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Abstract

The cocktail party problem is the task of extracting a speaker’s voice from a

noisy environment containing the voices of other speakers. The human brain does

this quite well in most cases, but hearing impaired individuals often struggle to

hear others due to background noise in a crowded bar or restaurant. Previous

research e↵orts in the fields of signal processing and machine learning have presented

frameworks to solve this task in supervised and unsupervised environments. One

such implementation is Non-Negative Matrix Factorization (NMF).

NMF is an algorithm for creating an approximation of a non-negative matrix

into the product of two smaller, non-negative matrices. NMF is a linear dimen-

sionality reduction technique that is often applied in recommendation systems,

text mining, spectral data analysis, and audio analysis. This thesis expands upon

previous work demonstrating the benefits of using a neural network implementation

of the NMF algorithm for the tangential problem of source separation. We present

an end-to-end framework for approaching a semi-supervised case of the cocktail

party problem. In the semi-supervised case, we attempt to extract a target speaker’s

speech signal from a noisy mixture signal only with the knowledge of the presence

of noise, not the type of noise in the mixture. The framework presented in this

thesis transforms a raw audio signal into an non-negative magnitude spectrogram



and uses the NMF algorithm to extract the target speaker’s contribution to the

mixture spectrogram. The approximation of the speaker’s spectrogram is inversely

transformed into a raw audio signal using the phase of the noisy mixture. We

present results demonstrating improved intelligibility of a target speakers voice

using a neural network based NMF implementation in a semi-supervised case of

the cocktail party problem.
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Chapter 1

Introduction

One of the largest issues facing hearing impaired individuals in their day to day

lives is accurately recognizing speech in the presence of background noise [Healy et

al., 2013]. While hearing aids do a good job of amplifying sound, they do not do

enough to increase speech intelligibility. This does not cause a problem in quiet

environments, but standard hearing aids will tend to underperform in the presence

of noise, particularly in the presence of non-stationary noise like one might find in

a crowded bar or restaurant.

While people without hearing impairments usually have no trouble focusing

on a single speaker in the presence of multiple interfering voices, it is a much

more di�cult task for people with a hearing impairment [McDermott, 2009]. The

problem of picking out on persons’ speech in an environment with many speakers

was dubbed the cocktail party problem [Cherry, 1953]. The paper asserts that

humans are normally capable of separating multiple speakers and focusing on a

single one [Cherry, 1953]. However, hearing impaired individuals may have issues

when it comes to performing this same task. The cocktail party problem has been
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approached using several di↵erent techniques, such as using microphone arrays,

monaural algorithms, and computation auditory scene analysis (CASA) [Healy et

al., 2013].

Modern hearing aids incorporate the microphone array strategy. They use

beamforming to amplify sound coming from a specific direction and attenuate the

sound coming from elsewhere. This technique comes with several drawbacks. In

order for it to work, the speech the user is trying to focus on must come from

a di↵erent direction than the noise. Di�culty will also arise when the source

of the target speech changes location [Healy et al., 2013]. Monaural algorithms

use a single microphone and are not dependent upon the location of the speech

source and the noise. These algorithms attempt to estimate the clean speech

signal after a statistical analysis of the speech and noise. These methods include

spectral subtraction, Wiener filtering, and mean-square error estimation. Spectral

subtraction removes the estimated power spectral density of the noise signal from

the power spectral density of the noisy speech. Wiener filtering estimates the clean

speech signal from the speech and mixture spectrum ratios. Mean-square error

estimation estimates clean speech by modeling the speech and noise spectra as

statistically independent Gaussian random variables. While monaural strategies can

improve performance of automatic speech recognition systems and increase Signal-

to-Noise Ratio (SNR), they have not been able to increase speech intelligibility

for human listeners so far [Healy et al., 2013]. CASA has some promising results

using ideal binary time-frequency masks to hide regions of the mixture where the

SNR is below a certain threshold. However, this method of separating speech from

noise requires prior knowledge of both, as the mask is created based o↵ the relative
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strengths of the speech signal and the noise [Healy et al., 2013].

This thesis seeks to build o↵ of previous research into the performance of a

technique known as Non-Negative Matrix Factorization (NMF) for source separation

and speech denoising in supervised and unsupervised environments [Mohammadiha,

2017]. NMF has many applications ranging from recommendations to dimensionality

reduction. As we will demonstrate in the next chapter, NMF can be applied in

order to model the way that a particular person speaks and recognize the portion

of a noisy signal that was contributed by a target speaker. We leverage the

conveniences a↵orded by a neural network implementation of the NMF algorithm

as demonstrated in prior research [Smaragdis, 2017].

