
GraphMachine Learning with Scattering
Transforms

by

Armaan Kohli

Submitted in partial fulfillment of the requirements for the degree of

Master of Engineering

at

The Cooper Union

Albert Nerken School of Engineering

Autumn 2022

The Cooper Union for the Advancement of

Science and Art

Albert Nerken School of Engineering

This thesis was prepared under the direction of the Candidate’s Thesis Advisor and

has received approval. It was submitted to theDean of the School of Engineering and the

full Faculty, and was approved as partial fulfillment of the requirements for the degree of

Master of Engineering.

Barry L. Shoop, Ph.D., P.E. Date

Dean, Albert Nerken School of Engineering

Prof. Sam Keene Date

Candidate’s Thesis Advisor

ii

9.23.2022

9.23.2022

Contents

Acknowledgments v

Abstract vii

Introduction xi

1 Motivation . xi

2 Aims, Scope & Contributions . xii

3 Overview . xiii

1 Background 1

1.1 Graphs and Graph Signal Processing 1

1.2 GraphWavelets . 4

1.2.1 DiffusionWavelets . 5

1.2.2 Spectral GraphWavelets . 6

1.3 Scattering Transforms . 7

1.4 Machine Learning . 9

1.4.1 Supervised Modeling . 10

1.4.2 Generalization . 12

1.4.3 Principal Component Analysis 14

iii

Contents

1.4.4 Support Vector Machines . 15

2 GraphMachine Learningwith Scattering Transforms 19

2.1 Algorithms for Graph Scattering Transforms 19

2.2 Learning with Graph Scattering Transforms 21

3 Results 23

3.1 Software . 23

3.2 Machine Learning Applications . 25

3.2.1 Visualizing Molecular Graph Properties 25

3.2.2 Whole Graph Classification 30

3.3 Discussion . 32

4 Conclusion 33

Bibliography 35

iv

Acknowledgments

First and foremost, I would like to thank my advisor Professor Sam Keene for giving me

encouragement, resources and opportunities over the past several years. I do not know

where Iwouldbewithout his guidance, and for that I amdeeply grateful and appreciative.

I wish to thank Professors Fred Fontaine and Kevin Tien, as well as Jerry Qiu. I pro-

foundly cherish the lessons they taught, it is only by their generosity, grace and instruction

that I was able to enjoy my studies to the extent that I did. I would further like to thank

all of the faculty and adjunct professors I had the fortune of studying under.

Peter Cooper deserves special mention for establishing this institution and for the in-

credible gift he has given to me and so many others. I extend my gratitude to all of those

who work to uphold his legacy.

I owe a great deal to all of my fellow peers. From Comms lab, to Randall’s Island, to

meals at all hours of the night, above all else I appreciate the time I spent with my friends

the most.

Finally, I would not be here without the love of my family, thank you for everything.

v

Abstract

Graph scattering transforms construct deep convolutional representations of data with-

out learned parameters. More importantly, they are proven to satisfy invariance and sta-

bility properties. This thesis examines the graph scattering transform as a component

within larger machine learning models and presents an open source software library for

graph scattering algorithms. We include an analysis of graph scattering transforms vari-

ants in practical machine learning settings. The constraints and benefits of using such

models are discussed in detail. An open source software package is presented in order

to better facilitate research into graph scattering methods and their applications. This al-

lows for community collaboration, standardization and integrationwithother supported

libraries to improve the quality of research in the field.

vii

List of Figures

1.1 An example of a graph . 2

1.2 The graph Fourier transform . 5

1.3 The scattering transform . 8

1.4 Generalization in linear models . 14

1.5 A support vector machine example 17

2.1 Machine learning with scattering transforms 21

3.1 Samples from the QM9 dataset . 26

3.2 QM9 scattering embeddings . 27

3.3 QM9 scattering embeddings for varying depth 28

3.4 QM9 scattering embeddings for varying scales 28

3.5 MUTAG classification results . 31

3.6 Cuneiform classification results . 31

ix

Introduction

1 Motivation

One of the core challenges of machine learning is building meaningful representations

of data. In this context, we mean whether or not a particular representation of data is

conducive to downstream statistical modeling tasks. By representation, we usually mean

a low dimensional description of some high dimensional data.

Neural network-basedmodels are expressive and can learn internal representations use-

ful for classification, regression or generative tasks. However, suchmodels require signif-

icant computational resources and a sufficiently diverse and large set of data to accurately

estimate the parameters. These downsides canmakemodeling data with neural networks

challenging, especially when working in small data regimes.

This thesis develops sample-efficientmethods for constructing representations of data.

In particular, we focus on learning from graph structured data. More specifically, this

thesis focuses on scattering transform based algorithms, which have a structure similar to

that of neural networks but without learned parameters.

Via repeated and varied experimentation, we could measure the performance of var-

ious graph scattering transforms along side graph neural networks (GNNs) in various

machine learning applications in order to develop better heuristics for when scattering

xi

Introduction

transforms are useful in statistical models. But, the number of settings (determined by

the dataset properties, sample size, training objective, hyperparameter configuration and

more) is too vast to enumerate, let alone effectively measure the performance of algo-

rithms over. A more scientific workflow would instead focus on a single dataset, and

evaluate a set of models on a held-out subset of the data.

A well-documented open source library of graph scattering transforms is needed to

support this proposedworkflow. Instead of choosing algorithms based on a set of bench-

marks, reuseable and tested software allows the data scientist to make better motivated

modeling choices by cross-validation and model comparison on the data in question.

2 Aims, Scope & Contributions

Thework in this thesis ismotivated by a simple question: When are scattering transforms

most appropriately used to model graph structured data? Research in graph representa-

tion learning has focused almost exclusively on GNNs, and research in graph scattering

transforms primarily considers the mathematical perspective. The goal of this research

is to provide a more holistic understanding of graph scattering transforms, how their

theoretical properties translate towards their effectiveness, or lack thereof, in statistical

modeling.

To answer these questions, we developed an open source library, gsxform, which pro-

vides documented and efficient implementationsof graph scattering transformalgorithms

to the larger research community. In tandem, we also present a set of preliminary exper-

iments to integrate these algorithms and demonstrate the effectiveness of the library. In

particular, we examine how learning systems that use different formulations of the graph

scattering transform compare to one another across a variety of datasets and sample sizes.

xii

3 Overview

We believe that we can foster better research in graph scattering methods and in graph

data analysis by providing better and easier to use interfaces for these algorithms.

3 Overview

Chapter 1 provides an introduction to a potpourri of topics requisite to understanding

the material in later chapters. The fields of graph theory and graph signal processing are

briefly described. Further, the chapter discussesmachine learning in context of themeth-

ods presented in this thesis. the structure of scattering transforms for Euclidean data is

presented along side the basics of graph wavelets. Chapter 2 synthesis the seeming dis-

parate ideas from the first chapter to present the methods used in this thesis. A core algo-

rithm for the graph scattering transform is introduced, and then the focus shifts towards

a generic methodology for building models with graph scattering as a component.

Chapter 3 examines the practical aspects of the previously discussedmethods via exper-

imenting with models trained on varying datasets and for varying tasks. We also provide

an overview of the technologies used to develop the software. The experiments presented

are offered as examples of the types of data analyses that the open source library supports.

