
THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART�
ALBERT NERKEN SCHOOL OF ENGINEERING

$Q�([SORUDWLRQ�RI�
3UREDELOLVWLF�0RGHO�IRU�
&RQVXPHU�&KRLFHV

By

=KLKDR�=KDQJ

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Engineering

Advisor

3URIHVVRU�6DP�.HHQH

THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate's Thesis Advisor and has

received approval. It was submitted to the Dean of the School of Engineering and the

full Faculty, and was approved as partial fulfillment of the requirements for the degree

of Master of Engineering.

Barry L. Shoop, Ph.D., P.E. - Date

Dean, Albert Nerken School of Engineering

Prof. 6DP�.HHQH - Date
Candidate's Thesis Advisor

5.12.2022

5.12.2022

Acknowledgments

I would like to thank Professor Keene for advising me throughout this year. This

thesis would not have been possible without his help.

I would also like to thank Professor Curro for helping me understand deep learning

better.

And I’d also like to thank my family for their emotional and financial support.

i

An�Exploration�of�Probabilistic�Model� for�Consumer�Choices

by

Zhihao�Zhang

Submitted�to�the�Department�of�Electrical�Engineering
on�April�29,�2022,� in�partial� fulfillment�of�the

requirements� for�the�degree�of
Master�of�Engineering

Abstract

This�thesis�evaluates�the�performance�of�recommendation�system�using�market�basket�
analysis� based� on� the� SHOPPER� model.� The� model� imposes� structured� method�
to� evaluate� customer� behavior,� and� takes� in� consideration� of� personal� preference,�
price�fluctuation,�s easonality,�a s�well�a s�s ubstitute�a nd�c omplement�effects�between�
products.� The� item-item� relation� is� extracted� based� on� item� description� as�well� as�
feature�vectors�generated�by�VGG19�from�image�of�items.�The�model�is�compared�to�
traditional�apriori�algorithm,�and�shows�promising�improvement�when�applied�to�the�
HM�Personalized�Fashion�Recommendations�dataset.

Thesis�Supervisor:� Professor�Sam�Keene

ii

Contents

1 Introduction 1

2 Background 3

2.1 Machine Learning . 3

2.1.1 Unsupervised Learning . 3

2.2 Recommender systems . 4

2.3 Market Basket Analysis . 5

2.4 Associative Model . 6

2.4.1 Association Rules . 6

2.4.2 Apriori Algorithm . 9

2.4.3 Equivalence CLAss Transformation 10

2.4.4 Frequent Pattern Growth . 10

2.5 Poisson Factorization . 10

2.6 Exponential Family Embedding . 11

3 Previous Work 13

3.1 Shopper model . 13

3.2 VGG19 . 16

4 Experiments 17

4.1 Data . 17

4.1.1 Data Description . 18

4.2 Setup . 22

JJJ

4.2.1 Hardware . 22

4.2.2 Software . 22

4.3 Implementation . 23

4.3.1 Preprocessing . 23

4.3.2 Baseline Model . 26

4.3.3 Comparison Sets . 27

5 Results and Analysis 28

5.1 Baseline . 28

5.2 ELBO . 30

5.3 Mean Average Precision . 31

6 Conclusion 34

A Code Blocks 35

A.1 Prepossessing . 35

A.2 Shopper . 38

A.3 Baseline . 50

A.4 Image Feature Vector . 52

B Figures 56

Jv

List of Figures

2-1 Recommender System[6] . 5

2-2 Association Rules[4] . 7

3-1 SHOPPER[9] . 15

3-2 VGG19 Architecture[14] . 16

4-1 Example Data 1 . 21

4-2 Example Data 2 . 21

5-1 Baseline Loss . 29

5-2 ELBO . 30

B-1 PDF Graph . 56

v

List of Tables

4.1 Transaction Format . 18

4.2 Customer Features . 19

4.3 Item Features . 20

5.1 Results @ 10000 Iterations . 31

5.2 Results @ 50000 Iterations . 32

vi

Chapter 1

Introduction

E-commerce markets originated as the networking between businesses[3]. With the

popularization of affordable mobile device and the internet, e-commerce has evolved

into a new retail channel. This new retail channel powered by modern technologies

enables the retailers to present more diverse information to the customers, as well as

to collect information from purchases.

While the customers are able to receive large amount of information through the

platform, it is exponentially harder to quickly find the best choice. And with the ever

growing popularity of online shopping, more products are made available than ever

before. The mass increase of options, although can satisfy more customers, makes

it ever more important to have a sophisticated recommendation system to aid the

customers with decision making.

Lots of effort has been put into the development of algorithms to provide person-

alized recommendations for customers and improve customers’ shopping experience.

A common technique used to recommend items is market basket analysis (MBA)[7].

The core of market basket recommendation is building association rule sets between

features, and find frequent purchase patterns in sets of items[11].

One popular approach for finding frequent patterns is to use Apriori algorithm[2],

which operate under the assumption that all subsets of frequent set must be frequent.

However, traditional apriori algorithm often simplifies the decision making process

and leave out many factors, such as seasonality, price fluctuation etc. And this thesis

1

evaluates the effectiveness of a sophisticated probabilistic model that uses a mixture

of frequent set, price fluctuation, seasonal effect as well as substitute and complement

relationships between items.

2

Chapter 2

Background

2.1 Machine Learning

Machine learning is one of the most important technologies for understanding data.

And with the rapid increase in the amount of collected and generated data, it is

ever more important to develop effective method to retrieve useful information from

complex data[5].

Machine learning techniques are developed to find useful underlying patterns and

complex relations hidden under complex data, and are capable of extracting infor-

mation that humans’ otherwise cannot discover. In general, machine learning can

be categorized into 3 methods, supervised learning, unsupervised learning and rein-

forcement learning. This thesis will focus on the study of unsupervised learning and

techniques that were used in the experiments.

2.1.1 Unsupervised Learning

Unsupervised learning is a category of machine learning that are used to deal with un-

labeled data[18]. The technique allows algorithms to capture the patterns of datasets

without human input. Unsupervised learning is used for feature selection or occasions

when patterns or relations are unknown or when labeled data is unavailable.

Several popular unsupervised learning algorithms include:

3

1. K-mean clustering

2. K nearest neighbors

3. Principal Component Analysis

4. Association Rules

2.2 Recommender systems

Recommender systems are systems designed to filter information based on user behav-

ior, item-relation or other underlying information to try predict the users’ behavior

and preference for products[17]. They are widely used in e-commerce, advertisement

etc. One of the key aspect is the system personalize the recommendation with or

without past records in the system. An demonstration of how recommendation sys-

tem works can be seen in Figure 2-1. Lots of effort was put into studying the efficient

designs of recommender systems since 1990s. In general, recommender systems can

be categorized into 5 classes, including content-based, collaborative filtering (CF),

demo-graphical, knowledge-based and hybrid systems.