We begin our research by presenting background information in Chapter 2 on

Non-Negative Matrix Factorization, neural networks, and the benefits of a neural

network based NMF implementation. In Chapter 3, we formally introduce the

problem statement, the data being used, and the steps that were taken in our

approach to the Cocktail Party Problem. Chapter 4 discusses the various neural

network architectures and training paradigms that were investigated during this

research. In Chapter 5, we introduce and discuss the results of our research by

comparing the quality of the denoised speech signal using the Mean-Squared Error

(MSE) as an evaluation metric. Finally, in Chapter 6 we make our conclusions and

propose avenues for future research.
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Chapter 2

Background

2.1 The Cocktail Party Problem

The cocktail party problem is the task of removing interference from human speech.

In a crowded bar or restaurant, humans have a strong ability to focus on the speech

of a desired target while ignoring sources of interference. Typically, this interference

can be attributed to the voices of others and the vibrations caused by the acoustical

interactions of sound sources and the environment. In these settings, various sounds

and voices overlap in both frequency and time. This overlap causes classical signal

processing techniques for speech denoising to provide poor performance. Statistical

and signal processing methods that have been applied to the cocktail party problem

include independent component’s analysis, principal component’s analysis, and

auditory scene analysis [Bee, 2008].
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Figure 2.1: MNIST handwritten digit dataset [Deng, 2012]

2.2 Machine Learning

Machine learning is the process of finding patterns in data that enable a computer

to perform a given task without being explicitly programmed to do so. The

problems that we deal with in machine learning can be grouped into two classes:

classification and regression. A classic machine learning classification problem is

that of recognizing handwritten digits such as from the MNIST dataset shown in

Figure 2.1 [Deng, 2012].

Figure 2.1 illustrates the complications to what seems like a simple problem

at first glance. Specifically, we see that the same number can be written many

di↵erent ways, in many di↵erent styles of handwriting. If we were to try and create

a set of rules and patterns to classify the digits, we would soon find that the number

of rules required to exhaustively solve this classification problem balloons to an

infeasible amount.

Machine learning algorithms combat this problem much in the same way that

humans first learn how to recognize hand written digits. Using a training set of

examples, a machine learning model can be algorithmically tuned to generalize

from this training set. We can then use this trained model to classify new examples
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from a testing set.

2.3 Regression

The class of machine learning techniques applied to the cocktail party problem

in this thesis is an example of the second class of machine learning problems:

regression. Unlike in classification problems where we label a real valued input

vector with a value from a discrete set of targets (the digits 0-9 in our example),

regression problems have continuous outputs. In this thesis, we aim to take a

real-valued input (a noisy speech signal) and output a clean/de-noised version of

this speech signal.

A classic regression technique is known as linear regression. For an input

vector of k independent observations, x
i

, we would like to determine a scalar

dependent variable, y. In linear regression, we assume a linear relationship betwen

the input and the output. We formally define this relationship as:

y
i

= w1xi1 + w2xi2 + ...+ w
k

x
ik

+ b
i

, (2.1)

y = xTw + b (2.2)

where i = 1, 2, ..., k, xT contains rows of input observations, w is a vector of

weights/slopes, and b is a vector of biases/intercepts. This simple linear regression

formulation will provide the foundation for our definition of neural networks in

Section 2.4.
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2.4 Neural Networks

Neural networks are a class of machine learning algorithms for performing classifica-

tion and regression. Inspired by the neural architecture of the human brain, neural

networks have been shown to produce state of the art results across many fields and

applications. As described in linear regression, input vectors to neural networks are

multiplied with a set of weights and summed with a bias vector to create a latent

representation of the input data. Unlike linear regression, neural networks use

various activation functions to introduce non-linearities into the model. The latent

representation is passed through one of these activation functions (See Section 2.6).

This allows neural networks to learn non-linear mappings and interactions of input

features to better inform their output decisions. This is an example of a single

layer of a neural network. As we will discuss, neural networks can be designed with

one or (sometimes many) more layers. Neurons, activation functions, and network

architectures are discussed below.

2.5 Neurons

Much like in our own brains, neurons are considered the basic building blocks of

neural networks. A block diagram of a neuron is shown in Figure 2.2. The neuron

is comprised of three components:

1. Weights

2. Accumulator

3. Activation Function
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Figure 2.2: A block diagram of a neuron. x1,...,l are the inputs to the neuron, w1,...,l

are the weights, and � is the activation function. The input to the activation
function is z and the output is y [Jacobson et al., 2015].

The inputs to the neuron, x1,...,l, are either the input vectors of the problem

or the output vector of a previous layer within the neural network. The weights,

w1,...,l, are applied to the inputs of the neuron to perform scaling. This scaling

can be thought of as determining which parts of the input are important within

the context of that neuron, magnifying important input features and removing

insignificant features. As we train our neural network with training data, these

weight parameters are tuned to allow the network to adapt to the problem and

training data. By determining the proper scaling of input features, we are able to

better inform the model of the appropriate output decision to make given some

input data.