Finally we conclude the thesis with a holistic summary and some remarks on potential

future lines of investigation.

xiii

1 Background

This chapter provides a brief overview of spectral graph theory, graph wavelets and the

scattering transform. In addition, it delves into the basic theory of machine learning as

well as some commonly used methods in data analysis and modeling.

1.1 Graphs and Graph Signal Processing

Graphs are constructs used to represent relationships and interactions in systems. Exam-

ples of common structuresmodeled by graphs include socialmedia networks, citations in

scientific communities, molecular graphs, cells in the body, websites like Wikipedia and

highway systems. Even images be represented in a graph structure, where adjacent pixels

or objects in the image can be considered connected.

A graphG = (V,E) consists of a collection ofN vertices V , sometimes called nodes,

and edges E ⊆ V × V that represent links or relationships between nodes. Each node

vi can come endowed with a feature vector x ∈ Rd that stores the properties of a given

node. Each edge can also be weighted according to the relationship between its nodes.

For example, a social network graph, illustrated in Figure 1.1, might consist of nodes

that represent individual people, edges that represent the connections between users and

1

1 Background

Social Network Graph Adjacency Matrix

Figure 1.1: An example of a graph structure. We have a social network graph with three distinct
communities (left). The sparsity pattern of its corresponding adjacency matrix (right)
shows the connectivity within the three communities and the disconnection between
them.

each user might have a node feature vector that indicates a user’s preference for walrus

videos.

Graph connectivity can be represented by a weighted adjacency matrixW ∈ RN×N ,

with its ith row and jth column defined as

Wi,j =

e (i, j) ∈ E

0 else
(1.1)

Where e ∈ R denotes the edge weight. An unweighted adjacencymatrixA is often used,

and is a special case ofW where e = 1 for all connections. An alternative representation

of graph connectivity is the diagonal degree matrixD ∈ RN×N

Di,j =
∑
j

Ai,j =

deg(vi) if i = j

0 else
(1.2)

2

1.1 Graphs and Graph Signal Processing

where deg(vi) is the number of edges that connect to the ith node.

A graph is fully defined by its connectivity, via the adjacency matrixW , and the graph

signalX . A fundamental matrix in graph theory is the graph Laplacian L := D −W .

The graph Laplacian is used to define the graph Fourier transform. The Fourier trans-

form of a discrete signal x(n) ∈ R decomposes the signal as a sum of complex expo-

nential functions at different frequencies, which are eigenvectors of the one dimensional

Laplacian

Xk =
N−1∑
n=0

xnexp
{
−j2π
N

kn

}
(1.3)

Analogously, the Fourier transform of a graph signal x ∈ Rd is the decomposition of x

as eigenvectors for the graph Laplacian L

X(λl) = 〈f, µk〉 =
N−1∑
i=0

x(i)u∗l (i) (1.4)

Where {µl}N−1
i=0 are the complete set of orthonormal eigenvectors ofL and {λl}N−1

i=0 are

the corresponding real non-negative eigenvalues. The Fourier transform is more com-

pactly written as

X = U>x (1.5)

whereU is thematrix of eigenvectors of the normalized graph Laplacian L̃which is com-

puted as

L̃ = IN −D−1/2WD−1/2 = UΛU> (1.6)

3

1 Background

Just as for euclidean signals,the convolution on graphs is defined as a multiplication of a

signal xwith a filter g in the spectral domain

x̂ = g ? x = UgU>x (1.7)

We can think of g as a function on the eigenvalues ofL, g(Λ). Computing the filtered sig-

nal x̂ requires computing the eigen-decomposition of L, which is resource-intensive for

large graphs, in practice approximations can be used. The Laplacian can also be defined

as

L(i) =
∑
j∈Ni

Wi,j[x(i)− x(j)] (1.8)

Where the neighborhoodNi is the set of vertices connected to vertex i by an edge. This

definition illustrates how the Laplacian quantifies how ‘smooth’ a graph function is. The

eigenvectors of the graph Laplacian associated with ‘low frequencies’ do not have high

variation in the graph. If two neighboring nodes have a large edge value weight and have

similar values of x, then its associated eigenvectors will have similar eigenvalues. Large

eigenvalues correspond to eigenvectors whose nodes are connected but have very distinct

values. This notion of smoothness on graphs matches the intuition of frequency for Eu-

clidean signals, and is usually expressed by its Dirichlet energy, defined as x>Lx. This

relationship between graph structure, smoothness, its Dirichlet energy and spectra is il-

lustrated in Fig 1.2.

1.2 GraphWavelets

To briefly discuss Euclidean wavelet transforms, we consider a so-called mother wavelet

ψ ∈ L2(Ω) that has integrates to zero over its domain, and is spatially localized. We

4

1.2 GraphWavelets

xTLx = 277.32

Signal in the graph domain

0 2 4 6 8 10 12
0

1

2

Signal and Filter Spectra

xTLx = 18.03
0 2 4 6 8 10 12

0.0

0.5

1.0

g() = exp (3
max)

xTLx = 0.47
0 2 4 6 8 10 12

Eigenvalues / graph frequencies

0.0

0.5

1.0

g() = exp (10
max)

2

0

2

0.5

0.0

0.5

0.4

0.2

0.0

Figure 1.2: The top row illustrates an Erdos-Renyi graph with a random signal, and its corre-
sponding spectrum. As the graph is continually filtered with a heat kernel, the signal
on the graph is smoothed, resulting in a reduction of high frequency components, and
a decrease in the Dirichlet energy of the graph. After filtering twice, the graph is en-
tirely ‘low frequency’ as indicated by its spectra.

can generate a family of wavelet filters by rotating by an angle θ and dilating by j i.e.

ψj,c(u) = 2−jdψ(2−jRcu). Awavelet decomposition consists of a filter bank containing

all scales up to 2j and all angles, i.e. Ψj : x→ (x ∗ ψj,c)j≤J,c≤C .

1.2.1 DiffusionWavelets

Diffusion wavelets offer a simple method to define a multi-resolution analysis via the dif-

fusion operator defined on the adjacency matrix of a graph [3]. We can define a diffusion

process using a graph’s normalized adjacency matrix, computed as

A = D−1/2WD−1/2,withD = diag(d1, . . . dn) (1.9)

5

1 Background

A is well localized, it is only non-zero only where there is an edge connecting nodes, it is

self-adjoint and ‖A‖ ≤ 1. SinceA is self adjoint, it has a non-negative spectra. We define

a diffusion operator matrix as T = 1
2
(I + A). We can construct multi-scale wavelets

using the diffusion operator followingCoifman andMaggioni [3],where we define wavlets

for scales j as

ψ0 = I − T, ψj = T 2j−1

(I − T 2j−1

), j > 0 (1.10)

The finest scale ψ0 is equivalent to half the normalized Laplacian operator,

ψ0 =
1

2
L̃ =

1

2
(I −D−1/2WD−1/2) (1.11)

and further iterates can be seen as a temporal difference in a diffusion process where each

diffusion step consists of a multiplication by L̃. The coarser scales capture these differ-

ences at increasing spaced diffusion distances, or over greater portions of the graph.

