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Abstract

Despite the recent advances in data organization and structuring, electronic medical

records (EMRs) can often contain unstructured raw data, temporally constrained

measurements, multichannel signal data and image data. Cohort retrieval, the action

of finding a group of observations with similar properties, of these signals will allow

us to compare and contrast the signals in large quantities We present a proof of

concept system that can alleviate this problem by mapping raw data to a compressed

64-dimensional space where the Euclidean distance between data is a measure of

similarity. Using electroencephalographs (EEGs) as a case study, we optimize a deep

neural network mapping from the spectrogram of EEG data to a latent space by using

triplet loss. After this mapping, distance-based methods, such as nearest neighbors

search, could be employed to find similar EEG records by treating the embeddings

as the keys to the EEG signal in a database as part of a cohort retrieval system.

To verify that this method learns a meaningful representation of the data, we apply

a six-class k-NN classifier to the output, a binary (seizure-like and noise-like signal)

k-NN classifier to the output and visualize the output latent space using the t-SNE

dimensionality reduction technique. We achieve a 60.4% six-class signal classification

accuracy, a 90.1% binary seizure classification accuracy on the TUH EEG Cohorts

dataset and observe distinct clusters in a reduced dimension latent space discovered

using the t-SNE algorithm.
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1 | Introduction

The healthcare industry commonly stores diverse instrumentation signals such as

EEGs, EKGs, MEGs, X-Rays, MRIs, and CAT scans in a variety of digital formats

commonly referred to as Electronic Medical Records (EMRs). These records can also

contain natural language notes from medical professionals. It is difficult to perform

complex information retrieval on these records. Rich information retrieval may open

up the ability to compare and contrast patient records en-masse leading to new under-

standings of disease pathologies. For example, while the healthcare industry possesses

a large amount of data on Alzheimer’s Disease, a common chronic neurodegenerative

disorder, medical professionals cannot find the underlying cause of this disease and

why it worsens over time. If such data can be transformed into an accessible and

patient invariant format such that different patients with similar cases can be found

easily, medical professionals may be able to pinpoint the cause of the disease and

discover better treatments. Towards this goal, Picone et al. [1] have demonstrated

a system that can automatically discover, time-align and annotate EEG events to

perform cohort retrieval, the task of efficiently finding a group of observations which

share defining characteristics with a sample observation. The signal event detection

and classification work in Picone et al. [1] uses Hidden Markov Models, which work

well with sequential data. Although this model achieved 91.4% sensitivity and 8.5%

specificity on the signal classification task, it is impossible to infer similarity of sam-

ples from the output of a classifier. Since similarity is a key factor in cohort retrieval,

it is important to incorporate it into any cohort retrieval scheme.

In contrast to the work done by Picone et al. [1], we optimize a deep neural network

1



Introduction 2

using a triplet loss function that results in a reduced dimensionality latent space which

minimizes the distance between similar signals and maximizes the distance between

dissimilar signals. In doing so, we expect clusters of signals to form in the latent

space characterized by features that have a meaningful interpretation of the original

signals. At inference time, we can use the network to map new EEG signals onto

this latent space for querying. New samples could be presented to this system and

mapped into the latent space. After this mapping, clustering or other distance-based

methods could be employed to find similar EEG records as part of a cohort retrieval

system. We hope that this system can be used to discover significant relations between

diseases in medicine.

We organize the rest of this thesis in the following way. In chapter 2, we discuss

background information on machine learning needed to understand our work. In

chapter 3, we review the literature relevant to deep metric learning and deep feature

embedding techniques. In chapter 4, we describe our data and how we organized it

for ease of access. In chapter 5, we describe our final models, their quantitative and

qualitative characteristics, our experimental results and our analysis of those results.



2 | Background

2.1 Machine Learning

Machine learning is the field of computer science that allows computers to ac-

quire knowledge from data and make some sort of prediction or estimation without

explicitly programming that knowledge [2]. Russell and Norvig [3] say that a machine

learning algorithm is designed for a particular task or problem, and is learning if it

improves its performance at that task depending on a metric. Machine learning is

useful for tasks that require pattern recognition, especially in large amounts of data.

Examples of such tasks include handwriting recognition, cybersecurity breach detec-

tion, medical disease diagnosis and autonomous cars control systems [4–7]. Due to

the variety of tasks that could fit this broad definition, there are also a variety of

approaches that we could use to solve each of those particular tasks.

2.1.1 Supervised Learning

Supervised learning is a task that tries to learn a model that maps from a do-

main of inputs to a range of outputs using data on which the task has already been

accomplished by humans. Mathematically, if S = {(Xi,yi) | i = 1...N} ⊂ P , then

the machine learning task may be to find a function, ŷ = f(X), an estimate of y for

any (X,y) ∈ P where X is an input, y is an output (the label or a target), ŷ is an

estimate of the output from the machine learning model, S is the training set of N

examples of input-output pairs, and P is the population of input-output pairs.

3
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For example, in the case of the hand-written digits recognition using the data provided

by LeCun [4], the input X may be the image of the digit, y will be the true label of

the digit provided by the dataset, and ŷ is the discrete value that the algorithm infers

restricted to the range of y. This particular process is called classification since we are

restricted to a discrete set of values that are predefined. In order to learn a mapping

from X to y, a loss function, J(y, ŷ), can be used to quantify how well our model

performs on our sample set, S. In supervised learning, J(y, ŷ)→ 0 as ŷ→ y. If the

loss function’s value is large, the model is doing poorly; if the loss function’s value is

small, it generally means that the algorithm is doing well on S. The loss function’s

value can be fed back to the algorithm to iteratively change the algorithm until the

loss function’s value reaches convergence or until it is stopped by the developer before

complete convergence. Iteratively changing the model while keeping track of this loss

function will allow for the model’s input-output mapping to improve over time.

2.1.2 Unsupervised Learning

The task of unsupervised learning is to discover some hidden patterns within the

data without any prior knowledge or labels of any sort.

One common task that is often seen in unsupervised learning is cluster analysis.

Cluster analysis or clustering is the machine learning task of grouping a set of obser-

vations or objects in a way such that the portion of data in the same group (a cluster)

is more similar than the portion that is not in the same group. Whereas classification

tries to find a decision boundary between predefined classes, clustering tries to find

decision boundaries in the sample space provided without knowing how many distinc-

tive clusters there are in the dataset. Mathematically, if S = {Xi | i = 1...N} ⊂ P ,

then the machine learning task might be to find a function, ŷ = f(X), such that
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ŷ ∈ {y1,y2, ...,yk} where k is the number of clusters that the algorithm finds. Notice

how there is no dependency on a label as opposed to the classification task presented

in section 2.1.1. Clustering algorithms, such as the k-means algorithm developed

by MacQueen et al. [8], may need a number, k, provided by a developer suggesting

that there are k clusters. However, the algorithm is not provided any knowledge on

which cluster each data point in the dataset is from, which is why the algorithm is

unsupervised. The clusters resulting from these types of algorithms are a matter of

interest in many applications and can lead to natural ways of classifying things once

the general trend is found in the input space.

Another common task called dimensionality reduction attempts to use a set of

observations with M attributes and decreasing it to K attributes where M > K,

such that the characteristics of the original observation are still represented in the

reduced vector space. Mathematically, if S = {(Xi ∈ RM×1) | i = 1...N} ⊂ P , then

the machine learning task might be to find a function ŷ = f(X) where ŷ ∈ RK×1

such that both X and ŷ accurately represent the original observation. A loss function,

J(X, ŷ), may be defined to ensure that both X and ŷ represent the same observation.

An example of dimensionality reduction is provided below. Figure 2.1 is a high-quality

image of a kitten and you can clearly see that its a kitten in the image. We can down-

sample this image to 64×64 pixels and can still see the kitten even though the image

is distorted in figure 2.2. Despite using 3 × 212 pixels for the compressed image as

opposed to 3×218 pixels for the original image, we are still able to see what the image

represents. Hence, down-sampling is a crude example of dimensionality reduction.

Often, dimensionality reduction techniques are used to learn latent variables,

which are variables that are not directly observed. For example, in a picture of a

kitten, a latent variable might be the cuteness of a kitten. Cuteness is not something

that can be directly observed. A kitten can be observed to have a certain length
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Figure 2.1: Original 512× 512 pixels
photograph of a kitten [9]

Figure 2.2: Down-sampled 64 × 64
pixels photograph of a kitten

of fur, a certain color of fur, eye diameter to head ratio, etc. but it is difficult to

quantify a kitten’s cuteness numerically. Whereas humans are able to claim a kitten

is cute and can have a general consensus on it after looking at an image of a kitten,

a machine might be able to learn what cuteness is by reducing the dimensionality

of data and understanding it at a lower dimensional level but at a higher level of

abstraction. These latent variables, along with other variables, can be used as input

features to another machine learning algorithm which could be used learn more about

the data. Hence, dimensionality reduction leads to feature extraction and feature en-

gineering, the processes of finding important variables derived directly or indirectly

from raw input. Generally, the set of features that arise from feature extraction and

engineering can form what is called a latent space (also called feature embedding,

embedding space or latent space). The latent space is able to represent data that

may have originally been incomparable by a machine as comparable data points.
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2.1.3 Parametric Modeling and Optimization

Although the different types of learning methods have been described, we still

need a way to train these models. One way to do this is to restrict our function

f representing the machine learning algorithm to a function that is parametric and

differentiable. By changing the parameters of the function, we hope to make it better

in the task that we designed it for. Therefore, we augment our original functional

form of our machine learning model, ŷ = f(X), and refer to it as ŷ = f(X | θ) where

θ is a vector of parameters of the given function and f is a differentiable function with

respect to θ. Hence, our goal would be to find a θ̂ that minimizes the loss function,

J(y, f(X | θ)). The best way to approach this problem would be to calculate the

gradient with respect to θ, set it equal to zero and solve for a θ̂ like so

∇θJ(y, f(X | θ)) = 0. (2.1)

However, in many cases, it is either not possible to find a closed form solution

or the way to do so becomes intractable, especially when the training set is large.

