
Cooper Union

Albert Nerken School of Engineering

Synchronization of Interference
to Facilitate Joint Detection

by

Andrew Apollonsky

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Engineering

May 5, 2014

Doctor Sam Keene, Advisor



THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE

AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate’s Thesis Advisor and

has received approval. It was submitted to the Dean of the School of Engineering and the

full Faculty, and was approved as partial fulfillment of the requirements for the degree of

Master of Engineering.



Acknowledgements

I would like to thank my advisor, Dr. Sam Keene, for his guidance and general

availability throughout this process. Without him pushing me, I’m certain that I would

not be where I am today. I would like to thank the rest of the faculty, friends and peers

at the Cooper Union Albert Nerken School of Engineering. A special thanks is due to

Nicolas Avrutin, who listened to some of my ideas and offered some of his own. Lastly,

I would like to thank my family; I would certainly be nowhere near here without my

parents, Alex and Nataly Apollonsky, my brothers Dimitry and Daniel, and my sister

Emilie.

i



Abstract

Interference-blind demodulation techniques fail often and lead to performance degra-

dation in systems with routine frame collisions. Performing joint detection on two in-

terfering frames, which would allow for the decoding of both despite the collision, could

yield performance improvements in wireless communication systems. This would lead to

fewer retransmissions, conserving system power, and allow for the replacement of cur-

rent MAC-layer collision management mechanisms such as the 802.11 RTS/CTS, which

introduce performance degredation due to overhead.

This paper proposes a system capable of resolving a frame collision with a time-

domain QAM modulation scheme in a quasi-static flat-fading channel with Additive

White Gaussian Noise (AWGN). The system detects the presence of the interferer in the

frame currently being decoded, and performs frequency, phase and gain synchronization

on the interferer while continuing to decode the primary frame. Once both frames are

synchronized, a joint detection algorithm is used to complete decoding of both frames.

Performance of the system is analyzed, and potential avenues for improvement in future

work are explored.

ii



Contents

1 Introduction 1

1.1 Motivation for Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 ZigZag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Interference Alignment . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Joint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Communication Basics 8

2.1 Digital Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Pulse Amplitude Modulation (PAM) . . . . . . . . . . . . . . . . 9

2.1.2 Phase-Shift Keying (PSK) . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Quadrature Amplitude Modulation (QAM) . . . . . . . . . . . . . 12

2.2 Signal Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Path Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Phase Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Doppler Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Multicarrier Modulation . . . . . . . . . . . . . . . . . . . . . . . 19

iii



2.3.2 Orthogonal Carriers . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 OFDM Transceiver Chain . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Space Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Time Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Space-Time Block Codes . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 MIMO (Multiple-Input Multiple-Output) . . . . . . . . . . . . . . . . . . 29

2.5.1 Linear Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 OSIC Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Near-ML Detection Schemes . . . . . . . . . . . . . . . . . . . . . 32

2.5.4 Relative Decoder Performance . . . . . . . . . . . . . . . . . . . . 35

3 The 802.11 Standard 37

3.1 PHY Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 MAC Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Hidden Node Problem . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Stochastic Optimization Algorithms 44

4.1 Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Measuring Algorithm Efficiency . . . . . . . . . . . . . . . . . . . 46

4.1.2 Noise Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.4 Measuring Convergence . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



4.2.1 Random Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Implementation 53

5.1 Interferer Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 No Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 SNR and SIR Prior Knowledge . . . . . . . . . . . . . . . . . . . 55

5.1.3 SNR Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Potential Improvements . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Joint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Plain Interference Demodulation . . . . . . . . . . . . . . . . . . . . . . . 65

6 System Performance 66

6.1 Interference Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 No SNR or SIR Knowledge . . . . . . . . . . . . . . . . . . . . . . 67

6.1.2 Full SIR and SNR Knowledge . . . . . . . . . . . . . . . . . . . . 69

6.1.3 Only SNR Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Joint Synchronization-Detection . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Base Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.2 Automatic Convergence . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.3 Modifying Solution Population Size . . . . . . . . . . . . . . . . . 77

6.2.4 BPSK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.5 16-QAM Modulation . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.6 16-QAM Modulation & m = 100 . . . . . . . . . . . . . . . . . . 81

v



6.3 Joint Detection Performance . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusions and Further Work 84

8 Appendix A: MATLAB Code 86

8.1 MIMO Decoder Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1.1 MIMO Plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1.2 MIMO Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1.3 Zero-Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.1.4 MMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.1.5 MMSE-SIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1.6 Minimum-Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1.7 QRM-MLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2 Interference System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2.1 System Plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2.2 Delay Estimation Plotter . . . . . . . . . . . . . . . . . . . . . . . 102

8.2.3 ROC Plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.4 Expected Error Magnitude Generator . . . . . . . . . . . . . . . . 110

8.2.5 Interference Detector I . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2.6 Interference Detector II . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2.7 Genetic Synchronization Algorithm . . . . . . . . . . . . . . . . . 113

8.2.8 Joint Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vi



List of Figures

1.1 Frame Collision Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 ZigZag first decodes chunk one in the first collision, uses it in the second

collision to decode chunk two, which it uses to decode chunk 3 in the first

collision, etc. [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Interference Alignment. The transmitters construct their waveforms such

that they are clearly seen as interference by unintended recipients. [10] . 5

2.1 Example of (a) baseband and (b) carrier-modulated PAM signals [15,

Fig. 3.2-2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Constellation diagrams for M=2, M=4 and M=8. [15, Fig. 3.2-3] . . . . . 11

2.3 Constellation diagram of QAM modulator. [15, Fig. 3.2-4] . . . . . . . . 13

2.4 Wideband Spectrum Subdivided into Subcarriers [15, Fig. 11.2-2] . . . . 20

2.5 Orthogonality of OFDM Spectrum [14, Fig. 12.12] . . . . . . . . . . . . . 21

2.6 OFDM [14, Fig. 12.7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Linear Combiner for SIMO System [14, Fig. 7.1] . . . . . . . . . . . . . . 25

2.8 MIMO System [17, Fig. 7.5] . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



2.9 OSIC for 4 Spatial Streams [19, Fig. 11.2] . . . . . . . . . . . . . . . . . 32

2.10 Sphere Demonstration [19, Fig. 11.5] . . . . . . . . . . . . . . . . . . . . 35

2.11 Comparison of MIMO Decoding Performance . . . . . . . . . . . . . . . 36

3.1 IEEE 802.11 a/n rate-1/2 convolutional encoder [17, Fig. 7.4] . . . . . . . 39

3.2 Puncturing for coding rate 5/6 [17, Fig. 7.5] . . . . . . . . . . . . . . . . 40

3.3 Hidden Node Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Example of an easy and hard problem for global optimization. [13, Fig. 1.2] 46

5.1 Expected error magnitude without interference . . . . . . . . . . . . . . . 57

5.2 Expected error magnitude with interference . . . . . . . . . . . . . . . . 57

5.3 Difference between the expected error magnitude for the cases with and

without interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Blind Interference Detection for SIR = –5dB . . . . . . . . . . . . . . . . 68

6.2 Blind Interference Detection for SIR = 0dB . . . . . . . . . . . . . . . . 68

6.3 Blind Interference Detection for SIR = 5dB . . . . . . . . . . . . . . . . 68

6.4 Blind Delay Estimation for SIR = 0dB . . . . . . . . . . . . . . . . . . . 68

6.5 SNR and SIR-Aware Interference Detection for SIR = –5dB . . . . . . . 70

6.6 SNR and SIR-Aware Interference Detection for SIR = 0dB . . . . . . . . 70

6.7 SNR and SIR-Aware Interference Detection for SIR = 5dB . . . . . . . . 70

6.8 SNR and SIR-Aware Delay Estimation . . . . . . . . . . . . . . . . . . . 70

6.9 SNR-Aware Interference Detection for SIR = 0dB . . . . . . . . . . . . . 71

viii



6.10 SNR-Aware Interference Detection for SIR = 5dB . . . . . . . . . . . . . 71

6.11 SNR-Aware Delay Estimation with SIR ∼ U(−10dB, 10dB) prior . . . . 71

6.12 SNR-Aware Delay Estimation with SIR ∼ U(−6dB, 6dB) prior . . . . . . 71

6.13 BER vs Eb/No and SIR for the base Joint Synchronization-Detection al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.14 Mean Error in the Frequency Offset Estimation Eb/No and SIR for Base

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.15 Mean-Squared Error in the Channel Gain Estimate vs Eb/No and SIR for

Base Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.16 Mean Error in the Frequency Offset EstimationEb/No and SIR for Convergence-

Checking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.17 Mean-Squared Error in the Channel Gain Estimate vs Eb/No and SIR for

Convergence-Checking Algorithm . . . . . . . . . . . . . . . . . . . . . . 75

6.18 BER vsEb/No and SIR for the Joint Synchronization-Detection Convergence-

Checking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.19 BER vs Eb/No and SIR for the Joint Synchronization-Detection for m = 30 77

6.20 Mean Error in the Frequency Offset Estimation Eb/No and SIR for m = 30 77

6.21 Mean-Squared Error in the Channel Gain Estimate vs Eb/No and SIR for

m = 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.22 BER vs Eb/No and SIR for the Joint Synchronization-Detection for BPSK

Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



6.23 Mean Error in the Frequency Offset Estimation Eb/No and SIR for BPSK

Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.24 Mean-Squared Error in the Channel Gain Estimate vs Eb/No and SIR for

BPSK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.25 BER vs Eb/No and SIR for the Joint Synchronization-Detection for 16-

QAM Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.26 Mean Error in the Frequency Offset Estimation Eb/No and SIR for 16-

QAM Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.27 Mean-Squared Error in the Channel Gain Estimate vs Eb/No and SIR for

16-QAM Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.28 BER vs Eb/No and SIR for the Joint Synchronization-Detection for 16-

QAM Modulation & m = 100 . . . . . . . . . . . . . . . . . . . . . . . . 81

6.29 Mean Error in the Frequency Offset Estimation Eb/No and SIR for 16-

QAM Modulation & m = 100 . . . . . . . . . . . . . . . . . . . . . . . . 81

6.30 Mean-Squared Error in the Channel Gain Estimate vs Eb/No and SIR for

16-QAM Modulation & m = 100 . . . . . . . . . . . . . . . . . . . . . . . 81

6.31 Joint Detection Performance for SIR = -5 dB . . . . . . . . . . . . . . . 83

6.32 Joint Detection Performance for SIR = 0 dB . . . . . . . . . . . . . . . . 83

6.33 Joint Detection Performance for SIR = 1 dB . . . . . . . . . . . . . . . . 83

6.34 Joint Detection Performance for SIR = 5 dB . . . . . . . . . . . . . . . . 83

x



Chapter 1

Introduction

1.1 Motivation for Research

The growth of wireless systems is expected to continue at a breakneck pace for the

next decade. Research efforts into expanding the capabilities of modern systems like

the 802.11 standard have focused on improving the efficacy of spatial multiplexing using

multiple-input and multiple-output (MIMO) systems [3] or extending the technology into

higher frequency bands [4]. However, many standards — particularly those for random

access networks — suffer from data loss due to frame collisions. Collisions necessitate

retransmission of the colliding frames, expending additional time and power. One such

cause for collisions is the hidden node problem, wherein two transmitters may both be

in range of the receiver but not in range of each other. When this occurs in the 802.11

standard and one frame is at a higher power than the other, then the weaker frame is

dropped, as it has a negligible effect on the received signal; however, if they are both of
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a similar power, both frames are rendered undecodable due to the interference [12].

Figure 1.1: Frame Collision Condition

The 802.11 standard attempts to address this problem by including the request-

to-send/clear-to-send (RTS/CTS) mechanism, in which if the data packet is sufficiently

long, transmitters send a short request-to-send (RTS) frame to the receiver to acquire

permission to begin transmission of a larger frame. The receiver times the acknowledging

clear-to-send (CTS) packets to ensure that when the full frames are transmitted, they

would not interfere with each other. There are several problems with this approach.

Firstly, the RTS/CTS mechanism causes overhead, degrading system performance even

when network congestion is low and collisions unlikely. Furthermore, the range over

which the receiver can return a CTS is smaller than that over which interference could

make a transmitted frame unrecoverable [2], making it an imperfect solution even in con-

gested networks. Alternative means of resolving collisions would then allow for higher

throughput in 802.11 networks, and a different receiver architecture is required to facili-

tate the detection of two interfering frames. Research to solve the problem of interference

is being done along several lines — including decoder architectures like ZigZag [7], col-

laborative transmission like Interference Alignment [9], and joint decoding of multiple

transmissions [1].
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1.1.1 ZigZag

One potential solution to this problem aimed squarely at the 802.11 case is ZigZag, a

receiver that can use the information received by receiving two separate collisions between

two packets to decode both. The algorithm requires that there are two separate collisions

of the same packets, which makes it a solution to only a small subset of all collisions.

One of the strengths of the algorithm is that it requires no changes to the 802.11 MAC

and introduces no overhead in the case of no collision. When packets collide for a second

time, ZigZag achieves the same performance as if the packets were scheduled in separate

time slots.

ZigZag exploits a basic characteristic of the 802.11 standard to achieve decoding.

802.11 transmitters wait a random period of time when retransmitting a frame that was

lost, meaning that the chances of two frames colliding a second time with the same bits

of each frame interfering are very small. This also implies that several of the symbols of

the frame will arrive without interference.

Over the course of two collisions with random time offsets, then, the receiver will

have sufficient information to decode “chunks” of these frames. These chunks can then

be used to decode different chunks in the other collision. The functionality of the ZigZag

algorithm is shown in Fig. 1.2.

3



Figure 1.2: ZigZag first decodes chunk one in the first collision, uses it in the second
collision to decode chunk two, which it uses to decode chunk 3 in the first collision,
etc. [7]

The ZigZag algorithm is simple and elegant, but as noted previously, is only useful

when a collision has deteriorated to such a state that the same two frames collide twice.

The algorithm cannot be applied to decode single collisions. This limits its usefulness;

though it can potentially be applied, it does not completely solve the problem.

1.1.2 Interference Alignment

Other approaches to interference mitigation focus on overhauling the entire system,

including novel transmission schemes. One such technique is interference alignment, in

which multiple transmitters coordinate their transmissions such that the mutual inter-

ference aligns at the receivers [9]. The possibilities of this approach are demonstrated

in [11], where the authors show that interference alignment leads to a linear increase in

total system capacity with the number of users.

Interference alignment is mathematically very promising, but in practice, there are

many obstacles that preclude its implementation. Probably the largest obstacle is one of

synchronization. In order for a transmitter to precode its transmission in such a way that

all undesired receivers can discard it, the transmitter must have very accurate channel

4



state information (CSI) about the link with every receiver. Unlike the typical trans-

mission, where synchronization is fully handled on the receiver side and so no feedback

is necessary, there must some feedback to the transmitter so that it could estimate the

CSI for itself. These additional training symbols complicate the system architecture and

lower the maximum system throughput. Similarly, in order for multiple transmitters to

utilize the available capacity to its fullest extent, the transmitters must communicate

with each other to ensure that they are utilizing all available degrees of freedom in the

system.

Figure 1.3: Interference Alignment. The transmitters construct their waveforms such
that they are clearly seen as interference by unintended recipients. [10]

Interference alignment is a promising technology that could potentially be imple-

mented in the future, but it is not be compatible with modern standards like 802.11.

Unlike ZigZag, it requires modification of the transmitter for implementation.

1.1.3 Joint Detection

A potential solution to the hidden node problem is joint detection, explained in [1].

The authors examine several methods to decode two interfering streams. One of them

5



was successive interference cancellation, or SIC. With SIC, the receiver would first treat

one of the two symbols as noise to demodulate the other, and then use that symbol

to estimate the first symbol. The authors also developed an ideal Joint Maximum-

Likelihood (JML) detector that could decode one of the symbols by using knowledge of

the constellation of the other, but the JML detector was deemed too computationally

expensive for practical implementation. To this end, the authors developed a simplified

Joint Minimum-Distance (JMD) detector, which yielded near-ML performance despite

being far less computationally expensive. In essence, the detector looked through every

possible combination of symbols sent by the two transmitters for every sample, and picked

the one that was closest to the received symbol.

The authors compared the different detection schemes to the interference-ignorant

demodulation scheme, and concluded that there were very significant performance im-

provements. JML proved to be the most accurate, with JMD providing near-ML perfor-

mance and successive interference cancellation trailing far behind. The authors showed

that unlike for the interference-ignorant and SIC approaches, there was no BER error

floor for the JML and JMD detectors, and so as the SNR of the signals increased, the

BER would continue to improve. In essence, by using the available information about

the constellation of the interferer, the detectors made the detection rates limited not by

the SINR, but purely by the SNR.

However, the authors made the assumption of perfect synchronization. They as-

sumed that the receiver has a priori knowledge about the channel gains, the frequency

offsets, and that there was no offset in time between the two frames, such that the interfer-

6



ing symbols lined up perfectly. These assumptions are not valid for a real communication

system, and are addressed in this thesis. This deficiency in the work inspired the system

developed here.

The main result of this work is a system that detects the beginning of an interfering

frame during the decoding of a primary frame, and performs synchronization and decod-

ing on the interfering frame while continuing to decode the primary frame. The work

assumes a quasi-static fading environment with AWGN. An 802.11-like frame structure

is assumed, where each frame includes twelve training symbols which form the basis of

all synchronization.
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Chapter 2

Communication Basics

Digital data are typically expressed as a stream binary bits, represented by 1s and 0s.

The purpose of a communication system is to transmit these binary bits to the designated

receiver, which can be done by wire, which is more reliable but necessitates a physical

link, or wirelessly, which is more complicated but more flexible after implementation.

Our focus will be on wireless communications, though many of the principles can also be

applied to wired communications.

In order to transmit the data over a wireless channel, the data must somehow be

converted into a form that can be transmitted and received — it must be converted into

an electromagnetic wave. Typical transmitter hardware generates a generic waveform,

which is then modulated, which allows for the “imprinting” of the data onto the wave

by modifying its properties. The receiver reverses the imprinting process, extracting the

data from the waveform. We will briefly cover the basics of modulation here, setting the

foundation for the remainder of this thesis.

8



2.1 Digital Modulation

Digital modulation entails modulating an analog carrier signal with a discrete signal

(in our case, the data to be transmitted). There are several ways to do this, some of

which will be covered here.

2.1.1 Pulse Amplitude Modulation (PAM)

Digital PAM, as the name suggests, encodes the information in the amplitude of the

waveform being transmitted. This can be expressed as

sm(t) = Amp(t), 1 ≤ m ≤M (2.1)

where m specifies which of M possible amplitudes can be transmitted. Am refers to the

amplitude itself, and p(t) represents the pulse of duration T. In a simple PAM system

with only two possible amplitudes (and log2(2) = 1 bits/symbol), a 0 may correspond to

an amplitude of –1 and a 1 to an amplitude of 1.

This is an accurate description of the system at baseband, but this is not the pulse

that is wirelessly transmitted. The modulated pulse is upconverted to a higher frequency

prior to transmission. In this generic form of PAM signalling, p(t) can be replaced with

g(t)cos(2πfct), where fc is the carrier frequency and g(t) the baseband pulse waveform.
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In this case,

sm(t) = Re[sml(t)e
j2πfct] (2.2)

= Re[Amg(t)ej2πfct] (2.3)

= Amg(t)cos(2πfct) (2.4)

An example of a PAM waveform is given in Fig. 2.1.

Figure 2.1: Example of (a) baseband and (b) carrier-modulated PAM signals [15, Fig. 3.2-
2]

2.1.2 Phase-Shift Keying (PSK)

Phase-shift keying is the discrete form of pure phase modulation. In phase-shift

keying waveforms, thus, the amplitude and frequency of the transmitted wave remain

constant, and data is transmitted by changing the phase of the transmitted waveform.
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The M signal waveforms corresponding to the M different potential symbols transmitted

can be represented as

sm(t) = Re[g(t)e
2π(m−1)

M ej2πfct], m = 1, 2, ...,M (2.5)

= g(t)cos(2πfct+
2π

M
(m− 1)] (2.6)

Figure 2.2: Constellation diagrams

for M=2, M=4 and M=8. [15,

Fig. 3.2-3]

In theory, it is possible to increase the poten-

tial number of symbols — and, correspondingly, the

number of bits per symbol — arbitrarily high. How-

ever, the downside to doing so is that the transmit-

ted symbols become more vulnerable to the effects

of channel distortion and AWGN. Trying to trans-

mit symbols from a constellation in which there is

a 2o difference between symbols is a fruitless af-

fair when the channel randomly shifts the received

symbol by upwards of 2o 50% of the time. A use-

ful metric for gauging how resilient a constellation

is to AWGN of a certain power is the dmin, which

represents the minimal distance in the signal space

diagrams between two symbols. Signal space diagrams of several PSK constellations are

shown in 2.2.