Customers using online shopping platforms have a lot more choices than in phys-

ical retail stores because of the simplicity to present products in virtual form. This

however, makes finding the ideal product exponentially harder, and as a result, ef-

ficient recommender systems are necessary to provide a good shopping experience.

Targeted ads using recommender systems are also a lot more efficient since it is more

likely that the viewer of the ads will like the product/service.

Collaborative filtering and association rules are some of the most popular tech-

niques used in recommender systems. Basic descriptions of the two techniques will

be provided in the later section 2.4.

4

Figure 2-1: Recommender System[6]

2.3 Market Basket Analysis

Market basket analysis (MBA) is a data mining technique that mainly used to find

purchase patterns from users and within products. This technique is extremely use-

ful for decision making in retail industries, such as cross-selling, recommendations,

promotions, or even the placement of items on a menu or in a store.

The core of the technique is to determine the chance of other items being consid-

ered given the current selected items [7]. The ability to predict customers’ behavior

in store/online market makes a big difference in sales as well as customers’ shop-

ping experience. And the power of MBA has attracted many retails enterprise such

as SalesForce, Microsoft Great Plains and CRM accounting applications like Quick-

books, to have MBA as an important feature for their product[12].

Modern MBA systems often use unsupervised learning techniques such association

rules mining and clustering, and can classified into two main categories, qualitative

analysis and quantitative analysis. Quantitative analysis finds rules within numerical

attributes, such as weight, price, and categorical attributes (color, type, etc.).

5

On the other hand, qualitative approach for mining association rules, as suggested

by (Prakash Parvathi, 2011), mainly use binary representation of data. The binary

data is then used to build decision trees, dependencies etc.

This thesis focuses on quantitative method, and uses probabilistic model to rep-

resent underlying rules between different features.

2.4 Associative Model

Associative models aim to find relationships (association rules) between provided

features. These models are used to extract useful relationships in large datasets.

Some of the most common use cases for associative models include market basket

analysis, finding web usage patterns, detecting malicious attacks etc. And the most

common techniques used for these models include association rules mining, principal

component analysis, qualitative reasoning etc.

For the purpose of this paper, association rule mining will be the main technique

to be discussed, since it is closed related to methods used in experiments.

2.4.1 Association Rules

Association rules[10] are set of rules that defines correlation between features. And as-

sociation rule mining techniques are methods to build the rules from complex datasets.

Figure 2-2 provides a visual demonstration of the process of building association rules

by selecting frequent sets.

6

Figure 2-2: Association Rules[4]

The techniques of association rule mining was first created for knowledge discovery

to efficiently handle large databases. And since these techniques came from MBA,

the terminologies are defined as such:

1. Database: Collection of transactions

D = t1, t2, ..., tn

2. Transaction: Collection of items

ti = i1, i2, ..., im

3. Items: repeatable attributes often defined by unique id

Below is an example of the data structure:

D = t1, t2, ..., t5

7

t1 = i1, i2, i3, i5, i7, i8

t2 = i2, i3, i5, i6, i7

t3 = i1, i2, i3, i5, i8

t4 = i1, i4, i5, i8

t5 = i2, i3, i5, i9

From the example above, it can be noticed that there are common patterns of

occurrence between items in the 5 transactions:

i1, i3, i8

i2, i3, i5

i2, i3, i5, i7

......

The frequent patterns, containing multiple association rules, can be defined as

following:

X) Y

where X,Y ✓ I and X \ Y = ?

For example, the first pattern in the above list can be written as:

i1 ^ i3) i8

One of the assumptions made for association rule mining is that subset of frequent

sets are also frequent. And a byproduct of this assumption is that subsets of the

frequent sets listed above also forms valid association rules.

For any random itemsets,the itemset is valid if the support of the set satisfies the

minimum support. Support is defined as the following:

8

Support for itemset X: number of transactions containing X

supp(X) = |{t 2 T | X ✓ t}|

Support for association rule X) Y:

supp(X) Y) =
supp(X [Y)

|T |

Coverage of rule X) Y:

coverage (X) Y) = supp(X)

Confidence of rule X) Y:

conf(X) Y) =
supp(X [Y)

supp(X)

Leverage of rule) Y:

leverage (X) Y) = supp(X) Y)� supp(X) ⇤ supp(Y)

Lift of rule) Y:

lift(X) Y) =
supp(X [Y)

supp(X) ⇤ supp(Y)
=

conf(X) Y)

supp(Y)

2.4.2 Apriori Algorithm

Apriori algorithm [2] is one of the most traditional algorithms to find frequent patterns

of the Boolean rules. The core of apriori algorithm is using breath-first search to

generate itemsets that satisfies the minimum support requirement. The algorithm

starts from itemsets of minimum number of items and use BFS to traverse to higher

order. The pseudo code can be written as such:

L[1] = {frequent 1-itemsets};

9

for (k=2; L[k-1] != 0; k ++) do begin

// perform self-joining

C[k] = getUnion(L[k-1])

// remove pruned supersets

C[k] = pruning(C[k])

// get itemsets that satisfy minSup

L[k] = getAboveMinSup(C[k], minSup)

end

return Lk (union)

2.4.3 Equivalence CLAss Transformation

Equivalence CLAss Transformation(ECLAT) [20][21] is a depth first search algorithm

similar to Apriori algorithm. It makes use of a transaction ID (tid) list and uses this

list to grow the set of itemsets by creating new itemsets from intersection of rows

in tid list. ECLAT is a faster algorithm by does not provide some metrics that are

available in Apriori algorithm, such as Confidence and Lift.

2.4.4 Frequent Pattern Growth

Frequent Pattern Growth technique achieves the same task by using a tree structure.

It uses an extended prefix-tree structure to store the information of the frequent

patterns. With this technique, it is possible to reduce dataset visits, and it adopts a

pattern-fragment growth method to prevent generation of large number of sets.

2.5 Poisson Factorization

Poisson factorization[8] is a technique frequently used to represent user-item inter-

action by assigning a latent variable for each user and item. An example of the

interaction is user preferences for items, for example a customer that has only bought

vegetarian products are more likely to purchase vegetables than meat. This extracted

10

preference can be used for recommendation for potential purchases or can be used to

make recommendation for similar customers.

The mathematical model makes the following assumptions:

1. User: user’s preferences follow Gamma distribution and is reflected in past

shopping activity

✓uk ⇠ Gamma (a, ⇠u) .