Often, the gradient calculation with respect to the model’s parameters are estimated

and are not exact. Hence, instead of attempting to find an analytic solution, we must

use gradient descent, a numerical optimization algorithm, by finding the direction of

steepest descent and moving the parameters in that direction in the following way

θt+1 ← θt − η ∇θJ(y, f(X | θ)) (2.2)

where η is the learning rate hyperparameter that controls the size of the step towards

the direction of steepest descent as described by Bottou [10]. If this parameter is too

large, the step towards θ̂ will overshoot, miss θ̂ and never converge. If this parameter
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is too small, the step towards θ̂ will be more precise, but the time to find θ̂ will be

large. One way to solve this problem is to change the learning rate over time so that

in the beginning large steps are taken and when the amount of change in between

θt and θt+1 is small, the learning rate is decreased as proposed by Xu [11] in order

to get as close to the optimum solution as possible. Gradient descent is the name

that is usually given to the algorithm which calculates the gradient based on the

entire training set and updates the parameters using that gradient value. Another

form of gradient descent, stochastic gradient descent (SGD) developed by Robbins

and Monro [12] and Kiefer and Wolfowitz [13] calculates the gradient either for a

single sample or a small batch of samples and takes small steps towards the optimal

solution. SGD is computationally faster. Since large datasets cannot be held in

RAM, it is faster to select mini-batches of data from the training set and calculate

the gradient on said mini-batches. SGD is able to make more updates over a time

period than gradient descent and results in a model as good as or better than that of

gradient descent. Generally, this process is repeated multiple times on the training

data and each repetition is called an epoch.

Unfortunately, as the number of parameters that the equation needs to train

increases, the classic SGD algorithm becomes insufficient. The algorithm finds pa-

rameters which are local minimums in the function J as opposed to global minimums.

An example of a global minimum and local minimum is shown in figure 2.3. Con-

sequently, the model that results is not as optimal as it can be. More sophisticated

algorithms have been developed over time. One of these algorithms is called Adam

and was developed by Kingma and Ba [14].

Adam, the short form for Adaptive Moment Estimation, is a first-order optimiza-

tion algorithm that uses running averages of the gradient as well as the bias-corrected

estimates to update the first two moments of the gradient to update θ. Moments are
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J

θ

Local MinimaGlobal Minima

Figure 2.3: Illustration of global minimum vs. local minimum

the measures of how the gradient has changed over the last couple of iterations, The

moment allows the optimization algorithm to act like a ball on a hill trying to roll to

the lowest height possible. The ball will continue to roll even if a local minimum is

achieved and continue to try to find a global minimum. In the case that the minimum

that it finds is the global minimum, the ball will continue to oscillate around that

point until it loses momentum. Adam works in an analogous way. Therefore, we use

Adam in our experiments as opposed to classic SGD for optimizing our models.

2.1.4 Bias-Variance Trade-off

One of the main goals of machine learning is to learn a general trend from a

limited amount of sample data. In other words, we expect training accuracy, i.e. the

predictive accuracy of the model on the training set, and the testing accuracy, i.e.

the predictive accuracy of the model on unseen data from the real world, to be as

close as possible. Unfortunately, this is not always the case. Figure 2.4 demonstrates

this concept by fitting a first and a twentieth-degree polynomial to the same data

originating from a sinusoid using the least squares loss function given by equation 2.3.

J(y, f(X | θ)) =
N∑
i=0

(yi − f(X | θi))
2 (2.3)
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It is evident from figure 2.4 that the twentieth-degree polynomial tries to go

through as many points as possible and ends up over-fitting the data. On the other

hand, the first-degree polynomial tries to best fit the data but is unable to do so

due to the lack of complexity and, therefore, under-fits the original data. Neither of

these graphs represents the true nature of the sinusoid. Therefore, we are faced with

a trade-off between two sources of errors: bias and variance.

1st Degree Polynomial Fit of sin(2πx) 20th Degree Polynomial Fit of sin(2πx)

Data p(x) sin(2πx)

Figure 2.4: Example of an under-fit (left) and an over-fit (right) model

Bias is the error that arises from making overly simplistic assumptions about the

underlying trend in the data and results from using too few parameters in the model

we are training. Variance is the error that arises from making overly complicated

assumptions about the underlying trend in the data and results from using too many

parameters in the model we are training. These two errors comprise the bias-variance

trade-off. In order to minimize this error, we need to make a compromise between

these two sources of error and select a model that is neither complex nor simple.

There are two ways that we can approach this problem. Either we can start with

a simplistic model and make it more complex or we can start with a complex model

and make it simpler. The latter is easier and the general name given to the process

of making a relatively complex model simpler is called regularization. An example of
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5th Degree Polynomial Fit of sin(2πx)

Data p(x) sin(2πx)

Figure 2.5: Example of a well-fit model

a well-fit polynomial fit after simplifying the twentieth-degree polynomial is shown in

figure 2.5.

In order for regularization to work, we need to know whether the model is gen-

eralizing well or not. Hence, we split the original training set, S into two mutually

exclusive sets St, the training set the model uses to learn, and Sv, the validation set

which we can use to see if the model is generalizing well to data that it has not seen

before. If the validation accuracy is significantly lower than the training accuracy, we

can infer that the model is not generalizing well.

One way we can regularize the model is by adding a penalty term to the loss

function, J(y, f(X | θ)), based on the values of θ. The resulting loss function would

then be

Jt(y, f(X | θ)) = J(y, f(X | θ)) + λ P (θ) (2.4)

where λ is a hyperparameter that controls how much we want to penalize a complex

model and P is a function such that P (θ) → ∞ as θi → ∞. The two equations

shown below are examples of such penalties.
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P (θ) =
N∑
k=1

|θk| (2.5)

P (θ) =
N∑
k=1

θ2
k (2.6)

Equation 2.5 is known as the L1 penalty and promotes sparsity. This means

that the penalty forces any parameter that does not contribute to the model to zero

thereby reducing the total number of parameters involved in the model. L2 penalty,

shown in equation 2.6, on the other hand, minimizes the contribution of a parameter

but it does not force it to zero. Therefore, the number of parameters tends to be high,

but the overall complex nature of the model is reduced. It is important to tune the

hyperparameter λ based on validation results in order to accurately penalize complex

models to find a trade-off between bias and variance.

2.2 Neural Networks and Deep Learning

Artificial Neural Networks (ANNs), also called neural networks, are a type of

computational system that was originally inspired by biological neural networks found

in organisms that have a nervous system. Neural networks are at the cutting edge

of difficult machine learning tasks and have surpassed human-level performance in

these tasks. Neural networks have been used to solve a variety of problems including

those in computer vision, speech recognition, machine translation, video game bots

and medical diagnostics [6, 15–18].
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2.2.1 Motivation for Neural Networks

Neural networks were originally inspired by biological neurons. Biological neurons

generally consist of a cell body, dendrites, synapses and an axon. A dendrite is

a part of a neuron that receives signals from other cells, including neurons, which

were transmitted through a synapse as a chemical signal. These received signals are

then propagated towards the cell body as an electrical signal. Once the cell body

receives this electrical signal, more reactions happen within the cell body. If a certain

action potential is reached, the neuron that received the signal fires and propagates

the received signal along its axon towards other neurons and cells. A figure of a

biological neuron is shown below in figure 2.6. The biological nervous system is, in

essence, a network of these cells interconnected with each other in various ways.

Dendrite

Cell body

Axon Terminal

Axon

Figure 2.6: Illustration of a biological neuron[19]

An artificial neural network tries to mimic a nervous system through the simula-

tion of neurons. A visual representation of a single artificial neuron or node is shown

in figure 2.7. The inputs, {x1...xn}, are the set of numbers either given directly to the

neuron or resulting from other neurons in the network. The neuron then multiplies

each of these inputs by a corresponding weight {w1...wn} and then sums these values

together and adds a bias value b. The neuron then applies an activation function, σ,
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and delivers its result through its axon to the next neuron or neurons in the network.

Types of activation functions are discussed in section 2.2.6.

x2 w2 + σ y

x1 w1

xn wn

b

...

. . .

Figure 2.7: Block diagram of a single artificial neuron

As described in section 2.1.3, training a model is optimizing its learnable pa-

rameters, θ. The same concept applies to neural networks. The primary learnable

parameters of the neural network are its weights. Depending on the architecture,

i.e. the what parts the neural network is made up of, it may be possible to learn

parameters presented in other parts of the neural network, such as the activation

function. The process of learning any of these parameters for a neural network is

called backpropagation.

Backpropagation begins with the forward propagation of a set of inputs. Forward

propagation is when a neural network infers the output for a particular set of inputs.

The network propagates the inputs, X, through each appropriate neuron in a neural

network sequentially depending on the architecture until the propagation reaches the

output neuron, which will result in ŷ. The output neurons’ results can be compared to

the true output y and, unless the network is already trained, a significant amount of

error is expected between y and ŷ, which can be quantified by a loss function, J(ŷ,y).

A large loss indicates that the parameters need to be optimized which means that

each of the unoptimized parameters contributes a small error to the total error in the

output. Therefore, we need to trace back the steps in the neural network and find the
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amount of error that each weight contributes for each input sample and adjust the

respective weights. In other words, we are propagating the error backward towards

every learnable parameter in the network, which is essentially the gradient of the loss

function. Hence, equation 2.2 can be used to train the network.

2.2.2 Fully Connected Feed-Forward Networks

A fully connected neural network (FC network) is a neural network that propa-

gates a signal layer by layer. The first layer in a neural network is commonly called

the input layer since all the activations are inputs given to the network by the user.

Depending on what the neural network is being used for, any of the next layers can

be considered an output layer. In general, the last layer is considered the output

layer. Any node not in either the input layer or the output layer are considered

hidden nodes since these nodes’ values do not matter to the input or the output;

they are simply nodes that transfer information to the next layer or the next node.

The neural network is considered to be a feed-forward network because the network

does not propagate the information backward to previous nodes for any feedback.

Figure 2.8 shows an illustration of a four-layer, fully connected, feed-forward neu-

ral network. The input layer contains four input nodes, both hidden layers contain

five hidden nodes and the output layer contains three output nodes. The number

of hidden layers and the number of nodes in each hidden layer are considered to be

hyperparameters, parameters that can be controlled by the developer.

Fully connected feed-forward networks can be easily represented in mathematics

as a series of matrix multiplications and activation functions. If there are K layers

in this type of neural network, there will be K − 1 weight matrices and K − 1 bias

vectors. Each weight matrix will have an entry for a weight from a neuron in the
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Figure 2.8: Graph diagram of a four-layer neural network

previous layer to a neuron in the current layer. In other words, if there are N neurons

in the previous layer and M neurons in the current layer, there will be N ×M entries

in the weight matrix and 1 ×M entries in the bias vector. For example, the output

of the neural network shown in figure 2.8 will be

ŷ = σ(σ(σ(x×W1 + b1)×W2 + b2)×W3 + b3) (2.7)

where σ is the activation function that acts on a matrix entry by entry, x ∈ R1×4

for an input with one sample, W1 ∈ R4×5, b1 ∈ R1×5, W2 ∈ R5×5, b2 ∈ R1×5,

W3 ∈ R5×3, and b3 ∈ R1×3.

