 911 946 98
OFDM 99,30 9995 | 8690 9265  100.00 OFDM 9.3 99.89 8223 9011 995
ALL 7181 7341 9310 940 9998 ALl 7885 8191 9033 9493 9965
(c) with TX gain 10dB (d) with all TX gain data

Figure 5.23: Performance of SVM and CNN at different TX gain level, and with all TX gain
level.
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It is clear to see that for overall performance across the board, CNN is the winner.
The obvious drawback to using the CNN model is huge number of weights that is used.
The biggest number of weights is between the second convolution layer and the first fully
connected layer. It should be possible to reduce the number of weights, by adding more
sub sampling layers like convolutional or max pooling, without losing the classification

accuracy. This is something worth investigating in future.
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The biggest takeaway from these experiments is that NNet is more flexible for the task
of modulation recognition. For a SVM classifier to perform well, it needs to be trained
with good features, which is up to the experimenter. A proper NNet can easily learn
useful features from complex data set if it has the right architecture and enough adaptable
parameters. With just 1024 I & Q samples, CNN'’s classification accuracy was consistently
above 99%. SVM is still very powerful in the hands of an experienced experimenter who
knows what features works best. However, a robust SIG INT or CR receiver would probably

do better with a NNet’s flexibility with a complex data set.

There are many things to try out to continue this experiment. It would be interesting to
see how well these classifiers perform with changes in the modulation parameters. For linear
modulations experimenters can try adding different pulse shaping filters at the transmitter.

They may also try varying the no. of samples per symbol, and symbol time. For OFDM
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modulations, they can change the FFT size, or make the frame sequence longer, for example
putting 20 data frames instead of 10 data frames between preamble and training frames.
They can also try removing preamble and training frames all together to check if CNN
performs well without these repetitive frames. SVM’s capability can be too limited with
cumulants, so experimenter may try using wavelet features which are also very good at
modulation classification. Experimenters can also try adding other types of modulations to
increase the complexity for the classifiers. As suggested in last chapter, experimenters can

also focus on reducing the number of weights in CNN by adding extra sub sampling layers.

The intention of doing this thesis was to see if NNets were viable for modulation
classification of OFDM modulations. Even though the number of parameters involved in
the complete model are too high, it is clear to see from the results that CNN can perform

excellently at classifying OFDM modulations.
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A.1 MATLAB Code

A.1.1 Linear modulation bit generator
BPSK bit generator

% generate random ints

for seed = 1:1000

rng (seed);

prbs = randi([0,1],10000,1)*2 —1;

% store that as int

fileID = fopen ([’ prbs_’,num2str(seed),’.txt’ ], w’);
fwrite (fileID , prbs, ’int ’);

fclose (fileID );

end

QAM symbol generator

% generate random integers from 0 to M-1
for seed = 1:1000

rng (seed);

M= 4; % 16 for QAMI6, 32 for QAM32

prbs = randi ([0 ,M—1],10000,1);

% store that as int

fileID = fopen ([’ qam4_sym_’ ,num2str(seed),’.txt’],’w
%filelID = fopen([’qaml6_sym_’ ,num2str(seed),’.txt’],
%filelID = fopen ([’ qam32_sym_’,num2str(seed),’.txt’],
fwrite (fileID , prbs, ’int ’);

fclose (fileID );

end

’); % for QAM4
w’); % for QAMI6
W) % for QAM32

A.1.2 OFDM frame sequence generator

clc; clear all; close all;
%% Premable
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N = 64;

preambleVals =
preambleldx =
preamble =

(1.472+11i%1.472)«[—-1, —1, 1, 1, 1, 1, 1, =1, 1, =1, —1, 1];
[5:4:25,41:4:61];
zeros (N, 1);

preamble (preambleldx) = preambleVals;

preambleFrame
9%% Training

nullCarriers
pilotCarriers
dataCarriers

% altenative o
trainVals
trainVals (2,:)
trainVals

% Train frame

= preamble;

[0,27:37] + 1;
[7,21,43,57] + 1;
[1:6,8:20,22:26,38:42,44:56,58:63] + 1;

nes +1,—1,+1,... on data carriers
= ones(2,length(dataCarriers )/2);
= —l.xtrainVals (2,:);

= trainVals (:);

training = zeros(N,1);
training (dataCarriers) = trainVals;
trainingFrame = complex (training ,zeros(N,1));

for seed = 1:1000

rng (seed);

%% Data Frame

% generate
nDataFrame
prbs
prbsSym

random bpsk syms

s = 10000;

randi ([0,1],length(dataCarriers)*nDataFrames,1)*2 —1;
complex (prbs , zeros(size (prbs))); % for OFDM BPSK

% Un comment this for OFDM QAM4

J%prbs
% prbsSym

= randi([0,3],length(dataCarriers)*nDataFrames ,1);
= qammod( prbs ,4);

% Un comment this for OFDM QAMI6

J%prbs
% prbsSym

= randi([0,15],length(dataCarriers)*nDataFrames,1);
= qammod(prbs ,16);

% Un comment this for OFDM QAMI6

J%prbs
% prbsSym

= randi([0,31],length(dataCarriers)*nDataFrames,1);
= qammod( prbs ,32);

9%% Interleave frames

frameNo = 0;
idx = 1;
dataldx = 1;
for k = 1:nDataFrames
if (mod(frameNo,10) == 1)
Out(idx :idx —14N) = preambleFrame;
idx = idx + N;
Out(idx:idx —14N) = trainingFrame;
idx = idx + N;
end
dataFrame complex (zeros(N,1),zeros(N,1));

dataFrame (pilotCarriers)
dataFrame (dataCarriers)

datald

Out(id

idx

frameN
end

% store th
outReal =
outlmag =
outFrame =
outFrame =

fileID = f

complex (1,0);
prbsSym(dataldx :dataldx —1+length (dataCarriers ));

X dataldx + length(dataCarriers);
X :idx —14N) dataFrame ;
idx + N;
o = frameNo + 1;
at as float
real (Out);
imag (Out);

[outReal; outlmag];
outFrame (:);

open ([’ frame_802_bpsk_ "’ ,num2str(seed),’.txt’],’w’);

fwrite (fileID , outFrame, ’float ’);

fclose all
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end

A.1.3 Linear modulation receiver

clc; clear all; close all;
%% Read received signal

% fileIn = fopen(’bpsk_capl.dat’,’r’);
fileIn = fopen(’bpsk_cap2.dat’,’r’);
invar = fread (fileln, ’float );
fclose all;

9%% Split into I and Q samples
bb_samp = invar(l:1e5);

I = bb_samp(1:2:end);
Q = bb_samp(2:2:end);
%% Remove DC Offset

I =1 — mean(1l);

Q = Q — mean(Q);

9%% Unrecovered Constellation Diagram
figure , plot(1,Q,’x"); title(’Un recovered Const’);
figure , pwelch(I+1i.%Q,[],[],[], le6, ’centered ’); title (’Rx Spectrum ’);

9%% Constellation recovery by supplying a freq offset correction factor

bb_sig = I + 1ixQ; % baseband signal

fs = 2e6; % sampling rate

t = (0:length(I)—1)/fs; % time scale

% frec = 309; %bpsk_capl.dat

% deg = —60;

frec = 217.5; %bpsk_cap2.dat

deg = 77;

recLO = exp(—li.*2xpixfrec.xt.’); % correction term

rxRec = bb_sig .x recLO .xexp(li.xdegxpi/180); % recovered term

9%% Recovered Constellation Diagram

N = length(rxRec);
NI = floor (0.25%N);
N2 = floor (0.5%N);

figure , plot(rxRec(1:N1), ’xr’); title (’Recovered Const’);
hold on,

plot(rxRec(NI1:N2), ’xm’);

plot(rxRec(N2:N), ’xg’);

9%% Eye diagram

sps = 20; % samples per symbol

rx_eye = reshape(rxRec(41:end), sps*x2, []);

figure , plot(real(rx_eye),’x’); title(’In Phase Eye Diagram’);

9%% Decimated Constellation Diagram

start_phase = 25+sps;

bb_dc = rxRec(start_phase:sps:end);

figure , plot(bb_dc, ’x’); title (’Decimated Constellation ’);

9%% Remove edge points

% edge = 18; %bpsk_capl

edge = 22; %bpsk_cap2

bb_dc rxRec(edge:end);

N floor (length (bb_dc)/(sps));
bb_eye = reshape(bb_dc (1:Nxsps), sps, N);
bb_eye_trunc = bb_eye(4:19,:);

bb_eye_trunc = bb_eye_trunc (:);

N = length(bb_eye_trunc);
N1 = floor (0.33%N);
N2 = floor(0.66xN);
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figure , plot(bb_eye_trunc(1:N1), ’xr’); title (’Recovered Const without edge samples ’);
grid on;

hold on,

plot(bb_eye_trunc (N1:N2), ’xm’);

plot(bb_eye_trunc (N2:N), ’xg’);

axis (0.06x[—1,1,—1,1])

A.1.4 OFDM modulation receiver

clc; clear all; close all;

%% Read captured file and transmitted file

% captured file example

noisyF = fopen(’ofdm_bpsk_100.dat’, ’'r’); % Noisy File

noisyData = fread(noisyF, ’float ’);

noisyData = noisyData(l:1e6);

% transmitted file example

cleanF = fopen(’ofdm_bpsk_clean_100.dat’, ’r’); % Tx File % current format.
cleanData = fread (cleanF, ’float ’);

%% Split into I and Q samples

% Baseband samples

Inoisy = noisyData(1:2:end);
Qnoisy = noisyData(2:2:end);
bbnoisy = Inoisy + 1i.*Qnoisy;
noisyFs = 25e6;

Iclean = cleanData(1:2:end);
Qclean = cleanData(2:2:end);
bbClean = Iclean + 1li.xQclean;
cleanFs = 25¢6;

%% Unrecovered constellation diagrams

figure , pwelch(bbnoisy, [], [], [], noisyFs, ’centered ’); title (’Baseband Spectrum ’);
figure , plot(bbnoisy, ’x’); title(’  Constellation diagram ’)

9%% Remove DC offset

I = real(bbnoisy) — mean(real (bbnoisy));

Q = imag(bbnoisy) — mean(imag(bbnoisy ));

bbnoisy = I + 1i.xQ;

9%% Frequency offset correction

% Adjust this so that the pilot’s horizontal.