2. Item: item property follows Gamma distribution and can be extracted from

item popularity (purchase records)

�ik ⇠ Gamma (c, ⌘i)

3. User-Item: user and item pair relationship can be expressed as Poisson distri-

bution over user preference and item property

yui ⇠ Poisson
�
✓
>
u �i

�

2.6 Exponential Family Embedding

Exponential Family Embedding[15] is a group of method that originated from the

study of natural language processing(NLP). The idea came from word embedding

[13], and the concept of embedding is extended for other highly-relational datasets.

The structure of the embedding is composed of the following elements:

1. Context Ci

2. Conditional exponential family

xi | xci ⇠ ExpFam (⌘i (xci) , t (xi))

3. Embedding structure

11

4. Objective Function

L(⇢,↵) =
IX

i=1

�
⌘
>
i t (xi)� a (⌘i)

�
+ log p(⇢) + log p(↵)

In the context of this paper, the Context is reference to other data points (pur-

chases). The Conditional Exponential Family are exponential probability functions

that model the probability of a data point belonging to a context. The embedding is

the structure of shared vectors, and in this case, each product shares 1 latent variable.

This method is commonly used for finding relationships between items, such as

the similarity or the likelihood of the set of items appear in market baskets together.

12

Chapter 3

Previous Work

3.1 Shopper model

This thesis is largely based on the SHOPPER[16] model, which is a sequential prob-

abilistic model for market baskets analysis.

The SHOPPER model is derived from the sequential steps that customers take

when shopping, and it combines machine learning techniques with economics theory

to create a structured generative model. In general, the SHOPPER model makes

the assumption that customer maximize the utility of the current market basket by

selecting from all the items available the one that increases the utility by the most.

The utility is modeled as a log-linear function of latent variables of items. And the

latent variables includes item popularity, user preference, price sensitivity, seasonal

effect and item-item relations.

The following equation describing the latent variables:

 tc = �c + ✓
T
ut↵c � �

T
ut�c log (rtc) + �

T
wtµc

This equation calculates the utility that item c add to the trip t for the customer.

The variables of the function are as follows:

1. �c: the popularity of item c in the dataset

13

2. ✓u: the user latent vector

3. ↵c: item latent vector

4. ✓Tut↵c: the relationship between user u and item c, the dot product can be viewed

as the user preference for the item

5. �Tut�c log (rtc): price sensitivity of item c based on a user latent variable �ut

6. �Twtµc: describes the seasonality of the item, �Twt is time latent variable and µc

is item latent variable

The model also takes into account of item to item interactions, including similarity,

frequent occurrence in same shopping trip etc. The equation used to calculate the

item-item effects is as follows:

 (c, yt,i�1) = tc + ⇢
T
c

1

i� 1

i�1X

j=1

↵ytj

!

1. ⇢c: latent variable of selected item c

2. ⇢Tc ↵c0 : the increase in utility of buying c given c’ in basket

The above equation describes the utility of a basket after adding the selected item

c. The second term describes the utility of item c with consideration of all items

previously selected, and the term is added to the previous total utility to measure the

current total utility.

Random Utility Model is used to choose from the calculated utility:

maxUt,c (yt,i�1) = (c, yt,i�1) + ✏t,c

✏t,c is the random utility, and is used to model un-considered factors in the model

The probability of customer choosing the item is:

p (yti = c | yt,i�1) =
exp { (c, yt,i�1)}P

c0 /2yt,i�1
exp { (c0, yt,i�1)}

14

And finally, the decision making step is modeled as

eUt (Yt) =
X

c2Yt

 tc +
1

|Yt|� 1

X

(c,c0)2Yt⇥Yt:c0 6=c

vc0,c

The structure of the SHOPPER model can be represented as shown in Figure 3-1

Figure 3-1: SHOPPER[9]

15

3.2 VGG19

VGG19[19] is a convolutional neural network that has 19 layers in total (16 convo-

lution layers, 3 Fully connected layer, 5 MaxPool layers and 1 SoftMax layer), the

layers configuration are shown in Figure 3-2.

The Keras model using the VGG19 architecture is trained on the ImgaeNet dataset

and is used for image feature extraction in the scope of this paper.

Figure 3-2: VGG19 Architecture[14]

16

Chapter 4

Experiments

4.1 Data

The dataset chosen for the experiment is the HM Personalized Fashion Recommenda-

tions hosted on Kaggle[1]. The HM dataset is a rather large dataset consist of close

to 32 millions records of purchase, over 100k numbers of different products. And

a unique feature of this dataset is that it provides image for almost each products

appeared in the dataset.

17

4.1.1 Data Description

transactions_train.csv:

Column Data Type Description
t_dat Time Date that the transaction took place
customer_id String Unique identification number for customers,

this id is shared in customers.csv
article_id int Unique identification number for products, this

id is shared in article.csv
price int the price that corresponding product was sold at

in the particular basket, the price of product is
not constant throughout the time

sales_channel_id binary indicates whether the transaction happened on-
line or in physical retail store, which one the val-
ues correspond to is not explained

Table 4.1: Transaction Format

18

customers.csv:

Column Data Type Description
customer_id String Unique identification number for cus-

tomers, this id is shared in transac-
tions_train.csv

FN Binary A column of binary data that is not ex-
plained, has over 50% missing values

Active Binary Active accounts that has recent purchases
have this column set to 1, other wise the
value is Nan, this column is useful for fil-
tering useless account information

club_member_status Categorical indicates if the customer is a member of
H&M, this column has other values that
are not explained, and this column was
never used in the experiments

fashion_news_frequency Categorical Categorical data that indicates whether
the user receives news from H&M

age int age of customer
postal_code String hash of postal code of the user, can be

used for geographical information

Table 4.2: Customer Features

19

articles.csv:

Column Data Type Description
article_id String Unique identification number for ar-

ticle, this id is shared in transac-
tions_train.csv

productcode int the assigned unique number for the
product corresponding to the name of
its image in the image folder

prodname String descriptive name of the product
product_type_no int the number that represents the cate-

gory that the product belongs to, this
is used as group for the product in
baseline experiment

product_type_name String the name of the product type corre-
sponding to the previous column

product_group_name String similar to product type but has less
number of unique values

graphical_appearance_no int a number that is related to the ap-
pearance, no explanation is provided

graphical_appearance_no int a number that is related to the ap-
pearance/material of the product

graphical_appearance_name String name of the corresponding appear-
ance number

colour_group_code int integer identifier of the color of prod-
uct

colour_group_name String name of the color

Table 4.3: Item Features

Not all features provided for articles are listed in the table. Most irrelevant features

to this experiment is left out.