Backpropagation can be easily calculated for a simple FC network as demonstrated

by Russell and Norvig [3].
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2.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of networks that have been

successful in the field of image processing.

CNNs were also inspired by the biology of creatures that have vision. In 1965,

Hubel and Wiesel [20] showed that cats contain neurons that respond to small regions

of the field of vision. Assuming that the eyes are not moving, the concept of a receptive

field, the particular region of vision that causes a single neuron to fire, was introduced.

The concept of a receptive field is what led to what we know as a CNN.

CNNs attempt to learn shift-invariant characteristics in an input based on kernels,

also called filters, which slide through the image and results in a filtered version of

the original input image. The convolution computes the inner product of the kernel

and the corresponding receptive field, saves the result to a new matrix known as the

feature map, strides a particular length, and repeats the process until the entire input

is convolved with the filter. Figure 2.9 shows an example of this process. The 3 × 3

kernel shown can be visualized as sliding over the input image represented as a 5× 5

matrix. Note that a zero padding has been applied to the matrix so that the resulting

feature map is the same size as the original image. However, it is also possible to

forgo the padding and have the convolution result in a smaller sized feature map

depending on the architecture of the neural network. The feature map is the result

of the convolution and helps the network understand abstract patterns in the input,

such as edges in the case of an image.

There are a few advantages in using CNNs over more traditional methods of

image processing or FC networks. Suppose we are trying to classify the digits found

in the MNIST dataset. Traditionally, a human is involved, hand-engineers filters

that seem to work, and uses post-processing algorithms, which looks at the filtered
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Figure 2.9: Illustration of a spatial convolution used in CNNs

image to finally classify it as a digit between zero to nine. However, the usage of

neural networks, especially CNNs, has eliminated the need for hand engineering filters.

Backpropagation has the ability to learn the weights just like it has the ability to learn

the weights of a FC network. However, learning the weights of CNNs still take a long

time due to the current hardware capabilities. The inference time of CNNs is also

generally longer thant hat of traditional algorithms. Hence, if time is not of the

essence, CNNs tend to be better than classical algorithms for image processing tasks.

It is also better to use CNNs over FC networks for a task where spatially invariant

features may be involved. Assume again that we are trying to classify the digits found

in the MNIST dataset. In a single digit, there are 28× 28 pixels with values between

0 to 255. For a fully connected network, all of these pixels would be input nodes and

therefore there would be 28×28 = 784 input neurons. Assuming that the first hidden

layer has 250 neurons, the weight matrix will have 784× 250 = 196000 weights that

will have to be trained. This is an enormous amount of weights for a relatively small

input size. However, if we use a convolutional layer with N 5× 5 kernel on the same

MNIST dataset, we would only have to train N × 25 weights which means that the
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overall complexity of our network will go down and since we are learning a general

trend, the average accuracy will go up.

Series of convolutions can be placed sequentially after one another and gives the

network a chance of learning more complicated spatial features that affect the final

output. Networks that use series of convolutions one after another are commonly

called deep convolutional neural networks or DCNNs. This is where the idea of deep

learning arises since we are trying to increase the depth, the number of layers in a

neural network, to learn more meaningful representations of data.

2.2.4 Pooling

Pooling is a non-linear, sub-sampling operation in DCNNs which are used to re-

duce dimensions and the number of inputs to the subsequent layer. Pooling operations

are non-parametric and they usually operate on the feature maps provided by convo-

lutional layers before it. Two common types of pooling operations are used in neural

networks: max-pooling and average pooling. Max-pooling [21] finds the maximum

element in a receptive field while average pooling takes the average of elements in the

receptive field. Pooling is used in situations where the absolute location of features

do not matter as much as the relative location of features.

2.2.5 Dropout

Dropout is a special type of regularization used in neural networks. The technique

was motivated by the fact that both biological and artificial neurons make decisions

based on the decisions of its predecessors. In the case that one of the predecessors

of a particular neuron fires incorrectly, the current neuron is also more likely to fire

incorrectly. In order to prevent this phenomenon, Srivastava et al. [22] proposed this
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method of regularization which randomly zeros out a neuron’s output based on a

Bernoulli trial probability of p for the current iteration of training. As a result, when

a future neuron fires, its dependency on the previous neurons effectively decreases

and has a better chance of learning a meaningful representation of the dataset.

2.2.6 Activation Functions

Several common activation functions are used today in cutting edge deep learning

work. Our paper uses two of these activation functions: sigmoids and ReLUs.

Sigmoid Activation

The sigmoid activation has a functional form as follows:

σ(x) =
1

1 + exp(−x)
(2.8)

and the corresponding gradient is

σ′(x) =
exp(x)

[exp(x) + 1]2
. (2.9)

.

Brief analysis of the sigmoid’s gradient shows that it suffers from the vanishing

gradient problem, which refers to the function’s gradient approaching zero as the in-

put, x, increases or decreases. Because of this, sigmoid activations lead to extremely

small gradient values and tend to slow down learning. However, sigmoids are very

useful for final layers, especially in classification problems, since they limit output

values to less than one. They are also commonly used in probability since the cumu-

lative distribution function (CDF) of various probability distributions are sigmoidal
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in nature. As a result, the multi-dimensional analog of the sigmoid function, the soft-

max function, is used in neural network classification tasks to predict the probability

that a given input is a particular class.

ReLU

Rectified Linear Units (ReLU) have demonstrated performance increases in both

accuracy, generalization and training speed in neural networks as shown by Dahl et al.

[23]. ReLU has a functional form of:

ρ(x) = max(x, 0) (2.10)

and the corresponding gradient is

ρ′(x) =


0 x ≤ 0

1 x > 0

. (2.11)

It is noticeable that the functional form of ReLU’s gradient is a step function and

only takes values of either 1 or 0. As a result, neurons with ReLU activations do not

deal with the vanishing gradient or the exploding gradient problems as much as the

sigmoid and speeds up the overall learning process.

2.3 Basics About EEG Signals

The brain and the nervous system function on the basis of electrochemical re-

actions through biological neurons, as illustrated figure 2.6, to send various signals

to cells all over the body. Electroencephalography or EEG is a non-invasive way of

measuring that electrical activity resulting on the surface of the brain due to these
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neurons. These signals can be used to diagnose seizures, brain tumors, head injuries,

strokes, anesthesia overdose and many more ailments originating from the brain as

described by Pruthi et al. [24].

According to Marghescu [25], electrodes that measure voltage with respect to

ground are attached to certain locations on the scalp as described by the 10-20 system.

An illustration of the 10-20 system’s placement map is shown in figure 2.10. The

letters and numbers on each of these electrodes can be used as an indication of

location for each of the twenty-one channels in the EEG.
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Pz

Fz

T6

O2

T5
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Fp1 Fp2

F4F3

P3 P4
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Figure 2.10: Illustration of the 10-20 system used to place EEG electrodes provided
by Wikimedia-Commons [26]

Montages, voltage differences between certain probes, are used to extract infor-

mation from these signals as opposed to the sole voltages sensed by the probes. Ref-

erential montages use the difference between a measuring electrode and a designated

reference electrode. The reference electrode could be the ground which would mean

the voltages sensed by the electrodes with respect to the ground can be used as the

output of the EEG. In average reference montage, the outputs of all the electrodes

are used as the reference voltage. Bipolar montages use the differences between two
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adjacent electrodes, e.g. F3 and C3 dubbed “F3-C3”, as the output of the EEG. In

Laplacian montages, the output is the voltage difference between an electrode and

the average of the neighboring electrodes.

A variety of different information can be extracted from these montages that

can be used to classify the EEG activity. Frequency is one of these measurements.

Rhythmic activity is considered to be constant in frequency, arrhythmic activity is

where no rhythms are present, dysrhythmic activity is a pattern that is rarely seen in

healthy subjects. Frequency is also generally classified as delta, theta, alpha or beta

waves. Delta waves have a frequency of 3Hz or below, theta waves have frequencies

between 3.5Hz to 7.5Hz, alpha waves have frequencies between 7.5Hz and 13Hz, and

beta waves have frequencies above 14Hz. Generally, only waves between 0Hz and

70Hz are considered since the rest of the signal is considered to be high-frequency

noise in most cases and can be ignored.

The amplitude of these signals also tends to be useful. When a person is awake,

beta waves usually dominate EEGs meaning that the average amplitude of the signals

are small and the frequency is high. As a person starts to close their eyes, the average

amplitude increases and the frequency starts to drop resulting in alpha waves. When

a person starts to sleep, theta waves dominate, the average amplitude increases and

the frequency decreases. Finally, in deep sleep, delta waves are observed in normal

patients, the amplitude is generally large and the signal has very low frequencies.

Therefore, we can logically deduce some things about the patient using amplitude and

frequency together. Heuristically say that if a person’s EEG contains high frequencies

and high amplitudes, they may be experiencing a seizure.

However, such simplistic heuristics cannot always be used to extract useful infor-

mation from patients. Therefore, a professional or an algorithm that considers the

complexity of EEGs needs extract meaningful, diagnostic information.
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Deep metric learning is the task of using deep learning to learn distance as a

measurement of similarity. Deep feature embedding space learning is the task using

deep learning to learn a set of features that aptly describes the original data and

represents the data in a vector space. Both of these tasks have been attempted many

times before in a variety of different fields.

Schroff et al. [27] used a DCNN trained with a triplet loss function to create an

embedding space for facial recognition and facial similarity search. This model was

trained to minimize the distance between an anchor and a positive and maximize the

distance between an anchor and a negative. Mathematically,

||f(xai | θ)− f(xpi | θ)||2 + α < ||f(xai | θ)− f(xni | θ)||2 (3.1)

where ŷ = f(X | θ) ∈ Rd represents the computational graph, a is the anchor, p is the

positive which is the same class as the anchor, n is the negative which is not the same

class as the anchor and α is the margin parameter, a hyperparameter expressing the

minimum distance between different clusters. Thus, the objective function becomes:

J =
N∑
i=1

[
‖f(xai | θ)− f(xpi | θ)‖2 − ‖f(xai | θ)− f(xni | θ)‖2 + α

]
. (3.2)

Schroff et al. [27] achieved 99.63% accuracy on the Labeled Faces in the Wild dataset

and a 95.12% accuracy on the YouTube Faces DB dataset and it cut the error rate

by 30% compared to the previous state-of-the-art published by Sun et al. [28].