frec = 250;

deg = —120;

t = ((0:numel(bbnoisy)—1)/(noisyFs)).’;

bbnoisy = bbnoisy (:).*xexp(—li*2*xpixfrec.xt)xexp(li.xdegxpi/180);

%% Preamble based Frame detection (better way listed ahead)

rx = bbnoisy;
N = 64;
L = 16;

% Find Frame Boundaries using preambles
P = zeros(length(rx)—(N+L),1);

R = zeros(length(rx)—(N+L),1);

corr = zeros(length(rx)—(N+L),1);

for i = 1:length(rx)—N+L)

% preambles are identical halves
sampl = rx(i:i—14N/2);
samp2 = rx (i4N/2:i+N/2—14N/2);
P(i) = sum(sampl.xconj(samp2));
R(i) = sum(abs(samp2.72));
corr(i) = P(i)/R(i);

end

figure , stem(abs(corr(1:2500)));
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title (’ Preamble detection ’);

9%% Correlation against clean signal to get Frame boundary
[r,lags] = xcorr(bbnoisy, bbClean);

figure , plot(lags, abs(r));

title (" correlation against transmitted signal ’);
% Use the peak index as the startldx and add 80 to it

9% Remove Cyclic Prefix

startldx = 18109+80; % start of preamble frame

nFrames = 400; % number of frames to extract from the signal

bbFrames = reshape (bbnoisy(startIdx:startldx —1+(N+L)*nFrames) ,(N+L) ,[]); % frames
bbSig = bbFrames(L+1l:end,:); % cp removed from frames

9%% Extract traiing symbols to compute FDE coeffecients
% Frame Sequence P | T I Dx 10 I P I T I Dx 10 | P

[2:12:nFrames ];
bbSig (:, trainFrameldx );

trainFrameldx =
trainFrames =
% Train Frame Format

nullCarriers = [0,27:37] + 1;

pilotCarriers = [7,21,43,57] + 1;

dataCarriers = [1:6,8:20,22:26,38:42,44:56,58:63] + 1;

trainFftOut fft (trainFrames ,N);

trainVals trainFftOut (dataCarriers ,:);

% trainVals values should be alternating ones if there are no impairments
nullVals = trainFftOut (nullCarriers ,:);

figure , plot(trainVals , x’);

title (* Train Vals ’);

figure , plot(nullVals,h’x’);
title (° Null Vals ’);

%% Extract Data Pilots to check frequency offset

dataFrameldx = 1:nFrames;

dataFrameldx (1:12:end) = [];

dataFrameldx (1:11:end) = [];

dataFrames = bbSig(:,dataFrameldx);
dataFftOut = fft(dataFrames ,N);
pilotVals = dataFftOut(pilotCarriers ,:);

figure , plot(angle(pilotVals(l,:))x180/pi,’ x’);
title (’ Pilot Phase ’);
hold on,
plot(angle(pilotVals (2,:))
plot(angle(pilotVals (3,:))
plot(angle(pilotVals (4,:))
legend (’1st’,’2nd’,’3rd”’,’
ylim ([ —360,360]);

% 1f there is a freq offset then these angles will not be horizontal.
% add freq offset correction term till they are horizontal.

*180/pi,’ rx’
*180/pi, mx”)
«180/pi,’ gx’)
4th’);

9%% FDE coeffs based on Training Frames

% zero forcing equalizer

equalizer = zeros (N, size (trainVals ,2));

equalizer(dataCarriers ,:) = 1./(trainVals);

equalizer(dataCarriers (2:2:end),:) = equalizer(dataCarriers (2:2:end),:)* —1;

9%% Equalize data frame

eqldx = 1;
dataEQ = zeros(size (dataFrames));
for k = l:size(dataFrames ,2)

currEqualizer
dataEQ (: , k)

= equalizer (:,eqldx);
if (mod(k.10)==0)

dataFftOut (: ,k).*xcurrEqualizer;
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% one training frame for every 10 data frames.
% increment after 10 data frames have been equalized.
eqldx = eqldx+1;
end
end

dataOut = dataEQ(dataCarriers ,:);

figure , plot(dataOut,’x’); title (’Recovered Constellation After Equalizer ’);
ylim ([ —=1.5,1.5])

xlim ([ —-1.5,1.5])

A.1.5 Cumulant function

function [rcum] = compute_cumulants(data, ncumulant)

%ncumulant represent total number of cumulants to be calculated.
cum = zeros(ncumulant,1);
cum(1) = mean(data);

% pre compute non central moments
mom = zeros (ncumulant ,1);

for n = l:ncumulant
mom(n) = mean(data.”n);

end

for n

= 2:ncumulant
y =0
for m = 1:n—1
if ((n-m) ~= 0)
y =y + nchoosek (n—1,m—1)*cum(m)*mom(n—m);

else
y =y + nchoosek(n—1,m—1)xcum(m);
end
end
cum(n) = mom(n) — y;

end

rcum = cum;
end

A.1.6 Cumulant script for captured data

% Computes cumulants of captured data for all of the 8 modulations.
% lgnores transients at the begining.
% change sample size between 50k and 200k

clc; clear all; close all;
format long;

home = ’path_to_home_dir ’;

% Unnormalized dir

unnorm_dir = ’path_to_save_location_for_unnormalize_cumulants ’;
% normalized dir

norm_dir = ’path_to_save_location_for_normalized_cumulants ’;

% switch

type = ’unnormalized ’; % unnormalized or normalized

% do CTRL + H and replace bpsk with qam4 or another modulations and rerun
% the file

9%% bpsk captures

tic

cd (home)

% cd into directory with raw captures

cd plusl0/bpsk

bpsk_cum = zeros (1000, 16); % placeholder, 1000 examples per modulation class
h = waitbar (0, ’Please wait... );
for i = 1:1000
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waitbar (i/1000, h, sprintf(’computing cumulant on %d’, i));
% read captured data

filename = [ bpsk_10dB_’ ,num2str(i),’.dat’];

infile fopen(filename , ’'r’);

invar fread (infile , ’float ’);

fclose (infile );

% split into I and Q
1 invar (1:2:end);

Q = invar(2:2:end);
bb = 1T + 1i.xQ;
bb = bb(1000:999+50e3); % 50k sample estimate

%bb = bb(1000:999+50e3); % 200k sample estimate

% compute cumulants for I and Q samples (un normalized cumulants)
bpsk_cum(i,1:8) = compute_cumulants(real(bb),8);
bpsk_cum(i,9:16) = compute_cumulants(imag(bb) ,8);

% save
if (strcmp (type,  unnormalized "))
cd(unnorm_dir);
cd bpsk;
filename = [’bpsk_10dB_cumulant_unnorm.mat’];
end

if (strcmp (type,’ normalized *))

cd(norm_dir);

cd bpsk;

filename = [’bpsk_10dB_cumulant_norm.mat’];
% normalize the signal

bb_norm = bb./max(abs(bb));

% compute cumulants

bpsk_cum(i,1:8) = compute_cumulants(real (bb_norm) ,8);
bpsk_cum(i,9:16) = compute_cumulants (imag(bb_norm) ,8);
end
cd (home)
cd plusl0/bpsk

end

close(h);
toc

% cd into where you want to save the file

cd(’ path_to_save_location\cumulants\separate\50k’);
Jcd (’ path_to_save_location\cumulants\separate\200k’);
save (filename , “bpsk_cum ’);

A.1.7 SVM for single SNR data

clc; clear; close all;

addpath ( °../ Subfunctions )
addpath (genpath ( *../PRT—master "))
load fig_pos.mat

home = pwd;
% path to where the cumulants are stored
data_dir = ’path_to_cumulants_dir\cumulants\separate\200k\original ’;

%data_dir = “path_to_cumulants_dir\cumulants\separate\200k\plus5 ’;
%data_dir = “path_to_cumulants_dir\cumulants\separate\200k\plusl0 ’;
Y%data_dir = “path_to_cumulants_dir\cumulants\separate\50k\original ’;
Jdata_dir = “path_to_cumulants_dir\cumulants\separate\50k\plus5 ’;
Jdata_dir = “path_to_cumulants_dir\cumulants\separate\50k\plusl10 ’;
cd(data_dir)

standardMods = {’bpsk’, ’qam4’, ’qaml6’, ’'qam32’};

ofdmMods = {’ofdm_bpsk’, ’“ofdm_qam4’, ’ofdm_qaml6’, ’ofdm_qgam32’};
allMods = [standardMods ofdmMods];

modsClass = allMods;

normVal = ’norm’; % norm Or unnorm

% Load cumulants
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Nmod = length (modsClass);
CumData = zeros(1000xNmod,16);
for i = 1:Nmod

filename = [modsClass{i},’ _

%filename [modsClass{i},’ _5dB_cumulant_

%filename [modsClass{i},’

load (filename );

B

>

_10dB_cumulant_"’

cumulant_’,normVal,’.mat’]; % for 0dB caps

,normVal,’.mat’]; % for 5dB caps
,normVal,’.mat’]; % for 10dB caps

CumData((i —1)*1000+1:1%1000,:) = data; % 1000 examples per modulation class

end
%% OFDM vs Non OFDM (SVM 1)

standardData = CumData(1:4000,:);

OfdmData = CumData(4001:8000,:);

data = [standardData; OfdmDatal];
target = zeros (8000,1);
target(4001:end) = 1;

ds = prtDataSetClass (data, target);
dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’ ,16);
pcaNorm = pca.train (dsNorm);

dsPca = pcaNorm.run (ds);

dsPca.classNames {1} = ’Standard ’;
dsPca.classNames {2} = 'OFDM’;

classifier = prtClassBinaryToMaryOneVsAll;
classifier.baseClassifier = prtClassLibSvm;
classifier.internalDecider = prtDecisionMap;

yOutKfolds = classifier.kfolds (dsPca, 10);
yOutKfolds.classNames {1} = ’Standard ’;
yOutKfolds.classNames {2} = OFDM’;
prtScoreConfusionMatrix (yOutKfolds ,dsPca);