20

image/: The images provided are formatted to similar width but the dimensions

are not guaranteed to be the same, as shown the Figure 4-1 and Figure 4-2.

Figure 4-1: Example Data 1

Figure 4-2: Example Data 2

21

4.2 Setup

4.2.1 Hardware

The experiments in this paper were all performed on personal computer using the

following hardware:

1. CPU: Intel(R) Core(TM) i9-8950HK CPU @ 2.90GHz, 2900 MHz

2. RAM: 32GM RAM

3. GPU: Nvidia GeForce GTX 1080 Mobile

4. Operating System: Arch-Linux

5. Storage: 500GB SSD

4.2.2 Software

The experiments done for this thesis involves many components. Programs used

in the experiments are written in C++/CUDA and Python. And since part of the

implementation is based on the original SHOPPER model, and uses pretrained model,

many dependencies are used to be able to run the preexisting work.

For python environment:

1. Python 3.9

2. Numpy 1.20.3

3. Pytorch

4. Pymc3

5. Sklearn

6. Keras

For CUDA environment:

1. CUDA compiler driver (NVCC)

22

4.3 Implementation

4.3.1 Preprocessing

The H&M dataset is relativly complex with many features that are not necessary

within the scope of this paper. Hence, only some of the provided features are selected,

and a new smaller dataset is created.

The features selected to be part of the smaller dataset used for the experiments

include:

1. t_dat

2. article_id

3. customer_id

4. price

5. product_type_no

6. product_code

7. image

And as mentioned previously, the original H&M dataset has over 31 millions of

transactions. And if all of the available data points are used for the experiments, the

training time be too long. Hence, around 5% of the original dataset was randomly

selected for the experiments.

The transactions are formatted such that each transaction only contain one prod-

uct. This format results in multiple rows belong to the same basket. And since "true

basket" was not provided in the dataset, it is assumed that for any transactions that

happen on the same day and is done by the same customer, the transactions belong

to the same market basket. It is also necessary to mention that since the feature

"sales_channel_id" was discarded in earlier steps, all transactions are assumed to

have the same sales channel. The transactions are then grouped by the date and

23

customer into baskets. After the baskets are created, the baskets are then randomly

selected to form the new dataset.

With the new dataset created, it is then necessary to format the dataset into the

format that the original SHOPPER implementation in CUDA accepts:

Train/Test/Validation:

1. user_id

2. item_id

3. session_id

4. quantity

The quantity for each row are 1 since the dataset was expanded after grouped into

baskets, and it was mentioned in the original SHOPPER documention that the quan-

tity is indeed ignored internally. Price:

1. item_id

2. session_id

3. price

One of the key requirements for the dataset format is that prices for each item

has to be available for all sessions that appears in the transactions.

24

However, this rises the problem that with the number of transactions reduced, the

price index became sparser. Even with the original dataset, it is clearly impossible

that prices are available for any item-session combinations.

Other assumption is made so that the dataset can be formatted to meet the

requirement: the price of any item is assumed to be constant if no price change is

specified. This assumption allows the price to be filled by previous price of the item.

However, it is also possible that no previous purchase of an item had happened at a

given time, and it is necessary to assume that previous price of the item is the same

as the first available price.

With the 2 assumptions made, the dataset can be formatted in the desired format.

Seasons:

1. session_id

2. week_id,

3. day_id

4. hour_id

This part of the dataset is created by getting the corresponding week number from

the date of each session, and the day and hour are filled with 0 since the two fields

are internally ignored.

Item Groups:

1. item_id

25

2. group_id

The item-group mapping is used to enforce item-item relationship such that items

of the same group share certain parameters. Multiple approaches were tested to

generate the item-group mapping.

4.3.2 Baseline Model

The model is developed using traditional architecture, and is intended to be used

as a baseline comparison for models based on the SHOPPER model. The general

structure of the model is presented in the pseudo code below, and it contains 3

convolution layers and has 1 activation layer using the LeakyReLu function between

two convolution layers.

Baseline(

(article_emb): Embedding(72582, 512)

(top): Sequential(

(0): Conv1d(3, 32, kernel_size=(1,), stride=(1,))

(1): LeakyReLU(negative_slope=0.01)

(2): Conv1d(32, 8, kernel_size=(1,), stride=(1,))

(3): LeakyReLU(negative_slope=0.01)

(4): Conv1d(8, 1, kernel_size=(1,), stride=(1,))

)

)

The data used for this model follows the same format from preprocessing so that

all models are trained on the same dataset.

26

4.3.3 Comparison Sets

Constraints are implemented on some of the item latent variables so that items within

the same group share the same latent variable, thereby changing the embedding

structure in the model. The price variable �c and season variable Hlcc are shared

across groups.

Different grouping methods are tested and compared:

1. Group by item number

2. Group by Product Type

3. Group by Department

4. Group by VGG-19 Similarity (0.7)

5. Group by VGG-19 Similarity (0.55)

The VGG-19 trained model on Keras is used for extracting image feature vectors,

the last two layers are removed and the extracted features are compared under cosine

distance metrics. Items with similarity score over the selected threshold are grouped

into same set, and each set uses the first element as representation. The sets are

constructed using disjoint sets method.

The two different grouping method using VGG-19 similarity has different thresh-

olds, the first one has higher threshold at 0.7, and the second one has 0.55.

27

Chapter 5

Results and Analysis

5.1 Baseline

Since the dataset chosen for the experiment (H&M dataset) is relatively new and only

a smaller subset of the dataset is used for the experiment, there is no previous work

that can be used for comparison. Hence, it is important that a baseline model is

created and trained on the same dataset. And the performance of the baseline model

needs to be studied so that a reasonable conclusion can be made for SHOPPER

model.

The baseline model, as described in the earlier section, is a relatively simple model

that is only composed of 3 convolutional layers with activation layer after each con-

volution.

The training setup of the baseline model used during the experiment has the

following parameters:

1. Batch Size: 128

2. Shuffle: True

3. Iteration per Epochs: 2344

4. Epochs: 5

28

Figure 5-1: Baseline Loss

The loss during training is shown in Figure 5-1. It is quite obvious that there is

a sudden drop in the loss during training, and the drop also happened quite early in

the training process. This normally indicates that right after the 2000 iteration, the

learning rate was reduced and the model was allowed to traverse through the weight

space in more granular fashion.

29

5.2 ELBO

The evidence lower bound(ELBO) graph is not generated by the original SHOPPER

implementation, and the python port of SHOPPER model was used to generate the

ELBO graph. Given the significant training speed difference, the model was trained

for smaller number of iterations.