24
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Song et al. [29] provide a way of learning metrics through the use of what they

describe as lifted structured feature embedding. Similar to Schroff et al. [27], an

input is fed into a neural network to produce a feature embedding. However, this

scheme considers both the local and global structure of the embedding space. As

opposed to triplet approach, this method does not require partitioning data into

tuples in any manner. Song et al. [29] find all the possible edges in a given mini-batch

and describe whether they are similar or not using the Euclidean distance on the

resulting embeddings and try to minimize a loss function based on those edges. They

mathematically describe their loss function as the following:

J̃i,j = log

( ∑
(i,k)∈N

exp{α−Di,k}+
∑

(j,l)∈N

exp{α−Dj,l}
)

+Di,j

J =
1

2|P|
∑

(i,j)∈P

max
(

0, J̃i,j

)2
(3.3)

where Di,k = ||f(Xi) − f(Xj)||2, α is the margin parameter, P is the set of positive

pairs, N is the set of negative pairs, and f is the network that produces the em-

beddings. This method achieved state of the art performance on standard datasets

such as CUB200-2011, Cars196 and Stanford online products. However, this method

represents a computational trade-off that may not necessary.

More ways of clustering raw data in the deep learning literature as those seen in

Yang et al. [30], Weinberger and Saul [31], Wang et al. [32] and Rumelhart et al. [33].

However, little work has been done in trying to apply these methods to medical data

to understand it better.

Choi et al. [34] proposed Med2Vec which both learned distributed representations

for medical codes and visits from a large EHR dataset, and also allowed for meaningful

interpretations which were confirmed by clinicians using a two-layer perceptron. They

use information such as demographics, diagnosis information and prescription infor-
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mation to learn representations. Although the work done by Choi et al. [34] works

towards building a latent space for EMRs, the model that they use is overly simplistic.

Furthermore, it does not extract information directly from raw data. Hence, there is

potential for loss of information.

Gøeg et al. [35] proposed a method for clustering models based on Systematized

Nomenclature of Medicine - Clinical Terms (SNOMED CT) and used semantic simi-

larity and aggregation techniques to hierarchically cluster EMRs. Similar to the work

proposed by Choi et al. [34], their work relies on notes that were manually gathered

by medical professionals and not the direct source of data itself.

Choi et al. [36] proposed a method for learning low-dimensional representations

of a wide range of concepts in medicine using claims data, which is more widely

available to the public than annotations by medical professionals. They define “med-

ical relatedness” and “medical conceptual similarity” by using current standards in

medicine as established by the NDF-RT and the hierarchical ICD9 groups from CCS.

They qualitatively evaluate their system and show that the top 5 neighbors for each

input, sans duplicates, are medically related. Although their system works well, it

still suffers from the same pitfall as the ones shown above.

In fact, many more papers have attempted to cluster medical data and they have

succeeded. However, they all seem to use only human annotations as input to their

systems instead of both human annotations and raw data. It is evident that there is a

motion towards finding representations of medical records and medical data, however,

the ways that are currently utilized are insubstantial due to the fact that they are

using the analysis of data provided by medical professionals. Hence, this paper tries

to fill this void by attempting to cluster raw EEG data in order to improve current

methods of clustering EMRs.
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4.1 Data

The data for this study was derived from the Temple University Hospital’s EEG

corpus which includes over 30,000 EEGs spanning the years from 2002 to the present

as described and provided by Picone [37]. The original data consists of raw European

Data Format (EDF+) files, a format commonly used for exchanging and storing multi-

channel biological and physical signals, and the corresponding labels for each of these

files in LBL files. Both EDF files and the LBL files were stored in session folders with

a single patient’s data and doctors’ notes on that patient’s EEGs. There are a total

of 339 folders labeled from session1 to session339. The label files are interpretable

by Temple University’s publicly available Python script [37], which transforms the

label files into a readable format. Each channel is annotated as pertaining to one of

six classes as described in table 4.1 with a granularity of one second. We assume that

the data provided to us was time aligned correctly with the labels. For more details

on the dataset see Obeid and Picone [38]

The EDF files contain raw signals with different channels from electrodes placed

in the standard 10-20 system and were decoded using Python’s MNE package. A

total of 22 montages were found in each label file. The power spectral density (PSD)

of the signal was visualized using the RawEDF.plot_psd() function. The bandwidth

of the signals was between 0 Hz to around 130 Hz. It was revealed that the signals

contained power line noise at 60 Hz and 120 Hz as seen in figure 4.1.

27
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Table 4.1: Set of classes for the TUH EEG Corpus. After consulting Harati et al.
[39], it was determined that BCKG, ARTF and EYBL are noise-like signals, and the
rest are seizure-like signals, i.e. indications of common events that occur in seizures.

Code Name Description

BCKG Background noise

ARTF Artifacts

EYBL Eyeball movement

SPSW Spikes and sharp waves

PLED Periodic lateralized epileptiform discharges

GPED Generalized periodic epileptiform discharges
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Figure 4.1: Power spectral density plot of raw signals using the MNE package

Hence, we apply notch filters at 60 Hz and 120 Hz to remove power line noise,

and a band-pass filter with a 1 Hz to 70 Hz pass-band to remove any high-frequency

noise as the bulk of the signal power was within this band. We apply the Short-

Term Fourier Transform (STFT) provided by the MNE package with a window of

140 samples and a stride of two samples which results in the spectrogram represented

as a 71× 125 tensor for each one-second window of the signal as shown in figure 4.2.
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Figure 4.2: Spectrogram of a second of notch and band-pass filtered signal

Additionally, we globally normalize the signal power in order to standardize the

input to the system that we designed and only use the real part of the spectrogram

data. The raw time-domain data was not utilized in this experiment because the

literature [24, 25, 40] on EEGs indicated that the frequency domain is what contains

data that is useful for our purpose.

We did not use the spatial information implicitly provided to us by the 10-20

system’s spatial structure. This decision was made because the resulting tensor would

have become a 22×71×125 tensor of values and the amount of time taken to process

this tensor would have been longer than the time taken to process a 71× 125 tensor.

Furthermore, even if it were computationally possible for us to process the larger

tensor for each second of signal, there was no possible way to consistently label the

tensor as each montage was labeled independently of the others. Hence, there was no

possible way to consistently label all 22 montages with a single label. As a result, we

only used a single channel’s input as opposed to all 22 channels’ inputs.



Data and Resources 30

We also realized that the dataset is highly imbalanced. More than 80% of the

data was labeled as noise-like signals. Since we were looking for anomalies in the

dataset, it was necessary to use stratified sampling to help compensate for this im-

balance which may result in imbalanced training. We split the 71× 125 tensors into

mutually exclusive training and validation sets. Each set is disjoint in both patient

and sample acquisition, i.e. no single patient appears in both sets and no two win-

dows from a single acquisition appear in both sets. We follow an 85/15% split for the

training/validation set. Due to the large nature of the training set in this situation

and the impossibility of training on every triplet possible, a random set of triplets

were selected for each training iteration.

4.2 Resources

Tensorflow

Tensorflow and TF-Slim, as described by Abadi et al. [41] and Silberman [42],

are frameworks which provided a way to build scalable, computational graphs for

machine learning. Tensorflow’s use of automatic differentiation, as described by Rall

[43], allowed for precise calculations of gradients for networks without floating-point

errors. Furthermore, automatic differentiation also helped in this project since the loss

function depended on multiple example data points, i.e. the anchor, the positive and

the negative, as opposed to a single example data point. TF-Slim’s implementation

of commonly used computational graph layers (e.g. convolutional layers) helped us

define the network without explicitly defining and coding weight matrices.
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SciKit Learn

SciKit Learn is a Python module developed by Pedregosa et al. [44] that provided

implementations of common machine learning algorithms and some commonly used

accessory functions. In particular, it provided us the k-NN algorithm used throughout

the paper to classify validation signals, the confusion matrix calculation function used

to analyze our validation results, and the t-SNE reduction algorithm used to analyze

the high dimensional latent space in a reduced, 2-dimensional space. SciKit Learn

was also built with NumPy and matplotlib, and was easily compatible with the rest

of our source code.

MNE Package

The MNE package is a Python module developed by Gramfort et al. [45] that

provided implementations for manipulating biological signal data. It has functions

necessary to read, analyze, filter and convert raw data in EDF files to NumPy arrays.

These functions allowed us to refine the data instead of processing the raw, time-

domain signal.



5 | Experiment and Results

After a considerable amount of research in clustering and metric learning, we chose

triplet loss as our method of approaching the problem. Triplet loss is well-established,

simple and effective when it comes to learning a latent space. Other methods such

as the one proposed by Song et al. [29] were overly complicated, especially given the

size of our dataset. Triplet loss was relatively easy to implement considering how

we organized the transformed data and so, a network trained on triplet loss was the

natural choice for this experiment.

5.1 Initial Experiments

Initially, we did not know whether this method would work on the STFT trans-

formed signals as described in section 4.1 and we needed a simple way to test out the

concept. Hence, to learn the latent space, we needed to start with a relatively simple

network.

Although the network’s architecture was not a priority since this was only a test

run of the concept, CNNs were considered from the very beginning since they per-

form very well in image and video processing tasks as mentioned in section 2.2.3.

Spectrograms inherently look like images as we saw in figure 4.2. Since we are using

spectrograms of the EEG signals as the input, it made sense to use CNNs. Secondly,

we assumed that the labels for each second of each channel of original signal were

properly time-aligned in the time domain. In case that this assumption is invalid,

CNNs still can perform better than other types of networks. CNNs tend to learn

32
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the patterns in the spectrogram even if they were not time-aligned since they learn

shift-invariant features. Hence, an important feature that starts in the first interval

of the spectrogram may still be recognized even if it starts sixty intervals later.

Table 5.1: Network architecture for CNN

Layer Input Output Kernel

conv1 71× 125× 1 71× 125× 32 4× 4

pool1 71× 125× 32 35× 62× 32 3× 3

conv2 35× 62× 32 35× 62× 64 5× 5

pool2 35× 62× 64 17× 30× 64 2× 2

fc1 17× 30× 64 256 N/A

fc2 256 128 N/A

output 128 64 N/A

Eventually, we built our initial model described in table 5.1 in TensorFlow as

described by Abadi et al. [41]. The code in listing A.1 was used to build the network

described. We trained the initial model on a Lenovo Y700 laptop running Ubuntu

16.06 LTS with an Intel Core i7-6700HQ CPU running at 2.60 GHz, 8 GB of RAM

and no discrete graphics card for Tensorflow’s CUDA acceleration capabilities.