%% Standard Only

standardData = CumData(1:4000,:);
data = standardData;

target = zeros (4000, 1);
target(1001:2000) = 1;

target (2001:3000) 2;

target (3001:4000) 3;

ds = prtDataSetClass (data, target);
dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’,16);
pcaNorm = pca.train (dsNorm);

dsPca = pcaNorm. run (dsNorm);
dsPca.classNames{1} = 'BPSK’;
dsPca.classNames {2} = 'QAM4’;
dsPca.classNames {3} = 'QAMI6’;
dsPca.classNames {4} = 'QAM32’;

classifier = prtClassBinaryToMaryOneVsAll;
classifier.baseClassifier = prtClassLibSvm
classifier.baseClassifier.cost = 30;
classifier .baseClassifier.gamma = 0.01;
classifier.internalDecider = prtDecisionMap;

[yOutKfolds, TrainedActions, CrossValKeys] =

yOutKfolds.classNames {1} = BPSK’;
yOutKfolds.classNames {2} = *QAM4’;
yOutKfolds.classNames {3} = *QAMI6’;
yOutKfolds.classNames {4} = *QAM32’;

prtScoreConfusionMatrix (yOutKfolds ,dsPca);

9%% OFDM Only

OfdmData = CumData(4001:8000,:);
data = OfdmData;

target = zeros (4000, 1);

target (1001:2000) = 1;
target(2001:3000) = 2;

% Create a classifier
% Set the binary

% Create a classifier
% Set the binary
% Cost parameter
% Gamme parameter

classifier.kfolds (dsPca, 10);
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target (3001:4000) = 3;

ds = prtDataSetClass (data, target);
dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’ ,16);
pcaNorm = pca.train (dsNorm);

dsPca = pcaNorm. run (dsNorm);

"OFDM BPSK” ;
"OFDM QAM4”
"OFDM QAM16° ;
"OFDM QAM32’ ;

classifier = prtClassBinaryToMaryOneVsAll; % Create a classifier
classifier.baseClassifier = prtClassLibSvm; % Set the binary
classifier.baseClassifier.cost = 10; % cost parameter
classifier.baseClassifier.gamma = 0.01; % gamma parameter
classifier.internalDecider = prtDecisionMap;

yOutKfolds = classifier.kfolds (dsPca, 10);

dsPca.classNames {1}
dsPca.classNames {2}
dsPca.classNames {3}
dsPca.classNames {4}

yOutKfolds.classNames {1} = OFDM BPSK’;
yOutKfolds.classNames {2} = ’OFDM QAM4’;
yOutKfolds.classNames {3} = ’OFDM QAMI6’ ;
yOutKfolds.classNames {4} = ’OFDM QAM32’;

prtScoreConfusionMatrix (yOutKfolds ,dsPca);

9% All

data
target = zeros (8000, 1);
target (1001:2000)
target (2001:3000)
target (3001:4000)
target (4001:5000)
target (5001:6000)
target (6001:7000)
target(7001:8000)

[l
Q
=1
3
)
=+
s

NN AW =

B
B
B
B
B
>
>

ds = prtDataSetClass (data, target);

dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’ ,16);

pcaNorm = pca.train (dsNorm);

dsPca = pcaNorm. run (dsNorm);

dsPca.classNames{1} = 'BPSK’;

dsPca.classNames {2} = 'QAM4’;

dsPca.classNames {3} = 'QAMI6’;

dsPca.classNames {4} = 'QAM32’;

dsPca.classNames {5} = OFDM BPSK’;

dsPca.classNames {6} = 'OFDM QAM4’;

dsPca.classNames {7} = 'OFDM QAMI6’;

dsPca.classNames {8} = *OFDM QAM32’;

classifier = prtClassBinaryToMaryOneVsAll; % Create a classifier
classifier.baseClassifier = prtClassLibSvm; % Set the binary
classifier.baseClassifier.cost = 30; % Set the binary
classifier.baseClassifier.gamma = 0.01; % Set the binary
classifier.internalDecider = prtDecisionMap;

yOutKfolds = classifier.kfolds (dsPca, 10);

yOutKfolds.classNames{1} = ’BPSK’;
yOutKfolds.classNames {2} = *QAM4’;
yOutKfolds.classNames {3} = 'QAMI6’;
yOutKfolds.classNames {4} = *QAM32’;
yOutKfolds.classNames {5} = OFDM BPSK’;
yOutKfolds.classNames {6} = ’OFDM QAM4’;
yOutKfolds.classNames {7} = ’OFDM QAMI6’ ;

yOutKfolds.classNames {8} = 'OFDM QAM32’;
prtScoreConfusionMatrix (yOutKfolds ,dsPca);

9% gamme and c¢ search grid

% This can only work with binary classification

Data = CumData(2001:4000,:); % qaml6 & gqam32
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target = zeros (2000, 1);
target(1001:2000) = 1;

ds = prtDataSetClass (Data, target);

dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’ ,16); % create PCA selfect
pcaNorm = pca.train(dsNorm); % train PCA

dsPca = pcaNorm.run(dsNorm); % create new dataset based on PCA
ds = dsPca;

gammaVec = logspace(—2,1,10);

costVec = logspace(—2,1,10);

auc nan(length (gammaVec),length (costVec));

kfoldsInds = ds.getKFoldKeys (3);
for gammalnd = 1:length (gammaVec);
for costInd = 1:length(costVec);

% classifier is defined in previous sections
¢ = classifier;

c.baseClassifier.cost = costVec(costlnd);
c.baseClassifier.gamma = gammaVec(gammalnd );
yOut = crossValidate (c,ds, kfoldsInds );

auc (gammalnd, costInd) = prtScoreAuc (yOut);

imagesc (auc,[.1 1]);
colorbar
drawnow ;
end
end
title (AUC vs. Gamma Index (Vertical) and Cost Index (Horizontal)’);

A.1.8 SVM for multiple SNR data

clc; clear; close all;

addpath ( *../ Subfunctions )
addpath (genpath ( ’../PRT—master ’))
load fig_pos.mat

home = pwd;
% path to where the cumulants are stored
data_dir = ’path_to_cumulants_dir\cumulants\separate\200k\original ’;

Jdata_dir = “path_to_cumulants_dir\cumulants\separate\200k\plus5 *;
%data_dir = “path_to_cumulants_dir\cumulants\separate\200k\plusl0 ’;
%data_dir = ’path_to_cumulants_dir\cumulants\separate\50k\original ’;
%data_dir = ’path_to_cumulants_dir\cumulants\separate\50k\plus5 ’;
Y%data_dir = “path_to_cumulants_dir\cumulants\separate\50k\plusl0 ’;
cd(data_dir)

standardMods = {’bpsk’, ’qam4’, ’qaml6’, ’'qam32’};

ofdmMods = {’ofdm_bpsk’, ’“ofdm_qam4’, ’ofdm_qaml6’, ’ofdm_qam32’};
allMods = [standardMods ofdmMods ];

modsClass = allMods;

normVal = 'norm’; % norm oOr unnorm

% Load cumulants

Nmod = length (modsClass);

CumData = zeros(1000xNmod,16);

for i = 1:Nmod
filename = [modsClass{i},’ _cumulant_’,normVal,’.mat’]; % for 0dB caps
%filename = [modsClass{i},’_5dB_cumulant_’,normVal,’.mat’]; % for 5dB caps
%filename = [modsClass{i},’_10dB_cumulant_’,normVal, . mat’]; % for 10dB caps
load (filename );
CumData((i —1)*1000+1:1%1000,:) = data; % 1000 examples per modulation class

end

9%% OFDM vs Non OFDM (SVM 1)

>

standardData = CumData(1:4000,:);
OfdmData = CumData(4001:8000,:);
data = [standardData; OfdmDatal;
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target = zeros (8000,1);

target (4001:end) = 1;

ds = prtDataSetClass (data, target);

dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’ ,16);

pcaNorm = pca.train (dsNorm);

dsPca = pcaNorm.run (ds);

dsPca.classNames{1} = ’Standard ’;

dsPca.classNames {2} = 'OFDM’;

classifier = prtClassBinaryToMaryOneVsAll; % Create a classifier
classifier.baseClassifier = prtClassLibSvm; % Set the binary
classifier.internalDecider = prtDecisionMap;

yOutKfolds = classifier.kfolds(dsPca, 10);
yOutKfolds.classNames {1} = ’Standard ’;

yOutKfolds.classNames {2} = OFDM’;
prtScoreConfusionMatrix (yOutKfolds ,dsPca);

%% Standard Only

standardData = CumData(1:4000,:);
data = standardData;

target = zeros (4000, 1);

target (1001:2000) ;
target (2001:3000)
target (3001:4000)

2.
3;

ds = prtDataSetClass(data, target);

dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’ ,16);

pcaNorm = pca.train (dsNorm);

dsPca = pcaNorm. run (dsNorm);

dsPca.classNames{1} = 'BPSK’;

dsPca.classNames {2} = 'QAM4’;

dsPca.classNames {3} = QAMI6’;

dsPca.classNames {4} = 'QAM32’;

classifier = prtClassBinaryToMaryOneVsAll; % Create a classifier
classifier.baseClassifier = prtClassLibSvm; % Set the binary
classifier.baseClassifier.cost = 30; % Cost parameter
classifier.baseClassifier.gamma = 0.01; % Gamme parameter
classifier.internalDecider = prtDecisionMap;

[yOutKfolds, TrainedActions, CrossValKeys] = classifier.kfolds (dsPca,

yOutKfolds.classNames {1} = BPSK’;
yOutKfolds.classNames {2} = "QAM4’;
yOutKfolds.classNames {3} = 'QAMI6’;
yOutKfolds.classNames {4} = *QAM32’;

prtScoreConfusionMatrix (yOutKfolds ,dsPca);

%% OFDM Only

OfdmData = CumData(4001:8000,:);
data = OfdmData;

target = zeros (4000, 1);

target (1001:2000) 1;
target(2001:3000) 2;

target (3001:4000) 3;

ds = prtDataSetClass (data, target);

dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’ ,16);

pcaNorm = pca.train (dsNorm);

dsPca = pcaNorm. run (dsNorm);

dsPca.classNames {1} = OFDM BPSK’;

dsPca.classNames {2} = 'OFDM QAM4’;

dsPca.classNames {3} = 'OFDM QAMI6’;

dsPca.classNames {4} = 'OFDM QAM32’;

classifier = prtClassBinaryToMaryOneVsAll; % Create a classifier
classifier.baseClassifier = prtClassLibSvm % Set the binary
classifier.baseClassifier.cost = 10; % cost parameter
classifier.baseClassifier.gamma = 0.01; % gamma parameter