1.2.2 Spectral GraphWavelets

As opposed to diffusion wavelets, spectral graph wavelets are computed as a filter bank

applied to the spectrum of the graph Laplacian. Any graph wavelet filter that can be per-

formed as a convolution falls into this family of wavelets. This construction is more sim-

ilar to Euclidean wavelets compraed to the construction of graph diffusion wavelets.

Defined in the frequency domain, a graph wavelet is a function of it the eigenvalues of

the graph Laplacian at a specific scale, {ψj(λ)}Jj=1. For a graph Laplacian L = UΛU>,

we can perform our wavelet filtering operation by evaluatingψj(λ) on each of the eigen-

values of L,

x̂j = V diag(ψj)V
>x (1.12)

6

1.3 Scattering Transforms

For the purposes of this thesis, we will be looking at a specific wavelet filter bank, namely

the tight Hann wavelets developed by Shuman, Wiesmeyr, Holighaus, and Vandergheynst

[25]. These wavelets have tight frame bounds, and are adapted to the density of the eigen-

values using a kernel function g. A tight frame bounds the lower and upper values of the

output, controlling the spread of energy. The kernel function for the tightHannwavelets

is a half-cosine kernel defined as

g(λ) =
∑
k=0

ak

[
cos

(
2πk

(
J + 1−R

Rγ

γ +
1

2

))
· χ{0≤λ<1}

]
(1.13)

Where R, K ∈ Z+, γ is the maximum eigenvalue of graph Laplacian, and J is the

maximum number of scales. We can then define our wavelet transform in terms of our

kernel function

ψ(λ)j = g

(
λ− j

γ

J + 1−R

)
(1.14)

Applying our graph wavelet filter bank to the graph Laplacian gives yields the graph

wavelet transform for tight Hann wavelets.

1.3 Scattering Transforms

Scattering transforms are operators that construct signal representations using cascaded

multi-scalewavelet decompositions composedwithnon-linear functions [16]. These scat-

tering representations have invariance and stability guarantees because of this construc-

tion, and are discussed in detail byMallat [16].

The functional formof scattering transforms are group invariant operators , constructed

to ensure that they are stable to deformations and information preserving. The graph

Fourier transform, for example, is not a metric preserving operator, high frequencies

7

1 Background

Figure 1.3: A scattering transform with four scales and three layers. At the input node, the first
scattering coefficient is computed by applying the low-pass operator. In the subse-
quent layer, we have four nodes, corresponding to the four wavelet scales, followed by
a point-wise non linearity and low-pass filtering. Each layer yields jl scattering coeffi-
cients. Replicated from [7].

are high unstable to signal deformations. The wavelet transform is an alternative to the

Fourier transform that does provide stability, and the introduction of a non-linear func-

tion provides invariance. Finally, the layering of these transforms will prove necessary to

ensure this scattering operator preserves the energy of the signal. In these scattering net-

works, the number of nodes, filters, layers andnon-linearities are pre-defined, there are no

learned parameters. First, wewill discuss the scattering transform on Euclidean domains,

and later in Section 2.1 the presented theory will be extended for graphs.

In computer vision, we desire algorithms to be stable to small changes in the image

space. That is, if we have a signal x(u) ∈ L2(Ω) defined on a Euclidean domain Ω ⊂

Rd , then we would want a representation Φ that accommodates small deformations. If

8

1.4 Machine Learning

xτ (u) = x(u− τ(u)) denotes a shift of the signal x(u) by a differentiable field τ : Ω →

Ω, then we can express the criteria by requiring

∀x, τ ‖Φ(x)− Φ(xτ)‖ ≤ ‖x‖‖τ‖ (1.15)

Which ensures that the the difference in the representation of a signal and a deformed

signal is bounded by the strength of the deformation. This is a difficult ask of Φ, since

we also want our transform to be sufficiently expressive and representative of higher fre-

quencies of x.

Scattering transforms provide a solution to this problem by cascading wavelet decom-

positions with a complex modulus, or absolute value, non linearity ρ(z) = ‖z‖, as well

as a low-pass filtering operationU over the domain. This processes is iterated over l layers,

yielding

Φ(x) = {S0(x), S1(x), . . . Sl−1(x)},

Sk(x) = UρΨJρ . . .Ψjx

(1.16)

The resulting representation has the structure of a convolutional neural network (CNN),

but the trainable parameters are replaced bywavelet transforms. Mallat [16]proves that for

certain signals andwavelet families, the scattering transform as described fulfills Equation

1.15.

1.4 Machine Learning

Machine learning is a field that concerns itself with algorithms, systems and computa-

tions that are informed by data. Traditional algorithms are static, designed to follow a

fixed set of instructions, whereas the hope of learning algorithms is that they can adapt

9

1 Background

to new information and alter their structures to reap improvements in performance or

even solve problems that static programs fail to resolve. Examples of tasks well-suited to

machine learning include playing chess, recognizing hand written digits, or categorizing

news articles into topics [2, 14, 26].

Tomodel data, the machine learning procedure is to first define a model by specifying

a set of parameters, which define the functional form, and then to find a configuration

of model parameters that best explains or fits the data, hence learning. 1 The idea is that

if a model can explain currently available observations, then it should also be able to ac-

curately predict future or unseen observations too. This is the notion of generalization,

which indicates if a fit model actually provides some understanding of the underlying

data generating process.

1.4.1 SupervisedModeling

To illustrate what is known as supervised machine learning, consider a data distribu-

tion pdata, from whichN = |D| samples are drawn,

D = {(xn, yn)}Nn=1 (1.17)

D ∼ pdata (1.18)

The so-called input features, sometimes called covariates, predictors or samples, are de-

noted xn ∈ Rd, and are unless otherwise specified, real vector-valued variables in some

d-dimensional space, and the labels are yn ∈ R. This paradigm is known as supervised

learning since the learning algorithm has access to the label set y during training. This

1This thesis does not examine non-parametric models, which also exist. Such models, such as Gaussian
Processes, tend to be more flexible than their parametric counterparts.

10

1.4 Machine Learning

is in contrast to unsupervised learning, where labels are generally either unused or not

available at all.

The goal of a discriminative machine learning model is to find a function f(x|θ) that

maps inputs xn to labels yn so that we can infer the label for all inputs in pdata, not those

solely present in our finite sampleD. By convention, θ denotes a function’s set of param-

eters.

The model f(x|θ) yields outputs ŷ, which are estimates of the true label set. In or-

der to learn this function, we introduce an objective function that measures how well

our model performs onD as a stand-in for the underlying distribution pdata. The objec-

tive function ` takes as input the true and predicted labels, y and ŷ, for a given input x,

and outputs a scalar value, colloquially refered to as the loss. To rephrase in probabilis-

tic terms, a discriminative model computes the conditional probability that a particular

sample x corresponds to a particular label given the set of model parameters. This is in

contrast to a generative model, which models the joint distribution p(x, y).

We candefine the empirical risk as the average loss of themodelmeasuredon thedataset

D as

L(θ) := 1

N

N∑
n=1

`(yn, f(xn|θ)) (1.19)

To summarize, in the supervised, parametricmodeling framework, the goal of learning

is to find parameters θ̂ that optimize the objective function, i.e. minimize the empirical

risk

θ̂ = argmin
θ

L(θ) = argmin
θ

1

N

N∑
n=1

`(yn, f(xn|θ)) (1.20)

This computation to find the minima of our objective function may or may not be

analytically feasible. In some cases, this minima may be computed explicitly.