As seen, as M increases, dmin, the minimal distance between two transmitted sym-

bols, decreases, and so the constellation becomes less resilient to noise. Thus, the prob-
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ability of a symbol error occuring increases. Note that an increase in the symbol power

would effectively push all the points of the PSK constellation outwards from the center,

increasing dmin and reducing the probability of an error at the expense of higher power

requirements.

2.1.3 Quadrature Amplitude Modulation (QAM)

We have observed that information can be transmitted in both phase and amplitude.

It makes sense, then, that information can also be transmitted by modulating both

simultaneously, which Quadrature Amplitude Modulation, or QAM, does. A QAM signal

can be expressed either in a polar or in a cartesian form. The cartesian form is given by

sm(t) = Re[(Ami + jAmq)g(t)ej2πfct] (2.7)

= Amig(t)cos(2πfct)− Amqg(t)sin(2πfct], m = 1, 2, ...,M (2.8)

where Ami and Amq are signal amplitudes of the quadrature carriers and g(t) is the signal

pulse. The equivalent polar form is

sm(t) = Re[rme
jθmej2πfct] (2.9)

= rmcos(2πfct+ θm) (2.10)

where rm =
√
A2
mi + A2

mq and θm = tan−1(Amq
Ami

). This expression makes it clear that

QAM modulation can be viewed as a combination of phase and amplitude modulation.

In theory, there are no limits on what points on a signal space diagram could be
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combined to form a viable constellation for modulation. However, power, symbol error

and transmission rate constraints favor constellations with the largest dmin for the least

power. The most common constellation diagrams for QAM are simple rectangular grids

of potential symbols, each equidistant from adjacent symbols.

Figure 2.3: Constellation diagram of QAM modulator. [15, Fig. 3.2-4]

Fig. 2.3 shows that there is room for variation, though there is typically little incen-

tive for abnormal constellation due to potential issues during implementation in hardware

and very limited performance benefits.

2.2 Signal Distortion

The waveform that a receiver in a wireless digital communication system attempts

to decode can differ greatly from the waveform that was sent by the transmitter, or even

from the waveform that the transmitter was designed to send. Synchronization is the

process of the receiver undoing distortions introduced by the channel, paving the way for

demodulation of the waveform to extract the transmitted data.

In a typical communication system, this is achieved by the transmission of training
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symbols at the beginning of a frame. The training symbols are known in advance by

the receiver, being specified in the communication standard. The receiver observes that

a signal is present, and uses its knowledge of what the signal should be transmitting to

estimate and undo the effects of the channel. This section will briefly cover the effects

of the channel on the transmitted signal. To recover the original data — learn what was

done by the channel, and invert it!

2.2.1 Path Loss

Consider a generic QAM signal described by

sm(t) = rmcos(2πfct+ θm) (2.11)

If the transmitter has an ideal non-directional antenna, then the waveform is sent in all

directions. The wavefront can then be viewed as a sphere, with the power being dispersed

equally across the surface area of the sphere. As the surface area of the sphere scales

linearly with the square of the distance from the center, we can then conclude that the

power of the transmitted wave decreases with the square of distance, and so the amplitude

of the signal at the receiver is reduced. For long-distance wireless communications, such

as a satellite communications system, this attenuation can exceed 100dB, necessitating

high transmission power or low data rates to ensure that the data could be recovered

at the receiver. The losses due to propogation can be reduced by using a directional

antenna, but this is a rare approach in certain wireless systems (like Wifi) due to the

difficulty in targeting the transmission towards the receiver, when either of the two could

14



potentially be moving.

2.2.2 Shadowing

In most communication systems, a direct line of sight is not guaranteed, and the

signal may be further attenuated by blockage from objects in the signal path. The

attenuation caused by these objects, or fading, may vary with time, position or frequency,

and is thus often modeled as a random process.

The effects of shadowing greatly depend on the materials comprising the blockage

of line of sight; there is virtually no additional loss due to a signal passing through air,

whereas a stone wall can greatly attenuate the waveform. The attenuation due to fading

also tends to increase linearly with frequency.

The log-normal shadowing model is often used to model the effects of shadowing in

both indoor and outdoor environments [14, pp. 48]. In the log-normal shadowing model,

the ratio of transmit to receiver power ψ = Pt
Pr

is assumed random, and is given by

p(ψ) =
10
ln10√

2πσψdBψ
exp

(
−(10log10ψ − µψdB)2

2σ2
ψdB

)
(2.12)

where µψdB is the mean and σ2
ψdB is the variance of ψdB = 10log10ψ. µψdB depends

primarily on the path loss, whereas σ2
ψdB depends on the variation in path loss — typically

caused by movement in the environment.
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2.2.3 Phase Offset

Consider again the signal in Eqn. 2.11. The waveform takes a finite amount of time

to arrive at the receiver, and as seen from the signal equation, the value that would be

“seen” is time-varying. As such, the constellation seen at the receiver will be rotated by

some angle. Both the phase offset and the effects of flat fading are typically modeled as

a multiplication of the transmitted symbol by a complex constant.

2.2.4 Doppler Spread

Frequency offsets can occur along the transmission chain. They may be caused by

an offset in the oscillators in either the transmitter or the receiver, or they may be caused

by other factors such as movement of the transmitter or the receiver. These frequency

offsets are referred to as doppler shifts. The difference in doppler shifts between different

components of the signal contributing to a single channel is referred to as a Doppler

Spread. The doppler spread is inversely proportional to the coherence time of the channel;

as the doppler spread increases, the typical frequency offset increases, which leads to more

rapid changes in effects of the channel and a decrease in the coherence time.

2.2.5 Multipath

Multipath refers to the possibility that of the original waveform, several copies arrive

at the receiver at different times. This may occur due to reflections of the electromagnetic

waves off of walls, trees, buildings, the ground, or anything else. These copies of the

signal interfere with other copies, making correct decoding of the transmitted signal
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more difficult.

The multipath channel can also be (and typically is) time-dependent; this is exac-

erbated by movements of the transmitter or receiver, which lead to a change of the path

lengths and reflections. Because time variations appear unpredictable to the user, it is

reasonable to statistically characterize multipath channels.

Consider a generic electromagnetic wave:

s(t) = Re[sl(t)e
j2πfct] (2.13)

In the event that there are multiple propagation paths, the receiver sees the sum of the

signals along all paths, each of which has been attenuated and delayed by some amount.

The received bandpass signal can be expressed as

x(t) =
∑
n

αn(t)s[t− τn(t)] (2.14)

αn(t) is here the attenuation factor and τn(t) is the propagation delay associated with

the nth path. An equivalent highpass signal with appropriate accounting for phase can

be expressed by multiplying the x(t) by ej2πfct and taking the real part. To account

for the phase offset caused by the additional propagation delay, each path must also be

multiplied by e−j2πfcτn(t); thus,

x(t) = Re

{
ej2πfct

∑
n

αn(t)e−j2πfcτn(t)sl[t− τn(t)]

}
(2.15)
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The equivalent lowpass signal is

rl(t) =
∑
n

αn(t)e−j2πfcτn(t)sl[t− τn(t) (2.16)

As rl(t) is the response of the channel to the input signal of sl(t), it follows that the

lowpass channel can be described by

c(τ ; t) =
∑
n

αn(t)e−j2πfcτn(t)δ[τ − τn(t)] (2.17)

This is an acceptable model for systems and environments in which the multiple paths are

cleanly discretized, but this will not always be the case; more continuous multipaths are

obtained by passing a signal through a fluid, such as a tropospheric scattering channel.

In such a case, the sum could be replaced by an appropriate integral.

Depending the power distribution among the paths, they could be characterized by

different models. There are two common stochastic models for multipath channels. The

Rayleigh fading model is used when there is no line of sight signal, and so the received

signal is a superposition of several copies with similar powers. In a Rayleigh fading model,

the magnitude of the signal will fade according to a Rayleigh distribution. Due to the

central limit theorem, this can in turn be modelled by a channel gain that is zero-mean

and with the phase being evenly distributed between 0 and 2π radians.

In the event that there is a single dominant path, most likely the direct line of

sight path, the Ricean fading model can be used instead. Multipath interference is still

present, but even without explicitly accounting for the interference, proper decoding is
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easier. The amplitude gain of a Ricean fading channel can be characterized by a Ricean

distribution.

2.3 OFDM

OFDM, or Orthogonal Frequency Divison Multiplexing, has been used for the last

several iterations of Wi-fi, since 802.11g, and is also used in modern cellular systems like

LTE (Long-Term Evolution) and WiMAX (Worldwide Interoperability for Microwave

Access). This section will briefly explore its characteristics and advantages over other

modulation schemes.

2.3.1 Multicarrier Modulation

Due to the high cost of bandwidth, system designers strive to maximize the data

throughput and bandwidth efficiency. This can be simple, particularly for narrowband

channels, in which case there is little variation in the channel as a function of frequency.

However, for a wideband channel, it could be difficult to utilize the full capacity due to

the frequency-selective nature of the channel. Employing a single-carrier system in such

an environment makes the waveform harder to decode at the receiver end due to the

effects of time dispersion.

An alternative to this approach is multicarrier modulation, in which the bandwidth

is subdivided into smaller parts. A fraction of the total message is then encoded and

transmitted over each subcarrier. By thusly transforming a wideband system into several

narrowband systems, equalization of the signal is simplified. Fig. 2.4, which shows the
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frequency response of a channel divided into multiple subchannels. This approach yields

transmission rates close to channel capacity, as shown in [15].

Figure 2.4: Wideband Spectrum Subdivided into Subcarriers [15, Fig. 11.2-2]

With a sufficiently large number of subcarriers, and, correspondingly, a sufficiently

small bandwidth ∆f allocated to each, the frequency response of the channel is constant

for each subcarrier, which mitigates the effects of the channel in causing inter-symbol

interference, or ISI.

2.3.2 Orthogonal Carriers

OFDM is a particular case of multicarrier modulation in which the subcarriers are

orthogonal to each other. This approach means that, discarding negative channel effects,

there is no interference between the signals transmitted along each subcarrier, termed

inter-carrier interference, or ICI. In practice, doppler shifts caused by movement or other

factors shift the subcarriers, destroying orthogonality and in effect reducing the SNR of
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the signal. Fig. 2.5 shows the ideal frequency response of an OFDM transmission, with

each peak representing a subcarrier. Note how each peak is located at a frequency where

the other subcarrier waveforms are zero.

Figure 2.5: Orthogonality of OFDM Spectrum [14, Fig. 12.12]

This orthogonality is a major aspect of what made OFDM a popular modulation

scheme within the past decade. It allows the subcarrier waveforms to be clustered closer

together than competing multicarrier schemes, increasing bandwidth efficiency of the

system.

Consider a generic multicarrier system consisting of k subcarriers. Within each

subband, a sinusoidal carrier of the form

sk(t) = cos2πfkt, k = 0, 1, ..., N − 1 (2.18)
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is transmitted. fk here is the central frequency of the kth subchannel. If the symbol rate

1
T

is equal to the frequency separation ∆f of adjacent subcarriers, then the subcarriers

can be shown to be orthogonal over the duration of the interval T , at least without

channel corruption. This can be expressed as

∫ T

0

cos(2πfkt+ φk)cos(2πfjt+ φj)dt = 0 (2.19)

2.3.3 OFDM Transceiver Chain

Typical OFDM systems have many subsystems in common. The data are modulated

in the frequency domain, converted from serial to parallel form to be distributed between

available subcarriers, and converted to the time domain using an IDFT (Inverse Discrete

Fourier Transform). A cyclic prefix of length µ is added to each subcarrier. The cyclic

prefix ensures that as long as the impulse response of the channel is shorter than µ, the

convolution operation inherent in passing data through the multipath channel becomes a

cyclic convolution. The cyclic prefix eliminates inter-symbol interference, or ISI, between

the data blocks; this is because the first µ samples of the channel output affected by

ISI can be discarded without any information loss. [14, pg. 385] Thus, the cyclic prefix

exhibits a trade-off of ISI versus throughput.

Following the cyclic prefix, the signal is converted into serial form, transformed into

an analog signal, upsampled and transmitted. The receiver structure is the transmitter

structure in reverse, as shown by Fig. 2.6.
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Figure 2.6: OFDM [14, Fig. 12.7]

Due to the transmission of the data in the time-domain following modulation in

the frequency domain, OFDM allows for frequency-domain equalization. Unlike time-

domain equalization, which necessitates inverting the impulse response of the channel

(typically through the use of an adaptive filter or a similar approach), frequency-domain

equalization entails inverting a single constant – the complicated time-domain impulse

response can be characterized by a single multiplication by a complex constant in the

frequency domain. This simplification is a major factor in the growing use of OFDM, as it

greatly decreases the complexity, and thus cost, of receiver equalization. This assumption

is central to the tested solution for joint detection and synchronization; though the

derived genetic algorithm can be adapted to deal with time-domain equalization, that

would decrease performance and increase computational complexity.
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Many systems that use OFDM principles, such as modern cellular systems, use

OFDMA, or Orthogonal Frequency Division Multiple Access. OFDMA uses the general

principles of OFDM, but allows for intelligent allocation of subcarriers to different users.

More modern improvements of this concept lead to carrier aggregation, wherein the

transmitter can spread the information over several subcarriers and allocate several of

those to individual users.

2.4 Diversity

Diversity is a technique in which the bit error rate of a transmission is reduced by

relying on multiple signal paths. If one of them enters a deep fade, greatly lowering the

SNR, the other path could be used instead; thus, communication could be made more

reliable.

There are many diversity techniques available over different dimensions. Diversity

over time can be as simple as repetition coding, in which the same signal is transmitted

twice, or more complicated, as with coding and interleaving. In the case of a frequency-

selective channel, diversity over frequency could be used; the same message could be

transmitted over two or more different frequencies. Space diversity can be achieved by

using multiple antennas to receive or transmit the signal.

The one factor binding these together is that their performance is maximized when

the effects of the channel on the dimensions are independent. If, for example, spatially

diverse transmission with two receive antennas is attempted but an object is blocking

both, the transmission may still easily fail, due to the effects of the two channels not
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being independent of each other.

Diversity techniques will be briefly discussed here to lead the reader into MIMO

technologies, in which spatial diversity is expanded in such a way to potentially increase

data throughput.

2.4.1 Space Diversity

Space diversity uses multiple transmit or receive antennas to improve the decoding

performance. Systems with single transmitter antennas and multiple receive antennas

are referred to as SIMO (Single-In Multiple-Out); systems with multiple transmitter

antennas but a single receiver antenna are referred to as MISO (Multiple-In Single-Out).

Both of these techniques can greatly improve the error rate of a wireless communi-

cation system. This improvement can be described as an array gain and a diversity gain.

Fig. 2.7 shows a basic SIMO receiver:

Figure 2.7: Linear Combiner for SIMO System [14, Fig. 7.1]
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Array gains results from coherent combining of multiple signals. This improves

performance even in the absence of fading. For example, assume that ri =
√
Es, where

Es is the energy per symbol of the signal. Assume that the noise power is N0/2 on each

branch, and pulse shaping such that BTS = 1. In this case, each branch has the same

SNR γi = Es/N0. Set the weights ai = ri/
√
N0. These are the optimal weights for

Maximal-Ratio Combining, a signal combination scheme in which each signal is weighed

based on its SNR; in this case, due to all the signals having identical SNRs, the actual

value of ai does not matter as long as the weights are the same for all signals.

The received SNR can then be expressed as

γsum =

(∑M
i=1 airi

)2
N0

∑M
i=1 a

2
i

=

(∑M
i=1

Es√
N0

)2
N0

∑M
i=1

Es
N0

=
MEs
N0

(2.20)

Thus, even in the absence of fading, there is an M fold increase in the SNR. [14,

pp. 207] On a dB scale, this corresponds to a shift left of the BER curve, corresponding

to the number of receive antennas. Array gain is formally defined as the ratio of the two

SNRs: Ag = γsum
γ

.

Diversity gain assumes independent fading, and yields a more impressive improve-

ment: For some diversity systems, the probability of a symbol error can be expressed as

Ps = cγM , where c is a constant depending on the system modulation scheme and M is

referred to as the diversity order of the system. On the typical BER curve, this manifests

as an increase of the slope of the BER/SNR plot. [14, pp. 208]

The maximum diversity order of a SIMO system is M, the number of receive anten-

nas; when this is achieved, the system is said to achieve full diversity order. The same
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follows with MISO systems. It should be noted that MISO is less prevalent than SIMO

due to the requirement that all of the transmitting antennas maintain the same signal

power to compete with a similar SIMO system; thus, more power is expended for similar

performance.

2.4.2 Time Diversity

As mentioned previously, the simplest form of time diversity is a repetition code; the

same symbol is transmitted several times along the signal stream. A more complicated

application of this concept is the combination of forward error correction and interleaving.

Forward error correction generates redundant data to add to the stream that would allow

for full decoding at the receiver even if certain symbols are lost along the way.

Interleaving is used to maximize the independence of the ‘channels’ across which

these symbols are transmitted. As an example, consider the repetition code. If every

symbol is transmitted twice in quick succession, there is limited resistance in the scheme

to deep fades, as these may last for several symbols at a time, and so some data could

nevertheless be lost. By applying an interleaver to the repeating message, symbols repre-

senting the same information could be moved to different temporal positions, decreasing

the chance that a deep fade would completely destroy the data.

More specific examples of forward error correction and interleaving will be examined

in Chapter 4.
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2.4.3 Space-Time Block Codes

Space-Time Block Codes, or STBCs, are codes that represent the transmission of

symbols over the time and antenna dimensions. STBCs are usually presented in matrix

format, where columns represent different transmit antennas and rows represent time-

slots. Similarly to forward error correction schemes, STBCs have associated code rates

which measure the number of symbols per time slot transmitted on average over the

course of a block.

Probably the simplest and most effective STBC is the Alamouti code, also stan-

dardized in 802.11n and above as an optional transmission scheme [17, pp. 200]. The

Alamouti code is used for 2x1 MISO configuration, and it is unique in the sense that it

is the only STBC that achieves a diversity gain while maintaining a code rate of 1. The

coding procedure for the Alamouti encodes the information of two symbols, s1 and s2,

into a code word. The code word can be expressed by

 s1 s2

−s2∗ s1∗

 (2.21)

This block code represents a simultaneous transmission over the two antennas of s1 and

−s2∗, followed by the simultaneous transmission of s2 and s1∗. For a simple transmission,

the received signal over the MISO channel is given by

y1
y2

 =

[
h1 h2

] s1 s2

−s2∗ s1∗

+

Z1

Z2

 (2.22)

28



where y1 and y2 represent the two received symbols, h1 and h2 represent the single-

tap channel gains for the paths from both transmitters to the receiver, and Z1 and Z2

represent the noise added by the channel.

2.5 MIMO (Multiple-Input Multiple-Output)

MIMO takes advantage of the presence of multiple antennas to improve performance

of the system. MIMO technology can be used for either diversity gain, which reduces

the error rates but allows for the same data rate, or for the transmission of multiple data

streams, increasing to the total data rate of the system. Note that a reduction in error

rates could itself be translated to an increase in the data rate, as it would allow for more

bits per symbol while maintaining similar BER. Fig. 2.8 shows a generic MIMO system

with NT transmitting antennas and NR receiving antennas.

Figure 2.8: MIMO System [17, Fig. 7.5]

This section addresses the task of decoding a MIMO transmission where every
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antenna is used for data transmission — no diversity is involved. This implies that

NT = NR. Without diversity, very high SNRs are required in order to accurately decode

all of the transmitted symbols; because of this, most commercially available systems that

boast this feature — such as LTE or even Wifi — rarely use it.