10);
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classifier.internalDecider = prtDecisionMap;

yOutKfolds = classifier.kfolds (dsPca, 10);

yOutKfolds.classNames {1} = OFDM BPSK’;
yOutKfolds.classNames {2} = OFDM QAM4’;
yOutKfolds.classNames {3} = OFDM QAMI6’ ;
yOutKfolds.classNames {4} = OFDM QAM32’;

prtScoreConfusionMatrix (yOutKfolds ,dsPca);
9%% All

data = CumbData;
target = zeros (8000, 1);
target (1001:2000)
target (2001:3000)
target (3001:4000)
target (4001:5000)
target (5001:6000)
target (6001:7000)
target (7001:8000)

NN AW —

ds
dsNorm
pca
pcaNorm
dsPca

prtDataSetClass (data, target);
rt (prtPreProcZmuv ,ds);
prtPreProcPca(’nComponents’ ,16);
pca.train (dsNorm);

pcaNorm. run (dsNorm );

dsPca.classNames {1}

dsPca.
dsPca.
dsPca.
dsPca.
dsPca.
dsPca.

classNames {2}
classNames {3}
classNames {4}
classNames {5}
classNames {6}
classNames {7}

"BPSK’;
"QAMA”
"QAMI6” ;
"QAM32” ;
"OFDM BPSK’ ;
"OFDM QAM4’ ;
"OFDM QAMI6” ;

dsPca.classNames {8} "OFDM QAM32’

classifier = prtClassBinaryToMaryOneVsAll; % Create a classifier
classifier.baseClassifier = prtClassLibSvm % Set the binary
classifier.baseClassifier.cost = 30; % Set the binary
classifier.baseClassifier.gamma = 0.01; % Set the binary

classifier.internalDecider = prtDecisionMap;

yOutKfolds = classifier.kfolds (dsPca, 10);

yOutKfolds.classNames{1} = BPSK’;
yOutKfolds.classNames {2} = *QAM4’;
yOutKfolds.classNames {3} = *QAMI6’;
yOutKfolds.classNames {4} = *QAM32’;
yOutKfolds.classNames {5} = OFDM BPSK’;
yOutKfolds.classNames {6} = OFDM QAM4’ ;
yOutKfolds.classNames {7} = ’OFDM QAMI6’ ;
yOutKfolds.classNames {8} = ’OFDM QAM32’;

prtScoreConfusionMatrix (yOutKfolds ,dsPca);

9%% gamme and c search grid
% This can only work with binary classification

Data CumData(2001:4000,:); % qaml6 & qam32
target = zeros (2000, 1);
target(1001:2000) = 1;

ds = prtDataSetClass (Data, target);

dsNorm = rt(prtPreProcZmuv ,ds);

pca = prtPreProcPca(’nComponents’,16); % create

pcaNorm = pca.train(dsNorm); % train PCA

dsPca = pcaNorm.run(dsNorm); % create new dataset based on PCA
ds = dsPca;

gammaVec = logspace(—2,1,10);

costVec = logspace(—2,1,10);

auc = nan(length (gammaVec),length (costVec));

kfoldsInds = ds.getKFoldKeys (3);
for gammalnd = 1:length (gammaVec);

PCA selfect
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for costlnd = 1:length(costVec);

% classifier is defined in previous sections
¢ = classifier;
c.baseClassifier.cost = costVec(costInd);
c.baseClassifier.gamma = gammaVec(gammalnd);
yOut = crossValidate (c,ds, kfoldsInds);
auc (gammalnd, costInd) = prtScoreAuc (yOut);
imagesc (auc,[.1 1]);
colorbar
drawnow ;
end
end
title (AUC vs. Gamma Index (Vertical) and Cost Index (Horizontal) ’);

A.2 GNU Radio Code

A.2.1 qam4_ic implementation in OOT module
Implementation header file

/% —x— CcH++ —k— */

/%

* Copyright 2017 <+YOU OR YOUR COMPANY+>.

*

% This is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.

*

* This software is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,

* Boston, MA 02110—1301, USA.

*/

#ifndef INCLUDED_MYNEWMOD_QAM4 _IC_IMPL_H
#define INCLUDED_MYNEWMOD_QAM4_IC_IMPL_H

#include <mynewmod/qam4_ic.h>

namespace gr {
namespace mynewmod {

class qam4_ic_impl : public qam4_ic

private:
// Nothing to declare in this block.

public:
qam4_ic_impl ();
~qam4_ic_impl ();

// Where all the action really happens
void forecast (int noutput_items, gr_vector_int &ninput_items_required);

int general_work(int noutput_items ,
gr_vector_int &ninput_items ,
gr_vector_const_void_star &input_items ,
gr_vector_void_star &output_items );
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} // namespace mynewmod
} // namespace gr

#endif /+x INCLUDED_MYNEWMOD_QAM4_IC_IMPL_H =/

Implementation source file

/% —x— C++ —k— x/

/%

% Copyright 2017 <+YOU OR YOUR COMPANY+>.

*

* This is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.

*

* This software is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,

*+ Boston, MA 02110—1301, USA.

*/

#ifdef HAVE CONFIG_H
#include "config.h"
#endif

#include <gnuradio/io_signature .h>
#include "qam4_ic_impl.h"

namespace gr f{
namespace mynewmod {

qam4_ic:: sptr
gam4_ic :: make ()

return gnuradio:: get_initial_sptr
(new qam4_ic_impl ());

/%
* The private constructor
*/
qam4_ic_impl:: qam4_ic_impl ()
: gr::block("qam4_ic",
gr::io_signature ::make(1l,1, sizeof(int)),
gr::io_signature ::make(1l,1, sizeof(gr_complex)))

{}

/%

% Our virtual destructor.
*/
qam4_ic_impl::~qam4_ic_impl ()

}
void
gqam4_ic_impl:: forecast (int noutput_items, gr_vector_int &ninput_items_required)

{

ninput_items_required [0] = noutput_items;

int

qam4_ic_impl:: general_work (int noutput_items,
gr_vector_int &ninput_items ,
gr_vector_const_void_star &input_items ,
gr_vector_void_star &output_items)

const int *in = (const int %) input_items[0];
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gr_complex xout = (gr_complex *) output_items[0];

for(int i = 0; i < noutput_items; i++)

switch(in[i])

case O:
out[i] = gr_complex(—1,—1);
break ;

case 1:
out[i] = gr_complex(—1,1);
break ;

case 2:
out[i] = gr_complex(1l,—1);
break ;

case 3:
out[i] = gr_complex(1,1);
break ;

default:

out[i] = gr_complex(0,0);
}

// Do <+signal processing+>

// Tell runtime system how many input items we consumed on
// each input stream.

consume_each (noutput_items);

// Tell runtime system how many output items we produced.
return noutput_items;

}

} /* namespace mynewmod */
} /x namespace gr x/

Implementation XML file

<?xml version="1.0"7>
<block>
<name>qam4_ic </name>
<key>mynewmod_qam4_ic </key >
<category >mynewmod</category >
<import>import mynewmod</import>
<make>mynewmod . qam4 _ic () </ make>
<sink >
<name>in </name>
<type>int </type>
</sink >
<source >
<name>out </name>
<type>complex </type >
</source >
</block>

A.2.2 qgam16_ic implementation in OOT module
Implementation header file

/% —%— CH+ —*— */
/%
Copyright 2017 <+YOU OR YOUR COMPANY+>.

This is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

* KX X ¥ X ¥ X

This software is distributed in the hope that it will be useful,
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* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License
% along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,

* Boston, MA 02110—1301, USA.

*/

#ifndef INCLUDED_MYNEWMOD_QAMI16_IC_IMPL |

H
#define INCLUDED_MYNEWMOD_QAMI6_IC_IMPL_H

#include <mynewmod/qaml16_ic.h>

namespace gr {
namespace mynewmod {

}

class qaml6_ic_impl : public qaml6_ic
{

private:

// Nothing to declare in this block.

public:
gaml16_ic_impl ();
~qam16_ic_impl();

// Where all the action really happens
void forecast (int noutput_items, gr_vector_int &ninput_items_required);

int general_work(int noutput_items ,
gr_vector_int &ninput_items ,
gr_vector_const_void_star &input_items ,
gr_vector_void_star &output_items);

1

// namespace mynewmod

} // namespace gr

#endif /x INCLUDED_MYNEWMOD_QAMI16_IC_IMPL H */

Implementation source file

/% —x— CcH++ —k— */

/%

* Copyright 2017 <+YOU OR YOUR COMPANY+>.

*

% This is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.

*

* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of

+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,

* Boston, MA 02110—1301, USA.

*/

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#in

clude "qaml6_ic_impl.h"

namespace gr {

n

amespace mynewmod {

qaml6_ic:: sptr
qam16_ic :: make ()
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{
return gnuradio:: get_initial_sptr
(new qaml6_ic_impl());
}

/%
* The private constructor
*/
gqam16_ic_impl::qaml6_ic_impl ()
: gr::block("qaml6_ic",
gr::io_signature ::make(1,1, sizeof(int)),
gr::io_signature ::make(1,1, sizeof(gr_complex)))

{}

/%

% Our virtual destructor.

*/
qam16_ic_impl::~qam16_ic_impl ()
{

}

void
qaml16_ic_impl:: forecast (int noutput_items, gr_vector_int &ninput_items_required)

{
}

int

qaml6_ic_impl:: general_work (int noutput_items ,
gr_vector_int &ninput_items ,
gr_vector_const_void_star &input_items ,
gr_vector_void_star &output_items)

ninput_items_required [0] = noutput_items;

{
const int *in = (const int %) input_items[0];
gr_complex xout = (gr_complex *) output_items[0];
for(int i = 0; i < noutput_items; i++)

switch(in[i])

case O0:
out[i] = gr_complex(—3,-3);
break ;

case 1:
out[i] = gr_complex(—3,—1);
break ;

case 2:
out[i] = gr_complex(—3,3);
break ;

case 3:
out[i] = gr_complex(—3,1);
break ;

case 4:
out[i] = gr_complex(—1,-3);
break ;

case 5:
out[i] = gr_complex(—1,—1);
break ;

case 6:
out[i] = gr_complex(—1,3);
break ;

case 7:
out[i] = gr_complex(—1,1);
break ;

case 8:
out[i] = gr_complex(3,—3);
break ;

case 9:
out[i] = gr_complex(3,—1);
break ;

case 10:

out[i] = gr_complex(3,3);




APPENDIX A. RELEVANT SOURCE CODE

break ;

case 11:
out[i] = gr_complex(3,1);
break ;

case 12:
out[i] = gr_complex(1l,—3);
break ;

case 13:
out[i] = gr_complex(1l,—1);
break ;

case 14:
out[i] = gr_complex(1,3);
break ;

case 15:
out[i] = gr_complex(1,1);
break ;

default:

out[i] = gr_complex(0,0);
}

/! Do <+signal processing+>

// Tell runtime system how many input items we consumed on
// each input stream.

consume_each (noutput_items);

// Tell runtime system how many output items we produced.
return noutputfitems;

}

} /* namespace mynewmod x/
} /* namespace gr x*/

Implementation XML file

<?xml version="1.0"7>
<block>
<name>qam16_ic </name>
<key>mynewmod_qaml16_ic </key>
<category >mynewmod</category >
<import>import mynewmod</import>
<make>mynewmod . qam16_ic () </make>
<sink >
<name>in </name>
<type>int </type>

</sink >
<source >

<name>out </name>
<type>complex </type >
</source >
</block>

A.2.3 qam32_ic implementation in OOT module
Implementation header file

/% —*%— Cc++ —*— x/
/%
x Copyright 2017 <+YOU OR YOUR COMPANY+>.