11

1 Background

1.4.2 Generalization

An important property of any model is for it to generalize beyond the sampled train-

ing datasetD, and for it to achieve a desired performance on any sample from pdata with

respect to some metric.

Taking a closer look at the empirical risk defined in Equation 1.19, then a look-up table

is a validminimizer. If we learn a function that essentially memorizes the correct label for

each input in D, then we have driven the objective function to zero and minimized the

empirical risk. However, this minima will not generalize to samples not present in the

training dataset. This phenomena is called overfitting.

We want to quantifying this effect. Assume we have access to the entire data distribu-

tion pdata. Instead of computing an empirical estimate of the risk, we can compute the

theoretical expected risk

L(θ, pdata) := Epdata [`(y, f(x|θ))] (1.21)

and define the difference between the empirical and theoretical expected risk,

L(θ, pdata)−L(θ,D), as the generalization gap. A large generalization gap indicates that

the model is overfit and is likely too complex. Even though this quantity cannot be com-

puted, since we do not have access to the true data distribution, this notion of a discrep-

ancy between the performance of the model on a sampled dataset and the performance

of a model for all datasets from pdata needs to be considered when evaluating the perfor-

mance of a machine learning model.

12

1.4 Machine Learning

The effect ofmodel complexity versus generalization performance can be illustrated in

a simple example. Regression is a task where we are interested in predicting a real scalar

value y ∈ R. For regression, a common choice of objective function is the `2 objective

`2(y, ŷ) =
1

2
(y − ŷ)2 (1.22)

Thus, when performing empirical risk minimization, model fitting consists of minimiz-

ing the mean squared error (MSE) between predicted and true values.

In Figure 1.4, we show the resulting function f(x|θ) for a identicalmodels, save for the

number of basis functions used in the regression model. The number of basis functions

is a surrogate for the notion of model complexity. On the top right plot, we use a single

basis function tomodel our data, just a linear fit. This model, shown as a dashed red line,

clearly is not an accurate representation of our data. If we increase the complexity of the

model and use five basis functions, we can get a very close approximation. This model

fits the data very nicely. If we increase the complexity further however, the model learns

the noise in our dataset as opposed to the underlying function.

The plot on the bottom right frames our model fitting in terms of generalization per-

formance. Models that are too simple perform poorly in terms of mean squared error on

both the training data and the test data, which makes sense; the model is not expressive

enough. As complexity increases, the training error decreases However, the test error in-

creases beyond a certain model complexity (in this case past using two basis functions),

since overcomplex models do not generalize well to samples not present in the training

data, they memorize the training set.

13

1 Background

x

y

Degree 1 Fit
Noisy Samples
Estimated Curve
True Curve

x

y

Degree 5 Fit

x

y

Degree 10 Fit

2 4 6 8 10 12 14
Model Complexity (Degree)

M
ea

n-
Sq

ua
re

d
Er

ro
r

Generalization Error
Test
Train

Figure 1.4: Models that are under parameterized cannot model the data accurately. On the other
hand if the model is to expressive, then the model fits both the data and the noise, and
does not generalize. This is relationship is evident in the U-shaped curve that plots the
mean-squared error against the model complexity

1.4.3 Principal Component Analysis

Principal Component Analysis (PCA) is a basic tool in statistics [12, 21]. It is commonly

used for performing exploratory data analysis or dimension reduction. Further, it is well

understood, simple, and is a common building block for more complex methods.

PCA consists of an eigenanalysis of the data, the eigenvectors of the covariance matrix

define orthogonal axes along which our data has maximal variance.

LetX denote a datamatrix, withN rows that coorespond to individual samples, andP

columns that coorespond to features. We can compute the singular value decomposition

(SVD) as

X = UΣV > (1.23)

14

1.4 Machine Learning

The covariance matrix ofX ,X>X , can be written in terms of the SVD as

X>X =
(
UΣV >)>(UΣV >)

=V Σ>U>UΣV >

=V Σ>ΣV >

=V Σ2V >

(1.24)

SinceV andV > are rotationmatricies, the procedure of PCAdiagonalizes the covariance

matrix ofX , thus finding the axis along which our data varies. PCA, however, intead of

using the exact covariance matrix, uses an emperical covariance matrix defined as

CX =
1

N − 1
X> (1.25)

Thus, the singular values and eigenvalues differ only by a scaling factor. PCA allows us to

is to understand and visualize inter-class and intra-class variation. It can also be reformu-

lated in probabilistic terms and be used to construct generative models of data. Bishop

[1] offers a complete treatment of PCA and its variants. In Section 3.2.1, we will see how

PCA can help visualize the scattering feature space.

1.4.4 Support VectorMachines

Support vector machines (SVM) are a common, flexible method in statistical modeling

[4]. It is often composed with a kernel function to classify data that may not be linearly

seperable. This is acomplished by performing a linear classification problem in a higher

dimensional feature space where the data is linearly seperable.

15

1 Background

First, assume we have N tuples, (xi, yi), where xi ∈ Rm represent feature vectors,

and yi represents the true class, yi ∈ {−1, 1}. For instance, in the Fig 1.5, the blue x‘s

correspond to xi from yi = −1, and the green dots correspond to features from yi = 1.

Now, we only have access to each value of xi, the class they belong to, the corresponding

yi, is unknown. We can define a hyperplane that seperates the two classes by

{x : f(x) = xTβ + 1 = 0} (1.26)

Thus, we can assign a data point to a particular class via computing which side of the

hyperplane it falls in, i.e

sign
[
xTβ + 1

]
(1.27)

If we assume that we are in a space where the classes are linearly separable, we can find a

function f(x) = x>β+1 that creates the largest marginM (or distance) between train-

ing points for the two classes. Thus, we can formulate a convex optimization procedure

that finds this function as follows.

max
‖β=1‖

M

subject to yi
(
x>β + 1

)
≥M

However, it is not always that case that data is seperable with a linear model in its native

space. It is common to transform the data using a kernel function. Hastie, Tibshirani, and

Friedman [11] offers a more complete treatment of SVM learning.

Figure 1.5 illusttrates the SVMwith an radial basis function (RBF) kernel. The data on

the left is not linearly seperable, so we use an RBF kernel to transform it and then classify

16

1.4 Machine Learning

x1

x2

Synthetic Data

x1

x2

SVM with RBF Kernel

Figure 1.5: A half-moon synthetic dataset (left), and a SVM with a RBF kernel (right) with the
decision boundary denoted with a solid line. Support vectors are encircled, and the
margins are denoted with a dashed grey line

the data using a linear SVM. To transform our input data, we apply a function g so that

our data is linearly seperable.

f(x) = g(x)>β + 1 = 0 (1.28)

We paramterize our function g via a kernel function

K(x, x′) = 〈g(x), g(x′)〉 (1.29)

that computes the inner product in a transformed space. A commonchoice for our kernel

functionK is the radial basis function, defined as

K(x, x′) = exp{−γ‖x− x′‖2} (1.30)

17

2 GraphMachine Learningwith

Scattering Transforms

This chapter discuses a generic algorithm for the graph scattering transform. Specifically

we review the code that implements the core logic of the graph scattering transform. We

then move towards developing learning algorithms with graph scattering modules, and

discuss the various benefits that this methodology has to offer.