In our first attempt, the loss function converged to values very close to zero within

the first few iterations. After stepping through the code, we discovered that the input

data values were all in the 10−5 order of magnitude. As a result, the network was

discovering a trivial solution that would satisfy the loss function but at the same

time not solve the problem at hand. In order to avoid this, we amplified the input

data by multiplying all inputs to the network by 104. The network started to train

normally and we noticed that the network’s loss started to decrease in the expected

exponential manner. Semi-hard or hard triplets were chosen at run-time to train the

network. Any “soft” triplets were skipped until semi-hard or hard triplets were found

since they do not contribute to the learning of the space.
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5.1.1 Hyperparameter Selection

Initially, we had selected random hyperparameters for the network. Once we

realized that the network started to train as we intended it to, we needed to select

the hyperparameters the learning rate, η, the margin parameter, α, the regularization

strength, λ and the output dimension, d. More attention was given to η since we

wanted the network to converge fast but not oscillate before reaching convergence.

Despite using the Adam optimizer, the oscillation described in section 2.1.3 can still

occur due to small, deep valleys in the hypersurface created by the loss function. In

most experiments that we’ve seen, λ is typically a magnitude below the learning rate.

We continued that convention and selected η = 10−3 and λ = 10−4. Regularization

was not necessarily important at this point so not much attention was given to λ.

The rest of the parameters were chosen to be “nice” numbers and were α = 1.0, and

d = 128.

We attempted running the network for a hundred thousand iterations. However,

we noticed that after fifty thousand iterations, the triplet mining process was slowed

down because the script found it difficult to find semi-hard or hard triplets. At

one point, we observed that nearly two hundred thousand triplets were skipped due

to their soft nature. Due to this phenomenon, we hypothesized that the network

had started to converge at around sixty thousand iterations and decided that it was

no longer needed to train. After that point, this particular network architecture

was trained for sixty thousand iterations and the data pool was changed every ten

thousand iterations to help the script find more semi-hard or hard triplets. This

alleviated the stalling nature of triplet mining.
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5.1.2 Measuring Performance

Although the loss was decreasing as expected, we needed a way of validating

whether the space that we anticipated was actually forming. One way to do this

was to follow the advice given by Schroff et al. [27] and use a k-NN classifier to

quantify the quality of the embedding space produced. Assuming that the data

provided was classified correctly, we run some training data through the network to

find the embeddings of those samples. We then populate the k-NN space with those

embeddings. New embeddings produced from the validation set are introduced to

the k-NN algorithm and classified. Theoretically, if the embedding space develops

distinct clusters based on the classes, it would classify the validation signals with a

relatively high overall accuracy since the validation set’s embeddings would be near

the cluster.

We used SciKit Learn’s implementation of the k-NN classifier to apply the test

described. The default value of the number of neighbors, k = 5, was used to classify

the validation embeddings produced. This test results were accurate 80% of the

time. At this point, we were not using stratified sampling to adjust for the data

imbalance. Hence, we assumed that most of the data that was classified incorrectly

were originating from classes with low numbers of samples points. It was clear that

the experiment was a success and our initial hypothesis that triplet loss can be used

learn a latent space for EEGs was valid since the resulting accuracy was relatively

high considering that we only used a very simple, two-layer CNN.

5.1.3 Error in Dataset Organization

Unfortunately, the success that we experienced with the initial network was not

long-lasting. When we explored the various sources of errors in the experiment,
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it was obvious that the amount of time used to train the network and the overall

accuracy of the network was qualitatively low and high, respectively. Therefore,

we tried to inspect the code used so far for any possible errors that we may have

introduced. We discovered that the data used to train the network was organized in

a way such that the different classes of data were easily split, but the patients, i.e.

the different sessions, were not. Therefore, when training, we were implicitly training

and validating on a portion of the training set which was already seen.

Our goal was to make this system general so that the system can detect the

presence of any of the six signals in any patient, not only for the patients provided

in the dataset. Hence, it was necessary for us to reorganize the data so that it was

split by session and class. We split the dataset again so that sessions from session1

until session300 were used as training data and the rest of the sessions were used as

testing data while retaining all information about the signal including session, type

of signal and time of the signal in the session. This ensured that the training set and

the validation set were truly mutually exclusive. Furthermore, the new method of

organization helped in conducting analysis of files with seizure-like signals and files

with noise-like signals which will be discussed in section 5.3.

5.2 DCNN with Triplet Loss

As discussed in section 2.1.4, it is generally easier to cut down a model by using

regularization than it is to increase the complexity of a model. Since the concept of

using triplet loss to train a CNN for clustering EEG signals was validated, it made

sense to proceed to the next step and experimentally increase the complexity of the

network. The next logical step from two-layer CNN was to make a DCNN that used

multiple layers of convolution to learn more complex shift-invariant features.
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We continued the same convolutional layer followed by maxpool layer pattern with

a fully connected layer at the end, as seen in the initial network shown in table 5.1.

Our new network, specified in table 5.2, consisted of five convolutional layers each

followed by a maxpool layer. We built the network using Tensorflow again and trained

the model on a server with Intel Xeon ES-2620 24-core CPU with each core at 2.10

GHz, 128 GB of RAM and five Nvidia GeForce Titan X GPUs with 12 GiB of video

memory for Tensorflow’s GPU acceleration.

Table 5.2: Network architecture for simple CNN

Layer Input Output Kernel

conv1 71× 125× 1 71× 125× 32 5× 5

maxpool1 71× 125× 32 34× 61× 32 5× 5

conv2 34× 61× 32 34× 61× 64 3× 3

maxpool2 34× 61× 64 16× 30× 64 3× 3

conv3 16× 30× 64 16× 30× 128 2× 2

maxpool3 16× 30× 128 8× 15× 128 2× 2

conv4 8× 15× 128 8× 15× 256 1× 1

maxpool4 8× 15× 256 4× 7× 256 2× 2

conv5 4× 7× 256 4× 7× 1024 4× 4

maxpool5 4× 7× 1024 1× 2× 1024 4× 4

flatten 1× 2× 1024 2048 N/A

fc1 2048 1024 N/A

fc2 1024 512 N/A

fc3 512 256 N/A

output 256 64 N/A

5.2.1 Hyperparameter Selection

The architecture of the network itself can be varied and may be considered a hy-

perparameter by itself. We can vary the number of layers, the number of neurons

in each layer, the convolutional kernel size, the activation functions, parameter ini-
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tialization methods and so on. However, this is something that is developed with

experience in the field. There are ways to make some of those hyperparameters learn-

able. For example, the work done by Szegedy et al. [46] allows a single convolutional

layer to have variable kernel sizes. When using backpropagation, the network can

learn which kernels are used and how much they are used in determining the final

output. He et al. [47] work on the parametrization of the ReLU activation function

in order to help learn what type of activation function is optimal for a given task.

However, such ways of improving the architecture are outside of the scope of this

thesis and introduces more issues that increase the overall complexity of the network.

Following the results of the initial experiment, we started to train the new network

with the same hyperparameters as the network shown in table 5.1 and decided to

pivot on the hyperparameters as necessary in order to find the best model that both

generalizes well to the validation set and forms a relatively compressed latent space.

We did a manual grid search on a particular range for each of the hyperparameters, η,

α, λ and d. We cross-validated the networks’ ability to infer what new signals might

be by using the validation set that we had set aside. After training the network and

cross-validating, it was found that η = 10−4 , α = 0.5, λ = 10−3 and d = 64 led to

the best results.

5.2.2 Measuring Performance

We still used k-NN classification accuracy as a measure of the quality of the latent

space produced. However, in order to make sure that the classification was being done

correctly, we elected to change the number of neighbors that the k-NN algorithm used

to a higher value. Increasing k effectively smoothens the decision boundary since the

algorithm uses more neighbors to make its decisions. After experimentally increasing
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the number of neighbors the algorithm considered to make the classification decision in

the latent space, we chose k = 31 as it had the highest level of accuracy and completed

the task quickly with the amount of available memory. With those hyperparameters,

we achieved a validation accuracy of 60.4%. The confusion matrix for that iteration

of cross-validation is shown in figure 5.1.
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BCKG
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EYBL

GPED

SPSW

PLED

True label

0.61 0.12 0.09 0.01 0.08 0.08

0.16 0.53 0.26 0.01 0.04 0.00

0.11 0.22 0.54 0.01 0.11 0.01

0.00 0.00 0.00 0.94 0.06 0.00

0.04 0.03 0.11 0.09 0.32 0.40

0.01 0.00 0.01 0.18 0.10 0.69

Figure 5.1: Confusion matrix for the DCNN clustering network with α = 0.5,
η = 10−5 after 105k iterations, and an accuracy of 60.4% with 31-NN classification

The classification accuracy provides a numerical value which could be used as a

measure of the quality of the embedding that our system produces. However, this

does not necessarily provide us information on whether clusters are forming, which

is what we were hoping would happen from the beginning. In order to test how
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well the network was doing in clustering signals based on similarity, we decided to

apply t-distributed stochastic neighbor embedding (t-SNE) which is an algorithm

that reduces the dimensionality of high dimensional data. Although this algorithm

reduces the dimensionality, the overall structure of the latent space remains the same

as the structure of the d-dimensional latent space. If clusters exist in the t-SNE plot,

it would mean that the same clusters are highly likely to exist in the d-dimensional

latent space. Hence, we used t-SNE to visualize the 64 dimension latent space in

2D. The t-SNE reduced two dimensional embedding after 5k iterations is shown in

figure 5.2 and the same after 105k iterations is shown in figure 5.3.

BCKG

ARTF

EYBL

GPED

SPSW

PLED

Figure 5.2: t-SNE reduced 2D visualization of validation set for the DCNN clus-
tering network after 5k iterations with α = 0.5, η = 10−5 after 5k iterations, and an
accuracy of 26.6% with 31-NN

We can see a clear difference of the t-SNE embedding after 100k iterations. Ini-

tially, figure 5.2 shows that the GPED signal is separating out from the crescent in

the middle but, the rest of the classes are far off from forming their own clusters and
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Figure 5.3: t-SNE reduced 2D visualization of validation set for the DCNN cluster-
ing network with α = 0.5, η = 10−5 after 105k iterations, and an accuracy of 60.4%
with 31-NN

are mixed together. However, figure 5.3 shows that the clusters are forming even in

a 2-dimensional space. GPED, BCKG and ARTF have clearly split away from each

other and have formed their own clusters.

We see a lot of qualitative correlation between the confusion matrix in figure 5.1

and t-SNE plot in figure 5.3. For example, according to the confusion matrix GPED

was classified correctly 94% of the times that it was encountered in the validation set.

This makes sense since the t-SNE plot shows a large cluster of GPED signals. Hence,

we can conclude that the clustering algorithm is probably working well because of the

amount of qualitative correlation between the t-SNE plot and the confusion matrix.
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5.2.3 Comparison with a DCNN Classifier

Another way to measure the performance of the clustering network is to compare

it with a baseline algorithm. Since we are evaluating the performance of a neural

network as a method of clustering EEG signals, we would like to find out how the same

architecture as a classifier would perform so that we could compare their performance.