*
* This is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
*
*
*

This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
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GNU General Public License for more details.

*
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,

* Boston, MA 02110—1301, USA.

*/

#ifndef INCLUDED_MYNEWMOD_QAM32_IC_IMPL_H
#define INCLUDED_MYNEWMOD_QAM32_IC_IMPL_H

#include <mynewmod/qam32_ic.h>

namespace gr {
namespace mynewmod {

class qam32_ic_impl : public gqam32_ic
{

private:

// Nothing to declare in this block.

public:
qam32_ic_impl ();
~qam32_ic_impl ();

// Where all the action really happens
void forecast (int noutput_items, gr_vector_int &ninput_items_required);

int general_work(int noutput_items ,
gr_vector_int &ninput_items ,
gr_vector_const_void_star &input_items ,
gr_vector_void_star &output_items);
}s
} // namespace mynewmod
} // namespace gr

#endif /« INCLUDED_MYNEWMOD_QAM32 IC_IMPL H */

Implementation source file

[+ —k— cH+ —*k— x/
/%
* Copyright 2017 <+YOU OR YOUR COMPANY+>.

This is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

*
*
*
*
*
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

*

*

*

*

*

You should have received a copy of the GNU General Public License
along with this software; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street,

Boston, MA 02110—1301, USA.

/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gnuradio/io_signature.h>
#include "qam32_ic_impl.h"

namespace gr {
namespace mynewmod {

qam32_ic:: sptr
qam32_ic :: make ()

return gnuradio:: get_initial_sptr
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(new qam32_ic_impl());

/%

* The private constructor

*/

qam32_ic_impl:: qam32_ic_impl ()
gr::block("qam32_ic",

gr::

{}
/%

% Our virtual destructor

*/

io_signature
gr::io_signature

;- make (1
::make (1

qam32_ic_impl::~qam32_ic_impl ()

{
}

void

qam32_ic_impl:: forecast

{

(int

,1, sizeof(int)),
,1, sizeof (gr_complex)))

noutput_items , gr_vector_int &ninput_items_required)

ninput_items_required [0] = noutput_items;

}

int

gqam32_ic_impl:: general_work (int noutput_items ,
gr_vector_int &ninput_items ,
gr_vector_const_void_star &input_items ,
gr_vector_void_star &output_items)

{
const int *in = (const int %) input_items[0];
gr_complex xout = (gr_complex *) output_items[0];
for(int i = 0; 1 < noutput_items; i++)
{
switch(in[i])
{
case O:
out[i] = gr_complex(—3,5);
break ;
case 1:
out[i] = gr_complex(—1,5);
break ;
case 2:
out[i] = gr_complex(—3,-5);
break ;
case 3:
out[i] = gr_complex(—1,-5);
break ;
case 4:
out[i] = gr_complex(—5,3);
break ;
case 5:
out[i] = gr_complex(—5,1);
break ;
case 6:
out[i] = gr_complex(—5,-3);
break ;
case 7:
out[i] = gr_complex(—5,—1);
break ;
case 8:
out[i] = gr_complex(—1,3);
break ;
case 9:
out[i] = gr_complex(—1,1);
break ;
case 10:
out[i] = gr_complex(—1,—-3);
break ;
case 11:
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case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

default:

}

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

out[1i]
break ;

out[1i]
break ;

out[1i]
break ;

out[i]
break ;

out[1i]
break ;

out[1i]
break ;

out[i]
break ;

out[i]
break ;

out[1i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]
break ;

out[i]

/! Do <+signal processing+>

// Tell runtime system how many input

// each input stream.

consume_each (noutput_items);

gr_complex(—1,—1);

gr_complex (—3,3);

gr_complex(—3,1);

gr_complex(—3,-3);

gr_complex(—3,—1);

gr_complex (3,5);

gr_complex (1,5);

gr_complex (3,—5);

gr_complex (1,—5);

gr_complex (5,3);

gr_complex (5,1);

gr_complex (5, —3);

gr_complex(5,—1);

gr_complex (1,3);

gr_complex (1,1);

gr_complex (1, —-3);

gr_complex(1,—1);

gr_complex (3,3);

gr_complex (3,1);

gr_complex (3,—3);

gr_complex(3,—1);

gr_complex (0,0);

items we consumed on
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// Tell runtime system how many output items we produced.
return noutput_items;

} /x namespace mynewmod x/
} /* namespace gr x/

Implementation XML file

<?xml version="1.0"7>
<block>
<name>qam32_ic </name>
<key>mynewmod_qam32_ic </key>
<category >mynewmod</category >
<import>import mynewmod</import>
<make>mynewmod . qam32_ic () </make>
<sink >
<name>in </name>
<type>int </type >

</sink >
<source >

<name>out </name>
<type>complex </type >
</source >
</block>

A.3 TensorFlow Code

A.3.1 Data capture segmentation

# For 0dB Samples

import numpy as np

import struct

import os
os.chdir(’path_to_location_of_captured_file’)

FileClass = [’bpsk’, ’qam4’, ’qaml6’, ’qam32’,
>ofdm_bpsk’, ’ofdm_qam4’, ’ofdm_qaml6’,’ofdm_qam32’]

N_list = [512, 1024, 2048]
for filestr in FileClass:
FileDir = ’path_to_location_of_captured_file/ +filestr

os.chdir (FileDir)

for N in N_list:
os.chdir(FileDir)
# load datasets
#N = 512 # No. of Input samples per block {N/2 I and Q samples)

Nfiles = 1000 # No. of files to play with
Ndiscard = 2000 # No. of initial samples to discard
Nblocks = 20 # No. of blocks per file

data = np.zeros ([N, NfilesxNblocks])

block_no = 0; # Iterator for blocks of 1000 samples each
for k in range(Nfiles):

filename = filestr+’_ +str(k+1)+".dat"

print (filename)

fh = open(filename , rb’);
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# discard M samples
for i in range(Ndiscard):
struct .unpack(’f’, fh.read (4))

fh.read (4))

# For Standard Modulations we have 1le6 I and Q samples, so total of 2e6 samples.
# After discarding 2e3 samples, we are left with 2e6—2e¢3 samples.
# Only 200e3 samples are ’'unique symbols’ which gives us
# 200 chunks 1e3 samples each.
# Since that is too much memory to work with. we are
# only picking 20 blocks with 2e3 samples gaps in between
for _ in range(Nblocks):
for i in range(N):
(data[i,block_no],) = struct.unpack(’f’,
# discard M samples
for i in range(Ndiscard):
struct .unpack(’f’, fh.read (4))
block_no = block_no + 1;
fh.close ()

os.chdir(’path_to_location_for_saving/array_save’)

outfilename = filestr + ’_data_0dB_’ + str(int(N/2)) + ’.dat’;

#outfilename = filestr +

‘_data_5dB_" + str(int(N/2)) +

‘.dat’;

#outfilename = filestr + '_data_l0dB_’ + str(int(N/2)) + ’.dat’;

fh = open(outfilename , ’wb’)
np.save (fh, data)
fh.close ()

print(’done!’)

# To Load the File

##data2 = np.zeros([N,1000]);

##outfilename = "ofdm_qgam32_data_0dB_’ + str(N) +
##fh = open(outfilename ,’ rb’);

##data2 = np.load(fh)

##fh . close ()

##

##print(’ done!’)

A.3.2 MLP for single SNR data

import tensorflow as tf

import matplotlib.pyplot as plt
import numpy as np

import os

import random

# load datasets

Nfiles = 1000

N = 500 # No. of Input samples

Nblocks = 20 # No of block per file

Nmod =4

Ntrain = 900 % Nblocks # No. training data examples
Nval = 100 % Nblocks # No. validation data examples
NtrainFiles = 900 # No. of train data files (%20)

os.chdir(’path_to_saved_files/original/array_save’)

def load_data(filename ,N):

infile = open(filename, ’rb’)
tmp = np.load(infile)

tmp = tmp.T

data = tmp[:,0:Nx2:2]

infile .close ()
return(data)

def normalize_data(input):

‘.dat’;
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output = (input / max(abs(input)))
return output

Nstr = 1000
filename = ’bpsk_data_0dB_’ + str(Nstr) + ’.dat’;
bpsk_data = load_data(filename ,N)

filename = ’qam4_data_0dB_’ + str(Nstr) + ’.dat’;
qam4_data = load_data(filename ,N)

filename = ’qaml6_data_0dB_" + str(Nstr) + ’.dat’;
gqam16_data = load_data(filename ,N)

filename = ’qam32_data_0dB_’ + str(Nstr) + ’.dat’;
qam32_data = load_data(filename ,N)

# Normalize all data (Tried this because I though the input might be too small)
for i in range(Nfiles*xNblocks):

bpsk_data[i,:] = normalize_data(bpsk_data[i,:])
gam4_data[i,:] = normalize_data(qam4_data[i,:])
gaml16_data[i,:] = normalize_data(qaml6_data[i,:])
gqam32_data[i,:] = normalize_data(qam32_data[i,:])