After the inputs to the neuron are scaled by the weights, they are summed

with a bias/intercept vector in the accumulator. So far, this mimics the linear

regression process described in Section 2.3. Where the concept of a neuron deviates
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from the concept of linear regression is in the introduction of an activation function.

2.6 Activation Functions

The ability to scale inputs according to their relevance to a desired output is

useful if the desired output is a linear function of the inputs. In practice, there

are often many non-linear interactions between the input features that cannot be

modeled under this paradigm. By passing the output of the accumulator through

a chosen activation function, we can introduce non-linear e↵ects into our model.

For example, in a binary classification problem, the activation function used in

the output layer of a neural network might be a step function. Since the step

function maps all inputs to either 0 or 1, this guarantees that the output of the

network is a 0 or 1 binary classification. For purposes that will become apparent

from our discussion of the formulation of NMF in Section 2.10, we will restrict our

discussion of activation functions to functions with non-negative outputs. Three

such activation functions that were investigated over the course of this project are:

Rectified Linear Unit (RELU):

g(x) = max(x, 0) (2.3)

Softplus:

g(x) = log(1 + ex) (2.4)

Absolute Value:

g(x) = |x| (2.5)

9



where g is the activation function, �.

2.7 Network Architectures

A neural network’s architecture, or its arrangement of the neurons described in

Section 2.5, vastly impact a networks suitability to a given problem. Neural

networks are typically represented by directed graphs that can be cyclic or acyclic

and fully or partially connected. Fully connected graphs are graphs in which each

neuron of a given layer has a direct connection to each neuron of the next layer and

so on. There are various types of network architectures that are categorized by their

internal neuron connections between layers such as Feedforward, Convolutional,

and Recurrent Neural Networks.

The Feedforward Neural Network (FNN) is the simplest neural network

structure and is the one used in this thesis. As its name implies, the FNN is a

fully connected, acyclic graph which only passes information in a single direction:

forward. Figure 2.3 shows a two layer FNN with a single hidden layer.

The configuration of the network, from the number of hidden layers to the

number of nodes in each layer, impacts the performance of the network for a given

task. Each hidden layer of a network can be thought of as a feature extractor from

the output of the previous layer or the input. The input to the first hidden layer

is in the input space, as the number of inputs will be the same as the number of

features. However, the output of the hidden layer will be represented in a feature

space. The more units in a hidden layer there are, the more complex the decision

boundary can be and the more e↵ective the network can be in seperating features.

However, adding hidden layers and extra units will not necessarily improve the

10



Figure 2.3: A two-layer Feedforward Neural Network [Auer et al., 2008]

performance of a network. The number of hidden units in a network is related to the

networks ability to generalize. The risk of overfitting increases significantly if there

are too many units relative to training data, while the risk of poor classification

increases if there are too few. Also, the more hidden units there are in a network,

the longer it takes to train and the greater a computational load is put on the

processor [Jacobsen et al., 2015]. Adding hidden layers to a network may also

have negative e↵ects on its performance. Networks with several hidden layers have

a higher likelihood of getting caught in a local minima during training and not

reaching the optimal decision boundary [Hinton et al., 2006].

2.8 Training

In order for the network architecture described in Section 2.7 to be able to solve

complex problems, it has to learn about the problem we are trying to solve. As we
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previously mentioned, the way that we are able to teach our network is by adjusting

the weights that scale the inputs to the neuron during a training phase. There are

traditionally two types of training: Supervised and Unsupervised. In a supervised

training scenario, we are providing our neural network with an observed set of inputs

and a corresponding set of outputs. Since we have the truth labels at training time,

we can compare the network’s output to the true target using an error function.

Common error functions are the Sum of Squares function and Cross Entropy

function. By minimizing the error function of our network, we can algorithmically

update the weights of the network to provide better target estimates based on

the training data that we have observed. Weight updates are performed using an

algorithm known as the back-propagation algorithm, which assigns responsibility

for the observed error to particular network components/weights. The weights are

finally adjusted using the gradient descent method [Jacobsen et al., 2015].

In the unsupervised scenario, we do not have the truth labels at training time.

In many cases, such as clustering, we are simply training the neural network to

learn the underlying patterns within the training data so that it can be separated

into di↵erent clusters or classifications.

In the case of the cocktail party problem, the unsupervised case is when we

have noisy target speaker data and attempt to train a network to denoise the noisy

speech without any knowledge as to what type of noise is being applied to the

clean speech. In the supervised case of our problem, we have knowledge of the type

of noise being used on the clean speech and can train our model in the presence

of such noise. One unconventional training scenario that we will explore in this

thesis is the semi-supervised case. In the semi-supervised training scenario, we
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have knowledge that there will be noise applied to our speech, but we do not have

knowledge as to what type of noise this will be. Instead, we train using a general

noise model that does not contain the noise model that will be used in testing.