In order to keep the same architecture so that we are confident that the architecture

would not make a difference, we just add a fully-connected layer to the network

shown in table 5.2 as a classification layer with a softmax activation without changing

anything else and train the network on the softmax cross-entropy loss function used

in neural network classifiers. We use the same exact hyperparameters as we use in

training the clustering network and achieve a validation accuracy of 50.2%. The

confusion matrix for the results of this network is shown in figure 5.4.

These results were perplexing. A classifier is particularly trained on the task of

discriminating between different classes whereas our clustering network is trained on

the triplet loss which hoped to group similar signals together. It was surprising that

a network trained to classify did not do better than the network that was trained to

cluster. These results suggest that it may actually better to use the triplet loss in any

situation since it provides more information about the original data, can work with

any number of classes and possibly detect new classes once trained, and still perform

better than the DCNN on a classification task.

Furthermore, it is likely that this phenomenon occurred directly due to the dif-

ferences in loss functions since each network had nearly identical architectural forms.

The features learned by the DCNN trained on the triplet loss and the features learned

by the penultimate layer in the DCNN classifier are probably different because of the

difference in the way the networks are trained.
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True label

0.49 0.15 0.11 0.06 0.14 0.05

0.06 0.57 0.24 0.05 0.02 0.05

0.07 0.16 0.54 0.03 0.17 0.03

0.01 0.00 0.00 0.82 0.08 0.08

0.08 0.07 0.22 0.20 0.31 0.12

0.04 0.00 0.10 0.20 0.32 0.35

Figure 5.4: Confusion matrix for the baseline DCNN classifier with the same hy-
perparameters as the ones the network in figure 5.1 used after 200k iterations and an
accuracy of 50.2% with 31-NN classification

5.2.4 Binary Classification Using the Latent Space

We were curious as to how well our system would work if we only used it to classify

a signal as either a seizure-like signal or noise-like signal. We considered BCKG, EYBL

and ARTF to be noise-like signals, and SPSW, GPED and PLED to be seizure-like

signals as shown in table 4.1. We can pose this as a k-NN classification problem since

our network has already been trained. We found the binary classification confusion

matrix as shown in figure 5.5 and found the overall accuracy to be 90.2%.

Modifying the t-SNE to label seizure-like signals and noise-like signals, and plot-

ting the decision boundary of a k-NN classifier as shown in figure 5.6 demonstrates

that there is a boundary that separates seizure-like signal from noise-like signal clearly.

Even though we trained on all types of triplets (e.g. PLED-PLED-GPED, GPED-
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Predicted label

Noise

Signal

True label

0.88 0.12

0.08 0.92

Figure 5.5: Binary confusion matrix for the DCNN clustering network with α = 0.5,
η = 10−5 after 105k iterations, and an accuracy of 90.2% with 31-NN classifier

Noise Signal

Figure 5.6: k-NN classifier decision boundary for t-SNE reduced 2D visualization
of validation set for the DCNN clustering network after 5k iterations with α = 0.5,
η = 10−5 after 105k iterations and a 31-NN classifier
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GPED-BCKG etc.), we still found a clean separation between seizure-like signals and

noise-like signals. This phenomena demonstrates that not only are the set of triplet

classes that we train on separating, but their super classes, i.e. the general signal

types, are separating which can possibly lead to a better, hierarchical taxonomy.

5.3 Analysis on Seizure-Like & Noise-Like Files

Although our network has done quite well on a rather noisy dataset, a thorough

error analysis is certainly the most important step in order to determine how to

pivot. In order to conduct this error analysis, we look at how the network performs

on subsets of the data and try to discover any patterns or explanations that might

help us improve the network in order to get better results. We split the data into the

following three subsets:

• sessions without seizure-like signals

• sessions with seizure-like signals

• sessions with seizure-like signals considering only seizure-like signals

We were able to separate the different signals based on their original session and

what types of signals existed in that session. Every time we compute a confusion

matrix for validating the network on the stratified sampled dataset, we also compute

a confusion matrix for a stratified sampled subset of the dataset for each of the above

categories. In doing so, we obtain the following results.

The confusion matrix shown in figure 5.7 is on the data from sessions that do

not contain any seizure-like signals. These sessions only contain BCKG, ARTF and

EYBL signals. Hence, the bottom half of the confusion matrix is empty. The right

half of the confusion matrix is not completely empty because the DCNN along with
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0.87 0.05 0.05 0.00 0.01 0.02

0.37 0.47 0.10 0.01 0.05 0.01

0.14 0.16 0.58 0.01 0.08 0.03

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

Figure 5.7: Confusion matrix of DCNN clustering network on files without seizures
resulting in an accuracy of 64.6% with α = 0.5, η = 10−5 after 105k iterations and a
31-NN classifier

the k-NN classifier still predicts some of these signals to be GPED, SPSW or PLED

since the network is still trained on the training set which contains all the classes.

These incorrect predictions are expected to occur due to various sources of natural

background noise, and incorrect true labels or shared characteristics that are closer

to seizure-like signals as opposed to noise-like signals. This results in a 64.6% overall

accuracy after 105k iterations.

As we had done before, we had also made a binary confusion matrix as well. Just

like the confusion matrix presented in figure 5.7, the bottom half of the confusion

matrix is empty and the top-right of the confusion matrix is not empty. The system
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Figure 5.8: Binary classification confusion matrix of DCNN clustering network on
files without seizures resulting in a binary accuracy of 93.0% with α = 0.5, η = 10−5

after 105k iterations and a 31-NN classifier

achieved a 93% accuracy in detecting that a second of signal is noise-like and not a

seizure-like signal. In other words, given only noise-like signals, we are able to classify

93% of those signals as noise-like signals using our system and the remaining 7% as

not noise-like (i.e. seizure-like) signals.

The confusion matrix in figure 5.9 is on sessions that contain seizure-like signals.

Sessions that contain seizure-like signals also contain noise-like signals since the entire

session is not full of seizure-like signals. Therefore, all the types of signals are present

in the confusion matrix. However, these sessions are mutually exclusive from the

sessions that we looked at in figure 5.7 since those sessions do not contain any seizure-

like signals at all. When looking at sessions that contain seizure-like signals, we

obtained an overall accuracy of 56% after 105k iterations.

As before, we also constructed a binary classification confusion matrix. In this

case, given that the session contains a seizure, we are able to classify the signal as

seizure-like or noise-like with an accuracy of 85%. The noise-like signals were detected
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0.59 0.12 0.09 0.03 0.11 0.05

0.19 0.42 0.22 0.03 0.07 0.07

0.12 0.15 0.46 0.02 0.16 0.09

0.00 0.00 0.00 0.89 0.09 0.02

0.03 0.03 0.16 0.07 0.33 0.38

0.01 0.00 0.02 0.15 0.15 0.66

Figure 5.9: Confusion matrix of DCNN clustering network on files with seizures
resulting in an accuracy of 56.0% with α = 0.5, η = 10−5 after 105k iterations and a
31-NN classifier

correctly 78% of the time and the seizure-like signals were detected correctly 91% of

the time.

Finally, the confusion matrix in figure 5.11 is on sessions that contain seizure-

like signals excluding noise-like signals to explore how the system performs on just

signals that have seizures (i.e. GPED, SPSW, PLED). This is why the top half of

the confusion matrix is empty and we see that most of the predictions are within

the bottom right square of the confusion matrix, which is what we expected. Note

that the signals that were tested to produce this confusion matrix are not necessarily

mutually exclusive from the signals that we tested in figure 5.9 since the signals used
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Figure 5.10: Binary classification confusion matrix of DCNN clustering network on
files with seizures resulting in an accuracy of 85.0% with α = 0.5, η = 10−5 after 105k
iterations and a 31-NN classifier

to form that confusion matrix were the ones that contained seizures. The experiment

results in an overall validation accuracy of 60.4% after 105k iterations. We also see

that a lot of the SPSW are being classified as PLED. This is likely because of the

high similarity between PLED and SPSW.

Similar to the last experiment, we also generated a binary classification confusion

matrix. Given that the session contains a seizure and we are only looking at a seizure-

like signal in that particular session, we are able to observe that the signal presented

to the system is seizure-like 92% of the time and mis-classified the signal as noise 8%

of the time.

In doing the analysis on the subsets of the validation set, it is revealed that most

of the error in attempting to recognize a signal as a one of the types of seizure-like

signals arises because the signal is classified as one of the other types of seizure-like

signals. For example, if a signal with PLED as the true label is presented to the

system and the system makes an error in predicting the label of the signal, it is likely
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0.03 0.01 0.02 0.12 0.14 0.69

Figure 5.11: Confusion matrix of DCNN clustering network on files with ONLY
seizure signals resulting in an accuracy of 63.0% with α = 0.5, η = 10−5 after 105k
iterations and a 31-NN classifier

for the prediction to be SPSW or GPED as opposed to the noise-like signals. A

possible reason for this phenomena may be because the given signal is more similar

to SPSW or GPED. This phenomena is acceptable because the system is expected

to cluster and place similar signals near each other. Logically this makes sense since

the seizure-like signals are expected to be more similar to each other than noise-like

signals. The binary confusion matrices support this observation since it has a high

true positive rate and a high true negative rate.

Another common error that was seen in the various confusion matrices was the

relatively high false classification rate of SPSW signals as PLED. This error could
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Figure 5.12: Binary classification confusion matrix of DCNN clustering network
on files with ONLY seizure signals resulting in an accuracy of 91.8% with α = 0.5,
η = 10−5 after 105k iterations and a 31-NN classifier

be attributed to the similarity between SPSW and PLED, however, it is also likely

that amount of data present on SPSW is not enough. Furthermore, we may have

also made an error when filtering the raw signal with a pass-band of 1 Hz to 70 Hz.

SPSW by definition has high frequencies. It may be possible that some of these high

frequencies are above 70 Hz. The assumption that the bulk of the signal is between

that pass-band may be false in this case.
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Summary of Results

We demonstrate an end-to-end system to learn embeddings in a Euclidean space

using triplet loss for recognition and clustering using triplet loss. Our network achieves

a 60.4% six-class classification accuracy and 90.4% binary classification accuracy.

Our work demonstrates that using deep metric learning and deep feature embedding

networks, particularly those trained on the triplet loss, can help learn more about

EEG signals.