# shuffle array
sm_index = np.arange (0, Ntrain); # small index for each class
random . shuffle (sm_index)

# training with 900 % 20 = 18000 examples

Ntrain 900 * Nblocks
train_data np.zeros ([ Ntrain*Nmod,N])
y_train np.zeros ([ Ntrain*Nmod,Nmod])+0.1 # Ground Truth

train_data[Ox Ntrain:1* Ntrain
train_data[l=Ntrain:2* Ntrain
train_data[2x Ntrain:3% Ntrain
train_data[3x Ntrain:4% Ntrain

bpsk_data[sm_index [0: Ntrain],:]
gam4_data[sm_index [0: Ntrain],:]
gqam16_data[sm_index [0: Ntrain ] ,:]
gqam32_data[sm_index [0: Ntrain ] ,:]

O

y_train[0x Ntrain:1* Ntrain ,0] 1
y_train[1*Ntrain:2*x Ntrain ,1] 1
y_train[2x Ntrain:3* Ntrain ,2] 1
y_train[3% Ntrain:4% Ntrain ,3] 1

# testing with 100 % 20 = 2000 examples

Nval 100 % Nblocks # validation data
val_data np.zeros ([ Nval*Nmod,N])
y_val np.zeros ([ Nval*Nmod,Nmod])+0.1

val_data[0O*Nval:1*Nval ,
val_data[l*Nval:2*Nval ,
val_data[2xNval:3%Nval ,
val_data[3xNval:4*Nval ,

bpsk_data[ Ntrain: ,:]
qam4_data[ Ntrain: ,:]
gqam16_data[ Ntrain: ,:]

:]
:%
;] qam32_data[ Ntrain : ::]

y_val[0xNval:1xNval,0] 1
y_val[lxNval:2xNval ,1] 1
y_val[2xNval:3xNval ,2] 1
y_val[3xNval:4xNval, 3] 1

# Randomize training set
big_index = np.arange (0 ,Nmod+*Ntrain); # big index for all class
random . shuffle (big_index)

train_data [:,:]
y_train[:,:]

train_data[big_index ,:]
y_train[big_index ,:]

# model input/output (Placeholders)

x = tf.placeholder(tf.float32, shape=[None,N])

y_ = tf.placeholder (tf.float32, shape=[None,Nmod])

M = 200 # Frist Layer Output Nodes

L =4 # Second Layer Output Node

# first layer

W1 = tf.Variable(tf.truncated_normal ([N,M], stddev=0.1))

bl = tf.Variable(tf.constant (0.1, dtype=tf.float32, shape=[M]))
fcl = tf .nn.relu(tf.matmul(x,Wl) + bl)
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# Readout layer
tf. Variable (tf.truncated_normal ([M,L], stddev=0.1))
tf . Variable (tf.constant (0.1, dtype=tf.float32, shape=[L]))

#model
y = (tf .matmul(fcl ,W2)+b2) #linear regression model
# loss function
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_,

W2 =
b2 =

# Training Method
train_step = tf.train.GradientDescentOptimizer (0.5). minimize(cross_entropy)

# check model performance

logits=y))

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# Session

SE€SS

tf . InteractiveSession ()

sess.run(tf.global_variables_initializer ())

Nbatch
Nrange

acc
xent
out

# Train

k

for i in

100

0;

train_step_data

range (720):

int (( Ntrain*Nmod)/ Nbatch)
np.zeros (int(Nrange/5))
np.zeros (int(Nrange/5))
np.zeros ([ Nbatch ,Nmod])

= feed_dict={x:train_data[i*Nbatch:(i*Nbatch)+Nbatch,:],

sess.run(train_step .
# check progress
if

i%5 == 0:
WO0,y0,a,cC
wout

out

acc[k]
xent[k]
k

plt.figure (1)

plt.plot(acc,

y_:y_train[ixNbatch:(ixNbatch)+Nbatch,:]}

train_step_data)

sess.run ([WI,y,accuracy, cross_entropy], train_step_data)

WO
Yo
a

c
k + 1;

plt.title (’Accuracy’)
plt.legend (bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

plt.figure(2)

plt.plot(xent,

label="acc")

plt.title (’Cross_Entropy’)
plt.legend (bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

label="cross_entropy")

print (accuracy.eval(feed_dict={x:val_data, y_:y_val}))
sess.close ()

A.3.3 CNN for single SNR data

tensorflow as tf

import
import
import
import
import

# Select

modClassStandard
modClassOfdm
modClassAll

Nlist

#FileDir
#FileDir
FileDir

matplotlib.pyplot as plt

numpy as np

oS

random

["bpsk’,

’qam4’, ’qaml6’, ’qam32’]

[’ofdm_bpsk’, ’ofdm_qam4’, ’ofdm_qaml6’, ’ofdm_qgam32’]
modClassStandard + modClassOfdm

[256,

512,

1024] # Ex: 256 I and Q samples (total samples 256 % 2)

'D:/Justin/Documents/Thesis/Data_Acq/captures/original/array_save’
'D:/Justin/Documents/Thesis/Data_Acq/captures/plus5/array_save

’

= ’'D:/Justin/Documents/ Thesis/Data_Acq/captures/plusl0/array_save’
s.chdir (FileDir)
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Classtype = modClassAll

N = Nlist[2]

# Training & Testing size

Nfiles = 1000 # Fixed

Nmod = len(Classtype) # No. of classes (modulations)
Nblocks = 20 # No of block per file

Ntrain = 800 % Nblocks # No. training data examples

Nval = 100 % Nblocks # No. validation data examples
Ntest = 100 % Nblocks # No. validation data examples

# Function Definitions

def weight_variable (shape, name):
initial = tf.truncated_normal (shape, stddev=0.1)
return tf.Variable(initial , name=name)

def bias_variable (shape, name):
initial = tf.constant (0.1, shape=shape) # Positive bias because we will be using RelU
return tf.Variable(initial , name=name)

def conv2d(x,W,name):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding="SAME’, name=name)

def max_pool_2x2(x, name):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1],
padding="SAME’ , name=name)

def max_pool_I1x2(x, name):
return tf.nn.max_pool(x, ksize=[1,1,2,1], strides=[1,1,2,1],
padding="SAME’ , name=name)

def load_data(filename ,N):

infile = open(filename, ’rb’)

tmp = np.load(infile)

tmp = tmp.T

data = tmp[:,0:N] # [ and Q interleaved

infile .close ()
return (data)

def tensor_reshape(x):

K = int(x.shape[0])
N = int(x.shape[1l])
y = np.zeros ([K, 2, int(N/2)])

for i in range(K):
y[i,0,:] = x[i,0:N:2]
yli,1,:] = x[i,1:N:2]
return(y)

def randomize_data(data, index):
tmp = np.zeros(data.shape)
for k in range(data.shape[0]):
tmp[k,:] = data[index[k],:]
return (tmp)

# load datasets
allData = np.zeros ([Nmod, Nfiles*Nblocks, 2, NJ)

# Randomize indexes
sm_index = np.arange (0, Nfiles*Nblocks); # small index for each class
random . shuffle (sm_index)

Nstr = N
i =0
for fileclass in Classtype:

#filename = fileclass + ’_data_0dB_’ + str(Nstr) + ’.dat’;
#filename = fileclass + ’_data_5dB_" + str(Nstr) + ’.dat’;
filename = fileclass + ’_data_10dB_’ + str(Nstr) + ’.dat’;
tmp = load_data(filename ,Nx2)

tmp = tensor_reshape (tmp)

tmp = randomize_data(tmp, sm_index)

allData[i,:] = tmp
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i=1+1

train_data

y_train

for i in range(Nmod):
train_data[i*Ntrain:(i+1)x*
y_train[i*Ntrain:(i+1)*Ntr

val_data

y_val

for i in range(Nmod):
val_data[ixNval:(i+1)*Nval
y_val[ixNval:(i+1)*Nval,i]

test_data
y_test
for i in range(Nmod):

test_data[i*Ntest:(i+1)xNtest ,:]

y_test[i*Ntest:(i+1)*Ntest

# Randomize training set

= np.zeros ([Nmod«Ntrain ,2,int(N)])

np.zeros ([NmodxNtrain , Nmod]) # Ground Truth

Ntrain ,:] allData[i,0: Ntrain ,:];
ain ,i] I;

np.zeros ([Nmod«Nval,2,int (N)])
np.zeros ([Nmod«Nval, Nmod]) # Ground Truth

allData[i, Ntrain: Ntrain+Nval ,:];

1

np.zeros ([ Nmod«Ntest ,2,int(N)])

np.zeros ([Nmod«Ntest, Nmod]) # Ground Truth

o0

allData[i, Ntrain+Nval: ,:];
13

i

big_index = np.arange(0,Nmod«Ntrain); # big index for all class

random. shuffle (big_index)

train_data[:,:] = train_data[big_index ,:]

y_train[:,:] y_train[big_

# Randomize validation set

index ,:]

big_index = np.arange (0,Nmod«Nval); # big index for all class

random . shuffle (big_index)

val_data [:,:]
y_val[:,:]

# Randomize test set because of batch normalization (only needed for extreme case)

val_data[big_index ,:]
y_val[big_index ,:]

big_index = np.arange (0,Nmod«xNtest); # big index for all class

random . shuffle (big_index)
test_data[:,:] test_data[big
y_test[:,:]

HARRRARAHHAAHRRRA G AARRRRRAHAARRARA G AAARRRRAGAARRARAAAARRRRRAGAARRARAAAAARRRRA
ldZdaaaardadaaaiiaddaaardadasaaiiaddaiaiiadasiiiaddaiaiiadiaaiidadaaadsia

# Model 1

Nfc = 256 # Readout layer
Nevl = 16

Ncv2 = 32

Ir_start = 0.001

# Model 2

Nfc = 1024 # Readout laye
Ncevl = 32

Ncv2 = 64

Ir_start = 0.005
epsilon = le—3 # Batch Norma

_index ,:]
y_test[big_index ,:]

r

lization Denominator Constant

# model input/output (Placeholders)

X

X_image

= tf.placeholder (tf.float32, shape=[None,2, int(N)])
y_ = tf.placeholder (tf.float32 , shape=[None,Nmod])
= tf.reshape(x, [—1, 2, int(N), 1])

# First Layer (Conv — ReLU — Max Pooling)

with tf.name_scope("layerl"):
W_convl weight_variable (
b_convl
1

conv2d(x_image,

[2,5,1,Ncvl], "W_convl")

bias_variable ([Ncvl], "b_convl")

W_convl, "h_convl") + b_convl

y
batch_ml, batch_vl = tf.nn.moments(yl, [0,1,2])
tf. Variable (tf.zeros ([Ncvl]))