2.1 Algorithms for Graph Scattering Transforms

In Section 1.3, we introduced the scattering transform as defined on Euclidean domains.

More recently, the concept was extended to non-Euclidean domains, particularly graphs

[9, 28]. A graph scattering network takes as input a graph and its signal, and transforms

the object into a feature space that is invariant to permutation and stable to graph signal

perturbations. Insteadof usingEuclideanwavelets, graph scattering transformsuse graph

wavelets. In particular, the previously discussed spectral anddiffusion families ofwavelets

give rise to spectral scattering and diffusion graph scattering transforms respectively.

The formulation of the graph scattering transform is nearly identical to the Euclidean

formulation covered in Section 1.3. In exchange for euclidean wavelets, we use the graph

19

2 GraphMachine Learning with Scattering Transforms

wavelets defined in Section 1.2. The the node permutation invariance and signal pertu-

bation stability are discussed in more detail byGama, Ribeiro, and Bruna [8], Gama, Bruna,

and Ribeiro [7] and Zou and Lerman [28]
1 # compute first scattering layer, low pass filter via matmul
2 phi = torch.matmul(x, lowpass)
3 # reshape inputs for loop
4 S_x = rearrange(x, "b f n -> b 1 f n")
5 lowpass = rearrange(lowpass, "b n 1 -> b 1 n 1")
6 lowpass = repeat(lowpass, "b 1 n 1 -> b (1 ns) n 1", ns=self.n_scales)
7 for ll in range(1, self.n_layers):
8 S_x_ll = torch.empty([batch_size, 0, n_features, self.n_nodes])
9 for jj in range(self.n_scales ** (ll - 1)):
10 # intermediate repr
11 x_jj = rearrange(S_x[:, jj, :, :], "b f n -> b 1 f n")
12 # wavelet filtering operation, matrix multiply
13 psi_x_jj = torch.matmul(x_jj, psi)
14 # application of non-linearity, yields scattering output
15 S_x_jj = self.nlin(psi_x_jj)
16 # concat scattering scale for the layer
17 S_x_ll = torch.cat((S_x_ll, S_x_jj), axis=1)
18 # compute scattering representation, matrix multiply
19 phi_jj = torch.matmul(S_x_jj, lowpass)
20 phi_jj = rearrange(phi_jj, "b l f 1 -> b f l")
21 phi = torch.cat((phi, phi_jj), axis=2)
22 S_x = S_x_ll.clone() # continue iteration through the layer
23 return phi

Listing 2.1: A basic algorithm that implements a graph sacttering transform, written in Python

In Listing 2.1, we present the basic algorithm for graph scattering. First, we can com-

pute the first scattering transform layer, simply by low-pass filtering our input (line 2).

The subsequent layers are computed by looping over the number of layers and scales. In

each loop, we graphwavelet filter our input (line 13), apply our absolute value, or generic,

non-linearity (line 14). We then low-pass filter the output (line 19), and proceeded with

our loop. For different wavelet transforms, we use a different psi variable, all else remains

the same.

This formulation of the graph scattering algorithm offers two benefits. First, it allows

for the implementation of any graph scattering transform method since the only differ-

ence is in the choice of wavelet transform. Additionally, the uniform interfacemeans that

with the same function we can perform graph scattering transform on any valid graph

dataset. These benefits will be discussed extensively in Sections 3.1 and 3.2

20

2.2 Learning with Graph Scattering Transforms

2.2 Learningwith Graph Scattering Transforms

Now that we have formulated the graph scattering transform, we can now propose a

generic method for their use in machine learning problems. Figure 2.1 illustrates how

graph are encoded using scattering transforms, and then passed as inputs into machine

learning models First, we have our input graph, which we can represent in terms of its

Figure 2.1: A generic procedure for modeling graph structured data with scattering transforms.
First, the input graph is decomposed into its structure (the adjacency matrixW) and
its signal x. The wavelets are computed for a corresponding scattering transform Sx,
and the transformed data can be fed directly into a machine learning model fθ.

graph signal and graph adjacencymatrix. We compute graphwavelets using the adjacency

matrix, and then with the graph wavelets and the graph signal we compute the scattering

transform. This yields a data representation that is appropriate for any generic parametric

machine learning model, such as SVM or PCA.

This methodology offers several benefits compared to other methods for graph ma-

chine learning, namely graphneural networks (GNNs). First, the computationof scatter-

ing transforms can be amortized. Since there are no learned parameters, you can compute

and store graph scattering embeddings on disk for re-use later. This can significantly cut

down on compute time, and reduces the need for embeddings to be re-computed as the

model is being fit. Secondly, scattering transforms offer features that are interpretable.

21

2 GraphMachine Learning with Scattering Transforms

For instance, in a logistic model, we can compute feature importance and directly at-

tribute model performance to specific graph scattering coefficients, each of which can

be interpreted via their scale and layer. Neural networks are much more opaque on the

other hand and are more difficult to interpret. Another upshot of modeling with scat-

tering transforms in this fashion is that models with scattering transforms will have fewer

parameters than their GNN counterparts. This suggests that they have the capability

to have better generalization performance, particularly when using limited training data.

Again, this is with the caveat that non-parametric models, to an extent, are able to side

step many of these issues.

22

3 Results

This chapter provides the results of this thesis along two fronts. First, we look at the open

source software implementation of the graph scattering transform algorithm. Specifi-

cally, wepresent the technologies used for development and for the publishing of the code

base. Next, we look at the results of two machine learning methods implemented using

our public library. We perform an exploratory analysis of molecular data using scattering

embeddings, andwe perform graph classification onmultiple datasets. We concludewith

a summary of the results and some preliminary takeaways.

3.1 Software

One of the primary artifacts of this thesis is the open source software developed using the

Python programming language to foster better practices in the research of graph scatter-

ing transforms and to offer easy interfaces for these algorithms to the larger datamodeling

community.

gsxform is a package for constructing graph scattering transforms, leveraging PyTorch

to allow for fast GPU and CPU based computation [20]. Using PyTorch, gsxform of-

fers the ability to more easily build models that use both scattering transform and neural

network components.

23

3 Results

The package is installable using the default Python package manager PyPI. The code

is united tested for correct tensor shapes using pytest, and is copyrighted using a BSD

3-Clause license. The code is public on github, at https://github.com/armaank/gsxform,

and is open to contributors and users tomake bug requests or implement features of their

own.

Some of the core technologies used in development of this package include MkDocs,

which automatically generates documentation website fromNumPy or Google style in-

code Python docstrings. The documentation is published publically here: https://ar-

maank.github.io/gsxform/ We leverage Mypy to perform static type checking. This en-

sures that the data types used in the codebase are consistent with expectations and well-

documented. We also use the Black autoformatter, along side Flake8 compliance checks

to ensure that thewritten code follows appropriate, standardized style conventions. These

tools, alongside Github Actions, which is used to trigger the testing suite and documen-

tation generationwhen changes aremade to the codebase, are critical for supporting com-

munity contributions.