The ELBO is a way to calculate the lower bound for the log-likelihood of obser-

vatioins, and as shown in the ELBO plot, the SHOPPER model using the grouping

method 1 converge slowly, and this would help understand the results in the following

part of the chapter.

Figure 5-2: ELBO

30

5.3 Mean Average Precision

The task of the models are to predict the 12 items that the customer is most likely

to buy in the week after the end date of the dataset. Hence, the predicted output

cannot be calculated using the standard Accuracy/Precision method. The method

used to score the final prediction of the models is Mean Average Precision, and with

12 entries, the score can be calculated as the following:

MAP@12 =
1

U

UX

u=1

1

min(m, 12)

min(n,12)X

k=1

P (k)⇥ rel(k)

10,000 Iterations

Baseline Item Num-
ber

Product
Type

Department
No

VGG-19
(0.75)

VGG-19
(0.55)

0.0207 0.0219 0.0226 0.0229 0.0221 0.02

Table 5.1: Results @ 10000 Iterations

At 10000 interactions, the MAP12 scores for all methods are shown above. It is

not surprising to see that SHOPPER based model performed better than the baseline

method by a decent margin. However, within all the SHOPPER based model, the one

using the default feature from the original dataset "Product_Type_no" performed

only marginally worse than the model using item-group derived from image feature

vector.

Since from the definition of SHOPPER model, we can tell that the item group

is used to enforce item-item relationship, making certain latent variables shared be-

tween different items. Using the Product type number as item group means that it

is less likely that products share the same group, resulting in less strict item-item

relationship, and the latent variables are capable of representing the relationships.

The VGG-19 method with threshold set at 0.75 out performs itself when threshold

31

set at 0.55, this also reinforces the hypothesis that large item-groups could potentially

penalize model performance.

However, comparing the different method of creating item groups, the ones using

provided features over performed the ones using similarity scores. The two methods

using features provided in the dataset are the Product Type and the Department No

columns, and the Department No group performs significantly better than the other.

The product type number feature has under 800 categories while the department

number has over 7000 unique values. It is suspected that too many items are sharing

the same group using the product type number, which makes the price and season

feature has larger error, resulting in less precision.

Comparing the VGG-19 methods to the item number grouping, which is an one-

to-one map to each item and makes the model the same as original SHOPPER model

without any modified structure, the similarity method with threshold at 0.75 per-

formed better than original model. However, the same structure but with thresh-

old 0.55 performed worse than the baseline model. An observation on the grouping

method is that with threshold at 0.55, there was only 49 groups, which is significantly

less than other grouping methods.

50,000 Iterations

Baseline Item Num-
ber

Product
Type

Department
No

VGG-19
(0.75)

VGG-19
(0.55)

0.0211 0.0232 0.0228 0.0230 0.0229 0.0217

Table 5.2: Results @ 50000 Iterations

At 50000 iterations, the original SHOPPER with no constraints performs better

than the other methods, and is able to achieve significantly higher MAP score com-

pared to 10000 iterations. This result aligns with the ELBO plot of the model, where

it can be seen that at 10000 iterations, the lower bound has not converge, indicating

that more iterations is required.

32

The MAP score for VGG-19(0.75) is relatively close to that of using provided

features(Product Type Department Number). Compared to experiments done at

10000 iterations, this method achieved decent improvement and behaved similar to

the Item Number group. Similarity group with threshold at 0.55 continued to under

perform but has higher precision over baseline model.

33

Chapter 6

Conclusion

In this thesis, we proposed utilizing pre-trained convolutional neural network to cal-

culate similarity scores between items, when image of item is available. This further

enhances the idea of embedding preexisting knowledge into the SHOPPER model.

The core idea is similar to that of the original SHOPPER model, which is to combine

theories in economy and machine learning techniques to achieve better performance.

Using image feature vector for item-group relation makes the model fits to the

observations faster than without the shared latent variable. The grouping method is

compared to other grouping methods using manually labelled features. The method

using similarity score behaved similarly to the other methods. This suggests that fea-

ture extraction using trained models has embedding information similar to the manual

labels, and invites more discussion to similar ideas using image feature as replacement

for manual labelling when manual labels are not available. We also discovered that

large item-groups could have negative impact on the model’s performance. More

tuning could have been done to further optimise the threshold value, and it is also

possible to combine other provided feature vectors with image similarity. However,

the experiments are largely limited by the processing speed and fast storage (RAM

and VRAM) of the setup.

34

Appendix A

Code Blocks

A.1 Prepossessing

class PreProcess(object):

def __init__(self):

self.sess = None

self.validation = None

self.test = None

self.train = None

self.groups = None

self.codes = None

self.uniques = None

self.data = None

self.transaction = None

self.price = None

self.baskets = None

self.articles = None

def load_transaction(self, transaction: pd.DataFrame, entries: int =

10000):

35

store transaction variable

self.transaction = transaction

self.transaction[’price’] = self.transaction[’price’].apply(lambda

x: round(x * 1000, 2))

self.baskets = self.transaction.groupby([’t_dat’, ’customer_id’]) \

.agg(lambda x: list(x))[[’article_id’, ’price’]].reset_index()

self.baskets.index = self.baskets.index.set_names([’session_id’])

self.baskets = self.baskets.reset_index()

self.codes, self.uniques = pd.factorize(self.baskets[’customer_id’])

self.baskets[’customer_id’] = self.codes

self.baskets[’t_dat’] = pd.to_datetime(self.baskets[’t_dat’],

infer_datetime_format=True)

self.baskets[’t_dat’] = self.baskets[’t_dat’].dt.week

self.data = self.baskets[[’customer_id’, ’article_id’, ’session_id’]]

self.data[’quantity’] = 1

self.data = self.data.explode(’article_id’)

self.data[’article_id’] = pd.to_numeric(self.data[’article_id’])

self.price = self.baskets[[’article_id’, ’session_id’, ’price’]]

36

self.price = self.price.apply(lambda x: x.explode() if x.name in

[’article_id’, ’price’] else x)

self.combo_df =

pd.DataFrame(data=list(product(self.price[’article_id’],

self.price[’session_id’])), columns=[’article_id’,’session_id’])

self.combo_df[’price’] = np.nan

self.combo_df.set_index([’article_id’,’session_id’], inplace=True)

self.combo_df =

self.combo_df[~self.combo_df.index.duplicated(keep=’first’)]

df1.set_index([’Code’, ’Name’], inplace=True)

self.price = self.price.set_index([’article_id’,’session_id’])

self.price = self.price[~self.price.index.duplicated(keep=’first’)]

self.combo_df.update(self.price)

self.combo_df.reset_index(inplace=True)

self.combo_df[’price’]=self.combo_df.groupby([’article_id’],as_index=False,

sort=False).transform(lambda x: x.ffill().bfill())[’price’]

self.sess = self.baskets[[’session_id’, ’t_dat’]]

self.sess[’day’] = 0

self.sess[’hrs’] = 0

def load_articles(self, article):

self.groups = article[[’article_id’, ’product_type_no’]]

self.articles = article

def split(self, train=0.7, test=0.15, validation=0.15):