This task is being discussed due to the similarities between this and the problem

of joint detection. The joint detection problem can be considered an underdetermined

variant of a typical MIMO problem, and so it’s possible that some of the approaches to

multiplexed MIMO may be modified and applied to a joint detection problem. This dis-

cussion will also give the reader a better feel for the entire problem of decoding interfering

streams.

This section assumes that perfect synchronization has been performed; knowledge

of H , the channel matrix, is required, and no frequency or timing offsets are assumed.

The received signal for this problem can be described by

y = Hx+ z (2.23)

where x consists of the transmitted symbols and z represents the noise of the system. y

and z are vectors NR symbols long, x is a vector NT symbols long, and H is a NR by

NT channel gain matrix.

Several receiver architectures to solve for the transmitted signal x given knowledge

of H and received signal y will now be explored.
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2.5.1 Linear Decoders

Zero-Forcing

The Zero-Forcing algorithm, also known as the decorrelator, is the simplest MIMO

receiver algorithm available. It attempts to find a matrix W that satisfies WH = I.

It does this by inverting H with the Moore-Penrose pseudoinverse [18, pp. 351]. This

yields

W = (HHH)−1HH (2.24)

Minimum Mean Square Error

This simple approach is improved on with the Minimum Mean Square Error (MMSE)

technique. The MMSE technique tries to find theW which minimizes E
(

[Wy − x] [Wy − x]H
)

[19, pp. 321]. This yields

W =
(
HHH +N0I

)−1
HH (2.25)

2.5.2 OSIC Signal Detection

The linear approaches to MIMO decoding, though computationally efficient and

flexible, tend to be the least effective. OSIC, or ordered successive interference cancella-

tion, utilizes the linear methods iteratively so as to improve performance [19, pp. 322].

The principle of ordered successive cancellation is that a linear decoder is used to decode
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one of the spatial streams, at which point that decoded stream is subtracted from all of

the other streams. The receiver then applies a linear decoder to the next stream. This

cycle continues until all of the streams have been decoded. The ‘Ordered’ aspect of OSIC

signifies that the order of the streams to be decoded is chosen to maximize performance.

This is typically done by first decoding the streams with the highest SNR, or in the pres-

ence of an undecodable interferer, highest SINR. Such ordering significantly outperforms

unordered SIC techniques.

Figure 2.9: OSIC for 4 Spatial Streams [19, Fig. 11.2]

2.5.3 Near-ML Detection Schemes

ML, or Maximum Likelihood solutions to the problem of MIMO detection achieve

optimal performance in the sense that the bit error rate is minimized. However, compu-

tational complexity could be easily simplified. This is very similar to the simplification

done in [1] to reduce the derived JML (Joint Maximum Likelihood) to the JMD (Joint

Minimum-Distance) detector. The minimum-distance detection scheme can be described
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mathematically as

x̂ = arg min
x∈CNT

||y −Hx||2 (2.26)

In plainer terms, this receiver minimizes the sum of the squares of the differences be-

tween the received and the calculated signal at each antenna. It necessitates an exhaustive

search through all potential values of x. Despite the massive simplification in evaluating

the viability of each individual x combination relative to the true ML algorithm, this

requirement for an exhaustive search is still computationally untenable. As the dimen-

sionality of x grows — either due to the growth of the constellation, or the number of

MIMO streams, or with multicarrier transmission schemes the number of subcarriers —

the computational complexity grows exponentially.

There are a number of schemes which attempt to achieve the minimum-distance

estimate by looking at a subset of all possible xs.

QRM-MLD

One potential solution is the QRM-MLD (QR-decomposition M - Maximum Likeli-

hood Decoder) method [19, pp. 329]. The remaining M represents the number of potential

solutions that are kept by the algorithm when it progresses to the next stage of decoding.

The method relies on a QR decomposition of the channel matrix such thatH = QR.

33



The minimum-distance metric can be expressed by

‖ y −Hx ‖ =‖ y −QRx ‖

=‖ QH(y −QRx) ‖ =‖ ỹ −Rx ‖
(2.27)

The matrix R is an upper triangular matrix, which can be used to simplify the decoding

process. For this example, let NT = NR = 2, though the method really shines for higher

dimensionalities, as computational complexity scales linearly with the number of spatial

streams in the system. Then

|ỹ −Rx|2 =

∣∣∣∣∣∣∣∣
ỹ1
ỹ2

−
r11 r12

0 r22


x1
x2


∣∣∣∣∣∣∣∣
2

= |ỹ2 − r22x2|2 + |ỹ3 − r11x1 − r12x2|2

(2.28)

The QRM-MLD algorithm attempts to iteratively minimize each term in Eqn. 2.28. First,

M values of x2 out of the constellation that minimize the error |ỹ2 − r22x2|2 are chosen.

For each of these most likely values, the M values of x1 of the constellation that minimize

|ỹ2 − r22x2|2 + |ỹ3 − r11x1 − r12x2|2 are chosen. If NT and NR were higher than two, this

process would continue, with only M solutions being carried over into each subsequent

stage.

The performance of the QRM-MLD algorithm is very dependent on the value of M

— the higher it is, the better the performance, though the more computationally complex

the algorithm is. Additionally, note that this algorithm requires a constant number of

operations, making it an attractive option for implementation in hardware.
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Sphere Decoder

The sphere decoding method, in essence, manages to consider only a small subset

of the potential solutions by maintaining a ‘sphere’ of varying radius [19, pp. 329]. The

algorithm adjusts the radius of the sphere in the solution space until a single solution is

encased.

Figure 2.10: Sphere Demonstration [19, Fig. 11.5]

Note that the Sphere Decoder and the QRM-MLD algorithms take opposite ap-

proaches to the problem of finding the minimum-distance solution. The Sphere Decoder

guarantees finding it, but requires a varying — but typically much smaller than the time

it takes to do a full exhaustive search — period of time. The QRM-MLD algorithm,

by contrast, does not guarantee finding it, and the variable M can be modified to meet

computational complexity needs.

2.5.4 Relative Decoder Performance

Fig. 2.11 compares the performance of the techniques discussed in this section.
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Figure 2.11: Comparison of MIMO Decoding Performance

The linear MIMO decoders are the worst performers, while adding ordered successive

interference cancellation to MMSE significantly improves performance. The performance

of the QRM-MLD algorithm depends on the number of solutions stored per iteration, or

M; at M = 2, performance is scarcely superior to MMSE-SIC, whereas for M = 4, the

performance is approaching the optimal Minimum-Distance decoder.

It was considered that the sphere decoder or QRM-MLD algorithms could be adapted

for the underdetermined MIMO case – with fewer receiver antennas than there are spatial

streams. This could prove an attractive alternative to the JMD algorithm, discussed in

more detail later on, which corresponds very closely to the near-ML exhaustive search

MIMO detector. This is left to future work.
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Chapter 3

The 802.11 Standard

802.11 is is a set of media access control (MAC) and physical layer (PHY) specifica-

tions for implementing wireless local area network (LAN). This section will describe the

basics of the standard to familiarize the reader with the technology.

3.1 PHY Layer

The latest iterations of the 802.11 standards — 802.11a, 802.11g and later — use

OFDM modulation with 64 subcarriers. Of these, only 48 are used for data transmission.

The outer 12 subcarriers are zeroed out, in order to insulate the data stream from inter-

ference in nearby frequency bands. Four subcarriers are reserved for pilot signals, which

are continuously used by the receiver for synchronization, like channel estimation [14, pp.

397].

Modern Wifi standards operate at three ISM frequency bands. ISM bands — stand-

ing for industrial, scientific and medical radio bands — are portions of the spectrum
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reserved internationally to allow free use below certain signal powers. The most popu-

lar Wifi band is at 2.4GHz, used by the 802.11g, 802.11n and 802.11ac standards. The

5GHz band is more sparsely populated, but is still in use by the 802.11a, 802.11n and

802.11ac standards. A relatively new addition to Wifi is the 60GHz 802.11ad standard.

The 802.11ad standard was developed due to a desire to massively increase the poten-

tial data rate of WLAN systems. The downside to working in the 60GHz band is the

higher susceptibility of the waves to shadowing, leading to higher attenuation during

transmission.

3.1.1 Forward Error Correction

The 802.11 standard uses convolutional encoding for Forward Error Correction,

or FEC. The purpose of FEC is to take the stream of bits before transmission and

output a stream with the same data, but with more resilience to loss. This necessitates

increasing the length of the transmission, reducing data rates, but the large performance

improvements with regard to bit error rate are deemed sufficient to justify the trade-off.

The process used to generate the output data stream is shown in Fig. 3.1. For every

bit of input data, two output bits are generated, making this a rate 1/2 encoder. Note

that convolutional encoders force delay into the system, as it takes time for the data to

work its way through the encoder.
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Figure 3.1: IEEE 802.11 a/n rate-1/2 convolutional encoder [17, Fig. 7.4]

The 802.11 standards have adaptive modulation schemes. This means that they

can adjust their modulation schemes — BPSK, 4-QAM, 16-QAM, 64-QAM, and even

256-QAM in the newer standards — as well as the encoding schemes to achieve certain

trade-offs between throughput and reliability. The standard specifies that changes in the

encoding rate — switching from 1/2 to 3/4, for example — is done by puncturing the data

stream output by the rate 1/2 convolutional encoder. In this context, puncturing means

removing the bits from the data stream. The pattern by which the data is punctured

is standardized and specified in the preamble of the frame, allowing the receiver to flag

those ‘missing’ bits as unknown and perform Viterbi decoding.

By removing the bits, more of the stream can be allocated to transmit new data,

increasing data rate. At the same time, by decreasing the encoding rate, the system is

made more vulnerable to the effects of the channel. Fig. 3.2 demonstrates the process of

puncturing.
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Figure 3.2: Puncturing for coding rate 5/6 [17, Fig. 7.5]

3.1.2 Interleaving

Interleaving is used in the 802.11 standard due to the weakness of convolutional

encoding in the presence of a stream of bit errors in the channel. The 802.11 standard

uses a particular type of interleaving called block interleaving. Block interleaving is very

simple; in essence, it reshapes the data stream into a rectangular matrix, and returns the

reading of the transpose of that matrix.

3.1.3 MIMO

802.11 standards use MIMO technology, or spatial multiplexing. MIMO was first

introduced in Wifi in the 802.11n standard, with MIMO up to 4x4. The 802.11ac stan-

dard increased the maximum MIMO to eight streams (8x8). In practice, these are not

necessarily supported by all receivers; in fact, very few 802.11ac receivers support the

full eight spatial streams. Even when they are fully supported, they are rarely used due

to the difficulty in properly synchronizing the transmission; very high SNR is required.

Using the antennas for diversity gain is a more common practice, due to the relative com-

putational simplicity. The 802.11 standards also support STBCs, such as the Alamouti
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code and several others.

3.2 MAC Layer

Wifi uses the CSMA MAC protocol, or Carrier-Sense Multiple Access. The trans-

mitter “listens” to the radio spectrum it wants to transmit over, trying to determine

whether another transmitter is currently occupying it. The Multiple Access refers to the

fact that multiple nodes transmit over the same bandwidth.

Wifi uses a specialized variant of CSMA called CSMA/CA, where the CA refers to

“collision avoidance”. This attempts to solve the problem of two transmitters noticing

that the channel is open simultaneously, and thus both transmitting a frame and inter-

fering with each other. CSMA/CA introduces a contention period — a random period

of time that the transmitter waits before beginning transmission. If, in that period, the

channel remains clear of other signals, then transmission goes forward; if not, then the

transmitter waits for another opening.

If a data frame is transmitted and no acknowledgement is received, then after a

random period of time, provided that the channel is free, the frame is retransmitted.

3.2.1 Hidden Node Problem

The hidden node problem describes one of the situations in which the CSMA/CA

system fails. In essence, the CSMA system allows the transmitter to listen for an interferer

at its own location, so it can use that as an estimate for the presence of a signal at the

receiver. However, if there is a secondary transmitter further away from the transmitter
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than from the receiver, then the transmitter could decide that the spectrum was clear

and that that it was safe to transmit, even though the receiver is receiving another frame.

This situation is shown in Fig. 3.3.

Figure 3.3: Hidden Node Problem

A related problem to the hidden node problem is the exposed node problem. Whereas

the hidden node problem results in transmitter sending when there is an interferer present

at the receiver, the exposed node problem results in a transmitter holding back trans-

mission despite the spectrum at the location of the receiver being empty. This is caused

by an interfer located closer to the transmitter than to the receiver.

Collision Avoidance

RTS/CTS (Request-To-Send/Clear-To-Send) is a mechanism developed to solve the

hidden node problem (but not, necessarily, the exposed node problem). With RTS/CTS

enabled, the transmitters send out a short RTS frame, asking the receiver whether the

spectrum is free for a large data frame. If and when it is, the receiver transmits a CTS

frame, letting the transmitter know that there are no interferers.

The RTS/CTS mechanism does not manage to solve the exposed node problem like

it does the hidden node due to the fact that if the transmitter sees interference, no RTS

frame is sent in the first place; thus, no knowledge is transmitted back to the transmitter
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from the receiver in the form of a CTS. However, if the nodes are synchronized with each

other, then they could use knowledge of other nodes RTS/CTS frames to decide whether

or not they are exposed nodes. If a node hears an RTS from a neighboring node but no

CTS, the node can deduce that it is an exposed node.
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Chapter 4

Stochastic Optimization Algorithms

The problem of joint detection and synchronization was formulated as an optimiza-

tion problem over many dimensions, and a stochastic optimization algorithm was used

to perform the optimization. Stochastic optimization algorithms use random variables

in the process of searching for the optimal solution. Stochastic optimization algorithms

were chosen over deterministic algorithms due to the non-convexity of the solution space;

a deterministic gradient descent or similar approach would have proven insufficient to

converge to an acceptable answer.

In general, stochastic optimization functions are useful for solving the following class

of problems: “Find the value(s) of a vector θ ∈ Θ that minimize a scalar-valued loss func-

tion L(θ)” [13, pp. 2]. Vector θ represents a vector of variables that the user is trying

to optimize. The loss function L(θ) is a scalar measures that allows for the stochastic

algorithms to compare the “usefulness” of the solutions. When stochastic optimization

algorithms are applied, for example, to a financial problem, a fitting loss function would

44



be the inverse of the expected profit, so that minimizing it would maximize the profit. θ

can include any variables that the cost function could combine into comparable values.

For the problems discussed here, θ will be restricted to numbers both discrete and con-

tinuous. The solution space of the loss function L(θ), thus, may be continuous in some

dimensions and discrete in others.

One of the major distinctions in optimization is between local and global optimiza-

tion. Local optimization looks for any solution in θ where L(θ) is minimized relative to

its immediate vicinity of solutions θ. Global optimization, on the other hand, looks for

the θ that minimizes L(θ) over the entire solution space. Global optimization is a much

more difficult problem than local optimization, as a simple gradient approach technique,

which uses the “slope” of the solution space to determine the direction in which the

minimum is, will not necessarily find the global minimum.

The potential difficulty of finding a global optimum solution is demonstrated in

Fig. 4.1 below. This is a one-dimensional optimization problem in a continuous scalar

value θ. In the easy problem, there is a local minimum on the left, and a global (and

local) minimum on the right of the solution space. Depending on where the optimization

algorithm begins, a simple gradient descent approach may yield the global optimum. In

either case, many non-gradient based approaches may yield the global optimum. How-

ever, in the hard case, the global minimum of L(θ) is a single value. This is essentially

impossible to find with any optimization algorithm; the “slope” of the surrounding area

yields no clue that there is a global maximum present, and the chances of a numerical al-

gorithm accidentally finding the correct global minimum are infinitesimal. Nevertheless,
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the local minimum could be found with ease.

Figure 4.1: Example of an easy and hard problem for global optimization. [13, Fig. 1.2]

4.1 Key Points

Before proceeding with a brief overview of several stochastic optimization algo-

rithms, there are several points about these algorithms that must be made. These are

selected based on perceived relevance from [13, pp. 12-18].

4.1.1 Measuring Algorithm Efficiency

There are many different ways to measure the efficiency of stochastic optimization

algorithms. Many of them rely on iterations, so one can count the number of iterations;

all of them take a finite amount of time to run, so that could be used. However, both of

these are flawed measures; the amount of “work” done per iteration could vary greatly

between different algorithms. The time for something to run depends greatly on the op-

erating system, language and processor architecture; what may run slowly on a standard

computer as a MATLAB simulation may be very quick to run when implemented in a

lower-level programming language like C or when implemented on dedicated hardware.
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A more objective measure of algorithm efficiency is the number of cost function eval-

uations that need be done. These evaluations tend to make up the greater part of the

computational complexity of an algorithm. This measure, however, is also not sufficient

to be used as the end-all for algorithm judgement. One reason this is so is because differ-

ent evaluations of L(θ) could be worth a different amount depending on the algorithm.

This is most clearly demonstrated when considering the effects of parallelization. Several

stochastic optimization algorithms allow for a population of solutions to be considered

simultaneously, which opens the door to simpler, more efficient implementation in hard-

ware. Thus, it is insufficient to simply look at the number of cost function evaluations;

their effect on feasibility of utilizing the algorithm must also be considered.

4.1.2 Noise Robustness

Any application of stochastic optimization for implementing joint detection would

necessarily require dealing with noise, which would be generated by all parts of the sys-

tem: the channel, the temperature-induced noise of the RF components, etc. For the

case of AWGN noise, error decreases at a rate of 1√
N

[13, pp. 14], where N represents

the number of measurements. As such, it is impossible to completely remove the ef-

fects of noise, and any attempts to mitigate it exponentially increase the computational

complexity of the algorithm.
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4.1.3 Curse of Dimensionality

As the length of vector θ grows and the range of possible values that could be

taken by the variables increases, the size of the solution space grows exponentially [13,

pp. 14]. As such, the algorithms for high-dimensionality problems must scale well with

dimensionality.

4.1.4 Measuring Convergence

With stochastic optimization problems, there is the problem of knowing when the

solution is good enough to cease iterating and looking for a new solution. There is no

simple, obvious way of doing it that would guarantee a certain level of performance; for

nontrivial problems, there will always be an unexplored area in the solution space for any

finite number of iterations, and so there is a non-zero chance that the global optimum

solution, θ∗, lies within that region.

4.2 Algorithms

This section will describe several basic stochastic optimization algorithms, before

explaining why the genetic algorithm was chosen for this problem.

4.2.1 Random Search

A basic stochastic optimization algorithm is a blind random search. First, the

algorithm initializes; a beginning value for θ is selected. Without any prior information,
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this value should be randomly selected from a uniform distribution over Θ, the solution

space. The value of L(θ) is calculated. from then on, the algorithm will randomly pick

other solutions from the same distribution and compare the value of L(θ). Whenever the

new L(θ) is smaller than the old, the stored solution is updated with the new solution.

The algorithm could be stopped based on a total number of iterations, which makes

the convergence time of the algorithm predictable and which makes it simpler to imple-

ment in hardware. Alternatively, the algorithm could check every iteration whether a

convergence condition was met.

In most ways, this seems like an overly simplistic algorithm, yet in a very unpre-

dictable solution space, its random selections from the solution space may be scarcely

less efficient than the informed selections of more sophisticated algorithms.

4.2.2 Simulated Annealing

Simulated Annealing is a stochastic optimization algorithm inspired by the natural

process of annealing, which happens as a liquid or a solid cools. As temperature decreases,

the molecules in a material lose mobility and molecules may tend to align themselves in

a crystalline structure. The crystalline structure is the minimum-energy of the state, but

note that it will not necessarily be reached; the cooling must occur at a sufficiently slow

rate [13, pp. 209]. Without sufficiently slow cooling rate, the substance settles into a

polycrystalline state that is not at its minimal energy.

This principle can be applied to stochastic optimization; this is called Simulated

Annealing (SAN). The minimization of the cost function is analogous to the minimization
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of the system energy. Unlike the random search algorithm and many others, which only

allow for updates that lower the value of the cost function, Simulated Annealing can

accept increases in L(θ) as it acquires enough information to find the global minimum.