.sqrt(batch_vl+epsilon)

betal =

yl_hat = (yl—batch_ml)/tf
yl_BN = yl_hat + betal
h_convl = tf.nn.relu(yl_BN)
h_pooll = max_pool_2x2(h_c

onvl, "h_pooll")
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# Second Layer (Conv — ReLU — Max Pooling)

with tf.name_scope("layer2"):

W_conv2 = weight_variable ([1,5,Ncvl,Ncv2], "W_conv2") # Minimal Activations
b_conv2 = bias_variable ([Ncv2], "b_conv2")

y2 = conv2d(h_pooll , W_conv2, "h_conv2") + b_conv2

batch_m2, batch_v2 = tf.nn.moments(y2, [0,1,2])

y2_hat = (y2—batch_m2)/tf.sqrt(batch_v2+epsilon)
beta2 = tf. Variable (tf.zeros ([Ncv2]))

y2_BN = y2_hat + beta2

h_conv2 = tf.nn.relu(y2_BN)

h_pool2 = max_pool_I1x2(h_conv2, "h_pool2")

# Fully connected layer

with tf.name_scope("fcl"):
W_fcl weight_variable ([1*int (N/4)xNcv2,Nfc], "W_fcl")
b_fcl bias_variable ([Nfc], "b_fcl")
h_pool2_flat = tf.reshape(h_pool2, [—1, 1xint(N/4)xNcv2])
y3 = tf .matmul(h_pool2_flat, W_fcl) + b_fcl

batch_m3, batch_v3 = tf.nn.moments(y3, [0])
y3_hat = (y3—batch_m3)/tf.sqrt(batch_v3+epsilon)
beta3 = tf. Variable (tf.zeros ([Nfc]))

y3_BN = y3_hat + beta3

h_fcl = tf.nn.relu (y3_BN)

# Dropout

keep_prob = tf.placeholder(tf.float32)
h_fcl_drop = tf .nn.dropout(h_fcl, keep_prob)

# Readout Layer
with tf.name_scope("output"):

w_fc3 = weight_variable ([Nfc, Nmod], "w_fc3")
b_fc3 = bias_variable ([Nmod], "b_fc3")
y_conv = tf.matmul(h_fcl_drop, w_fc3) + b_fc3

# Loss Function
with tf.name_scope("Xent"):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_,
logits=y_conv))
# Training Method
with tf.name_scope(" Train"):
step = tf.Variable (0, trainable=False)
rate = tf.train.exponential_decay (lr_start, step, 1, 0.9999)
train_step = tf.train.AdamOptimizer(rate ). minimize(cross_entropy , global_step=step)

# check model performance

with tf.name_scope("Accuracy"):
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

H AR R R A HAATA RS G AR ARG HAARR RS G AR RS G AAR RS AAARRRRA G AR ARG AR AR
HARRRARAAAAATHR ARG AARTRRRRARARTHRRRAAAAATRRRAAAARRRRAAAAATRRRRAGAAARRRAAAAATRRRRA

Nepoch =5

Nbatch = 50

Nobs = 20

Nrange = int (( Ntrain*Nmod)/ Nbatch)
acc_train = np.zeros (int(NepochxNrange/Nobs))
acc_val = np.zeros(int(NepochxNrange/Nobs))
xent_train = np.zeros (int(Nepoch*Nrange/Nobs))
xent_val = np.zeros (int (Nepoch*Nrange/Nobs))

# Training Session

init = tf.global_variables_initializer ()

sess = tf.InteractiveSession ()

sess.run(init)

writer = tf.summary. FileWriter ("C:/tmp/conv_archl", sess.graph) # for 0.8
merged = tf.summary.merge_all ()

acc_val_tmp = np.zeros([int(val_data.shape[0]/4000)])

xent_val_tmp = np.zeros([int(val_data.shape[0]/4000)])

# Training & Validation
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k = 0;
training_itr = 0;
for m in range(Nepoch):
for i in range(Nrange):

train_step_data = feed_dict={x:train_data[ixNbatch:(ixNbatch)+Nbatch,:],

y_:y_train[ixNbatch:(ixNbatch)+Nbatch,:],

keep_prob: 0.5}
sess.run(train_step , train_step_data)

# Check progress validation
if training_itr%Nobs == 0:

a_train ,c_train = sess.run([accuracy, cross_entropy], train_step_data)

if not ((Nmod==8) and (Classtype == modClassAll) and (N==1024)):

for p in range(int(val_data.shape[0]/4000)):
acc_data= feed_dict={x:val_data[px4000:4000x(p+1),:],
y_:y_val[p*4000:4000«(p+1),:],
keep_prob:1.0}
a_val ,c_val
acc_val_tmp[p]
xent_val_tmp|[p]
acc_val[k]
xent_val [k]
acc_train [k]
xent_train [k]
print ("[Epoch=
str(a_train) +

a_val;
c_val;
np.mean(acc_val_tmp)
np.mean(xent_val_tmp)
a_train
c_train
+ str(m) +
"_l_val_acc_=_

" "

+ str(a_val))

else:
print ("[Epoch=" + str(m) + ", Itr=" + str(i) + "]_train_acc:_
str(a_train))
k =k + 1;
training_itr = training_itr+1

# Do testing in blocks (memory issue)
Nmax = test_data.shape[0]

Nsize = 1000

Nrange = int(Nmax/Nsize)

test_acc = np.zeros ([ Nrange,1])
import pandas as pd
confusion = np.zeros ([Nmod,Nmod],int)

for i in range(Nrange):

test_acc[i] = accuracy.eval(feed_dict={x:test_data[ixNsize:Nsizex(i+1),:]

y_:y_test[ixNsize:Nsizex(i+1),:],
keep_prob:1.0})

# Confusion Matrix
res = tf.stack ([tf.argmax(y_conv,l), tf.argmax(y_,1)])
ans = res.eval(feed_dict={x:test_data[i*Nsize:Nsizex(i+1),:],
y_:y_test[ixNsize:Nsizex(i+1),:],
keep_prob:1.0})
for p in ans.T:
confusion[p[0],p[l]]+=1

print(np.mean(test_acc))
print (pd.DataFrame (confusion))
print (pd.DataFrame (confusion/int(test_data.shape[0]/Nmod)))

# Figures

plt.figure (1)

plt.plot(acc_train, label="acc_train")

plt.plot(acc_val, label="acc_val")

plt.title (*Accuracy’)

plt.legend (bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

plt.figure(2)

plt.plot(xent_train, label="train_cross_entropy")
plt.plot(xent_val, label="val_cross_entropy")
plt.title (' Cross_Entropy’)

plt.legend (bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

sess.close ()

,LItr=" + str(i) + "]_train_acc:

sess.run([accuracy , cross_entropy], acc_data)

.

"

+
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A.3.4 CNN for multiple SNR data

import tensorflow as tf

import matplotlib.pyplot as plt
import numpy as np

import os

import random

# Select

modClassStandard = [ bpsk’, ’qam4’, ’qaml6’, ’qam32’]

modClassOfdm = [’ofdm_bpsk’, ’ofdm_qam4’, ’'ofdm_qaml6’, ’“ofdm_qam32’]
modClassAll = modClassStandard + modClassOfdm

Nlist = [256, 512, 1024] # Ex: 256 I and Q samples (total samples 256 % 2)
FileDir0 = ’D:/Justin/Documents/ Thesis/Data_Acq/captures/original/array_save’
FileDir5 = ’D:/Justin/Documents/ Thesis/Data_Acq/captures/plus5/array_save’
FileDirl0 = ’D:/Justin/Documents/ Thesis/Data_Acq/captures/plusl0/array_save’
Classtype = modClassOfdm

N = Nlist[0]

# Training & Testing size

Nfiles = 1000 # Fixed

Nmod = len(Classtype) # No. of classes (modulations)

Nblocks = 20 # No of block per file

Ntrain = 800 % Nblocks # No. training data examples

Nval = 100 % Nblocks # No. validation data examples

Ntest = 100 % Nblocks # No. validation data examples

# Function Definitions

def weight_variable (shape, name):
initial = tf.truncated_normal (shape, stddev=0.1)
return tf.Variable(initial , name=name)

def bias_variable (shape, name):
initial = tf.constant (0.1, shape=shape) # Positive bias because we will be using RelU
return tf. Variable(initial , name=name)

def conv2d(x,W,name):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding="SAME’, name=name)

def max_pool_2x2(x, name):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1],
padding="SAME’ , name=name)

def max_pool_Ix2(x, name):
return tf.nn.max_pool(x, ksize=[1,1,2,1], strides=[1,1,2,1],
padding="SAME’ , name=name)

def load_data(filename ,N):

infile = open(filename, ’'rb’)

tmp = np.load(infile)

tmp = tmp.T

data = tmp[:,0:N] # [ and Q interleaved

infile .close ()
return (data)

def tensor_reshape(x):
K = int(x.shape[0])
N = int(x.shape[l])
y = np.zeros ([K, 2, int(N/2)])

for i in range(K):
y[i,0,:] = x[i,0:N:2]
y[i,1,:] = x[i,1:N:2]
return(y)

def randomize_data(data, index):
tmp = np.zeros(data.shape)
for k in range(data.shape[0]):
tmp[k,:] = data[index[k],:]
return (tmp)

def randomize_data2 (data, index):
tmp = np.zeros(data.shape)
for k in range(data.shape[l]):
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tmp[:,k,:] = data[:,index[k],:]
return (tmp)

def normalize_data(input):
output = np.zeros (input.shape)
for i in range(input.shape[0]):
output[i,:] = (input[i,:] / max(abs(input[i,:])))
return output