37

self.train, rest = train_test_split(self.data, train_size=train)

self.test, self.validation = train_test_split(rest, train_size=test)

def save(self, path=’./data’):

train_path = os.path.join(path, ’train.tsv’)

test_path = os.path.join(path, ’test.tsv’)

validation_path = os.path.join(path, ’validation.tsv’)

price_path = os.path.join(path, ’item_sess_price.tsv’)

session_path = os.path.join(path, ’sess_days.tsv’)

group_path = os.path.join(path, ’itemGroup.tsv’)

self.train.to_csv(train_path, sep="\t", index=False, header=False)

self.test.to_csv(test_path, sep="\t", index=False, header=False)

self.validation.to_csv(validation_path, sep="\t", index=False,

header=False)

self.combo_df.to_csv(price_path, sep="\t", index=False, header=False)

self.sess.to_csv(session_path, sep="\t", index=False, header=False)

self.groups.to_csv(group_path, sep="\t", index=False, header=False)

A.2 Shopper

def _prepare_data(data: pd.DataFrame):

"""Preprocessing that used to encode all input

"""

prices = data[’price’]

order = data.groupby([’user_id’, ’session_id’])[’item_id’]\

38

.cumcount()

sf = (order.apply(lambda x: 1 / x if x > 0 else 0)

.to_numpy(dtype=’float32’))

obs = (preprocessing.LabelEncoder()

.fit_transform(data.index)

.astype(’int32’))

items = (preprocessing.LabelEncoder()

.fit_transform(data[’item_id’])

.astype(’int32’))

users = (preprocessing.LabelEncoder()

.fit_transform(data[’user_id’])

.astype(’int32’))

labels = (preprocessing.LabelEncoder()

.fit_transform(data[’item_id’])

.astype(’int32’))

return {’prices’: prices,

’order’: order,

’sf’: sf,

’obs’: obs,

’items’: items,

’users’: users,

’labels’: labels}

class Shopper:

"""Shopper using PyMC3 for generating graphs

39

T = trips;

U = users;

C = items;

W = weeks.

"""

def __init__(self,

data: pd.DataFrame,

K: int = 50,

price_dim: int = 10,

price_dtype: str = ’float32’,

rho_var: float = 1,

alpha_var: float = 1,

lambda_var: float = 1,

theta_var: float = 1,

delta_var: float = 0.01,

mu_var: float = 0.01,

gamma_rate: float = 1000,

gamma_shape: float = 100,

beta_rate: float = 1000,

beta_shape: float = 100):

"""Initializes Shopper instance.

Args:

data (Pandas DataFrame):

Observed trips data (number of trips by 4).

DataFrame with columns: user_id, item_id, session_id,

and price.

K (int):

Number of latent factors for alpha_c, rho_c, and theta_u;

40

defaults to 50.

price_dim (int):

Number of latent factors for price vectors gamma_u and beta_c;

defaults to 10.

price_dtype (str):

The datatype used for prices; defaults to float32.

rho_var (float):

Prior variance over rho_c; defaults to 1.

alpha_var (float):

Prior variance over alpha_c; defaults to 1.

theta_var (float):

Prior variance over theta_u; defaults to 1.

lambda_var (float):

Prior variance over lambda_c; defaults to 1.

delta_var (float):

Prior variance over delta_w; defaults to 0.01.

mu_var (float):

Prior variance over mu_c; defaults to 0.01.

gamma_rate (float):

Prior rate over gamma_u; defaults to 1000.

gamma_shape (float):

Prior shape over gamma_u; defaults to 100.

41

beta_rate (float):

Prior rate over beta_c; defaults to 1000.

beta_shape (float):

Prior shape over beta_c; defaults to 100.

"""

Set data

self.data = data

Number of items

C = data[’item_id’].nunique()

Number of users

U = data[’user_id’].nunique()

Get preprocessed data variables

data_vars = _prepare_data(data)

logging.info(’Building the Shopper model...’)

with pm.Model() as shopper:

Data

prices = pm.Data(’prices’, data_vars[’prices’])

order = pm.Data(’order’, data_vars[’order’])

sf = pm.Data(’sf’, data_vars[’sf’])

obs = pm.Data(’obs’, data_vars[’obs’])

articles = pm.Data(’articles’, data_vars[’articles’])

users = pm.Data(’users’, data_vars[’users’])

labels = pm.Data(’labels’, data_vars[’labels’])

Latent variables

per item interaction coefficients

rho_c = pm.Normal(’rho_c’,

42

mu=0,

sigma=rho_var,

shape=(K, C),

dtype=’float32’)

per item attributes

alpha_c = pm.Normal(’alpha_c’,

mu=0,

sigma=alpha_var,

shape=(K, C),

dtype=’float32’)

per user preferences

theta_u = pm.Normal(’theta_u’,

mu=0,

sigma=theta_var,

shape=(K, U),

dtype=’float32’)

per item popularity

lambda_c = pm.Normal(’lambda_c’,

mu=0,

sigma=lambda_var,

shape=C,

dtype=’float32’)

per user price sensitivities

gamma_u = pm.Gamma(’gamma_u’,

beta=gamma_rate,

alpha=gamma_shape,

shape=(price_dim, U),

dtype=’float32’)

per item price sensitivities

beta_c = pm.Gamma(’beta_c’,

beta=beta_rate,

alpha=beta_shape,

43

shape=(price_dim, C),

dtype=’float32’)

Baseline utility per basket per item

Item popularity + Consumer Preferences - Price Effects

Note: variation comes from customer index and item prices

psi_tc = pm.Deterministic(

’psi_tc’,

lambda_c +

pm.math.dot(theta_u[:, users].T, alpha_c) -

pm.math.dot(np.log(prices).astype(price_dtype),

pm.math.dot(gamma_u[:, users].T, beta_c))

)

logging.info(’psi_tc shape:

{}’.format(psi_tc.tag.test_value.shape))

sum^{i-1}_j [alpha_{y_tj}]

def basket_items_attr(omega_prev, idx, alpha_c, order):

If first item in basket

if tt.eq(order[idx], 0):