SAN bases this behavior on the Boltzmann-Gibbs probability distribution of statistical

mechanics. Based on that, the probability of a system having a particular discrete energy

state is given by:

P (x) = cT exp

(
− x

cbT

)
(4.1)

where x is the energy state and T is the temperature. cT > 0 is a normalizing constant,

and cb > 0 is Boltzmann constant [13, pp. 209]. Thus, as T decreases, the probability of

the system being at a higher energy state decreases.

Each iteration, SAN generates a new value to solution θ to test against the current

value. If the new L(θ) is lower than the old, then the old θ is replaced; however, if the

new is higher, than the replacement happens under a condition known as the Metropolis

Criterion. The algorithm can be formally explained thusly:

Let δ = L(θnew)−L(θold). If δ < 0, then θnew is accepted; otherwise, it is accepted

only if a uniform (0, 1) random variable U satisfies U ≤ exp
(
− δ
cbT

)
. This is done a

certain number of times until an equilibrium is reached, at which point the temperature

T of the system is decreased. As with random search, the SAN algorithm could be

stopped after a certain number of iterations or once some conditions have been met.

50



4.2.3 Genetic Algorithms

Genetic algorithms (GEs) fall under a class of algorithms that mimic the process

of natural evolution known as evolutionary computation [13, pp. 231]. Unlike the two

previously discussed optimization algorithms, genetic algorithms work with populations

of solutions, not single solutions. This was a large factor towards selecting a genetic algo-

rithm for implementation in this project; working directly with large groups of solutions

allows a parallelization of the computation of L(θ) every iteration, greatly increasing the

feasibility of implementing the algorithm in dedicated hardware.

As with simulated annealing, genetic algorithms are described in terms similar to

those of their inspiration — in this case, evolution. Specific values of θ are referred to

as chromosomes [13, pp. 234], whereas the individual variables θ within θ are referred to

as genes. A p-dimensional θ thus corresponds to p genes per chromosome. Evolutionary

terms are also used to describe the operations performed to generate a new set of solutions

(or chromosomes) every iteration. The genetic algorithm performs inheritance, mutation

and crossover operations on the old population to generate a new population.

Inheritance refers to the direct copying of individual genes from solutions in the

old population. Mutation refers to generating a new value for a gene to introduce new

information into the population. This is useful in the event that the old population did

not have the proper genes for the genetic algorithm to properly converge; convergence in

that case could be impossible. Crossover refers to two chromosomes combining genes to

generate a chromosome in the new population. These operations are performed on the

more fit (smaller L(θ)) members of the older population, to improve the chance of the
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new population being more fit than the older.

There are many ways to implement a genetic algorithm. Apart from the basics,

as described above, there are many ways to modify its behavior in order to best suit

your purposes. The way the next population is generated can be modified, as the user

could elect to either create a large temporary population and pick the best for the next

iteration, or simply to select a few chromosomes at random and combine them. The

algorithm could be elitist, meaning that it could deterministically place the most fit

chromosomes from the old population into the new, or that operation, too, could be a

random process.

There are some limits to what genetic algorithms can do, however; they are not the

best choice for all stochastic optimization problems. For example, genetic algorithms rely

on the different genes being independent. If they are not independent, then the efficacy

of the cross-over operation is reduced, and convergence takes longer.
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Chapter 5

Implementation

This paper considers the detection and decoding of an interferer while striving to

maintain acceptable BER for the primary frame. Prior to the arrival of the interferer,

the received signal y[n] at time n is given by

y[n] = h1x1[n] + z[n] (5.1)

where x1[n] is the primary transmitted symbol at time n and h1 is the channel gain from

the transmitter to the receiver. z[n] is the AWGN at receiver with variance of N0/2

per dimension. The transmitted symbols x1[n] are from discrete constellations such as

phase-shift keying (PSK) or quadrature-amplitude modulation (QAM). A quasi-static

flat fading channel is assumed, allowing h1 to remain constant over all n.

Once the interfering frame arrives, the received signal y2[n] at time n is given by

y[n] = h1x1[n] + h2r[n]x2[n] + z[n] (5.2)
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As with h1 and x1[n], it is assumed that h2 is constant, and x2[n] is from a discrete

constellation. r[n] is a constellation rotation factor of the second transmitter relative to

the second, caused by oscillator frequency offsets or movement-induced Doppler shifts.

During the period of the collision when x2[n] consists of training symbols, this

knowledge is exploited to allow the system to estimate h2 and r. After the training

symbols, the interfering frame contains data, and the system switches to a joint detection

algorithm that uses knowledge of h1, h2 and r to estimate x1 and x2. For the purpose

of this paper, it is assumed that the interferer arrives at the receiver at some point after

the primary frame has been synchronized, but before the data portion of the frame is

completed. This assumption covers the majority of collisions, due to the length of the

data portion of a Wifi frame exceeding that of the preamble [12].

5.1 Interferer Detection

The first part of the system determines the presence of an interferer during the

decoding of a primary frame. If an interferer is detected, the time t at which it appears

at the receiver is estimated.

Three approaches to detection were developed that relied on different amounts of

information being available at the receiver. All of them assumed that no phase informa-

tion about the interfering frame is available; however, one of the three assumed full prior

knowledge of both the SIR and the SNR, and another removed the dependence on the

SIR by assuming prior knowledge of the distribution of the SIR in the system.

All three systems determine whether an interferer is present by looking at the error
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magnitude after demodulation of each received symbol corresponding to the primary

frame. The algorithms use this information differently.

5.1.1 No Prior Knowledge

This simplistic scheme assumes nothing about the SNR or SIR. In essence, the

algorithm assumes that when the interferer appears, the error magnitude will increase.

The algorithm finds the symbol at which the difference between the mean of the error

magnitude before and after is maximized. This can be expressed by

dn =

(
1

n− 1

n−1∑
i=1

εi −
1

N − n+ 1

N∑
i=n

εi

)2

(5.3)

where dn is the difference at time n, εi is the error magnitude at time i, and N is expected

length of the interfering frame. The time n where dn is the best estimate is decided to

be the beginning of the interference. The presence of an interferer could be judged by

thresholding dn; if it exceeds a certain value, then an interferer is likely.

5.1.2 SNR and SIR Prior Knowledge

This algorithm assumes full knowledge of interferer SIR and SNR. It looks at the

error magnitude of each symbol, and compares that to the expected error magnitude

given knowledge of the SNR and SIR. For example, if an interferer arrives at time n, it

is expected that the error magnitude would tend towards the expected error magnitude

of a stream with no interference for symbols arriving prior to n, and towards that with
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interference at time n and after. The point in time that minimizes the mean-squared of

the difference between error magnitudes over all times n gives a good estimate for the

beginning of the interfering frame. If no interferer is present, then the mean-squared error

would be minimized under the assumption of no interference for the observed duration.

The mean-squared error corresponding to the assumption of no interferer is given by

e =
1

N

N∑
i=1

(εi − εNI)2 (5.4)

where N is the expected length of the interfering frame, εi is the error magnitude after

demodulation at time i, and εNI is the expected error magnitude for the current SNR,

SIR and constellation without an interferer.

The receiver must also test the hypotheses that the interferer arrives at during one

of the symbols of the primary frame. The error corresponding to these at time n ∈ [1, N ]

is given by

en =
1

N

(
n−1∑
i=1

(εi − εNI)2 +
N∑
i=n

(εi − εI)2
)

(5.5)

where en is the error for time n and εI is the expected error magnitude with an interferer.

If the case where no interferer is present does not minimize the error, then the the n

that minimizes en is decided to be the symbol at which the interfering frame first arrives.

The expected values for εNI and εI were derived by simulation, and the difference

between them determines the efficacy of the algorithm; a larger difference increases the

algorithm’s resilience to noise. The values would be stored at the receiver. This a
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negligible cost; the values εNI and εI are not particularly volatile with respect to SIR or

SNR, and so a resolution of 1dB or so with regards to both would allow for reasonable

detection performance.

Figure 5.1: Expected error magnitude
without interference

Figure 5.2: Expected error magnitude
with interference

Figure 5.3: Difference between the ex-
pected error magnitude for the cases with
and without interference

Fig. 5.3 shows the difference between the

two error magnitudes. The larger the differ-

ence between the two, the better this algo-

rithm can distinguish between the two cases,

and the better it will perform at determining

whether the interferer is present, and if it is,

when it appears.

As it is, this scheme is heavily weighed

towards the possibility of a false alarm of the detection, rather than towards a false

negative; this is caused by every iteration of this algorithm testing many possibilities,

of which no interference is only one. This can be alleviated by introducing a threshold

during the comparison of the e and the ens. This is done in Chapter 6 to generate ROC
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(Receiver Operating Characteristic) plots.

5.1.3 SNR Prior Knowledge

This algorithm performs the same computation as the previous algorithm that as-

sumes full knowledge of SNR and SIR, but it assumes a probabalistic distribution of

SIR. For the default implementations in this paper, it was assumed that the SIR was

uniformly distributed from –6 dB to 6 dB. Instead of the thresholding values being drawn

from a specified SIR and SNR, thus, they were drawn only from a specified SNR, with the

expected error magnitude being the mean of the expected error magnitude from –6 dB

to 6 dB. The implementation used here simply averaged the expected error magnitudes

over the SIRs; a more effective implementation could perhaps estimate the probability

of the interferer being present for each SIR, and average that over the SIRs.

5.2 Synchronization

The synchronization step occurs once the detection algorithm determines the delay

relative to the primary frame at which the interfering frame first arrived at the receiver.

The received signal during this stage is given by Eqn. 5.2. It is assumed that the receiver

has already synchronized the initial signal and that the second frame is transmitting its

training sequence, so h1 and x2[n] are known. It is also assumed that the receiver has

knowledge of the modulation formats of both signals.

The first step to enable the use of an optimization algorithm is to formulate the

problem in such a way that there is a simple cost function to minimize. This allows
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solutions such as genetic algorithms to be applied to the problem; the algorithms can

judge the potential usefuless of solutions relative to one another. The cost function

developed for this problem is given by

J =
N∑
n=1

(y[n]− h1x1[n]− h2x2[n]r[n])2 (5.6)

where N represents the length of the training sequence. The cost function here represents

the sum of the squares of the error magnitudes over the training symbols during which

the joint detection and synchronization is occuring.

Making the assumption that the frequency offset between the two transmitters re-

mains constant for the duration of the frame and that the duration of each symbol is

the same, the r[n] term can be replaced with ejnθ, with θ representing the angle of ro-

tation during the period of a single symbol. The relationship between θ and the actual

frequency offset in Hertz is given by

ferror =
θ

2πTs
(5.7)

where Ts is the symbol rate of the system. The cost function can then be reformulated

as

J =
N∑
n=1

(
y[n]− h1x1[n]− h2x2[n]ejnθ

)2
(5.8)

For the case where N = 12, as in 802.11 frames, this is a 14-dimensional optimization

problem in h2, θ and x1.

A genetic algorithm was chosen to optimize the given cost function. Relative to
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other optimization techniques, genetic algorithms are particularly well-suited for solving

the problem at hand due to the problem’s non-convexity, non-linearity, and the fact

that the algorithm does not necessitate calculating the gradient in the solution space.

However, the genetic algorithm performs best when the variables of the chromosome θ

are independent. The twelve symbols x1 are completely independent, with their effects

being incorporated into the cost function in quadrature with each other. However, the

effects of θ and h2 on the cost function are not independent from x1, leading to some

wasted potential in the optimization.

5.2.1 Application

During the initialization of the genetic algorithm, a population of m potential so-

lutions is generated with random potential values for these variables. The ideal m for

effective convergence depends on the constellation size of the primary frame and dimen-

sionality of the problem at hand; as either grow, m should increase. Any prior knowledge

about the distribution can be incorporated during initialization to accelerate convergence.

For example, if it is known beforehand that there is a maximum frequency offset, the ini-

tialization for θ can limit the possible values. If no prior information exists, θ ∼ U(0, 2π)

can be used. Let K be the vector of m potential solutions.

After the initialization, a cross-over matrixM is generated, whereMOU = f(K(O), K(U)).
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f() is here a function that takes two potential solutions and generates a crossover solution.

M =


f(K(1), K(1)) · · · f(K(1), K(m))

...
. . .

...

f(K(m), K(1)) · · · f(K(m), K(m))

 (5.9)

The crossover function is random, and for every dimension of the solutions it can either

take the value from the first solution, from the second solution, or generate a new value.

In the case of continuous dimensions, such as θ or h2, the crossover function can also yield

the mean of the two solutions; this allows the solutions to approach a certain number with

sufficient iterations without relying on it to be randomly generated. The probabilities

for these may be heuristically chosen. It is necessary that the chance of the crossover

function to choose a new random value (mutate) be large enough to continuously bring

in new information into the system and allow it to keep improving without being so large

that the newly generated population is less fit than the previous one.

For our implementation, separate crossover functions for continuous (θ and h2) and

discrete (x1) variables were used. These separate functions are given in Table I below.

When new values are generated, they are drawn from the same prior distribution as in

the initialization of the genetic algorithm.

Continuous (θ, h2) Discrete (x1)

varnew =


var1 30%

var2 30%
var1+var2

2
20%

NewV alue 20%

varnew =


var1 45%

var2 45%

NewV alue, 10%

Table 5.1: Crossover Function
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For the discrete case, smaller probabilities of new values being generated were used

due to the limited number of potential new values — there are only four possible values

for a 4-QAM system for each variable x1, so generating new values is less important, as

the data likely exists somewhere in the population. On the other hand, for the continuous

variables, high probabilities for combination and new value generation were used, ensuring

that new values were constantly being added to the pool of solutions.

Following the generation of the M matrix, the genetic algorithm evaluates the cost

function for every solution in M . The m most fit solutions in the union of all solutions in

M and the previous iteration’s K vector are placed into the next iteration’s K vector.

The genetic algorithm repeats the two steps of generating a new population to

form a new M and pruning M to form K until convergence. Convergence can be

gauged based on the variation of the solutions in K; as an example, the algorithm could

potentially be considered to have converged when the five most fit solutions in K all

share the same decoding for x1. In such a scheme, any increase in the population size m

should be followed by an increase in the probability of the crossover operation introducing

new information to reduce the chance of premature convergence. To simplify hardware

implementation, the number of iterations could be held constant, with the understanding

that without ensuring convergence, there is potentially a greater chance of error during

synchronization.

The genetic algorithm approach offers several advantages over other typical ap-

proaches. The bulk of the processing is required to calculate the fitness of the solutions

in M ; the potentially large number of solutions in M suggests that the algorithm is
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highly parallelizable, making it more practical for implementation than other typical

stochastic optimization techniques.

5.2.2 Potential Improvements

This algorithm successfully manages to synchronize the interferer, but this is a com-

putationally intensive process. An alternative method of synchronization could look not

at the training data at the beginning of the interference frame, but rather at the data

at the end. Due to our assumptions that the two frames are of equal length and the

primary frame leads the interferer by at least twelve symbols, there are at least twelve

interference-free data symbols on the tail end of the interferer. Blind synchronization

techniques could potentially be used to provide good estimates for the channel gain and

frequency offset. These estimates could then be passed to the synchronization algorithm

as a prior distribution, significantly decreasing the computational cost of the joint syn-

chronization/detection stage.

5.3 Joint Detection

Joint detection was performed by an algorithm based on a partial-joint detection

algorithm described in [1]. Assuming U simultaneous interferers, all perfectly synchro-

nized and with known discrete constellations, a near-ML Joint Minimum-Distance (JMD)

63



detector that decodes one signal is derived, expressed by

x1 = arg min
x1

 min
x2,...,xU

∣∣∣∣∣y − h1x1 −
U∑
u=2

huxu,mu

∣∣∣∣∣
2
 (5.10)

where y is the received signal and xU is the symbol from the constellation of transmit-

ter U . As in our model, hu corresponds to the channel gain from transmitter U to the

receiver. Several modifications to this expression must be made to accurately reflect our

implementation of this algorithm. Firstly, due to this paper being concerned with syn-

chronizing only the first interferer, U = 2. The expression must furthermore be modified

to return the associated best decoding for the interfering frame, x2(n). Taking into ac-

count the presence of the frequency offset and the synchronization-derived estimates for

θ and h2, the expression for the joint detector used is

x1(n), x2(n) = arg min
x1,x2

[∣∣∣y − h1x1 − x2ĥ2ejnθ̂∣∣∣2] (5.11)

where θ̂ and ĥ2 are the estimates of θ and h2 returned by the synchronization algorithm.

The primary weakness of this approach is its reliance on accurate estimates ĥ2 and θ̂ and

its inability to improve the estimates by observing errors during joint detection. This is

especially problematic in the estimate θ̂, as even small errors in the frequency offset will

compound with each new data symbol. The modification of the joint detection algorithm

to continuously track the estimates ĥ2 and θ̂ is left to future work.
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5.4 Plain Interference Demodulation

Assuming that both frames are of the same length and the primary frame was

the first to be received, then there will be a period during the detection during which

the decoding of the primary frame is completed yet the interferer frame is still present.

Assuming that the preamble of each frame contains information about the length of the

frame, as in the 802.11 standard, the receiver has perfect knowledge of when this occurs,

and so it can switch from the joint detection algorithm to a plain demodulation algorithm

to decode x2. For this section, the received signal is given by

y(n) = x2h2e
jnθ (5.12)

To solve n, a nearest-neighbor demodulator should be applied to the following sym-

bol:

x2(n) =
y(n)

ĥ2ejnθ̂
(5.13)

Like the joint detection section, this algorithm will suffer from compounding error

caused by a frequency offset estimation error during synchronization, and so to improve

performance, a frequency offset tracking algorithm should be implemented.
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Chapter 6

System Performance

In this section, the performance of the devised system relative to naive demodulation

is evaluated by Monte Carlo simulation. The simulations assume a synchronized primary

signal and an unsynchronized interfering frame, arriving at a random point during the

duration of the primary frame. The first twelve symbols of the interferer are used for

synchronization of the interferer, whereas the rest contain decodable data. Both frames

are assumed to be modulated with 4-QAM, with a data length of 60 symbols. The

frequency offset between the two frames is 2kHz, though a range of values was tested

with similar results.

6.1 Interference Detection

The performance of the three devised interference detection schemes will here be

examined. Two metrics of performance will be examined. The first of these is how well

the algorithm is able to tell whether an interferer is present. This data will be presented
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with receiver operating characteristics, a common way to present the performance of a

binary classifier. The receiver operating characteristics plot the false positive rate versus

the true positive rate for a certain receiver architecture. In practice, a certain receiver

will operate at a certain point along this plot, at which the system designer decides the

best trade-off between the false and true positive rates is.

The second metric has to do with how well the detector can estimate when in the

stream the interferer arrives. If this is correctly estimated, than the system can continue

to synchronize the interferer; if, however, an error occurs, than the synchronization will

be done incorrectly, and the system may fail to resolve the collision. Note that the error

rate here will be the chance of any error occuring at all, not the mean or mean-squared

of the error.

6.1.1 No SNR or SIR Knowledge

Many synchronization schemes estimate the noise power, as the knowledge allows

for more effective transmission strategies or even more effective decoding of the received

data. Nevertheless, synchronization without estimating the noise power is possible. In

such a system, the receiver would then not have the SNR available when trying to detect

whether or not an interferer is present, and so other information must be used.

Figs. 6.1, 6.2 and 6.3 demonstrate the behavior of the detector at a real SIR of –5dB,

0dB and 5dB, respectively. Predictably, systems in which the interference is stronger —

and SIR is thus smaller — have superior performance. At higher Eb/Nos, even systems

at high SIRs are capable of correctly detecting the presence of interference.

67



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

No Knowledge Detection Scheme

 

 
E

b
/N

o
 = 0dB

E
b
/N

o
 = 4dB

E
b
/N

o
 = 8dB

E
b
/N

o
 = 12dB

E
b
/N

o
 = 16dB

E
b
/N

o
 = 20dB

Figure 6.1: Blind Interference Detection
for SIR = –5dB
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Figure 6.2: Blind Interference Detection
for SIR = 0dB
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Figure 6.3: Blind Interference Detection
for SIR = 5dB
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Figure 6.4: Blind Delay Estimation for
SIR = 0dB

Fig. 6.4 shows that this algorithm performs poorly when it comes to correctly es-

timating the first symbol where the interferer is present. This level of performance is

unacceptable in a modern communication system, at least if the rest of the system is the

one discussed here. If the algorithm is not capable of accurately estimating the delay at

which the interference begins, then the subsequent synchronization algorithm will fail,

leading to a loss of both frames. Even at high SNRs and optimal SIRs, the delay estima-

tion error rate is around 0.5, meaning that half of all collisions would not be detected.
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Either a superior algorithm for this delay estimation must be developed using the given

information, or more information must be provided to the receiver.