In particular, since our method involves clustering the EEG signals in an embed-

ding space as opposed to directly classifying them, there are many more operations

that can be done. For example, it may be possible to discover new types of EEGs

with no extra training. In the case a new type of signal is discovered outside of the

embedding, it might be possible to further train the current model in order for it to

learn the new type of signal. Furthermore, the method used in this paper can be used

to classify a given signal as either seizure-like or noise-like, help automated labeling

systems to identify anomalies in EEGs and direct a physician’s attention towards

these anomalies without the help of an expert in the medical field. The system can

be implemented in a seizure detection device for patients prone to seizures to auto-

matically deploy counter measures and call emergency services in order to maximize

patient survival rate.

52
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Future Work

We should further analyze these results to improve this system. For example,

we can do an in-depth comparison between the features in baseline’s latent spaces’

penultimate layer and the features in the clustering network’s latent spaces’ final layer.

Each network has different accuracies even though they both have identical functional

forms. Therefore, a comparison between the two latent spaces speaks directly to the

training method for selecting the parameters.

Since the TUH corpus includes natural language physician notes, it may be pos-

sible to incorporate these notes to improve the clusters forming in the latent space.

We can use keywords such as “seizure” or “epilepsy” to bias the network to push the

sample towards a cluster containing seizures. Rippel et al. [48] work provides a way to

do this and we can use it as an inspiration to further improve the clustering through

adaptive density discrimination. Perhaps, more advanced versions of the triplet loss,

such as the one Song et al. [29] provide, can improve improve latent space learned by

the neural network.

While our system is able to accurately classify the labels, further tests should

be conducted to determine its ability to generalize to new labels. Optimally, the

network should be able to detect new labels and classify them accordingly. One way

to determine the networks’ generalization property is to train on five labels and keep

the sixth label as a holdout. A generalizing network will be able to cluster the data in

a manner such that algorithms that recognize clusters (e.g. Affinity Propagation [49]

and Mean Shift [50] clustering algorithms) will be able to detect the sixth without

any prior information.

We also can hypothesize that it may be useful to augment the current convolu-

tional architecture with a decoder network to create an autoencoder and train the



Summary and Future Work 54

autoencoder with both triplet loss as well as the mean-squared-error loss. Autoen-

coders typically are used to reduce dimensionality of data without losing too much

information about the input. Combining this with the triplet loss may help learn

richer latent spaces involving features that contribute to high information gain. An

extra hyperparameter will probably be introduced to control how much the triplet

loss affects the encoding learned by the new network.

Finally, it might be beneficial for us to explore how the same components in this

system perform with different types of data, such as MRIs and X-Rays. Although

there are a few sources of errors, our system still has a relatively high accuracy

and could serve as a stepping stone in directly analyzing, structuring and organizing

medical data.
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A | Code Sample

Listing A.1: Initial Model

1 def get model(input, reuse=False):

2 with slim.arg scope([layers.conv2d, layers.fully connected], weights initializer=layers.xavier initializer(seed=

↪→ random.random(), uniform=True), weights regularizer=slim.l2 regularizer(0.05), reuse=reuse):

3 net = tf.expand dims(input, axis=3)

4 net = layers.conv2d(net, num outputs=32, kernel size=4, scope=’conv1’, trainable=True)

5 net = layers.max pool2d(net, kernel size=3, scope=’maxpool1’)

6 net = layers.conv2d(net, num outputs=64, kernel size=5, scope=’conv2’, trainable=True)

7 net = layers.max pool2d(net, kernel size=3, scope=’maxpool2’)

8 net = layers.flatten(net, scope=’flatten’)

9 net = layers.fully connected(net, 256, scope=’fc1’, trainable=True)

10 net = layers.fully connected(net, 1024, scope=’fc2’, trainable=True)

11 net = layers.fully connected(net, num output, activation fn=None, weights regularizer=None,

↪→ scope=’output’)

12 return net

61
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Listing A.2: Enlarged Model

1 def simple model(inputs, reuse=False):

2 with slim.arg scope([slim.layers.conv2d, slim.layers.fully connected], weights initializer=tf.contrib.layers.

↪→ xavier initializer(uniform=True), weights regularizer=slim.l2 regularizer(l2 weight), reuse=reuse):

3 net = tf.expand dims(inputs, dim=3)

4 net = slim.layers.conv2d(net, num outputs=32, kernel size=5, scope=’conv1’, trainable=True)

5 net = slim.layers.max pool2d(net, kernel size=5, scope=’maxpool1’)

6 net = slim.layers.conv2d(net, num outputs=64, kernel size=3, scope=’conv2’, trainable=True)

7 net = slim.layers.max pool2d(net, kernel size=3, scope=’maxpool2’)

8 net = slim.layers.conv2d(net, num outputs=128, kernel size=2, scope=’conv3’, trainable=True)

9 net = slim.layers.max pool2d(net, kernel size=2, scope=’maxpool3’)

10 net = slim.layers.conv2d(net, num outputs=256, kernel size=1, scope=’conv4’, trainable=True)

11 net = slim.layers.max pool2d(net, kernel size=2, scope=’maxpool4’)

12 net = slim.layers.conv2d(net, num outputs=1024, kernel size=4, scope=’conv5’, trainable=True)

13 net = slim.layers.max pool2d(net, kernel size=4, scope=’maxpool5’)

14 net = slim.layers.flatten(net, scope=’flatten’)

15 net = slim.layers.fully connected(net, 1024, scope=’fc1’, trainable=True)

16 net = slim.layers.fully connected(net, 512, scope=’fc2’, trainable=True)

17 net = slim.layers.fully connected(net, 256, scope=’fc3’, trainable=True)

18 net = slim.layers.fully connected(net, num output, weights regularizer=None, scope=’output’)

19 return net
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Listing A.3: Triplet Loss Function

1 def triplet loss(alpha):

2 anchor = tf.placeholder(tf.float32, shape=input shape)

3 positive = tf.placeholder(tf.float32, shape=input shape)

4 negative = tf.placeholder(tf.float32, shape=input shape)

5 anchor out = get model(anchor, reuse=True)

6 positive out = get model(positive, reuse=True)

7 negative out = get model(negative, reuse=True)

8 with tf.variable scope(’triplet loss’):

9 pos dist = distance metric(anchor out, positive out, metric=’euclidean’)

10 neg dist = distance metric(anchor out, negative out, metric=’euclidean’)

11 basic loss = tf.add(tf.subtract(pos dist, neg dist), alpha)

12 loss = tf.reduce mean(tf.maximum(basic loss, 0.0), 0)

13 return loss
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Listing A.4: Runner Script

1 import random

2 import tensorflow as tf

3 from sklearn.svm import SVC

4 from BrainNet import BrainNet

5

6 for run in range(0, 1):

7 batch size = 5000

8 alpha = 0.5

9 learning rate = 0.0001

10 l2 weight = 0.001

11 validation size = 500

12

13 print(’Run: {:d}, Alpha: {:1.1f}, Learning Rate: {:3.2e}, L2−Weight: {:3.2e}, Batch Size: {:d}’.format(run

↪→ + 1, alpha, learning rate, l2 weight, batch size))

14 #path to files=’/home/krishna/data’,

15 net = BrainNet(path to files=’/home/krishna/data’ alpha=alpha, validation size=validation size

↪→ learning rate=learning rate, l2 weight=l2 weight batch size=batch size, debug=True, train epoch

↪→ =20)

16 , val percent, val conf matrix = net.train model()

17

18 print(’Validation Percentage: {:2.2f}\nConfusion Matrix:\n{}’.format(val percent, val conf matrix))
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Listing A.5: Accessory Functions

1 def norm op(vector, axisss):

2 return normalize(vector, axis=axisss, norm=’l2’)

3 #return vector ∗ 10e4

4

5 def plot embedding(X, y, epoch, accuracy, num to label, title):

6 x min, x max = np.min(X, 0), np.max(X, 0)

7 X = (X − x min) / (x max − x min)

8 cmap = plt.get cmap(’gist rainbow’)

9 color map = [cmap(1.∗i/6) for i in range(6)]

10 legend entry = []

11 for ii, c in enumerate(color map):

12 legend entry.append(matplotlib.patches.Patch(color=c, label=num to label[ii]))

13

14

15 plt.figure(figsize=(4.0, 4.0))

16 plt.scatter(X[:,0], X[:, 1], c=y, cmap=matplotlib.colors.ListedColormap(color map), s=2)

17 plt.legend(handles=legend entry)

18 plt.xticks([]), plt.yticks([])

19 plt.title(title)

20 plt.savefig(’./%s Results/%s tSNE plot epoch%s %.3f%%.pdf’ % (curr time, curr time, epoch, accuracy),

↪→ bbox inches=’tight’)

21

22 def compute tSNE(X, y, epoch, accuracy, num to label, with seizure=None, title=”t−SNE Embedding of DCNN

↪→ Clustering Network”):

23 tsne = TSNE(n components=2, init=’random’, random state=0)

24 X tsne = tsne.fit transform(X)

25 plot embedding(X tsne, y, epoch=epoch, accuracy=accuracy, num to label=num to label, title=title)

26 if with seizure is None:

27 np.savez(’./%s Results/%s tSNE plot epoch%s %.3f%%’ % (curr time, curr time, epoch, accuracy),

↪→ X tsne, y)

28 elif with seizure == True:

29 np.savez(’./%s Results/%s tSNE plot with seizure epoch%s %.3f%%’ % (curr time, curr time,

↪→ epoch, accuracy), X tsne, y)

30 elif with seizure == False:

31 np.savez(’./%s Results/%s tSNE plot without seizure epoch%s %.3f%%’ % (curr time, curr time,

↪→ epoch, accuracy), X tsne, y)

32
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33 def get loss(loss mem, loss mem skip):

34 plt.figure(figsize=(4.0, 4.0))

35 plt.plot(loss mem skip, ’ro−’, markersize=2)

36 plt.xlabel(”1000 Iterations”)

37 plt.ylabel(”Average Loss in 1000 Iterations”)

38 plt.title(”Iterations vs. Average Loss”)

39 plt.savefig(’./%s Results/%s convergence with skip plot.pdf’ % (curr time, curr time), bbox inches=’tight’)

40

41 plt.figure(figsize=(4.0, 4.0))

42 plt.plot(loss mem, ’ro−’, markersize=2)

43 plt.xlabel(”1000 Iterations”)

44 plt.ylabel(”Average Loss in 1000 Iterations”)

45 plt.title(”Iterations vs. Average Loss”)

46 plt.savefig(’./%s Results/%s convergence plot.pdf’ % (curr time, curr time), bbox inches=’tight’)

47

48

49 def plot confusion matrix(cm, classes, normalize=True, cmap=plt.cm.Greys, accuracy = None, epoch=None,

↪→ with seizure=None, title = ”Confusion Matrix on All Data”):

50 plt.figure(figsize=(4, 4))

51 plt.imshow(cm, interpolation=’nearest’, cmap=cmap)

52 ax = plt.gca()

53 #plt.colorbar()

54 tick marks = np.arange(len(classes))

55 plt.xticks(tick marks, classes, rotation=45)

56 plt.yticks(tick marks, classes)

57 ax.yaxis.set label coords(−0.1,1.03)

58 h = ax.set ylabel(’True label’, rotation=0, horizontalalignment=’left’)

59

60 if normalize:

61 cm = cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis]

62 print(”Normalized confusion matrix”)

63 else:

64 print(’Confusion matrix, without normalization’)

65

66 print(cm)

67

68 thresh = cm.max() / 2.