No price-attributes interaction effects

omega_ti = tt.zeros(K)

else:

omega_ti = omega_prev + alpha_c[:, idx-1]

return omega_ti

omega_ti initial value

omega_0 = tt.zeros(K)

omega_ti = tt.vector(’omega_ti’)

omega_ti, updates = theano.scan(fn=basket_items_attr,

outputs_info=omega_0,

non_sequences=[obs,

44

alpha_c,

order],

n_steps=obs.shape[0])

Mean utility per basket per item

Psi_tci = pm.Deterministic(

’Psi_tci’,

psi_tc + pm.math.dot(

sf[obs],

pm.math.dot(omega_ti[obs-1, :], rho_c))

)

logging.info(’Psi_tci shape: {}’.format(

Psi_tci.tag.test_value.shape))

Softmax likelihood p(y_ti = c | y_t0, y_t1, ..., y_ti-1)

p = pm.Deterministic(

’p’,

tt.nnet.softmax(Psi_tci[articles])

)

logging.info(’p shape: {}’.format(p.tag.test_value.shape))

y = pm.Categorical(’y’, p=p, observed=labels)

logging.info(’y shape: {}’.format(y.tag.test_value.shape))

logging.info("Done building the Shopper model.")

Set shopper to model attribute

self.model = shopper

def fit(self,

N,

diff=’relative’,

random_seed=42,

**kwargs):

"""Estimate parameters using Bayesian inference. using ADVI

Returns ShopperResults instance.

45

Args:

N (int):

Number of iterations (ADVI).

diff (str):

Requires method to be ADVI. The difference type used

to check convergence in the mean of the ADVI approximation

random_seed (int):

Random seed; defaults to 42.

"""

model = self.model

with model:

callback = CheckParametersConvergence(diff=diff)

res = pm.fit(n=N,

method=’advi’,

callbacks=[callback],

random_seed=random_seed,

**kwargs)

return ShopperResults(model, res)

class ShopperResults:

"""Results class for a fitted Shopper model.

Attributes:

model (PyMC3 Model):

Shopper model.

res (PyMC3 results instance):

If MCMC, then requires arviz.InferenceData or

46

MultiTrace.InferenceData. Else if ADVI, then

requires pymc3.variational.opvi.Approximation.

"""

def __init__(self, model, res):

self.model = model

self.res = res

def summary(self, **kwargs):

"""Returns text-based output of common posterior statistics.

Requires ’draws’ (sample size to be drawn from posterior

distribution)

to be set in kwargs if model was fitted with ADVI.

"""

res = self.res

if ’variational’ in str(type(res)):

logging.info(’Sampling from posterior distribution...’)

trace = res.sample(draws=kwargs[’draws’])

logging.info(’Sampling complete.’)

logging.info(’Computing posterior statistics...’)

summary = az.summary(trace, kind=’stats’)

else:

summary = az.summary(res)

return summary

def trace_plot(self, **kwargs):

"""Returns the trace plot.

Requires ’draws’ (sample size to be drawn from posterior

distribution)

to be set in kwargs if model was fitted with ADVI.

"""

47

res = self.res

if ’variational’ in str(type(res)):

logging.info(’Sampling from posterior distribution...’)

trace = res.sample(draws=kwargs[’draws’])

logging.info(’Sampling complete.’)

plot = az.plot_trace(trace)

else:

plot = az.plot_trace(res)

return plot

def rhat(self):

"""Returns the Gelman-Rubin statistic.

Requires the Shopper model to be fitted with

MCMC sampling.

"""

return az.summary(self.res)

def energy_plot(self):

"""Returns energy plot to check for convergence.

Commonly used for high-dimensional models where it

is too cumbersome to examine all parameter’s traces.

Requires the Shopper model to be fitted with

MCMC sampling.

"""

return az.plot_energy(self.res)

def elbo_plot(self):

"""Returns trace plot of ADVI’s objective function (ELBO).

Requires the Shopper model to be fitted with ADVI.

48

"""

fig = plt.figure()

plt.plot(self.res.hist)

plt.ylabel(’ELBO’)

plt.xlabel(’n iterations’)

return fig

def predict(self, data, random_seed=42, **kwargs):

"""Returns predicted probabilities of outcomes for samples in X.

"""

model = copy.deepcopy(self.model)

res = self.res

data_vars = _prepare_data(data)

data_vars.pop(’labels’) # Remove labels

with model:

Pass new values to model

pm.set_data(data_vars)

Use the updated values and

predict outcomes and probabilities

if ’variational’ in str(type(res)):

logging.info(’Sampling from posterior distribution...’)

trace = res.sample(draws=kwargs[’draws’])

logging.info(’Sampling complete.’)

posterior_predictive = pm.sample_posterior_predictive(

trace,

random_seed=random_seed

)

else:

posterior_predictive = pm.sample_posterior_predictive(

res,

random_seed=random_seed

)

49

return posterior_predictive

def score(self, data):

"""Returns the mean accuracy on the given test data and labels.

"""

pass

if __name__ == "__main__":

pass

A.3 Baseline

def _prepare_data(df, week):

trans_rd = df[(df["week"] > week) & (df["week"] <= week + WEEK_MAX)]

trans_rd = trans_rd.groupby("customer_id").agg({"article_id": list,

"week": list}).reset_index()

trans_rd.rename(columns={"week": ’week_h’}, inplace=True)

target_df = df[df["week"] == week]

target_df = target_df.groupby("customer_id").agg({"article_id":

list}).reset_index()

target_df.rename(columns={"article_id": "target"}, inplace=True)

target_df["week"] = week

return target_df.merge(trans_rd, on="customer_id", how="left")

class Baseline(Dataset):

def __init__(self, df, seq_len, is_test=False):

self.df = df.reset_index(drop=True)

self.seq_len = seq_len

50

self.is_test = is_test

def __len__(self):

return self.df.shape[0]

def __getitem__(self, index):

row = self.df.iloc[index]

if self.is_test:

target = torch.zeros(2).float()

else:

target = torch.zeros(len(article_ids)).float()

for t in row.target:

target[t] = 1.0

article_hist = torch.zeros(self.seq_len).long()

week_hist = torch.ones(self.seq_len).float()

if isinstance(row.article_id, list):

if len(row.article_id) >= self.seq_len:

article_hist =

torch.LongTensor(row.article_id[-self.seq_len:])

week_hist =

(torch.LongTensor(row.week_history[-self.seq_len:]) -

row.week) / WEEK_MAX / 2

else:

article_hist[-len(row.article_id):] =

torch.LongTensor(row.article_id)