6.1.2 Full SIR and SNR Knowledge

There are systems in which the receiver may have knowledge of the SNR — acquired

through typical synchronization mechanisms — and perhaps even prior expectation of

any interferer SIR if there is a single expected interfering transmitter. In this case,

the receiver has a lot of additional information to use to yield better detection results.

Figs. 6.5, 6.6 and 6.7 show the receiver operating characteristics for SIRs of –5dB, 0dB

and 5dB, respectively.

With full knowledge of both the SNR and the expected SIR, the binary detection of

the interferer works very well. Apart from the cases where the Eb/No is 4 dB or less —

which, even for a plain QPSK communication system, is very low — the detector is able

to estimate the presence of interference very accurately. Unlike the algorithm without

any SIR or SNR knowledge, the system is also capable at estimating the delay. For all

SIRs except –6 dB, the system is able to estimate the delay correctly at least 90% of the

time by Eb/N0 = 20dB. In general, the algorithm tends to do better for SIRs near 0 dB.

Unlike the previously shown system, then, this system performs sufficiently well that it

could be worth implementing it to allow for joint decoding of two interfering frames.
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Figure 6.5: SNR and SIR-Aware Interfer-
ence Detection for SIR = –5dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

SIR/SNR Knowledge Detection Scheme

 

 
E

b
/N

o
 = 0dB

E
b
/N

o
 = 4dB

E
b
/N

o
 = 8dB

E
b
/N

o
 = 12dB

E
b
/N

o
 = 16dB

E
b
/N

o
 = 20dB

Figure 6.6: SNR and SIR-Aware Interfer-
ence Detection for SIR = 0dB
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Figure 6.7: SNR and SIR-Aware Interfer-
ence Detection for SIR = 5dB
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Figure 6.8: SNR and SIR-Aware Delay
Estimation

6.1.3 Only SNR Knowledge

Perhaps most commonly, the receiver will have acquired knowledge of the SNR of

the primary signal during synchronization, but there will be little prior knowledge about

what the SIR will be during the collision. This may simply be because the power isn’t

predictable, or it may be caused by the inability of the receiver to track the information.

Figs. 6.9 and 6.10 show the binary detection rate of the receiver, and Figs. 6.11

and 6.12 show the delay-estimation performance of this algorithm. As a reminder, this

algorithm works along similar lines as the algorithm that assumes knowledge of both
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Figure 6.9: SNR-Aware Interference De-
tection for SIR = 0dB
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Figure 6.10: SNR-Aware Interference De-
tection for SIR = 5dB
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Figure 6.11: SNR-Aware Delay Estima-
tion with SIR ∼ U(−10dB, 10dB) prior
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Figure 6.12: SNR-Aware Delay Estima-
tion with SIR ∼ U(−6dB, 6dB) prior

SNR and SIR, but it assumes a prior distribution on the SIR. For the ROC plots, this

was chosen to be –6 dB to 6 dB.

The binary detection performance seems to be about where expected — superior

to the algorithm with no information, but inferior to the algorithm with both SIR and

SNR information. Detection rate of the interference at higher Eb/Nos is is acceptable

for this kind of system, though it suffers at low Eb/N0s and high SIRs. The delay

estimation rate is poor at high SIRs, but markedly improves as the SIR is lowered. As

the prior knowledge of the SIR is made more accurate, the delay estimation rate improves
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significantly, particularly at low SIRs. Depending on how accurately the SIR of incoming

frames is known in advance, this algorithm may be sufficiently accurate for practical

implementation.

6.2 Joint Synchronization-Detection

The genetic synchronization-detection algorithm is the most complicated and diffi-

cult to mathematically model part of the system, and so demonstrating its effectiveness

under a variety of conditions is particularly important. First, the effectiveness of the

algorithm in a base case will be demonstrated. Then, various changes to the parameters

of the algorithm will be made in an effort to quantify the effects of those changes, with

everything else being held constant. Three metrics will be used to demonstrate the ef-

fectiveness of the algorithm: The BER rates of the primary frame, and the errors in the

estimation of both the channel gain and frequency offset of the interferer.

The base case to be evaluated assumes that both the primary frame and the interferer

use 4-QAM modulation. Both frames are assumed to use a training symbol length of

12 and a data length of 60 symbols. The training symbols associated with the primary

frame are not simulated, as perfect synchronization of the primary frame is assumed.

It is assumed that all the symbols have the same symbol period, and that the symbol

period and receiver sampling period are the same. Perfect timing synchronization of both

frames is assumed; though the exact time at which the interferer arrives it unknown, it

is assumed to be quantized such that it sums ideally with the primary frame.

The interferer is assumed to arrive at the receiver at a time uniformly distributed
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between the beginning of the data portion of the primary frame and twelve symbols away

from the end of the primary frame. The first restriction ensures that that the primary

frame is properly synchronized; the second ensures that there is always a primary frame

to be decoded while the interferer is being synchronized. If the second restriction is not

enforced, the consequence would be that the primary frame is no longer present during

synchronization. The receiver would know this due to the frame length being stored in

the preamble of a Wifi frame. Without an interferer present, the theoretical performance

of the synchronization algorithm should greatly improve, though the code itself would

need to be modified to accept this possibility.

The frequency offset to be estimated is 2kHz, while the channel gains are chosen to

fit the simulated SIR with a uniform phase offset φ ∈ [0, 2π]. The genetic algorithm is

configured with m = 60, and with the algorithm performing 25 iterations before returning

the estimates x̂1, θ̂ and ĥ2. Thus, unless explicitly stated otherwise, no convergence

checking is performed.

Note that in the performed simulations, no forward-error correction or interleaving

was performed. Implementing both of these would improve the system performance.

Interleaving is important to implement due to the compounding of any error in the

estimate θ — a consequence of this is that the symbols near the end of the collision

would have a larger resulting phase offset, and thus a higher error rate. By essentially

spreading these errors throughout the transmission and applying an error correction

scheme, these errors could be mitigated even without implementing additional tracking

features.
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6.2.1 Base Results
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Figure 6.13: BER vs Eb/No and SIR for
the base Joint Synchronization-Detection
algorithm

Fig. 6.13 demonstrates the BER of the

primary frame during joint synchronization-

detection for the base case under a variety

of SIRs and Eb/Nos. Some clear trends are

observable. There is an error floor in the re-

sults. This is caused by the computational

constraints of the algorithm — there is no

ideal convergence criterion due to the pres-

ence of continuous variables, and so with a

set number of iterations, the floor becomes iteration-limited rather than noise-limited.

The error floor could be improved by dedicating more resources to the computation, such

as by increasing m or the number of iterations of the algorithm. This is shown by compar-

ing these results to those in the next section, where convergence detection is performed,

leading to less accurate results. These error floors also improve as SIR increases.

The synchronization-stage mean-squared channel estimate error and mean frequency

error are shown in Figs. 6.15 and 6.14, respectively. The synchronization algorithm

dealing with a low-SIR system tends to provide superior estimates of the channel gain,

but inferior estimates of the frequency offset. This in turn improves the BER for joint

detection systems where there is a high SIR, as the frequency estimation error is the

dominant source of error for the joint detection algorithm at high SNRs. Note that, as

with the BER for the algorithm, there exists an error floor on the estimates.
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Figure 6.14: Mean Error in the Frequency
Offset Estimation Eb/No and SIR for Base
Algorithm
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Figure 6.15: Mean-Squared Error in the
Channel Gain Estimate vs Eb/No and SIR
for Base Algorithm

6.2.2 Automatic Convergence

The algorithm could be modified to automatically converge. With the proper

convergence criterion, this could help reduce the computational cost of the algorithm,

though a specified number of iterations is likely simpler to implement in hardware.

Without prior knowledge of the true values of x1, θ or h2, convergence checking must
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Figure 6.16: Mean Error in the Fre-
quency Offset Estimation Eb/No and SIR
for Convergence-Checking Algorithm
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Figure 6.17: Mean-Squared Error in the
Channel Gain Estimate vs Eb/No and SIR
for Convergence-Checking Algorithm
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be done by observing trends in the population of solutions. This could be done by

looking at the variation of these variables over the population — the less variation

there is in the solutions, the closer the algorithm is to convergence, as all solutions

with radically different estimates were deemed to be poor and subsequently pruned.
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Figure 6.18: BER vs Eb/No and SIR
for the Joint Synchronization-Detection
Convergence-Checking Algorithm

For this simulation, a simple convergence cri-

terion was used; if the five most fit solutions

from the vectorK ofm = 60 solutions all had

identical estimates x̂1, then the algorithm

was judged to have converged. No more it-

erations were performed, and the data was

passed to the joint detection algorithm.

The BER of x1 is shown here to be very

similar to that with a set number of itera-

tions. However, there are significant differences to be seen in the estimates for the

channel gain and particularly the frequency offset. At an Eb/No of 20dB, for example,

the average of the frequency offset error is about 1kHz for the automated convergence run

but about 400Hz for 25 iterations. This strongly suggests that this convergence condition

is insufficient if it is desired to achieve good joint decoding of both frames; the algorithm

is converging without meeting the desired performance levels. It should thus be modified

to take into account the variance of h2 and θ.
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6.2.3 Modifying Solution Population Size
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Figure 6.19: BER vs Eb/No and SIR for
the Joint Synchronization-Detection for
m = 30

The bulk of the processing cost of the ge-

netic algorithm is the evaluation of the fitness

of every solution. This cost scales with m2,

and so decreasing m could potentially lead to

large computational complexity reductions.

This prompted an experiment where m was

reduced from 60 to 30; thus, the computa-

tional cost of the fitness-calculation portion

of the algorithm was reduced by 75%.
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Figure 6.20: Mean Error in the Frequency
Offset Estimation Eb/No and SIR for m =
30
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Figure 6.21: Mean-Squared Error in the
Channel Gain Estimate vs Eb/No and SIR
for m = 30

The effectiveness of the algorithm decreased drastically — especially at high SNRs

— with m having been halved. The average over all SIRs of the frequency errors at

Eb/No has increased from 400Hz to 750Hz. The channel gain error at an SIR of –6dB

has increased from 0.05 to .3. Even the BER of x1 appears to have increased: At an SIR
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of 6dB, the error floor appears to have risen from below 10−5 to 5× 10−4. This seems to

have had a similar effect on the results as the automatic convergence.

6.2.4 BPSK Modulation
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Figure 6.22: BER vs Eb/No and SIR for
the Joint Synchronization-Detection for
BPSK Modulation

For this test, the modulation format was

switched from 4-QAM (or QPSK) to BPSK,

or Binary Phase-Shift Keying. The computa-

tional complexity of the genetic algorithm is

greatly reduced, as the total solution space

of x1 was reduced from 412 = 1.67e7 to

212 = 4096. This implies that the algorithm

will successfully converge to the correct de-

modulation of x1 quicker, and thus have more

iterations to spend refining the estimates ĥ2 and θ̂. Furthermore, BPSK is more resistant

to noise the QPSK, as the minimum distance between points on the constellation, dmin,

is smaller.

The algorithm is particularly successful with this modulation scheme. This is an

important result due to BPSK typically being used for control sequences, such as the

preamble of a Wifi frame. In the event that the interferer arrives during the decoding

of the preamble, the joint synchronization-detection algorithm will be more likely to

correctly decode it. In the event that the preamble is decoded incorrectly, the remainder

of the system would fail, as the receiver would have no information about the modulation
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scheme and data length of the interferer.
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Figure 6.23: Mean Error in the Fre-
quency Offset Estimation Eb/No and SIR
for BPSK Modulation
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Figure 6.24: Mean-Squared Error in the
Channel Gain Estimate vs Eb/No and SIR
for BPSK Modulation

6.2.5 16-QAM Modulation
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Figure 6.25: BER vs Eb/No and SIR for
the Joint Synchronization-Detection for
16-QAM Modulation

16-QAM Modulation, unlike BPSK, is

more complex a modulation scheme than the

base 4-QAM, and so the simulated results

are expected to be inferior to those with 4-

QAM. Compared to 1.67e7 potential solu-

tions for x1 in QPSK modulation, 16-QAM

has 2.81e14; thus, it is expected that more it-

erations are required to achieve similar com-

putational performance. Furthermore, the

distance between symbols is further compressed, reducing the efficacy of the modulation

scheme at lower SNRs. Testing the performance of the algorithm at higher modulation
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schemes, such as 64-QAM, was considered, but due to the required computational com-

plexity of the genetic algorithm to achieve useful results, rejected. The required increases

in the number of iterations or m were too great to feasibly generate useful BER plots.
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Figure 6.26: Mean Error in the Frequency
Offset Estimation Eb/No and SIR for 16-
QAM Modulation
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Figure 6.27: Mean-Squared Error in the
Channel Gain Estimate vs Eb/No and SIR
for 16-QAM Modulation

Fig. 6.25 shows that the BER has increased significantly due to the change in con-

stellation, but despite that, the performance is still reasonable, at least at higher SIRs.

Figs. 6.26 and 6.27 show that the channel and frequency estimates have also suffered,

especially at low SIRs, but that results are still comparable at high SIRs and Eb/Nos,

meaning that even with a huge increase in the size of the x1 being searched and without

an increase of m, the algorithm can function reasonably well. The next section will ex-

plore the benefits of scaling m with changes in the constellation, weighing the increased

complexity against the boost in performance.
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6.2.6 16-QAM Modulation & m = 100
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Figure 6.28: BER vs Eb/No and SIR for
the Joint Synchronization-Detection for
16-QAM Modulation & m = 100

This section retains the 16-QAM mod-

ulation scheme from the last section, but at-

tempts to increase m to from 60 to 100, yield-

ing an increase from 3600 to 10000 solutions

per iteration. The performance of the algo-

rithm under these conditions is compared to

that with a lower m.

As before, the main weaknesses of the

algorithm are in the low-SIR and low-SNR

regime; where so little information is available about the interferer, that increasing the

computational complexity returns little. Primarily, the increase yielded improvements

where the algorithm already did well — high SIR and high SNR.
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Figure 6.29: Mean Error in the Frequency
Offset Estimation Eb/No and SIR for 16-
QAM Modulation & m = 100
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Figure 6.30: Mean-Squared Error in the
Channel Gain Estimate vs Eb/No and SIR
for 16-QAM Modulation & m = 100
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The mean frequency estimation error for an SIR of 0 dB fell from 900Hz to 600Hz,

while the BER for an SIR of 6dB fell from 2 × 10−2 to .8 × 10−3. These are significant

improvements, but they show the pain of trading between performance and complexity —

the improvements diminish as more computational power is provided to the algorithm.

6.3 Joint Detection Performance

Figs. 6.31, 6.32, 6.33 and 6.34 show the performance of the Joint Detection algo-

rithm. The results computed using the estimates θ̂ and ĥ2 provided by the synchroniza-

tion algorithm are compared with the results given the true values of θ and h2. They

demonstrate the potential performance gains by implementing a frequency offset and

channel gain tracking mechanism in the joint detection algorithm. It should also be

noted that the performance of the joint detection algorithm given accurate values of θ

and h2 drastically improves as the SIR rises and falls from 0 dB; for an SIR of 5 dB, for

example, the BER falls from 10−2 to 10−5 at Eb/No = 20 dB.

Intuitively, the poor performance of the algorithm at SIRs close to 0 can be explained

by noting that in the case that the SIRs are 0 and there is no phase offset between the

two channel gains, the constellations as seen at the receiver are equivalent — thus, there

is unavoidable ambiguity as to which transmitter sent each symbol. This ambiguity is

extended to rotations of 90o of the constellations (at least with 4-QAM), in which case,

again, an ambiguity exists. Changing the power of the two interfering symbols with a

constellation where all the powers are identical removes this ambiguity, yielding improved

performance.
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Figure 6.31: Joint Detection Performance
for SIR = -5 dB
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Figure 6.32: Joint Detection Performance
for SIR = 0 dB
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Figure 6.33: Joint Detection Performance
for SIR = 1 dB
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Figure 6.34: Joint Detection Performance
for SIR = 5 dB

Some confusion may arise from differences in the performance of the algorithm at SIR

= 5dB and SIR = –5dB; after all, with a symmetric joint detection algorithm, these should

be identical, yet better BERs are achieved for SIR = –5dB. In effect, these two cases are

identical, but accounting for the noise power is done with respect to different frames. For

example, for an SIR of –5dB, the Eb/Nos of the two frames at the Eb/No = 20 dB point

is 20 and 25; at the same point in the SIR = 5dB plot, these are 20 and 15.
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Chapter 7

Conclusions and Further Work

This paper proposes a system that is capable of resolving collisions via joint de-

tection. The system detects the presence of the interferer and performs channel and

frequency synchronization. The synchronization data is used to perform joint detection,

allowing the system to decode both the primary frame and the interfering frame.

Three separate interference detection algorithms are developed, two requiring both

or neither SNR and SIR and the other requiring only SNR. Though all three algorithms

are able to detect the presence of the signal to acceptable accuracy, only the one given

both SNR and SIR is able to consistently estimate the beginning of the interferer. The

blind detector is unable to achieve acceptable estimation rates for any SIR, while the

detector with SNR knowledge is able to give reliable estimates for SIRs close to 0 dB.

The synchronization algorithm provides accurate estimates that could be improved

by increasing the number of iterations. However, due to the noise, the performance may

still not be sufficient to allow subsequent detection algorithms to reach their peak perfor-
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mance. In particular, the frequency offset error propagates through the system, greatly

increasing the error rate. This suggests that some form of tracking algorithm should

be implemented, that would use the additional information from the joint detection to

improve the estimates for the frequency offset and channel gain of the interferer.

A possible extension of the synchronization algorithm would attempt blind synchro-

nization on the tail-end of the interferer, which is received interference-free but without

knowledge of which symbols are being transmitted. This could help estimate the fre-

quency offsets, channel gains and even help synchronize the interferer with the receiver

in time. This information could then be combined with that gleaned by the synchroniza-

tion algorithm to get refined estimates to help the joint detection algorithm approach its

optimal performance.

Another possible extension of this project would be to enlarge the dimensional-

ity, either by designing a system with multiple subcarriers or implementing this system

for MIMO. This would potentially necessitate finding a more efficient synchronization

algorithm. It could also prompt the development of a new joint detection algorithm,

potentially inspired by the QRM-MLD or Sphere Decoder MIMO decoders, that could

perform multidimensional underdetermined MIMO decoding more efficiently than the

exhaustive search performed by the JMD algorithm.
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Chapter 8

Appendix A: MATLAB Code

8.1 MIMO Decoder Comparison

The MIMO Decoder Comparison provides the code to generate Fig. 2.11. It’s com-
prised of a general Plot Wrapper, a MIMO Encoder object, and several decoder objects/-
functions. Note that the Sphere Decoder plotted was a native MATLAB implementation;
no custom implementation was made. The algorithms will not necessarily work if signif-
icant changes are made; for example, the QRM-MLD implementation does not function
beyond 2x2 MIMO. The decoders also assume that every available channel is used for
data transmission, and that NT = NR; there is no support for utilizing the spatial streams
for diversity.

8.1.1 MIMO Plotter

The MIMO Plotter acts as the testbench for all the MIMO algorithms. It sets up the
modulator and demodulator objects, generates the data, passes it through the channel
and through each decoder. It also handles the differing format of the outputs of the de-
coders — for example, the Minimum-Distance implementation returns the demodulated
symbol numbers, whereas the Zero-Forcing algorithm returns the modulated symbols.
To run quickly, reduce the variable numiter to something like ‘5’.