Another technology used to improve code quality and legibility is einops [23]. This li-

brary allows for more readable tensor manipulation inspired by Einstein summation no-

tation. Listing 3.1 illustrates how readability is improved using this alternative notation

as compared to using PyTorch functions.
1 # Native PyTorch Ops
2 phi = torch.matmul(x, lowpass.unsqueeze(2))
3
4 lowpass = lowpass.unsqueeze(1).unsqueeze(3).repeat(1, n_scales, 1, 1)
5
6 # Einops
7 lowpass = rearrange(lowpass, "b n -> b n 1")
8
9 phi = torch.matmul(x, lowpass)
10
11 lowpass = rearrange(lowpass, "b n 1 -> b 1 n 1")
12
13 lowpass = repeat(lowpass, "b 1 n 1 -> b (1 ns) n 1", ns=n_scales)

Listing 3.1: Code readability is improved by einops.

24

https://github.com/armaank/gsxform
https://armaank.github.io/gsxform/
https://armaank.github.io/gsxform/

3.2 Machine Learning Applications

einops allows for named dimensions to be re-ordered by changing the structure of input

and output tensor. Using native PyTorch functions, code used to reshape the low-pass

filter and wavelet operators for a for-loop is difficult to understand, due to the repeated

squeeze operations. The ability to re-arrange using named dimension makes the tensor

manipulations much more clear to read, and also self-documents the dimensions of the

tensors.

In summary, we developed gsxformusing open source software practices, alongside re-

cent developments in tensor computation libraries like PyTorch and einops. This library

can be used to foster graph scattering transform research aswell as open up thesemethods

to the larger graph data analysis community.

3.2 Machine Learning Applications

3.2.1 VisualizingMolecular Graph Properties

Using gsxform, and PCA, which we introduced in Section 1.4.3, we can perform some

exploatory data analysis of molecular graph data.

We are looking to visualize samples from the QM9 dataset, which consists of 133,885

small drug-like organic molecules [22, 24]. These are simple structures with a maximum

of 9 heavy atoms including only carbon, oxygen, nitrogen and fluorine. Accompanying

the geometric structure, the database also contains for each molecule a set of energetic,

electronic and thermodynamic properties. Figure 3.1 illustrates some example graphs

from this dataset.

Using themethod described in Section 2.2, we can visualize the scattering embedding,

or latent representations, of the QM9 dataset. In particular, we can evaluate how differ-

25

3 Results

Figure 3.1: A set of random Lewis structures from the QM9 dataset

ent formulations of the scattering transform yield differing representation. Specifically,

we can visualize the latent structure of various molecular properties, including the num-

ber hydrogen-bond acceptor atoms (HBA), or the faction of carbon atoms with SP3 hy-

bridization.

Figures 3.2, 3.3 and 3.4 all use two principal axes to visualize the embedding space of

30,000 molecules. Each point represents a single molecule, and is colored according to a

specific characteristic.

Figure 3.2 illustrates how the choice ofnon-linearity and choice of scattering transform

type cause the embedding space to change. As formulated in the literature covered in

Section 1.3, the scattering transform uses the absolute value function as its non-linearity.

However, for real valued functions, any contractive mapping satisfies the same criteria.

So, an alternative to the absolute value is the so-called Rectified Linear Unit (ReLU)

function [10]. We see how the choice of non-linearity causes the representation to change

slightly. A much larger difference can be observed between the diffusion and tight Hann

26

3.2 Machine Learning Applications

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
HBA

(a) TightHann Scattering w/ Abs

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
-0.4

-0.2

0.0

0.2

0.4

0.6

HBA

(b) TightHann w/ ReLU

-0.25 0.00 0.25 0.50 0.75 1.00
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
HBA

(c)Diffusion w/ Abs

-0.25 0.00 0.25 0.50 0.75
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
HBA

(d)Diffusion w/ ReLU

Figure 3.2: Embeddings of a subset of the QM9 dataset, shaded by HBA

scattering transforms. The diffusion scattering transforms produce smaller clusters of

molecules, whereas the tight Hann embeddings have a ‘streak’-like structure.

27

3 Results

-0.25 0.00 0.25 0.50 0.75 1.00
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

SP3

(a)Diffusion, 4 layers

0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
SP3

(b)Diffusion, 5 layers

0.0 0.5 1.0 1.5
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
SP3

(c)Diffusion, 6 layers

Figure 3.3: Embeddings of a subset of the QM9 dataset, shaded by SP3 hybridization

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
SP3

(a) TightHann with 3 wavelet scales

-0.5 0.0 0.5 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
SP3

(b) TightHann with 4 wavelet scales

-0.5 0.0 0.5 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

SP3

(c)Diffusion 5 wavelet scales

Figure 3.4: Embeddings of a subset of the QM9 dataset, shaded by SP3 hybridization.

28

3.2 Machine Learning Applications

Figures 3.3 examine the diffusion scattering transform as the number of layers used in

the transform increases from 4 to 6. The overall structure of the scattering embedding

remains unchanged, however there is a slight separation between clusters of molecules as

the number of layers increases. This suggests that a majority of the information in the

dataset lies in low frequencies, since deeper layers do not significantly alter embedding

space.

Figure 3.4 shows a similar relationship, but along the axis of varying scales, which can

be conceptualized as width. Similar to Figure 3.3, there is not much difference in the

embeddings as the number of scales increases from 3 to 5. This, again, would suggest

that lower frequencies are most informative.

29

3 Results

3.2.2 Whole Graph Classification

Whole graphclassification is a learningproblemwhere adataset consists ofmultiple graphs,

each ofwhich has a ground truth label, and the task is to correctly classify each graph. Us-

ing the methods developed in Section 2.2, we can use perform this task using scattering

features as inputs to a SVMwith an RBF kernel.

First, wewill look at a binary classification task on theMUTAGdataset, which consists

of 188 graphs of small molecules [5, 18]. In Figure 3.5, we examine how the training set

size impacts the generalization performance for both diffusion and tightHann scattering

transforms. We also evaluate performance across multiple layers. For all layers, the dif-

fusion scattering transform outperforms the tight Hann transformwhen using less data,

particularly in the 20-60% range. When using close to the entire dataset however, the two

methods have very similar performance. We also see that the peak accuracy of all mod-

els uses three scattering layers, which gives close to 80% accuracy, whereas the others are

closer to 75% accuracy when using all of the data.

In addition to binary classification, we can also examinemulti-class classification prob-

lems. We use the Cuneiform dataset, which consists of digitized graphs of symbolic char-

acters sorted into 30 classes [13, 18].

InFigure 3.6, wemake two comparisons. First, in Figure 3.6a, we look at generalization

performance, measured in accuracy, for a SVM-RBFmodel with features from diffusion

and tight Hann scattering transforms. We see that the model with diffusion scattering

performs significantly better than the model with tight Hann features. Importantly, this

suggests that differences in wavelet choice can impact model generalization. We also see

that as the improvement in training set size follows a very similar trend in both models,

both of their accuracy peaking with only 60% of the training data. Additional data at

30

3.2 Machine Learning Applications

20% 40% 60% 80% 100%
Training Set Percentage

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

TightHann(L=2)
Diffusion(L=2)

20% 40% 60% 80% 100%
Training Set Percentage

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

TightHann(L=3)
Diffusion(L=3)

20% 40% 60% 80% 100%
Training Set Percentage

0.60

0.65

0.70

0.75

0.80

0.85
Ac

cu
ra

cy

TightHann(L=4)
Diffusion(L=4)

Figure 3.5: MUTAG classification results across training dataset sizes and methods

that point deteriorates model performance, though not significantly. Second, in Figure

3.6b, for only diffusion scattering transforms, we look at how scale impacts generalization

performance. We see thatmodels that use varying scales havenearly identical performance

across dataset sizes.