week_hist[-len(row.article_id):] =

(torch.LongTensor(row.week_history) - row.week) /

WEEK_MAX / 2

51

return article_hist, week_hist, target

A.4 Image Feature Vector

def load_images_from_folder(folder, image_size = (1166, 1750)):

images = []

for filename in os.listdir(folder):

img = cv2.imread(os.path.join(folder,filename))

img = load_img(os.path.join(folder, filename),

target_size=image_size)

img = img_to_array(img)

img = img.reshape((1,) + img.shape)

if img is not None:

images.append(img)

return images

def get_all_images(w, h):

images1 = load_images_from_folder(’./hm/images/010’, (w,h))

images2 = load_images_from_folder(’./hm/images/013’, (w,h))

images3 = load_images_from_folder(’./hm/images/015’, (w,h))

images4 = load_images_from_folder(’./hm/images/018’, (w,h))

images5 = load_images_from_folder(’./hm/images/020’, (w,h))

images6 = load_images_from_folder(’./hm/images/027’, (w,h))

all_imgs_arr = np.array([images1 + images2 + images3 + images4 + images5

+ images6])

images1 = load_images_from_folder(’./hm/images/010’, (w, h))

#

all_imgs_arr = np.array([images1])

52

print(all_imgs_arr.shape)

return all_imgs_arr

def create_model(model_file):

loading vgg16 model and using all the layers until the 2 to the last

to use all the learned cnn layers

ssl._create_default_https_context = ssl._create_unverified_context

vgg = VGG19(include_top=True)

model2 = Model(vgg.input, vgg.layers[-2].output)

model2.save(model_file) # saving the model just in case

return model2

def get_model(model_file):

model = None

try:

model = load_model(model_file)

except:

model = create_model(model_file)

return model

def get_preds(all_imgs_arr, model):

preds_all = np.zeros((len(all_imgs_arr), 4096))

for j in range(all_imgs_arr.shape[0]):

preds_all[j] = model.predict(all_imgs_arr[j])

return preds_all

def load_images_preds(numpy_filepath):

This file is a saved file that has all the trained images and their

corresponding prediction from vgg16 model

53

data = np.load(numpy_filepath)

img = data[’images’]

preds = data[’preds’]

return img, preds

def show_img(array):

array = array.reshape(224,224,3)

numpy_image = img_to_array(array)

plt.imshow(np.uint8(numpy_image))

plt.show()

def load_images_from_file(filepath):

img = load_img(filepath, target_size=(224, 224))

img = img_to_array(img)

img = img.reshape((1,) + img.shape)

return img

def get_nearest_neighbor_and_similarity(preds1, K):

dims = 4096

n_nearest_neighbors = K+1

trees = 10000

file_index_to_file_vector = {}

build ann index

t = AnnoyIndex(dims, metric=’angular’)

for i in range(preds1.shape[0]):

file_vector = preds1[i]

file_index_to_file_vector[i] = file_vector

t.add_item(i, file_vector)

t.build(trees)

54

for i in range(preds1.shape[0]):

master_vector = file_index_to_file_vector[i]

named_nearest_neighbors = []

similarities = []

nearest_neighbors = t.get_nns_by_item(i, n_nearest_neighbors)

for j in nearest_neighbors:

print (j)

neighbor_vector = preds1[j]

similarity = 1 - spatial.distance.cosine(master_vector,

neighbor_vector)

rounded_similarity = int((similarity * 10000)) / 10000.0

similarities.append(rounded_similarity)

return similarities, nearest_neighbors

def get_similar_images(similarities, nearest_neighbors, images1):

j = 0

for i in nearest_neighbors:

show_img(images1[i])

print (similarities[j])

j+=1

55

Appendix B

Figures

Figure B-1: PDF Graph

Fig. B-1 is the graph of probability density function for the variables.

56

Bibliography

[1] H&M personalized fashion recommendations.
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-
recommendations. Accessed: 2022-05-09.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules in large databases. In Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB ’94, page 487–499, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[3] Dr. Shahid Bhat, Keshav Kansana, and Jenifur Majid. A review paper on e-
commerce. 02 2016.

[4] Rsquared Academy Blog. Practical introduction to market basket analysis –
asociation rules: R-bloggers, May 2019.

[5] Thomas G. Dietterich. Machine Learning, page 1056–1059. John Wiley and Sons
Ltd., GBR, 2003.

[6] Alan Eckhardt. Various aspects of user preference learning and recommender
systems. volume 471, pages 56–67, 01 2009.

[7] V. K. Gancheva. Market basket analysis of beauty products. 2013.

[8] Prem Gopalan, Jake M. Hofman, and David M. Blei. Scalable recommendation
with poisson factorization, 2013.

[9] Veronika Simoncikova Haseeb Warsi, Benedict Becker.

[10] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for
association rule mining — a general survey and comparison. SIGKDD Explor.
Newsl., 2(1):58–64, jun 2000.

[11] Manpreet Kaur and Shivani Kang. Market basket analysis: Identify the chang-
ing trends of market data using association rule mining. Procedia Computer
Science, 85:78–85, 2016. International Conference on Computational Modelling
and Security (CMS 2016).

[12] Puneet Manchanda, Asim Ansari, and Sunil Gupta. The "shopping basket":
A model for multicategory purchase incidence decisions. Marketing Science,
18(2):95–114, 1999.

57

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013.

[14] Rafid Mostafiz, Mohammad Motiur Rahman, A Islam, and Saeid Belkasim. ma-
chine learning knowledge extraction focal liver lesion detection in ultrasound
image using deep feature fusions and super resolution. Machine Learning and
Knowledge Extraction, 2, 07 2020.

[15] Maja R. Rudolph, Francisco J. R. Ruiz, Stephan Mandt, and David M. Blei.
Exponential family embeddings, 2016.

[16] Francisco J. R. Ruiz, Susan Athey, and David M. Blei. Shopper: A probabilistic
model of consumer choice with substitutes and complements, 2017.

[17] Kunal Shah, Akshaykumar Salunke, Saurabh Dongare, and Kisandas Antala.
Recommender systems: An overview of different approaches to recommenda-
tions. In 2017 International Conference on Innovations in Information, Embed-
ded and Communication Systems (ICIIECS), pages 1–4, 2017.

[18] Osvaldo Simeone. A very brief introduction to machine learning with applications
to communication systems. IEEE Transactions on Cognitive Communications
and Networking, 4(4):648–664, 2018.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2014.

[20] M.J. Zaki. Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering, 12(3):372–390, 2000.

[21] Mohammed J Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li.
New algorithms for fast discovery of association rules. Technical report, USA,
1997.

58