%% Andrew Apollonsky
clc;
clear all;
close all force;
%% Configuration
% Basic
datalen = 1000; % Length of each data stream
ebnos = 0:2:20; % E b/N os to test

86



numiter = 2500; % Number of iterations

% Channel
numTx = 2; % 2x2 MIMO
numRx = 2;
rS = 1;
maxDopp = 1e−1;
if numRx == numTx

recCorrMat = eye(numRx);
tranCorrMat = eye(numRx);

end
%% Object Creation
% Modulation
bpskmod = comm.BPSKModulator;
bpskdemod = comm.BPSKDemodulator;
qam4mod = comm.RectangularQAMModulator(4);
qam4demod = comm.RectangularQAMDemodulator(4);
qam4modb = comm.RectangularQAMModulator(4, 'BitInput', true);
qam4demodb = comm.RectangularQAMDemodulator(4, 'BitOutput', true);

modu = qam4mod; % Choose Modulator

if modu == qam4mod
demod = qam4demod;
modb = qam4modb;

elseif modu == bpskmod
demod = bpskdemod;
modb = bpskmod;

end

m = length(constellation(modu));

% MIMO
mimoenc = MIMOEnc;
mimodec1 = ZFMIMODec;
mimodec2 = MMSEMIMODec;
mimodec3 = MMSESICMIMODec;
mimodec4 = JMDMIMODec;
mimodec5 = comm.SphereDecoder('Constellation', constellation(modu), ...

'BitTable', [0 0; 1 0; 0 1; 1 1], 'DecisionType', 'Hard');
% Replace the matrix [0 0; 1 0; 0 1; 1 1] above with [0 1].' for BPSK.

decs = {mimodec1, mimodec2, mimodec3, mimodec4, mimodec5};
needemod = [1 1 0 0 2 1 1]; % Tells script how the decoder outputs the data.

% Channel
chan1 = comm.MIMOChannel(...

'SampleRate', rS, ...
'MaximumDopplerShift', maxDopp, ...
'PathGainsOutputPort', true, ...
'TransmitCorrelationMatrix', tranCorrMat, ...
'ReceiveCorrelationMatrix', recCorrMat);

chanresetiteration = 5;
chan2 = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)');
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wB = waitbar(0,'0%');

%% Simulation
hold all;
set(gca ,'yscale','log');
ylabel('BER');
xlabel('E b/N o');
grid on;
title('2x2 MIMO QPSK E b/N o vs BER');

tests = length(needemod);
prog = 0;
datadec2 = zeros(datalen*numTx, 1);
tic;
for reciter = 1:tests % Iterate over receivers

for n = 1:length(ebnos) % Iterate over E b/N os
ebno = ebnos(n);
for p = 1:numiter % Iterate over iterations

%% Data Generation
data1 = randi([0 m−1], datalen * ...

min(numTx, numRx), 1); % Generation
datamod1 = step(modu, data1); % Modulation
dataoenc1 = step(mimoenc, datamod1, numTx); % MIMO Encoding

%% Channel Implementation
if mod(p ,chanresetiteration) == 0

reset(chan1);
end
[dataRay1, pathG1] = step(chan1, dataoenc1); % Channel
chan2.SNR = ebno + 10*log10(log2(m));
siz = size(dataRay1);
chan2.SignalPower = sum(sum(abs(dataRay1.ˆ2)))/(siz(1)*siz(2));
rxSig1 = step(chan2, dataRay1); % AWGN Channel

%% Decoding
if reciter == 1

datadec1 = step(decs{reciter}, rxSig1, squeeze(pathG1), numTx);
elseif reciter == 2

datadec1 = step(decs{reciter}, rxSig1, squeeze(pathG1), ...
var(rxSig1(:, 1) − dataRay1(:, 1)), numTx);

elseif reciter == 3
datadec1 = step(decs{reciter}, rxSig1, squeeze(pathG1), ...

var(rxSig1(:, 1) − dataRay1(:, 1)), modu, demod,...
numTx);

elseif reciter == 4
datadec1 = step(decs{reciter}, rxSig1, ...

squeeze(pathG1), modu, modb, numTx, numRx);
elseif reciter == 5

datadec1 = step(decs{reciter}, rxSig1, squeeze(pathG1));
elseif reciter == 6

datadec1 = qrm mld(rxSig1, squeeze(pathG1), modu, 2);
elseif reciter == 7

datadec1 = qrm mld(rxSig1, squeeze(pathG1), modu, 4);
end
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%% Serialize, convert to proper format
if needemod(reciter) == 1

datadec3 = reshape(datadec1.', [], 1);
datadec4 = step(demod, datadec3);

elseif needemod(reciter) == 0
datadec4 = reshape(datadec1.', [], 1);

elseif needemod(reciter) == 2
datadec2 = reshape(datadec1, log2(m), []).';
datadec3 = bi2de(datadec2, log2(m));
datadec4 = zeros(length(datadec1), 1);
datadec4(1:numRx:length(datadec2)) = ...

datadec3(1:length(datadec2)/2);
datadec4(2:numRx:length(datadec2)) = ...

datadec3(length(datadec2)/2+1:length(datadec2));
end

%% Find BER
ber(n, p) = mean(reshape(de2bi(data1, log2(m)), [], 1) ...

˜= reshape(de2bi((datadec4+0), log2(m)), [], 1));
end
prog = prog + 1/(length(ebnos) * tests);
waitbar(prog, wB, strcat(int2str(round(prog*100)), '%'));

end
plot(ebnos, mean(ber, 2), 'LineWidth', 2);

end
toc
close(wB);

legend('ZF', 'MMSE', 'MMSE−SIC', 'Minimum−Distance', 'Sphere Decoder',...
'QRM−MLD, M = 2', 'QRM−MLD, M = 4');

set(gcf, 'Color', 'w');
export fig MIMOPlots.eps

8.1.2 MIMO Encoder

The MIMO Encoder takes the incoming data stream and separates it among the
desired number of MIMO channels.

classdef MIMOEnc < matlab.System
methods (Access=protected)

function out = stepImpl(˜, data, numTx)
out = zeros(length(data)/numTx, numTx);
for k = 1:numTx

out(:, k) = data(k:numTx:end);
end

end

function numIn = getNumInputsImpl(˜)
numIn = 2;

end
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function numOut = getNumOutputsImpl(˜)
numOut = 1;

end
end

end

8.1.3 Zero-Forcing

Implementation of the linear Zero-Forcing MIMO Decoder.

classdef ZFMIMODec < matlab.System
methods (Access=protected)

function out = stepImpl(˜, data, PG, numTx)
out = zeros(length(data), numTx);
W = zeros(numTx, numTx, length(data));
for t = 1:length(data)

k = squeeze(PG(t, :, :));
W(:, :, t) = (k'*k)\k';
out(t, :) = data(t, :)*W(:, :, t);

end
end

function numIn = getNumInputsImpl(˜)
numIn = 3;

end

function numOut = getNumOutputsImpl(˜)
numOut = 1;

end
end

end

8.1.4 MMSE

Implementation of the linear MMSE MIMO Decoder.

classdef MMSEMIMODec < matlab.System
methods (Access=protected)

function out = stepImpl(˜, data, PG, N0, numTx)
out = zeros(length(data), numTx);
W = zeros(numTx, numTx, length(data));
for t = 1:length(data)

k = squeeze(PG(t, :, :));
W(:, :, t) = (k'*k + eye(numTx)*N0)\k';
out(t, :) = data(t, :)*W(:, :, t);

end
end
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function numIn = getNumInputsImpl(˜)
numIn = 4;

end

function numOut = getNumOutputsImpl(˜)
numOut = 1;

end
end

end

8.1.5 MMSE-SIC

Implementation of the MMSE-SIC MIMO Decoder.

classdef MMSESICMIMODec < matlab.System
methods (Access=protected)

function out = stepImpl(˜, data, PG, N0, mod, demod, numTx)
out = zeros(length(data), numTx);
pow = sum(PG.ˆ2, 3);
[˜, powind] = sort(pow, 2, 'descend');
for t = 1:length(data)

PGT = squeeze(PG(t, :, :)).';
data2 = data(t, :);
for k = 1:numTx

W = (PGT'*PGT + eye(numTx)*N0)\PGT';
temp = W*data2.';
xhat = temp(powind(t, k));
out(t, powind(t, k)) = step(demod, xhat);
mods = step(mod, out(t, powind(t, k)));
data2 = data2 − PGT(:, powind(t, k)).' * mods;

end
end

end

function numIn = getNumInputsImpl(˜)
numIn = 6;

end

function numOut = getNumOutputsImpl(˜)
numOut = 1;

end
end

end

8.1.6 Minimum-Distance

Implementation of the Minimum-Distance MIMO decoder. Supports up to 8x8
MIMO.
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classdef JMDMIMODec < matlab.System
methods (Access=protected)

function out = stepImpl(˜, data, PG, mod, modb, numTx, numRx)
% Matrix preallocation
m = length(constellation(mod));
out = zeros(length(data), numTx);
mvec = [ones(numTx, 1)*m; ones(8−numTx, 1)];
minimat1 = zeros(length(data), numTx, numRx, m);
minimat2 = zeros(length(data), numRx, mvec(1), mvec(2), ...

mvec(3), mvec(4), mvec(5), mvec(6), mvec(7), mvec(8));
grid1 = ones(length(data), mvec(1), mvec(2), mvec(3), mvec(4),...

mvec(5), mvec(6), mvec(7), mvec(8), numTx);

% Generation of values for minimum−distance detector
for p = 1:numTx

for n = 0:m−1
aa = step(mod, n);
for k = 1:numRx

minimat1(:, p, k, n+1) = PG(:, p, k) * aa;
end

end
end

% Grid for repmatting later.
gridthing(1, :) = [1 2 3 4 5 6 7 8 9];
for k = 2:8

gridthing(k, :) = gridthing(k−1, :);
gridthing(k, [k+1, k]) = gridthing(k, [k, k+1]);

end

% Generating values that will be subtracted for JMD receiver.
for k = 1:numRx

for p = 1:numTx
grid1(:, :, :, :, :, :, :, :, :, p) = repmat(permute(...

squeeze(minimat1(:, p, k, :)), gridthing(p, :)), ...
[1 ones(1, p−1)*m 1 ones(1, numTx−p)*m]);

end
minimat2(:, k, :, :, :, :, :, :, :, :) = permute(sum(grid1,...

10), [1 10 2 3 4 5 6 7 8 9]);
end

% Calculating Maximat, which stores the differences between the
% actual data and would−be data for every single combination.
maximat = permute(squeeze(sum(abs(squeeze(repmat(data, [1, 1, ...

mvec(1), mvec(2), mvec(3), mvec(4), mvec(5), mvec(6), ...
mvec(7), mvec(8)])) − squeeze(minimat2)), 2)), [2 3 4 5 6 7 8 9 1]);

% Using the values to find the decoded signal.
for t = 1:length(data)

[˜, minind] = ...
min(reshape(maximat( :, :, :, :, :, :, :, :, t), [], 1));

siz = size(maximat(:, :, :, :, :, :, :, :, t));
[a, b, c, d, e, f, g, h] = ind2sub(siz, minind);

92



k = [a b c d e f g h];
out(t, :) = k(1:numTx)−1;

end
end

function numIn = getNumInputsImpl(˜)
numIn = 6;

end

function numOut = getNumOutputsImpl(˜)
numOut = 1;

end
end

end

8.1.7 QRM-MLD

Implementation of QRM-MLD MIMO Decoder. Supports up to 2x2 MIMO.

function [datout] = qrm mld(data, PG, mod, M)
const = constellation(mod);
datout = zeros(length(data), 2);
for t = 1:length(data) % Loop over time

[Q, R] = qr(squeeze(PG(t, :, :)).'); % QR Decomposition
yhat = Q'*(data(t, :).'); % Generate Q*y
dist = zeros(length(const), 1); % Distance Preallocation
for a = 1:length(const)

dist(a) = abs(yhat(2) − R(2, 2)*const(a)); % Calculate distance
end
[˜, I] = sort(dist, 'ascend'); %Find best solutions
x2s = const(I(1:min(length(const), M))); % Grab best solutions
dist = zeros(length(x2s), length(const)); % Distance Preallocation
for a = 1:length(x2s) % Loop over last iteration

for b = 1:length(const) % Loop over current possibilities
dist(a, b) = (yhat(2) − R(2, 2)*x2s(a))ˆ2 + ...

(yhat(1) − R(1, 1)*const(b) − R(1, 2)...

*x2s(a))ˆ2; % Calculate distance
end

end
[˜, minind] = min(reshape(dist, [], 1)); % Find best index
[a, b] = ind2sub(size(dist), minind); % Find corresponding symbols
datout(t, :) = [const(b) x2s(a)]; % Output them

end
end

8.2 Interference System

This section contains the MATLAB code that simulates the behavior of the derived
system.
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8.2.1 System Plotter

The system plotter simulates the performance of the entire system over a specified
list of SIRs and Eb/Nos. The system contains code to generate the plots that show
synchronization performance in terms of frequency estimation, channel estimation and
simultaneous decoding BER. The system also contains code to generate plots comparing
the performance of the joint detection algorithm with the estimated parameters versus
with ideal knowledge of the system parameters.

%% Andrew Apollonsky
close all force;
clc;
clear all;
%% Simulation Parameters
len1 = 12; % Training length
len2 = 60; % Frame length (discounting training)
m1 = 4;
m2 = 4;

ebnos = 0:4:20; % E b/N os to simulate
sirs = [−6:3:6]; % SIRs to simulate
numiter = 15; % Number of iterations per E b/N o and SIR

ts = 4e−6; % Sample Time
freq = 2.4; % Simulated Frequency

maxDopp = 1;
rotfacreal = .05;
realfreqoffset = rotfacreal /(2*pi) / ts / 1e3;%Real frequency offset, in KHz

%% Object Initialization
bpskmod = comm.BPSKModulator(0);
bpskdemod = comm.BPSKDemodulator(0);
qam4mod = comm.RectangularQAMModulator(4);
qam4demod = comm.RectangularQAMDemodulator(4);
qam16mod = comm.RectangularQAMModulator(16);
qam16demod = comm.RectangularQAMDemodulator(16);
qam64mod = comm.RectangularQAMModulator(64);
qam64demod = comm.RectangularQAMDemodulator(64);
qam256mod = comm.RectangularQAMModulator(256);
qam256demod = comm.RectangularQAMDemodulator(256);

if m1 == 2
mod1 = bpskmod;
demod1 = bpskdemod;

elseif m1 == 4
mod1 = qam4mod;
demod1 = qam4demod;

elseif m1 == 16
mod1 = qam16mod;
demod1 = qam16demod;

end
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if m2 == 2
mod2 = bpskmod;
demod2 = bpskdemod;

elseif m2 == 4
mod2 = qam4mod;
demod2 = qam4demod;

elseif m2 == 16
mod2 = qam16mod;
demod2 = qam16demod;

end

g1 = 1; % Gain of primary signal

bersgen = nan(length(sirs), length(ebnos), numiter);
berstand = nan(length(sirs), length(ebnos), numiter);
pgsguess = nan(length(sirs), length(ebnos), numiter);
rotfacguess = nan(length(sirs), length(ebnos), numiter);
pgsreal = nan(length(sirs), length(ebnos), numiter);
numiters = nan(length(sirs), length(ebnos), numiter);
delayerr = nan(length(sirs), length(ebnos), numiter);
jmdber11 = nan(length(sirs), length(ebnos), numiter);
jmdber12 = nan(length(sirs), length(ebnos), numiter);
jmdber21 = nan(length(sirs), length(ebnos), numiter);
jmdber22 = nan(length(sirs), length(ebnos), numiter);
jmdber31 = nan(length(sirs), length(ebnos), numiter);
jmdber32 = nan(length(sirs), length(ebnos), numiter);
jmdber41 = nan(length(sirs), length(ebnos), numiter);
jmdber42 = nan(length(sirs), length(ebnos), numiter);

out3ber = nan(length(sirs), length(ebnos), numiter);
sigpresentest = nan(length(sirs), length(ebnos), numiter);
sigpresentreal = nan(length(sirs), length(ebnos), numiter);

wB = waitbar(0,'0%');
prog = 0;
%% Calculations
[evm1, evm2, var1, var2] = errcalc(sirs, ebnos + 10*log10(log2(m1)), ...

1e5, mod1, demod1, mod1);

[evm11, evm22, var11, var22] = errcalc(−10:2:10, ebnos + ...
10*log10(log2(m1)), 1e5, mod1, demod1, mod1);

tic;
for siriter = 1:length(sirs)

sir2 = sirs(siriter) − 10*log10(log2(m1)) + 10*log10(log2(m2));
g2 = 10ˆ(−sir2/20);
for ebnoiter = 1:length(ebnos)

SNR = ebnos(ebnoiter) + 10*log10(log2(m1));
for iter = 1:numiter

sig2delay = randi([1 len2−len1 − 1]); % Generate random delay
totlen = sig2delay + len1 + len2; % Compute total simulation length

% Generate data.
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x1 = [randi([0 m1−1], len2, 1); zeros(sig2delay + len1, 1)];
x2 = [zeros(sig2delay, 1); randi([0 1], len1, 1);...

randi([0 m2−1], len2, 1)];

% Modulated data. 0 where no signal exists.
y1 = [step(mod1, x1(1:len2)); zeros(sig2delay + len1, 1)];
y2 = [zeros(sig2delay, 1); ...

step(bpskmod, x2(sig2delay+1:sig2delay+len1)); ...
step(mod2, x2(sig2delay+len1+1:end))];

% Real path gains with specified power and random phase
% generated
pathG1 = [ones(len2, 1) * exp(rand(1) * 2*pi*1i) * g1; ...

zeros(len1 + sig2delay, 1)];
pathG2 = [zeros(sig2delay, 1); ones(len1 + len2, 1) ...

* exp(rand(1) * 2*pi*1i) * g2];

% Apply frequency−offset−induced rotation in path gain
for t = sig2delay+1:totlen

pathG2(t) = pathG2(t) * ...
exp((t−sig2delay−1) * 1i * rotfacreal);

end

% Apply path gains to data
rx1 = pathG1 .* y1;
rx2 = pathG2 .* y2;

% Add AWGN
rx1 = awgn(rx1, SNR, mean(abs(y1(1:len2)).ˆ2));

% Sum signals. 50% chance of no interferer, no summation.
if rand(1) > .5

rxSig = rx1 + rx2;
sigpresreal = 1;

else
rxSig = rx1;
sigpresreal = 0;

end

% Find if signal present, and if so, find the delay
% Uses full knowledge of SIR and SNR
[delayest, sigpres] = delayfind(rxSig, mod1, demod1, pathG1, ...

len2, evm1(siriter, ebnoiter), evm2(siriter, ebnoiter), 0);

% Uses no knowledge of SIR or SNR −− Doesn't work very well
% [delayest, sigpres] = delayfind2(rxSig, mod1,...
% demod1, pathG1, len2, .02); % Threshold may need adjusting

% Uses knowledge of SNR and assumption that −10dB<SIR<10dB
% [delayest, sigpres] = delayfind(rxSig, mod1, demod1, pathG1, ...
% len2, mean(evm11(:, ebnoiter)), mean(evm22(:, ebnoiter)), 0);

if sigpres == 1 && sigpresreal == 1
if sig2delay == delayest

96



% Apply Synchronization Algorithm
[out1gen, wts2, iters, pgbase, rotfac] = ...

gen al(rxSig(delayest + 1:delayest + len1), ...
y2(delayest+1:delayest + len1), mod1, ...
pathG1(delayest+1:delayest + len1));

% Estimate future path gain for signal 2
% Uses estimated frequency and channel
pg2 = pgbase * exp(1i * rotfac * ...

[0:len1 + len2−1]).';
% Uses real frequency information
pg22 = pgbase * exp(1i * rotfacreal * ...