69 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

70 plt.text(j, i, ’{0:.2f}’.format(cm[i, j]), horizontalalignment=”center”, verticalalignment=”center”,
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↪→ color=”white” if cm[i, j] > thresh else ”black”)

71

72 #plt.tight layout()

73 plt.xlabel(’Predicted label’)

74 plt.title(title)

75 #plt.show()

76 if with seizure is None:

77 plt.savefig(’./%s Results/%s confusion matrix epoch%s %.3f%%.pdf’ % (curr time, curr time,

↪→ epoch, accuracy), bbox inches=’tight’)

78 elif with seizure == True:

79 plt.savefig(’./%s Results/%s confusion matrix with seizure epoch%s %.3f%%.pdf’ % (curr time,

↪→ curr time, epoch, accuracy), bbox inches=’tight’)

80 elif with seizure == False:

81 plt.savefig(’./%s Results/%s confusion matrix without seizure epoch%s %.3f%%.pdf’ % (curr time,

↪→ curr time, epoch, accuracy), bbox inches=’tight’)
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Listing A.6: Triplet Mining

1 def get triplets(size=10):

2 A = []

3 P = []

4 N = []

5

6 for in range(size):

7 choices = [’bckg’, ’eybl’, ’gped’, ’spsw’, ’pled’, ’artf’]

8 neg choices = list(choices)

9 choice = random.choice(choices)

10 neg choices.remove(choice)

11

12 if choice == ’bckg’:

13 a = np.load(random.choice(bckg))

14 p = np.load(random.choice(bckg))

15 elif choice == ’eybl’:

16 a = np.load(random.choice(eybl))

17 p = np.load(random.choice(eybl))

18 elif choice == ’gped’:

19 a = np.load(random.choice(gped))

20 p = np.load(random.choice(gped))

21 elif choice == ’spsw’:

22 a = np.load(random.choice(spsw))

23 p = np.load(random.choice(spsw))

24 elif choice == ’pled’:

25 a = np.load(random.choice(pled))

26 p = np.load(random.choice(pled))

27 else:

28 a = np.load(random.choice(artf))

29 p = np.load(random.choice(artf))

30

31 neg choice = random.choice(neg choices)

32

33 if neg choice == ’bckg’:

34 n = np.load(random.choice(bckg))

35 elif neg choice == ’eybl’:

36 n = np.load(random.choice(eybl))

37 elif neg choice == ’gped’:
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38 n = np.load(random.choice(gped))

39 elif neg choice == ’spsw’:

40 n = np.load(random.choice(spsw))

41 elif neg choice == ’pled’:

42 n = np.load(random.choice(pled))

43 else:

44 n = np.load(random.choice(artf))

45

46 key = choice + choice + neg choice

47

48 if key in count of triplets:

49 count of triplets[key]+=1

50 else:

51 count of triplets[key] = 1

52

53 a = norm op(a, axisss=0)

54 p = norm op(p, axisss=0)

55 n = norm op(n, axisss=0)

56 A.append(a)

57 P.append(p)

58 N.append(n)

59

60

61 A = np.asarray(A)

62 P = np.asarray(P)

63 N = np.asarray(N)

64 return A, P, N
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Listing A.7: Model Training

1 def train model(outdir=None):

2 loss = triplet loss(alpha=alpha)

3 optimizer = tf.train.AdamOptimizer(learning rate=learning rate)

4 optim = optimizer.minimize(loss=loss)

5 sess.run(tf.global variables initializer())

6

7 count = 0

8 ii = 0

9 val percentage = 0

10 val conf matrix = 0

11 epoch = −1

12 while True:

13 epoch += 1

14 ii = 0

15 count = 0

16 temp count = 0

17 full loss = 0

18 while ii <= batch size:

19 ii += 1

20 a, p, n = get triplets()

21

22 temploss = sess.run(loss, feed dict={anchor: a, positive: p, negative: n})

23

24 if temploss == 0:

25 ii −= 1

26 count += 1

27 temp count += 1

28 continue

29

30 full loss += temploss

31

32 if ((ii + epoch ∗ batch size) % 1000 == 0):

33 loss mem skip.append(full loss / (1000.0 + temp count))

34 loss mem.append(full loss / (1000.0))

35 full loss = 0

36 temp count = 0

37 get loss(loss mem, loss mem skip)
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38

39 , a, p, n = sess.run([optim, anchor out, positive out, negative out], feed dict={anchor: a, positive: p

↪→ , negative: n})

40

41 d1 = np.linalg.norm(p − a)

42 d2 = np.linalg.norm(n − a)

43

44 if DEBUG:

45 print(”Epoch: %2d, Iter: %7d, IterSkip: %7d, Loss: %.4f, P Diff: %.4f, N diff: %.4f” % (epoch,

↪→ ii, count, temploss, d1, d2))

46 val percentage, val conf matrix = validate(epoch)

47 sess.close()

48 return epoch, val percentage, val conf matrix
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Listing A.8: Validation Script

1 def validate(epoch):

2 inputs, classes = get sample(size=100, validation=True)

3 vector inputs = sess.run(inference model, feed dict={inference input: inputs})

4 del inputs

5

6 tempClassifier = neighbors.KNeighborsClassifier(31)

7 tempClassifier.fit(vector inputs, classes)

8

9 # All data (Files with Seizures & Files without Seizures)

10

11 val inputs, val classes = get sample(size=validation size)

12 vector val inputs = sess.run(inference model, feed dict={inference input: val inputs})

13 del val inputs

14

15 pred class = tempClassifier.predict(vector val inputs)

16

17 percentage = len([i for i, j in zip(val classes, pred class) if i == j]) ∗ 100.0 / validation size

18

19 if DEBUG:

20 print(”Validation Results: %.3f%% of of %d correct” % (percentage, validation size))

21

22 val classes = list(map(lambda x: num to class[x], val classes))

23 pred class = list(map(lambda x: num to class[x], pred class))

24 class labels = [0, 1, 2, 3, 4, 5]

25 class labels = list(map(lambda x: num to class[x], class labels))

26 conf matrix = confusion matrix(val classes, pred class, labels=class labels)

27 np.set printoptions(precision=2)

28

29 np.save(’./%s Results/%s confusion matrix epoch%s %.3f%%’ % (curr time, curr time, epoch, percentage),

↪→ conf matrix)

30

31 plot confusion matrix(conf matrix, classes=class labels, epoch=epoch, accuracy=percentage)

32

33 compute tSNE(vector inputs, classes, epoch=epoch, accuracy=percentage, num to label=num to class)

34

35 # Files with Seizures

36
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37 val inputs seizure, val classes seizure = get sample(size=validation size)

38 vector val inputs seizure = sess.run(inference model, feed dict={inference input: val inputs seizure})

39 del val inputs seizure

40

41 pred class seizure = tempClassifier.predict(vector val inputs seizure)

42

43 percentage seizure = len([i for i, j in zip(val classes seizure, pred class seizure) if i == j]) ∗ 100.0 /

↪→ validation size

44

45 if DEBUG:

46 print(”Validation Results: %.3f%% of of %d correct” % (percentage seizure, validation size))

47

48 val classes seizure = list(map(lambda x: num to class[x], val classes seizure))

49 pred class seizure = list(map(lambda x: num to class[x], pred class seizure))

50 class labels seizure = [0, 1, 2, 3, 4, 5]

51 class labels seizure = list(map(lambda x: num to class[x], class labels seizure))

52 conf matrix seizure = confusion matrix(val classes seizure, pred class seizure, labels=class labels seizure)

53 np.set printoptions(precision=2)

54

55 np.save(’./%s Results/%s confusion matrix with seizure epoch%s %.3f%%’ % (curr time, curr time, epoch,

↪→ percentage seizure), conf matrix seizure)

56

57 plot confusion matrix(conf matrix seizure, classes=class labels seizure, epoch=epoch, accuracy=

↪→ percentage seizure, with seizure=True, title = ”Confusion Matrix on Files with Seizure”)

58

59 #compute tSNE(vector inputs, classes, epoch=epoch, accuracy=percentage seizure, num to label=num to class

↪→ )

60

61 # Files without Seizures

62

63 val inputs without seizure, val classes without seizure = get sample(size=validation size)

64 vector val inputs without seizure = sess.run(inference model, feed dict={inference input:

↪→ val inputs without seizure})

65 del val inputs without seizure

66

67 pred class without seizure = tempClassifier.predict(vector val inputs without seizure)

68

69 percentage without seizure = len([i for i, j in zip(val classes without seizure, pred class without seizure) if i

↪→ == j]) ∗ 100.0 / validation size



Code Sample 74

70

71 if DEBUG:

72 print(”Validation Results: %.3f%% of of %d correct” % (percentage without seizure, validation size))

73

74 val classes without seizure = list(map(lambda x: num to class[x], val classes without seizure))

75 pred class without seizure = list(map(lambda x: num to class[x], pred class without seizure))

76 class labels without seizure = [0, 1, 2, 3, 4, 5]

77 class labels without seizure = list(map(lambda x: num to class[x], class labels without seizure))

78 conf matrix without seizure = confusion matrix(val classes without seizure, pred class without seizure, labels=

↪→ class labels without seizure)

79 np.set printoptions(precision=2)

80

81 np.save(’./%s Results/%s confusion matrix without seizure epoch%s %.3f%%’ % (curr time, curr time, epoch,

↪→ percentage without seizure), conf matrix without seizure)

82

83 plot confusion matrix(conf matrix without seizure, classes=class labels without seizure, epoch=epoch,

↪→ accuracy=percentage without seizure, with seizure=False, title = ”Confusion Matrix on Files without

↪→ Seizure”)

84

85 #compute tSNE(vector inputs, classes, epoch=epoch, accuracy=percentage without seizure, num to label=

↪→ num to class)

86

87 count of triplets = dict()

88

89 return percentage, conf matrix
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