20% 40% 60% 80% 100%
Training Set Percentage

0.6

0.7

0.8

Ac
cu

ra
cy

TightHann(L=4)
Diffusion(L=4)

(a) Varying scattering transforms

20% 40% 60% 80% 100%
Training Set Percentage

0.6

0.7

0.8

Ac
cu

ra
cy

Diffusion(J=4)
Diffusion(J=3)
Diffusion(J=2)

(b)Diffusion scattering for varying scales

Figure 3.6: Cuneiform classification results across different dataset sizes and methods

31

3 Results

3.3 Discussion

In this chapter we presented gsxform as a open source library for graph scattering trans-

forms, and then showed two machine learning applications using gsxform. This speaks

to the utility of gsxform as a library for graph data modeling. In the two applications,

we saw how different formulations of the scattering transform yielded different results,

namely the choice of wavelet and non-linearity seem to impact the scattering embeddings

and generalization performance for classification themost. The existing literature has not

probed for these sorts of discrepancies within the field, but this is what gsxform enables.

The implementation of the base scattering transform discussed in Section 2.1 is what al-

lows us to use arbitrary graph wavelet formulations, enabling us to implement any graph

scattering algorithm. The uniform interface also allows us toworkwithmultiple datasets

without changing the core logic.

32

4 Conclusion

This thesis is an investigation of graph scattering transforms. We ask when they are ap-

propriate to use in machine learning applications. We explore this question by first pro-

viding an overview of the underlying theory behind graph scattering and its algorithmic

construction. We then shift focus to a few example datamodeling exercises to probe these

algorithms. Themajor artifact of thiswork is a tested, documented and functional library

of graph scattering implementations.

In fact, the major contribution of this thesis is the open source library, gsxform. Any

attempt to provide a definitive question to the question initially advanced is ultimately

fraught. The better question is ‘How do I best model my data?’, putting aside the exact

model parameterization. Model choice should not be pre-determined, itmust be selected

empirically usingquantitativemethods. This is ultimatelywhy this thesis avoids perform-

ing exhaustive benchmarking and instead opts to engineer code that is reuseable so that

others can use scattering transforms in their own data analysis.

33

4 Conclusion

FutureWork

Future work along these lines would seek to further evaluate and tease out nuanced dif-

ferences in the construction and performance of scattering transforms, especially as new

algorithms are developed, for instance the scattering transform variants that themselves

use learned parameters [17, 27]. In addition to new models, a similar treatment can be

applied as newmethods are developed to better quantify concepts like model complexity

via effective dimension [15], or other comparative measures of model performance. Fi-

nally, based on the stability guarantees offered by scattering transforms and their associ-

ated wavelet kernels, there is potential work in investigating their effectiveness as a metric

for graph generative models [19].

Additionally, next steps also include further integrations of gsxform into the larger

graph machine learning research community. Libraries like torch-geometric offer exem-

plary data loading and batching tools, and further integration with gsxformwould make

loading public data much easier [6]. Additional GPU support in gsxform is another av-

enue for future development.

34

Bibliography

1. C.M.Bishop.Pattern recognitionandmachine learning.NewYork : Springer, [2006]

©2006, 2006.url: https://search.library.wisc.edu/catalog/9910032530902121.

2. D.M. Blei, A. Y. Ng, and M. I. Jordan. “Latent Dirichlet Allocation”. J. Mach.

Learn. Res. 3:null, 2003. Publisher: JMLR.org, pp. 993–1022. issn: 1532-4435.

3. R. R. Coifman andM.Maggioni. “Diffusionwavelets”. en.Applied and Computa-

tional Harmonic Analysis. Special Issue: Diffusion Maps and Wavelets 21:1, 2006,

pp. 53–94. issn: 1063-5203. doi: 10.1016/j.acha.2006.04.004. url: https:

//www.sciencedirect.com/science/article/pii/S106352030600056X (visited on

08/29/2022).

4. C. Cortes and V. Vapnik. “Support-vector networks”. en.Machine Learning 20:3,

1995, pp. 273–297. issn: 1573-0565. doi: 10.1007/BF00994018. url: https://

doi.org/10.1007/BF00994018 (visited on 09/20/2022).

5. A. K. Debnath, R. L. Lopez deCompadre, G. Debnath, A. J. Shusterman, and C.

Hansch. “Structure-activity relationshipofmutagenic aromatic andheteroaromatic

nitro compounds. Correlation with molecular orbital energies and hydrophobic-

ity”. eng. Journal of Medicinal Chemistry 34:2, 1991, pp. 786–797. issn: 0022-

2623. doi: 10.1021/jm00106a046.

35

https://search.library.wisc.edu/catalog/9910032530902121
http://dx.doi.org/10.1016/j.acha.2006.04.004
https://www.sciencedirect.com/science/article/pii/S106352030600056X
https://www.sciencedirect.com/science/article/pii/S106352030600056X
http://dx.doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
http://dx.doi.org/10.1021/jm00106a046

Bibliography

6. M. Fey and J. E. Lenssen. “Fast Graph Representation Learning with PyTorch Ge-

ometric”. In: ICLR Workshop on Representation Learning on Graphs and Mani-

folds. 2019.

7. F.Gama, J. Bruna, andA.Ribeiro.Stability ofGraphScatteringTransforms. _eprint:

1906.04784v1. 2019. doi: None. url: http://arxiv.org/abs/1906.04784v1.

8. F. Gama, A. Ribeiro, and J. Bruna. Diffusion Scattering Transforms on Graphs.

_eprint: 1806.08829v2. 2018. doi: None. url: http : / / arxiv . org / abs / 1806 .

08829v2.

9. F. Gama, A. Ribeiro, and J. Bruna. “Diffusion Scattering Transforms on Graphs”.

In: International Conference on Learning Representations. 2019. url: https : / /

openreview.net/forum?id=BygqBiRcFQ.

10. X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse Rectifier Neural Networks”.

In: Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics. Ed. by G. Gordon, D. Dunson, andM. Dudík. Vol. 15. Proceedings

ofMachine Learning Research. PMLR, Fort Lauderdale, FL, USA, 2011, pp. 315–

323. url: https://proceedings.mlr.press/v15/glorot11a.html.

11. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer Series in Statistics. Springer,NewYork,NY,2009. isbn: 978-0-387-84857-

0 978-0-387-84858-7. doi: 10.1007/978-0-387-84858-7. url: http://link.

springer.com/10.1007/978-0-387-84858-7 (visited on 09/22/2022).

12. H. Hotelling. “Analysis of a complex of statistical variables into principal compo-

nents”. Journal of Educational Psychology 24, 1933. Place: US Publisher: Warwick

& York, pp. 417–441. issn: 1939-2176. doi: 10.1037/h0071325.