[0:len1 + len2−1]).';
% Uses real channel information
pg23 = pathG2(sig2delay+1) * ...

exp(1i * rotfac * [0:len1 + len2−1]).';
% Uses real frequency and channel information (e.g.
% ideal case)
pg24 = pathG2(sig2delay+1) * ...

exp(1i * rotfacreal * [0:len1 + len2−1]).';

% Joint Detection
[out1, out2] = ...% Using Synchronization Data

JMD(rxSig(delayest+len1+1:len2), mod1, mod2, ...
pathG1(delayest+len1+1:len2),...
pg2(len1+1:len2−delayest));

[out12, out22] = ... % Using Real Frequency
JMD(rxSig(delayest+len1+1:len2), mod1, mod2, ...
pathG1(delayest+len1+1:len2),...
pg22(len1+1:len2−delayest));

[out13, out23] = ... % Using Real Channel
JMD(rxSig(delayest+len1+1:len2), mod1, mod2, ...
pathG1(delayest+len1+1:len2),...
pg23(len1+1:len2−delayest));

[out14, out24] = ... % Using Real Chan & Freq
JMD(rxSig(delayest+len1+1:len2), mod1, mod2, ...
pathG1(delayest+len1+1:len2),...
pg24(len1+1:len2−delayest));

% Finish Detecting − The stage after Joint Detection
out3demod = step(demod2, rxSig(len2+1:end)...

./ pg2(len2−delayest+1:end)); % Using Synch. Data
out3demod2 = step(demod2, rxSig(len2+1:end)...

./ pg22(len2−delayest+1:end)); % Using Real Freq
out3demod3 = step(demod2, rxSig(len2+1:end)...

./ pg23(len2−delayest+1:end)); % Using Real Chan
out3demod4 = step(demod2, rxSig(len2+1:end)...

./ pg24(len2−delayest+1:end)); % Using Real Both

% Demodulate synchronization things
out1demodgen = step(demod1, out1gen);
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out1demodstand = step(demod1, ...
rxSig(delayest+1:delayest+len1)...
./ pathG1(delayest+1:delayest+len1));

%% Binary Conversion
% Genetic Algorithm
out1demodgenbin = ...

reshape(de2bi(out1demodgen, log2(m1)), [], 1);
out1demodstandbin = ...

reshape(de2bi(out1demodstand, log2(m1)), [], 1);

% Tested JMD Performance
out1bin = reshape(de2bi(out1, log2(m1)), [], 1);
out2bin = reshape(de2bi(out2, log2(m2)), [], 1);

% Prior knowledge of freq
out12bin = reshape(de2bi(out12, log2(m1)), [], 1);
out22bin = reshape(de2bi(out22, log2(m2)), [], 1);

% Prior knowledge of channel
out13bin = reshape(de2bi(out13, log2(m1)), [], 1);
out23bin = reshape(de2bi(out23, log2(m2)), [], 1);

% Prior knowledge of both
out14bin = reshape(de2bi(out14, log2(m1)), [], 1);
out24bin = reshape(de2bi(out24, log2(m2)), [], 1);

% Single−Detection of frame 2
out3bin = reshape(de2bi(out3demod, log2(m2)), [], 1);
out32bin = reshape(de2bi(out3demod2, log2(m2)), [], 1);
out33bin = reshape(de2bi(out3demod3, log2(m2)), [], 1);
out34bin = reshape(de2bi(out3demod4, log2(m2)), [], 1);

% Real values
realgenbin = reshape(de2bi(...

x1(sig2delay+1:sig2delay+len1), log2(m1)), [], 1);
realjmdx1b = reshape(de2bi(...

x1(sig2delay + len1 + 1:len2), log2(m1)), [], 1);
realjmdx2b = reshape(de2bi(...

x2(sig2delay + len1 + 1:len2), log2(m2)), [], 1);
realnormb = reshape(de2bi(...

x2(len2+1:end), log2(m2)), [], 1);

%% Find BERs
% Genetic Algorithm
synchgenber = sum(out1demodgenbin ...

˜= realgenbin)/length(realgenbin);

% Interference ignorant demodulator
synchstandber = sum(out1demodstandbin ...

˜= realgenbin)/length(realgenbin);

% JMD − No Ideal Synchronization
out1ber1 = ...
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sum(out1bin ˜= realjmdx1b)/length(realjmdx1b);
out2ber1 = ...

sum(out2bin ˜= realjmdx2b)/length(realjmdx2b);

% JMD − Prior Frequency Knowledge
out1ber2 = ...

sum(out12bin ˜= realjmdx1b)/length(realjmdx1b);
out2ber2 = ...

sum(out22bin ˜= realjmdx2b)/length(realjmdx2b);

% JMD − Prior Channel Knowledge
out1ber3 = ...

sum(out13bin ˜= realjmdx1b)/length(realjmdx1b);
out2ber3 = ...

sum(out23bin ˜= realjmdx2b)/length(realjmdx2b);

% JMD − Prior Channel & Frequency Knowledge
out1ber4 = ...

sum(out14bin ˜= realjmdx1b)/length(realjmdx1b);
out2ber4 = ...

sum(out24bin ˜= realjmdx2b)/length(realjmdx2b);

% Single Detection − No Ideal Synchronization
out3ber1 = sum(out3bin ˜= realnormb)/length(out3bin);

end
end
%% Assign local variables to global ones
sigpresentreal(siriter, ebnoiter, iter) = sigpresreal;
sigpresentest(siriter, ebnoiter, iter) = sigpres;
if (sigpres == 1 && sigpresreal == 1)

delayerr(siriter, ebnoiter, iter) = (sig2delay ˜= delayest);
if delayerr(siriter, ebnoiter, iter) == 0

bersgen(siriter, ebnoiter, iter) = synchgenber;
berstand(siriter, ebnoiter, iter) = synchstandber;
pgsguess(siriter, ebnoiter, iter) = pgbase;
rotfacguess(siriter, ebnoiter, iter) = rotfac;
pgsreal(siriter, ebnoiter, iter) = pathG2(sig2delay+1);
numiters(siriter, ebnoiter, iter) = iters;
out3ber(siriter, ebnoiter, iter) = out3ber1;
jmdber11(siriter, ebnoiter, iter) = out1ber1;
jmdber12(siriter, ebnoiter, iter) = out2ber1;
jmdber21(siriter, ebnoiter, iter) = out1ber2;
jmdber22(siriter, ebnoiter, iter) = out2ber2;
jmdber31(siriter, ebnoiter, iter) = out1ber3;
jmdber32(siriter, ebnoiter, iter) = out2ber3;
jmdber41(siriter, ebnoiter, iter) = out1ber4;
jmdber42(siriter, ebnoiter, iter) = out2ber4;

end
end

prog = prog + 1/(length(sirs)*length(ebnos)*numiter);
waitbar(prog, wB, strcat(int2str(floor(prog*100)), '%'));

end
end

end
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toc;

%% Multi−SIR
temp = sum(˜isnan(bersgen), 3);

% 5−SIR Channel Gain MSE
figure;
% This manipulation gets around the data being NaN'd if the interferer was
% never actually sent or simply not detected.
temp2 = abs((pgsguess − pgsreal).ˆ2);
temp2(isnan(temp2)) = 0;
pgerr = sum(temp2, 3) ./ temp;

hold all, grid on;
plot(ebnos, pgerr(1, :), '−s', ebnos, pgerr(2, :), '−ˆ', ...

ebnos, pgerr(3, :), '−d', ebnos, pgerr(4, :), '−o', ...
ebnos, pgerr(5, :), '−v', ...
'LineWidth', 2', 'MarkerSize', 10)

xlabel('E b/N o'); ylabel('Channel Gain Mean−Square Error')
title('Joint Synchronization−Detection Channel Gain Estimation Error');
legend('SIR = −6dB', 'SIR = −3dB', 'SIR = 0dB', 'SIR = 3dB', 'SIR = 6dB');
set(gcf, 'Color', 'w');
hold off;

% 5−SIR Frequency Estimation Error
figure;
rotfacerr = abs(rotfacguess − rotfacreal)*180/pi;
freqerr = (rotfacerr / ts) / 360 / 1e3;
freqerr(isnan(freqerr)) = 0;
freqerr2 = sum(freqerr, 3) ./ temp;

hold all, grid on;
title('Joint Synchronization−Detection Frequency Estimation Error');
plot(ebnos, freqerr2(1, :), '−s', ebnos, freqerr2(2, :), '−ˆ', ...

ebnos, freqerr2(3, :), '−d', ebnos, freqerr2(4, :), '−o',...
ebnos, freqerr2(5, :), '−v', ...
'LineWidth', 2', 'MarkerSize', 10)

xlabel('E b/N o'); ylabel('Frequency Error (KHz)')
legend('SIR = −6dB', 'SIR = −3dB', 'SIR = 0dB', 'SIR = 3dB', 'SIR = 6dB');
hold off;
% 5−SIR Genetic Algorithm Plot
figure;
hold all;
bersgen2 = bersgen;
bersgen2(isnan(bersgen2)) = 0;
bersgen3 = sum(bersgen2, 3) ./ temp;
grid on;

plot( ...
ebnos, bersgen3(1, :), '−s', ebnos, bersgen3(2, :), '−ˆ', ...
ebnos, bersgen3(3, :), '−d', ebnos, bersgen3(4, :), '−o', ...
ebnos, bersgen3(5, :), '−v', ...
'LineWidth', 2', 'MarkerSize', 10);
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title('Joint Synchronization−Detection BER');
legend('SIR = −6dB', 'SIR = −3dB', 'SIR = 0dB', 'SIR = 3dB', 'SIR = 6dB');
xlabel('E b/N o'); ylabel('BER')
set(gca ,'yscale','log');
hold off;
%% Single−SIR JMD Plot
% This plot works if only a single SIR is simulated. In this case, the
% plots comparing the theoretical and practical performance of the JMD
% algorithm will be plotted. This is currently commented out because more
% than a single SIR is selected to be simulated.

% figure;
% jmdber111 = jmdber11;
% jmdber111(isnan(jmdber111)) = 0;
% jmdber112 = sum(jmdber111, 3) ./ temp;
%
% jmdber121 = jmdber12;
% jmdber121(isnan(jmdber121)) = 0;
% jmdber122 = sum(jmdber121, 3) ./ temp;
%
% jmdber211 = jmdber21;
% jmdber211(isnan(jmdber211)) = 0;
% jmdber212 = sum(jmdber211, 3) ./ temp;
%
% jmdber221 = jmdber22;
% jmdber221(isnan(jmdber221)) = 0;
% jmdber222 = sum(jmdber221, 3) ./ temp;
%
% jmdber311 = jmdber31;
% jmdber311(isnan(jmdber311)) = 0;
% jmdber312 = sum(jmdber311, 3) ./ temp;
%
% jmdber321 = jmdber32;
% jmdber321(isnan(jmdber321)) = 0;
% jmdber322 = sum(jmdber321, 3) ./ temp;
%
% jmdber411 = jmdber41;
% jmdber411(isnan(jmdber411)) = 0;
% jmdber412 = sum(jmdber411, 3) ./ temp;
%
% jmdber421 = jmdber42;
% jmdber421(isnan(jmdber421)) = 0;
% jmdber422 = sum(jmdber421, 3) ./ temp;
%
% hold on;
% x = plot( ...
% ebnos, jmdber112, '−−s', ebnos, jmdber122, ':s', ...
% ebnos, jmdber212, '−−d', ebnos, jmdber222, ':d', ...
% ebnos, jmdber412, '−−v', ebnos, jmdber422, ':v', ...
% 'LineWidth', 2', 'MarkerSize', 10, 'Color', [0 0 0]);
% xlabel('E b/N o'); ylabel('BER')
% title('BERs for Joint Detection Algorithm, SIR = 1dB');
% set(gca ,'yscale','log');
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%
% leg = legend('Prime, No Known', 'Interferer, No Known',...
% 'Prime, Freq Known', 'Interferer, Freq Known', ...
% 'Prime, Both Known', 'Interferer, Both Known');
% set(leg, 'Location', 'southwest');
% set(gcf, 'Color', 'w');
% grid on;
% hold off;

close(wB);

8.2.2 Delay Estimation Plotter

Simplified version of the system plotter that focuses on the detection algorithm.
Returns the delay estimation rates of all three detectors as error rate plots. Note that
as the required threshold for the blind detector was not explored, performance for that
detector is poor.

%% Andrew Apollonsky
close all force;
clc;
clear all;

%% Simulation Parameters
len1 = 12; % Training length
len2 = 60; % Frame length (discounting training)
m1 = 4;
m2 = 4;

ebnos = [0:4:20];
sirs = [−6 −3 0 3 6];
numiter = 20000;
thresh = 0;

ts = 4e−6; %x/s
freq = 2.4; %(GHz)
maxDopp = 1;
rotfacreal = .05;
realfreqoffset = rotfacreal /(2*pi) / ts / 1e3; %KHz

%% Object Initialization
bpskmod = comm.BPSKModulator(0);
bpskdemod = comm.BPSKDemodulator(0);
qam4mod = comm.RectangularQAMModulator(4);
qam4demod = comm.RectangularQAMDemodulator(4);
qam16mod = comm.RectangularQAMModulator(16);
qam16demod = comm.RectangularQAMDemodulator(16);
qam64mod = comm.RectangularQAMModulator(64);
qam64demod = comm.RectangularQAMDemodulator(64);
qam256mod = comm.RectangularQAMModulator(256);
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qam256demod = comm.RectangularQAMDemodulator(256);

if m1 == 2
mod1 = bpskmod;
demod1 = bpskdemod;

elseif m1 == 4
mod1 = qam4mod;
demod1 = qam4demod;

elseif m1 == 16
mod1 = qam16mod;
demod1 = qam16demod;

end

if m2 == 2
mod2 = bpskmod;
demod2 = bpskdemod;

elseif m2 == 4
mod2 = qam4mod;
demod2 = qam4demod;

elseif m2 == 16
mod2 = qam16mod;
demod2 = qam16demod;

end

g1 = 1;

delayerr1 = nan(length(sirs), length(ebnos), numiter);
delayerr2 = nan(length(sirs), length(ebnos), numiter);
delayerr3 = nan(length(sirs), length(ebnos), numiter);
sigpresentest1 = nan(length(sirs), length(ebnos), numiter);
sigpresentest2 = nan(length(sirs), length(ebnos), numiter);
sigpresentest3 = nan(length(sirs), length(ebnos), numiter);
sigpresentreal = nan(length(sirs), length(ebnos), numiter);

wB = waitbar(0,'0%');
prog = 0;
%% Calculations
[evm1, evm2, var1, var2] = errcalc(sirs, ebnos + 10*log10(log2(m1)),...

1e5, mod1, demod1, mod2);
[evm11, evm22, var11, var22] = errcalc(−10:10, ebnos + 10*log10(log2(m1))...

, 1e5, mod1, demod1, mod2);
tic;
for siriter = 1:length(sirs) % Iterate over SIRs

sir2 = sirs(siriter) − 10*log10(log2(m1)) + 10*log10(log2(m2));
g2 = 10ˆ(−sir2/20);
for ebnoiter = 1:length(ebnos) % Iterate over SNRs

SNR = ebnos(ebnoiter) + 10*log10(log2(m1));
for iter = 1:numiter % Iterate over Iterations

sig2delay = randi([1 len2−len1 − 1]); % Generate Delay
totlen = sig2delay + len1 + len2;

% Generate signals
x1 = [randi([0 m1−1], len2, 1); zeros(sig2delay + len1, 1)];
x2 = [zeros(sig2delay, 1); randi([0 1], len1, 1);...
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randi([0 m2−1], len2, 1)];

% Modulate
y1 = [step(mod1, x1(1:len2)); zeros(sig2delay + len1, 1)];
y2 = [zeros(sig2delay, 1); ...

step(bpskmod, x2(sig2delay+1:sig2delay+len1)); ...
step(mod2, x2(sig2delay+len1+1:end))];

% Generate path gains
pathG1 = [ones(len2, 1) * exp(rand(1) * 2*pi*1i) * g1; ...

zeros(len1 + sig2delay, 1)];
pathG2 = [zeros(sig2delay, 1); ones(len1 + len2, 1) *...

exp(rand(1) * 2*pi*1i) * g2];

% Introduce frequency offset
for t = sig2delay+1:totlen

pathG2(t) = pathG2(t) * exp((t−sig2delay−1) ...

* 1i * rotfacreal);
end

% Apply path gains to data
rx1 = pathG1 .* y1;
rx2 = pathG2 .* y2;

% Add AWGN
rx1 = awgn(rx1, SNR, mean(abs(y1(1:len2)).ˆ2));

% Sum signals, or no interferer
if rand(1) > .5

rxSig = rx1 + rx2;
sigpresreal = 1;

else
rxSig = rx1;
sigpresreal = 0;

end

% Find if signal present, and if so, find delay
[delayest1, sigpres1] = ...

delayfind(rxSig, mod1,... % Both SIR and SNR
demod1, pathG1, len2, evm1(siriter, ebnoiter), ...
evm2(siriter, ebnoiter), 0);

[delayest2, sigpres2] = ...
delayfind2(rxSig, mod1,... % Neither SNR nor SIR
demod1, pathG1, len2, 0);

[delayest3, sigpres3] = delayfind(rxSig, mod1,... % SNR Only
demod1, pathG1, len2, mean(evm11(:, ebnoiter)),...
mean(evm22(:, ebnoiter)), 0);

%% Assign to Global
sigpresentreal(siriter, ebnoiter, iter) = sigpresreal;
sigpresentest1(siriter, ebnoiter, iter) = sigpres1;
sigpresentest2(siriter, ebnoiter, iter) = sigpres2;
sigpresentest3(siriter, ebnoiter, iter) = sigpres3;
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% Detect errors
if (sigpres1 == 1 && sigpresreal == 1)

delayerr1(siriter, ebnoiter, iter) = ...
(sig2delay ˜= delayest1);

end
if (sigpres2 == 1 && sigpresreal == 1)

delayerr2(siriter, ebnoiter, iter) = ...
(sig2delay ˜= delayest2);

end
if (sigpres3 == 1 && sigpresreal == 1)

delayerr3(siriter, ebnoiter, iter) = ...
(sig2delay ˜= delayest3);

end

end
prog = prog + 1/(length(sirs)*length(ebnos));
waitbar(prog, wB, strcat(int2str(round(prog*100)), '%'));

end
end
toc;
%% Plot
%% Delay Error for Different Detectors
% SNR and SIR
temp2 = sum(˜isnan(delayerr1), 3);
delayerr12 = delayerr1;
delayerr12(isnan(delayerr1)) = 0;
delayerr13 = sum(delayerr12, 3) ./ temp2;
temp5 = delayerr13;

figure;
hold all;
plot(ebnos, temp5(1, :), '−s', ebnos, temp5(2, :), '−d',...

ebnos, temp5(3, :), '−x', ...
ebnos, temp5(4, :), '−ˆ', ebnos, temp5(5, :), '−+',...
'LineWidth', 2', 'MarkerSize', 10);

title(...
'Delay Error Rate vs E b/N o and SIR requiring SNR and SIR Knowledge');

xlabel('E b/N o'); ylabel('Delay Error Rate')
grid on;
legend('SIR = −6dB', 'SIR = −3dB', 'SIR = 0dB', 'SIR = 3dB', 'SIR = 6dB')
set(gca ,'yscale','log');
hold off;

% Neither SNR nor SIR
temp2 = sum(˜isnan(delayerr2), 3);
delayerr22 = delayerr2;
delayerr22(isnan(delayerr2)) = 0;
delayerr23 = sum(delayerr22, 3) ./ temp2;
temp5 = delayerr23;

figure;
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hold all;
plot(ebnos, temp5(1, :), '−s', ebnos, temp5(2, :), '−d',ebnos, ...

temp5(3, :), '−x', ...
ebnos, temp5(4, :), '−ˆ', ebnos, temp5(5, :), '−+',...
'LineWidth', 2', 'MarkerSize', 10);

title(...
'Delay Error Rate vs E bN o and SIR requiring no SNR or SIR Knowledge');

xlabel('E b/N o'); ylabel('Delay Error Rate')
grid on;
legend('SIR = −6dB', 'SIR = −3dB', 'SIR = 0dB', 'SIR = 3dB', 'SIR = 6dB')
set(gca ,'yscale','log');
hold off;

% SNR Only
temp2 = sum(˜isnan(delayerr3), 3);
delayerr32 = delayerr3;
delayerr32(isnan(delayerr3)) = 0;
delayerr33 = sum(delayerr32, 3) ./ temp2;
temp5 = delayerr33;

figure;
hold all;
plot(ebnos, temp5(1, :), '−s', ebnos, temp5(2, :), '−d', ...

ebnos, temp5(3, :), '−x', ...
ebnos, temp5(4, :), '−ˆ', ebnos, temp5(5, :), '−+',...
'LineWidth', 2', 'MarkerSize', 10);

title('Delay Error Rate vs E bN o and SIR requiring only SNR Knowledge');
xlabel('E b/N o'); ylabel('Delay Error Rate')
grid on;
legend('SIR = −6dB', 'SIR = −3dB', 'SIR = 0dB', 'SIR = 3dB', 'SIR = 6dB')
set(gcf, 'Color', 'w');
set(gca ,'yscale','log');
hold off;

close(wB);

8.2.3 ROC Plotter

Modified plotter that only iterates through either SNR or SIR. This makes it con-
venient for generating ROC characteristics for the three receivers.