# load datasets
allData = np.zeros ([Nmod, Nfiles*Nblocks*3, 2, NJ)

# Randomize indexes
sm_index = np.arange (0, Nfiles*Nblocks); # small index for each class
random . shuffle (sm_index)

Nstr = N

i =0

for fileclass in Classtype:
os.chdir(FileDir0)

filename = fileclass + ’_data_0dB_’ + str(Nstr) + ’.dat’;
tmp = load_data(filename ,N%2)

tmp = tensor_reshape (tmp)

tmp = randomize_data(tmp, sm_index)

allData[i,0: NfilesxNblocks] = tmp
s.chdir (FileDir5)

filename = fileclass + ’_data_5dB_" + str(Nstr) + ’.dat’;
tmp = load_data(filename ,Nx2)

tmp = tensor_reshape (tmp)

tmp = randomize_data (tmp, sm_index)

allData[i,l*NfilesxNblocks:2x NfilesxNblocks] = tmp
os.chdir (FileDir10)

filename = fileclass + ’_data_10dB_’ + str(Nstr) + ’.dat’;
tmp = load_data(filename ,N%2)

tmp = tensor_reshape (tmp)

tmp = randomize_data (tmp, sm_index)

allData[i,2% NfilesxNblocks:3x NfilesxNblocks] = tmp
i=1+1
# Randomize the big array
big_array_index = np.arange(0, allData.shape[l])
random . shuffle (big_array_index)

allData = randomize_data2 (allData, big_array_index)
train_data = np.zeros ([ Nmod«Ntrain ,2,int(N)])
y_train = np.zeros ([Nmod«Ntrain , Nmod]) # Ground Truth
for i in range(Nmod):
train_data[ixNtrain:(i+1)*Ntrain ,:] = allData[i,0:Ntrain ,:];
y_train[i*Ntrain:(i+1)*Ntrain ,i] = 1;
val_data np.zeros ([Nmod«Nval,2,int (N)])

y_val =

for i in range(Nmod):
val_data[ixNval:(i+1)*Nval,:] = allData[i,Ntrain:Ntrain+Nval,:];
y_val[ixNval:(i+1)*Nval,i] = 1;

np.zeros ([Nmod«Nval, Nmod]) # Ground Truth

test_data

y_test

for i in range(Nmod):
test_data[ixNtest:(i+1)xNtest ,:] = allData[i,Ntrain+Nval: Ntrain+Nval+Ntest ,:];
y_test[i*Ntest:(i+1)*Ntest,i] = 1;

np.zeros ([ Nmod«Ntest ,2,int(N)])
np.zeros ([Nmod«Ntest, Nmod]) # Ground Truth

# Randomize training set
big_index = np.arange (0 ,Nmod*Ntrain); # big index for all class
random . shuffle (big_index)

train_data [:,:]
y_train [:,:]

train_data[big_index ,:]
y_train[big_index ,:]

# Randomize validation set
big_index = np.arange (0 ,Nmod«xNval); # big index for all class
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random . shuffle

val_data[:,:]
y_val[:,:]

# Randomize test set because of batch normalization (only needed for extreme case)

(big_index)

val_data[big_index ,:]
y_val[big_index ,:]

big_index = np.arange (0,Nmod«xNtest); # big index for all class

random . shuffle
test_data[:,:]
y_test[:,:]

(big_index)
= test_data[big_index ,:]
= y_test[big_index ,:]

HARRRARAHHAAHRRRA G AAARARRAHAARRRRA A AAARRRRAGAARRARRAAARRRRRAGAARRARRARAARRRRAH
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# Readout layer

1024 # Readout layer

# Model 1

Nfc = 256
Nevl = 16
Ncv2 = 32
Ir_start = 0.001
# Model 2

Nfc =

Nevl = 32
Ncv2 = 64
epsilon =

le—3 # Batch Normalization Denominator Constant

Ir_start = 0.005
# model input/output (Placeholders)

X

y-,
X_image

tf.r

# First Layer

tf.placeholder (tf.float32 , shape=[None,2, int(N)])
tf.placeholder (tf.float32, shape=[None,Nmod])

eshape(x, [—1, 2, int(N), 1])
(Conv — ReLU — Max Pooling)

with tf.name_scope("layerl"):

W_convl
b_convl
yl
batch_ml ,
betal
y1_hat
yl_BN
h_convl
h_pooll

weight_variable ([2,5,1,Ncvl], "W_convl")
bias_variable ([Ncvl], "b_convl")
conv2d(x_image, W_convl, "h_convl") + b_convl
batch_vl = tf.nn.moments(yl, [0,1,2])

tf . Variable (tf.zeros ([Ncvl]))
(yl—batch_ml1 )/ tf.sqrt(batch_vl+epsilon)
yl_hat + betal

tf .nn.relu(yl_BN)

max_pool_2x2(h_convl, "h_pooll")

# Second Layer (Conv — ReLU — Max Pooling)
with tf.name_scope("layer2"):

W_conv2 =
b_conv2
y2
batch_m?2
y2_hat
beta2
y2_BN
h_conv2
h_pool2

weight_variable ([1,5,Ncvl,Ncv2], "W_conv2") # Minimal Activations
bias_variable ([Ncv2], "b_conv2")

conv2d (h_pooll, W_conv2, "h_conv2") + b_conv2

batch_v2 = tf.nn.moments(y2, [0,1,2])

(y2—batch_m2)/ tf.sqrt(batch_v2+epsilon)

tf. Variable (tf.zeros ([Ncv2]))

y2_hat + beta2

tf .nn.relu(y2_BN)

max_pool_1x2(h_conv2, "h_pool2")

# Fully connected layer
with tf.name_scope("fcl"):

W_fcl =
b_fcl =

weight_variable ([1xint (N/4)xNcv2,Nfc], "W_fcl")
bias_variable ([Nfc], "b_fcl")

h_pool2_flat = tf.reshape(h_pool2, [—1, Ixint(N/4)xNcv2])

y3 =
batch_m3
y3_hat
beta3
y3_BN
h_fcl

# Dropout
keep_prob
h_fcl_drop

tf .matmul(h_pool2_flat, W_fcl) + b_fcl
batch_v3 = tf.nn.moments(y3, [0])
(y3—batch_m3 )/ tf.sqrt(batch_v3+epsilon)
tf. Variable (tf.zeros ([ Nfc]))

y3_hat + beta3

tf .nn.relu(y3_BN)

tf .placeholder (tf.float32)
tf .nn.dropout(h_fcl, keep_prob)

# Readout Layer
with tf.name_scope("output"):
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w_fc3 = weight_variable ([Nfc, Nmod], "w_fc3")
b_fc3 = bias_variable ([Nmod], "b_fc3")
y_conv = tf . matmul(h_fcl_drop, w_fc3) + b_fc3

# Loss Function
with tf.name_scope("Xent"):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_,
logits=y_conv))

# Training Method
with tf.name_scope("Train"):
step = tf.Variable (0, trainable=False)
rate = tf.train.exponential_decay (lr_start, step, 1, 0.9999)
train_step = tf.train.AdamOptimizer(rate ). minimize(cross_entropy , global_step=step)

# check model performance

with tf.name_scope("Accuracy"):
correct_prediction = tf.equal(tf.argmax(y_conv,l), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

HARRRARAHHAAHRR AR AAARRRRAHAARRRRA A AARRRRRAGAAARARAAAARRRRRAAAARRARAAAAARRRRA
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Nepoch =35

Nbatch = 100

Nobs = 20

Nrange = int (( Ntrain*Nmod)/ Nbatch)
acc_train = np.zeros (int(Nepoch*Nrange/Nobs))
acc_val = np.zeros(int(NepochxNrange/Nobs))
xent_train = np.zeros(int(Nepoch*Nrange/Nobs))
xent_val = np.zeros (int(NepochxNrange/Nobs))

# Training Session

init = tf.global_variables_initializer ()

sess = tf.InteractiveSession ()

sess.run(init)

writer = tf.summary.FileWriter ("C:/tmp/conv_archl", sess.graph) # for 0.8
merged = tf.summary.merge_all ()

acc_val_tmp = np.zeros ([int(val_data.shape[0]/4000)])

xent_val_tmp = np.zeros([int(val_data.shape[0]/4000)])

# Training & Validation

k = 0;

training_itr = 0;
for m in range(Nepoch):
for i in range(Nrange):
train_step_data = feed_dict={x:train_data[ixNbatch:(ixNbatch)+Nbatch,:],
y_:y_train[ixNbatch:(ixNbatch)+Nbatch,:],
keep_prob: 0.5}
sess.run(train_step , train_step_data)

# Check progress validation
if training_itr%Nobs == 0:
a_train ,c_train = sess.run([accuracy, cross_entropy], train_step_data)
if not ((Nmod==8) and (Classtype == modClassAll) and (N==1024)):
for p in range(int(val_data.shape[0]/4000)):
a_val ,c_val = sess.run([accuracy , cross_entropy],
feed_dict={x:val_data[p*4000:4000x(p+1),:7],
y_:y_val[p*4000:4000%(p+1),:],
keep_prob:1.0})

acc_val_tmp[p] = a_val;
xent_val_tmp[p] = c_val;
acc_val[k] = np.mean(acc_val_tmp)
xent_val[k] = np.mean(xent_val_tmp)
acc_train[k] = a_train
xent_train [k] = c_train

print ("[Epoch=" + str(m) + ", Itr=" + str(i) + "]_train_acc:_ "
+ str(a_train) + "_l_val_acc_=_" + str(a_val))
else:
print ("[Epoch=" + str(m) + ",_Itr=" + str(i) + "]_train_acc:__"
+ str(a_train))
k =k + 1;
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training_itr = training_itr+l

# Testing Session

# Do it in blocks of 4000
Nmax = test_data.shape[0]
Nrange = int(Nmax/4000)

test_acc = np.zeros ([ Nrange,1])
import pandas as pd
confusion = np.zeros ([Nmod,Nmod],int)

for i in range(Nrange):
test_acc[i] = accuracy.eval(feed_dict={x:test_data[i*4000:4000x(i+1),:],
y_:y_test[i%x4000:4000%(i+1),:],
keep_prob:1.0})

# Confusion Matrix

res tf .stack ([ tf.argmax(y_conv,1), tf.argmax(y_,1)])

ans res.eval (feed_dict={x:test_data[i*4000:4000«(i+1),:],
y_:y_test[i%4000:4000«(i+1),:],
keep_prob:1.0})

for p in ans.T:
confusion[p[0],p[1]]+=1

print(np.mean(test_acc))
print (pd.DataFrame (confusion))
print (pd.DataFrame (confusion/int(test_data.shape[0]/Nmod)))

# Figures

plt.figure (1)

plt.plot(acc_train, label="acc_train")

plt.plot(acc_val, label="acc_val")

plt.title (’Accuracy’)

plt.legend (bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

plt.figure(2)

plt.plot(xent_train, label="train_cross_entropy")
plt.plot(xent_val, label="val_cross_entropy")
plt.title (' Cross_Entropy’)

plt.legend (bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

sess.close ()
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