36

http://dx.doi.org/None
http://arxiv.org/abs/1906.04784v1
http://dx.doi.org/None
http://arxiv.org/abs/1806.08829v2
http://arxiv.org/abs/1806.08829v2
https://openreview.net/forum?id=BygqBiRcFQ
https://openreview.net/forum?id=BygqBiRcFQ
https://proceedings.mlr.press/v15/glorot11a.html
http://dx.doi.org/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1037/h0071325

Bibliography

13. N.M.Kriege,M.Fey,D.Fisseler, P.Mutzel, andF.Weichert. “RecognizingCuneiform

SignsUsingGraphBasedMethods”. en. In:Proceedings of The InternationalWork-

shop on Cost-Sensitive Learning. ISSN: 2640-3498. PMLR, 2018, pp. 31–44. url:

https://proceedings.mlr.press/v88/kriege18a.html (visited on 09/20/2022).

14. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied

to document recognition”. Proceedings of the IEEE 86:11, 1998, pp. 2278–2324.

doi: 10.1109/5.726791.

15. W. J. Maddox, G. Benton, and A.G. Wilson. Rethinking Parameter Counting in

DeepModels: EffectiveDimensionalityRevisited. arXiv:2003.02139 [cs, stat]. 2020.

doi: 10.48550/arXiv.2003.02139. url: http://arxiv.org/abs/2003.02139 (visited

on 08/23/2022).

16. S.Mallat.Group Invariant Scattering. _eprint: 1101.2286v3. 2012.doi: None.url:

http://arxiv.org/abs/1101.2286v3.

17. Y.Min, F.Wenkel, andG.Wolf. “Geometric ScatteringAttentionNetworks”.CoRR

abs/2010.15010, 2020. arXiv: 2010.15010. url: https://arxiv.org/abs/2010.

15010.

18. C.Morris,N.M.Kriege, F. Bause, K. Kersting, P.Mutzel, andM.Neumann. “TU-

Dataset: A collection of benchmark datasets for learning with graphs”. In: ICML

2020Workshop onGraphRepresentationLearningandBeyond (GRL+2020). _eprint:

2007.08663. 2020. url: www.graphlearning.io.

19. L. O’Bray, M. Horn, B. Rieck, and K. Borgwardt. Evaluation Metrics for Graph

GenerativeModels: Problems, Pitfalls, andPractical Solutions. en. arXiv:2106.01098

[cs, stat]. 2022. url: http://arxiv.org/abs/2106.01098 (visited on 08/11/2022).

37

https://proceedings.mlr.press/v88/kriege18a.html
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.48550/arXiv.2003.02139
http://arxiv.org/abs/2003.02139
http://dx.doi.org/None
http://arxiv.org/abs/1101.2286v3
https://arxiv.org/abs/2010.15010
https://arxiv.org/abs/2010.15010
www.graphlearning.io
http://arxiv.org/abs/2106.01098

Bibliography

20. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch:

An Imperative Style, High-Performance Deep Learning Library”. In: Advances in

Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A.

Beygelzimer, F. d.Alché-Buc,E. Fox, andR.Garnett.CurranAssociates, Inc., 2019,

pp. 8024–8035. url: http : / / papers . neurips . cc / paper / 9015 - pytorch - an -

imperative-style-high-performance-deep-learning-library.pdf.

21. K. Pearson. “LIII. On lines and planes of closest fit to systems of points in space”.

TheLondon, Edinburgh, andDublinPhilosophicalMagazine and Journal of Science

2:11, 1901. Publisher:Taylor&Francis _eprint: https://doi.org/10.1080/14786440109462720,

pp. 559–572. issn: 1941-5982. doi: 10 . 1080 / 14786440109462720. url: https :

//doi.org/10.1080/14786440109462720 (visited on 09/20/2022).

22. R.Ramakrishnan,P. O.Dral,M.Rupp, andO.A. vonLilienfeld. “Quantumchem-

istry structures and properties of 134 kilo molecules”. en. Scientific Data 1:1, 2014.

Number: 1Publisher:NaturePublishingGroup,p. 140022. issn: 2052-4463.doi: 10.

1038/sdata.2014.22.url: https://www.nature.com/articles/sdata201422 (visited

on 08/29/2022).

23. A.Rogozhnikov. “Einops:Clear andReliableTensorManipulationswithEinstein-

like Notation”. In: International Conference on Learning Representations. 2022.

url: https://openreview.net/forum?id=oapKSVM2bcj.

24. L. Ruddigkeit, R. vanDeursen, L. C. Blum, and J.-L. Reymond. “Enumeration of

166BillionOrganic SmallMolecules in theChemicalUniverseDatabaseGDB-17”.

Journal of Chemical Information andModeling 52:11, 2012. Publisher: American

38

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1038/sdata.2014.22
http://dx.doi.org/10.1038/sdata.2014.22
https://www.nature.com/articles/sdata201422
https://openreview.net/forum?id=oapKSVM2bcj

Bibliography

Chemical Society, pp. 2864–2875. issn: 1549-9596.doi: 10.1021/ci300415d.url:

https://doi.org/10.1021/ci300415d (visited on 08/29/2022).

25. D. I. Shuman,C.Wiesmeyr,N.Holighaus, andP.Vandergheynst. “Spectrum-Adapted

Tight GraphWavelet and Vertex-Frequency Frames”. IEEE Transactions on Signal

Processing 63:16, 2015.ConferenceName: IEEETransactions onSignal Processing,

pp. 4223–4235. issn: 1941-0476. doi: 10.1109/TSP.2015.2424203.

26. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-

tot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis.

Mastering Chess and Shogi by Self-Play with aGeneral Reinforcement LearningAl-

gorithm. _eprint: 1712.01815. 2017.

27. A. Tong, F. Wenkel, K. MacDonald, S. Krishnaswamy, and G. Wolf.Data-Driven

Learning ofGeometric ScatteringNetworks. arXiv:2010.02415 [cs, stat]. 2022.doi: 10.

48550/arXiv.2010.02415. url: http://arxiv.org/abs/2010.02415 (visited on

08/23/2022).

28. D.ZouandG.Lerman.GraphConvolutionalNeuralNetworks via Scattering. _eprint:

1804.00099v2. 2018. doi: 10.1016/j.acha.2019.06.003. url: http://arxiv.org/

abs/1804.00099v2.

39

http://dx.doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
http://dx.doi.org/10.1109/TSP.2015.2424203
http://dx.doi.org/10.48550/arXiv.2010.02415
http://dx.doi.org/10.48550/arXiv.2010.02415
http://arxiv.org/abs/2010.02415
http://dx.doi.org/10.1016/j.acha.2019.06.003
http://arxiv.org/abs/1804.00099v2
http://arxiv.org/abs/1804.00099v2

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Aims, Scope & Contributions
	Overview

	Background
	Graphs and Graph Signal Processing
	Graph Wavelets
	Diffusion Wavelets
	Spectral Graph Wavelets

	Scattering Transforms
	Machine Learning
	Supervised Modeling
	Generalization
	Principal Component Analysis
	Support Vector Machines

	Graph Machine Learning with Scattering Transforms
	Algorithms for Graph Scattering Transforms
	Learning with Graph Scattering Transforms

	Results
	Software
	Machine Learning Applications
	Visualizing Molecular Graph Properties
	Whole Graph Classification

	Discussion

	Conclusion
	Bibliography