%% Andrew Apollonsky
close all force;
clc;
clear all;

%% Simulation Parameters
len1 = 12; % Training length
len2 = 60; % Frame length (discounting training)
m1 = 4;
m2 = 4;
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% WARNING: This script only supports one of ebnos or sirs being a vector.
% Other must be a scalar. Make sure legends, etc are appropriately labeled.
ebnos = [0:4:20]; % Modify the 'SNRS'
sirs = [5]; % SIRS

threshes = [0 logspace(−6, 0, 600)]; % Range of thresholds
numiter = 1000;
ts = 4e−6; % Sampling period
freq = 2.4; %(GHz)
maxDopp = 1;
rotfacreal = .05; % Rotation factor
realfreqoffset = rotfacreal /(2*pi) / ts / 1e3; %KHz

%% Object Initialization
bpskmod = comm.BPSKModulator(0);
bpskdemod = comm.BPSKDemodulator(0);
qam4mod = comm.RectangularQAMModulator(4);
qam4demod = comm.RectangularQAMDemodulator(4);
qam16mod = comm.RectangularQAMModulator(16);
qam16demod = comm.RectangularQAMDemodulator(16);

if m1 == 2
mod1 = bpskmod;
demod1 = bpskdemod;

elseif m1 == 4
mod1 = qam4mod;
demod1 = qam4demod;

elseif m1 == 16
mod1 = qam16mod;
demod1 = qam16demod;

end

if m2 == 2
mod2 = bpskmod;
demod2 = bpskdemod;

elseif m2 == 4
mod2 = qam4mod;
demod2 = qam4demod;

elseif m2 == 16
mod2 = qam16mod;
demod2 = qam16demod;

end

g1 = 1;
sigpresentest = nan(max(length(ebnos), length(sirs)),...

numiter, length(threshes));
sigpresentest2 = nan(max(length(ebnos), length(sirs)),...

numiter, length(threshes));
sigpresentest3 = nan(max(length(ebnos), length(sirs)),...

numiter, length(threshes));
sigpresentreal = nan(max(length(ebnos), length(sirs)), numiter);
sigpres = nan(length(threshes), 1);
sigpres2 = nan(length(threshes), 1);
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sigpres3 = nan(length(threshes), 1);

wB = waitbar(0,'0%');
prog = 0;
%% Calculations
% Calculate expected error magnitudes
[evm1, evm2, var1, var2] = ...

errcalc(sirs, ebnos + 10*log10(log2(m1)), 1e5, mod1, demod1, mod2);
[evm11, evm22, var11, var22] = ...

errcalc(−10:10, ebnos + 10*log10(log2(m1)), 1e5, mod1, demod1, mod2);
tic;

% Select which of ebnos and sirs is vector
if length(ebnos) > 1

vars = ebnos;
else

vars = sirs;
end

% Loop over ebnos/sirs
for variter = 1:length(vars)

%Properly allocate all variables depending on which is vector
if length(ebnos) > 1

SNR = ebnos(variter) + 10*log10(log2(m1));
sir2 = sirs − 10*log10(log2(m1)) + 10*log10(log2(m2));
ebnoiter = variter;
siriter = 1;

else
SNR = ebnos + 10*log10(log2(m1));
sir2 = sirs(variter) − 10*log10(log2(m1)) + 10*log10(log2(m2));
siriter = variter;
ebnoiter = 1;

end
g2 = 10ˆ(−sir2/20);

for iter = 1:numiter % Iterate over iterations
sig2delay = randi([1 len2−len1 − 1]); % Generate delay
totlen = sig2delay + len1 + len2;

% Generate data
x1 = [randi([0 m1−1], len2, 1); zeros(sig2delay + len1, 1)];
x2 = [zeros(sig2delay, 1); randi([0 1], len1, 1);...

randi([0 m2−1], len2, 1)];

% Modulate data
y1 = [step(mod1, x1(1:len2)); zeros(sig2delay + len1, 1)];
y2 = [zeros(sig2delay, 1); ...

step(bpskmod, x2(sig2delay+1:sig2delay+len1)); ...
step(mod2, x2(sig2delay+len1+1:end))];

% Generate channel gains
pathG1 = [ones(len2, 1) * exp(rand(1) * 2*pi*1i) *...

g1; zeros(len1 + sig2delay, 1)];
pathG2 = [zeros(sig2delay, 1); ones(len1 + len2, 1) * ...
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exp(rand(1) * 2*pi*1i) * g2];

% Introduce frequency−offset−caused rotation
for t = sig2delay+1:totlen

pathG2(t) = pathG2(t) * exp((t−sig2delay−1) * 1i * rotfacreal);
end

% Apply path/channel gains to data
rx1 = pathG1 .* y1;
rx2 = pathG2 .* y2;

% Add AWGN
rx1 = awgn(rx1, SNR, mean(abs(y1(1:len2)).ˆ2));

% Sum signals
if rand(1) > .5

rxSig = rx1 + rx2;
sigpresreal = 1;

else
rxSig = rx1;
sigpresreal = 0;

end

% Find if signal present, and if so, delay. For every threshold.
for threshiter = 1:length(threshes)

sigpres(threshiter) = delayfind(rxSig, mod1,...
demod1, pathG1, len2, evm1(siriter, ebnoiter), ...
evm2(siriter, ebnoiter), threshes(threshiter));
sigpresentest(variter, iter, threshiter) = sigpres(threshiter);

[˜, sigpres2(threshiter)] = delayfind2(rxSig, mod1,...
demod1, pathG1, len2, threshes(threshiter));
sigpresentest2(variter, iter, threshiter) = ...

sigpres2(threshiter);

sigpres3(threshiter) = delayfind(rxSig, mod1,...
demod1, pathG1, len2, mean(evm11(:, ebnoiter)), ...
mean(evm22(:, ebnoiter), 1), threshes(threshiter));
sigpresentest3(variter, iter, threshiter) = sigpres3(threshiter);

end
%% Assign to Global
sigpresentreal(variter, iter) = sigpresreal;
prog = prog + 1/(length(sirs)*length(ebnos) * numiter);
waitbar(prog, wB, strcat(int2str(round(prog*100)), '%'));

end

end
toc;
%% Plot
repreal = repmat(sigpresentreal, [1 1 length(threshes)]);
fa1 = sum((repreal == 0) .* ...

(sigpresentest == 1), 2)./sum(repreal == 0, 2); % False Alarm
ta1 = sum((repreal == 1) .* ...
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(sigpresentest == 1), 2)./sum(repreal == 1, 2); % True Alarm
fa2 = squeeze(fa1);
ta2 = squeeze(ta1);

fa12 = sum((repreal == 0) .* ...
(sigpresentest2 == 1), 2)./sum(repreal == 0, 2); % False Alarm

ta12 = sum((repreal == 1) .* ...
(sigpresentest2 == 1), 2)./sum(repreal == 1, 2); % True Alarm

fa22 = squeeze(fa12);
ta22 = squeeze(ta12);

fa13 = sum((repreal == 0) .* ...
(sigpresentest3 == 1), 2)./sum(repreal == 0, 2); % False Alarm

ta13 = sum((repreal == 1) .* ...
(sigpresentest3 == 1), 2)./sum(repreal == 1, 2); % True Alarm

fa23 = squeeze(fa13);
ta23 = squeeze(ta13);

% Plot Detector I ROC (SIR and SNR)
figure;
plot(fa2.', ta2.', 'LineWidth', 2');
legend('E b/N o = 0dB', 'E b/N o = 4dB', 'E b/N o = 8dB',...

'E b/N o = 12dB', 'E b/N o = 16dB', 'E b/N o = 20dB');
xlabel('False Positive Rate');
ylabel('True Positive Rate');
title('SIR/SNR Knowledge Detection Scheme');

% Plot Detector II ROC (Not SNR or SIR)
figure;
plot(fa22.', ta22.', 'LineWidth', 2');
legend('E b/N o = 0dB', 'E b/N o = 4dB', 'E b/N o = 8dB',...

'E b/N o = 12dB', 'E b/N o = 16dB', 'E b/N o = 20dB');
xlabel('False Positive Rate');
ylabel('True Positive Rate');
title('No Knowledge Detection Scheme');

% Plot Detector III ROC (SNR only)
figure;
plot(fa23.', ta23.', 'LineWidth', 2');
legend('E b/N o = 0dB', 'E b/N o = 4dB', 'E b/N o = 8dB', ...

'E b/N o = 12dB', 'E b/N o = 16dB', 'E b/N o = 20dB');
xlabel('False Positive Rate');
ylabel('True Positive Rate');
title('SNR Knowledge Detection Scheme');

close(wB);

8.2.4 Expected Error Magnitude Generator

Generates the expected error vector magnitude given the constellations of the two
signals. Returns a matrix in SNR and SIR if given vector SNR and SIR arguments.
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function [evm1, evm2 ,var1, var2] = ...
errcalc(sirs, snrs, iters, mod1, demod1, mod2)

m1 = length(constellation(mod1));
m2 = length(constellation(mod2));
g1 = 1;

% Generate data
x1 = randi([0 m1−1], iters, 1);
x2 = randi([0 m2−1], iters, 1);

% Modulate Data
y1 = step(mod1, x1);
y2 = step(mod2, x2);

evm1 = zeros(length(sirs), length(snrs));
evm2 = zeros(length(sirs), length(snrs));
for k = 1:length(sirs) % Loop over required SIRs

g2 = 10ˆ(−sirs(k)/20);
parfor m = 1:length(snrs) % Loop over required SNRs

% Generate phase offsets for y1. y2 done later.
pathG1 = exp(rand(iters, 1) * 2*pi*1i) * g1;
z1 = y1 .* pathG1; % Multiply
z2 = y2 .* exp(rand(iters, 1) * 2*pi*1i) * g2; % phase for y2
rx1 = awgn(z1, snrs(m), 'measured'); % Apply AWGN for no interf.
rx2 = awgn(z1, snrs(m), 'measured') + z2; % AWGN for interf.
% Expected error vector magnitude with no interferer
evm1(k, m) = mean(abs(rx1./pathG1 − ...

step(mod1, step(demod1, rx1./pathG1))));
% Expected error vector magnitude with interferer
evm2(k, m) = mean(abs(rx2./pathG1 − ...

step(mod1, step(demod1, rx2./pathG1))));
% Variance of error vector magnitude with no interferer
var1(k, m) = var(abs(rx1./pathG1 − ...

step(mod1, step(demod1, rx1./pathG1))));
% Variance of error vector magnitude with interferer
var2(k, m) = var(abs(rx2./pathG1 − ...

step(mod1, step(demod1, rx2./pathG1))));
end

end

end

8.2.5 Interference Detector I

This script implements both the interference detection algorithm which uses both
SNR and SIR and the one that only uses SNR. The only difference between the two
implementations is that when the exact SIR is unknown, a mean of the expected error
over several SIRs is passed to the algorithm instead of the value for a particular SIR.

function [delay, sig] = delayfind(rx, mod1, demod1, pathG1, len2, ...
evm1, evm2, thresh)
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k = rx(1:len2)./pathG1(1:len2); % Divide received signal by channel gain
k2 = step(mod1, step(demod1, k)); % De and re−modulate
evmvec = abs(k2 − k); % Find error magnitude
msqerr = zeros(len2+1, 1);
for delayiter = 1:len2 % Find error using each delay

msqerr(delayiter) = mean(...
[abs((evmvec(1:delayiter) − evm1).ˆ2); ...
abs((evmvec(delayiter + 1:min(len2, delayiter+12)) − evm2).ˆ2)]);

end
msqerr(end) = mean(abs((evmvec(1:len2)−evm1).ˆ2));%Error with no interf.
if msqerr(end) − min(msqerr(1:len2)) < thresh; % Make judgement

sig = 0;
delay = nan(1);

else
[˜, delay] = min(msqerr(1:len2));
sig = 1;

end

end

8.2.6 Interference Detector II

This script implements the interference detection algorithm which uses neither the
SNR nor the SIR. The ideal threshold which to use to detect whether the interference is
there or not under varying conditions was not derived, so using this algorithm in its full
capacity would be error-prone.

function [delay, sig] = delayfind2(rx, mod1, demod1, pathG1, len2, thresh)
k = rx(1:len2)./pathG1(1:len2); % Divide received signal by channel gain
k2 = step(mod1, step(demod1, k)); % De and re−modulate
evmvec = abs(k2 − k); % Find error magnitude
dist = zeros(len2, 1);
for delayiter = 1:len2 % Find distance between mean error mags

dist(delayiter) = abs(...
mean(evmvec(1:delayiter)) − ...
mean(evmvec(delayiter + 1:min(len2, delayiter+12)))...
);

end
if max(dist) < thresh; % If it's never large enough, no interferer

sig = 0;
delay = nan(1);

else
[˜, delay] = max(dist); % Otherwise, interferer where it's largest
sig = 1;

end
end
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8.2.7 Genetic Synchronization Algorithm

This script implements the genetic algorithm that synchronizes the interferer while
decoding the primary signal. Due to this being by far the single most computationally-
intensive part of the system, great pains were taken to vectorize the script and make it
efficient, at the cost of readability.

function [out1, PG2, iters, pgbase, rotfac] = gen al(data, d2, mod1, pg)
const = constellation(mod1);
m = length(const);
len = length(data);

% Convergence Checking
checking = 0; % Set to 1 for convergence checking
numcheck = 5; % Number of solutions out to check
iternum = 25;

% Other parameters
numsols = 60; % This is m
maxpg = 10ˆ(10/20); % Maximum power of interferer relative to primary
minpg = 10ˆ(−10/20);
maxfreq = pi/10; % Maximum rotation of constellation per symbol period

% Initialization
iter = true;
iters = 1;
sols = zeros(numsols, len + 2);
rotvec = zeros(numsolsˆ2 + numsols, len);
for k = 1:numsols % Initialize Path Gain, Phase−Change−Per−Turn, Symbols x

sols(k, :) = [newpg(minpg, maxpg, 1, 1) ...
newang(maxfreq, 1, 1) const(randi(m, [1 len])).'];

end

while iter == true
% Cross−mix the vector of solution vectors with itself −− generate M
% from K
ranum = rand(len+2, numsols, numsols); % Generates random matrix
combos = zeros(len+2, numsols, numsols); % Will be the new M matrix
sols2 = permute(sols, [3 1 2]); % Permute for easier indexing

for k = 1:2 % Continuous case−−corresponds to phase change&channel gain
%30%Pick from first set
ranum2 = ranum(k, :, :) < .3; %
combos(k, :, :) = combos(k, :, :) + ranum2 .* ...

repmat(sols2(:, :, k), [1 1 numsols]);

% 30% Pick from second
ranum2 = .3 < ranum(k, :, :) & ranum(k, :, :) < .6;
combos(k, :, :) = combos(k, :, :) + ranum2 .* ...

repmat(permute(sols2(:, :, k), [1 3 2]), [1 numsols 1]);

% 20% Take mean
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ranum2 = .6 < ranum(k, :, :) & ranum(k, :, :) < .8;
combos(k, :, :) = combos(k, :, :) ...

+ ranum2 .*(repmat(permute(sols2(:, :, k), ...
[1 3 2]), [1 numsols 1]) + repmat(sols2(:, :, k), ...
[1 1 numsols])) / 2;

% 20% Generate new value
ranum2 = .8 < ranum(k, :, :);
if k == 1 % If channel gain, generate new channel gain

combos(k, :, :) = combos(k, :, :) + ranum2 .* ...
permute(newpg(minpg, maxpg, numsols, numsols), [3 1 2]);

else % If phase rotation, generate new phase rotation
combos(k, :, :) = combos(k, :, :) + ranum2 .* ...

permute(newang(maxfreq, numsols, numsols), [3 1 2]);
end

end
for k = 3:len+2 % For discrete variables −− the x's

ranum2 = ranum(k, :, :) < .45; % 45% chance copying from 1st
combos(k, :, :) = combos(k, :, :) + ranum2 .* ...

repmat(sols2(:, :, k), [1 1 numsols]);

ranum2 = .45 < ranum(k, :, :) & ranum(k, :, :) < .9; % 45% from 2nd
combos(k, :, :) = combos(k, :, :) + ranum2 .* ...

repmat(permute(sols2(:, :, k), [1 3 2]), [1 numsols 1]);

ranum2 = .9 < ranum(k, :, :); % 10% chance of new value
combos(k, :, :) = combos(k, :, :) + ranum2 .* ...

permute(const(randi(m, numsols)), [3 1 2]);
end

%% ctd
% Serialize matrix M into single massive vector of solution vectors.
% Include old K matrix.
comboser = [reshape(combos, 2 + len, [], 1) sols.'];

% For each solution in the massive vector, generate a rotation vector
for t = 1:len

rotvec(:, t) = exp(1i*comboser(2, :)).ˆ(t−1);
end

% Evaluating fitness of every solution in massive vector of solution
% vectors
fits = mean((abs(repmat(data, 1, numsolsˆ2 + numsols) − ...

comboser(3:end, :) .* repmat(pg, 1, numsolsˆ2 + numsols) − ...
repmat(comboser(1, :), len, 1) .* rotvec.' .* ...
repmat(d2, 1, numsolsˆ2 + numsols))), 1).';

% Sort by fitness, pick the m best solutions
[˜, bestind] = sort(fits, 1, 'ascend');
% New K vector of solution vectors
sols = comboser(:, bestind(1:numsols)).';

% Checking for convergence
best = sols(1:numcheck, :);
decmod = repmat(mode(best(:, 3:end), 1), numcheck, 1);

114



decindx = mean(mean(decmod == best(:, 3:end)));
if checking == 1

if decindx >= symbthresh
iter = false;

else
iters = iters + 1;

end
else

iters = iters + 1;
end

if iters == iternum
break;

end
end
out1 = sols(1, 3:end).'; % Output the x
rotfac = sols(1, 2); % Output the best rotation factor estimate
pgbase = sols(1, 1);% Output the best channel gain estimate
% Combination of rotation factor & gain
PG2 = rotvec(bestind(1), :).* sols(1, 1);
end

% Generate new channel gain estimate
function [pgout] = newpg(ming, maxg, y, x)

pgout = (ming + (maxg−ming).*rand(y, x)) * exp(1i * 2*pi*rand(y, x));
end

% Generate new rotation factor estimate
function [angout] = newang(maxrot, y, x)

angout = −maxrot + (2*maxrot * rand(y, x));
end

8.2.8 Joint Detector

Implementation of the minimum-distance joint detection algorithm for underdeter-
mined MIMO systems.

function [out1, out2] = JMD(rx, mod1, mod2, pathG1, pg2)
% Initialization
m1 = length(constellation(mod1));
m2 = length(constellation(mod2));
out1 = zeros(length(rx), 1);
out2 = zeros(length(rx), 1);
mini = zeros(length(out1), m1, m2);

for q = 0:(m1−1) % Look through potential values of y1
for p = 0:(m2−1) % Potential values of y2

% Compute the expected sum of the two for each combo
mini(:, q+1, p+1) = pathG1.*step(mod1, q) + pg2.*step(mod2, p);

end
end
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% Find the absolute distance for every combo
minimat = abs(repmat(rx, [1 m1 m2]) − mini);

for p = 1:length(rx)
% Find smallest index for each point in time
[˜, minind] = min(reshape(minimat(p, :, :), [], 1));
% Get associated indeces for y1 and y2
[˜, a, b] = ind2sub(size(minimat(p, :, :)), minind);
out1(p) = a−1; % assign y1
out2(p) = b−1; % assign y2

end
end
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