2.8.1 Regularization

One common modification that is made to the loss function of a neural network is

the addition of a regularization penalty. Regularization penalties are often used to

prevent models from overfitting to the training data. By adding a penalty on the

size of the weight parameters, we can ensure that the model remains sensitive to new

input data and will hopefully generalize well to new data. Regularization can also be

used to constrain the parameters of our model to behave in a particular way. As we

will discuss, one such constraint is a sparsity constraint which encourages sparsity in

our parameter matrices. This type of regularization is known as L1-Regularization

[Bagnell and Bradley, 2009].

2.9 Autoencoder Networks

An autoencoder is a specific Feedforward Neural Network architecture formulation

in which the goal of the network is to reconstruct its input at its output. The input

and output layers are the same size and are connected by hidden layers. Figure 2.4

shows an autoencoder with three fully connected, hidden layers.

The autoencoder creates an output reconstruction by learning an e�cient,

smaller representation of its input. This stage of the autoencoder is known as the

encoder and is comprised of one or more hidden layers. Once the encoder has

mapped the original input into a lower dimensional space, a reciprocal procedure is
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Figure 2.4: A fully-connected autoencoder with 3 hidden layers [Bengio, 2009]

performed in the decoder portion of the network. The decoder uses an architecture

symmetric in layer topology to the encoder to reconstruct the input from the

e�cient mapping in the code layer. In the case of the autoencoder, the output is

compared to the input through the use of an error function as mentioned in Section

2.8. We have seen in our prior research that autoencoders tend to perform well for

audio processing tasks and specifically the task of denoising speech.

2.10 Non-Negative Matrix Factorization

As mentioned in the previous chapter, NMF is a decomposition algorithm that

has been used in various applications. For the purposes of this research, we will

describe NMF in the context of its application to targeted speech denoising. We
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will begin our discussion of NMF with an introduction to the algorithm itself.

Next, we present a formulation for a neural-network based implementation of the

algorithm. Finally, we discuss the benefits and conveniences of a neural network

NMF implementation.

2.10.1 NMF

Given a non-negative matrix, X, the K-rank Non-Negative Matrix Factorization

model aims to find non-negative matrix factors W and H such that:

X ⇡ WH (2.6)

where X 2 RM⇥N

�0 is a nonnegative input matrix, W 2 RM⇥K

�0 , and H 2

RK⇥N

�0 . For the purposes of this paper, we take RM⇥N

�0 to represent the set of all

real, non-negative matrices of size M ⇥N . Equation 2.6 can be written in a column

by column notation as

v ⇡ Wh (2.7)

where v and h are the corresponding columns of V and H. This can be

interpreted as the columns of V being approximated by a linear combination of

the columns of W being weighted by the elements of h. In this regard, we can

consider W to be a set of basis vectors, each of which are activated by elements in

the activation matrix, H .

Now that we have described the parameters of the factorization, we discuss

how the NMF algorithm ensures that the multiplication of the non-negative bases
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matrix, W , and the non-negative activation matrix, H , successfully approximates

the non-negative input matrix, X. The method used in NMF is quite similar to

the training mechanism introduced in Section 2.8. First, we must define a metric

by which we can assess the quality of our approximation. Historically, the NMF

algorithm has been implemented using an expansion upon the Kullback-Leibler

divergence where the inputs are not constrained to sum to 1 [Lee and Seung, 2001].

This divergence between target and reconstruction is given by

D(X, X̂) =
X

i,j

(X
i,j

[log(X
i,j

)� log(X̂
i,j

)]�X
i,j

+ X̂
i,j

) (2.8)

By measuring the distance between the approximation and the true input

matrix using some error/cost function, NMF algorithms apply multiplicative the

bases and activations by a factor that depends on the quality of the reconstruction.

Much like the backpropagation algorithm, these updates seek to adjust the model

parameters to increase the quality of the reconstruction. It has been proven that

the quality of this approximation improves monotonically with the application of

multiplicative update rules in NMF algorithm [Lee and Seung, 2001].

As discussed in the next section, the similarities between the general framework

of an NMF algorithm and neural networks allow us to directly and analogously

implement an NMF algorithm using neural networks and an autoencoder.

2.10.2 A Neural Network Based Approach

Combining the discussion of Equation 2.6 and our introduction to autoencoders

from Section 2.9, we introduce a neural network based implementation of the NMF

algorithm. Equation 2.6 can be formulated as a linear autoencoder where:

16



Encoding Layer: H = W ⇤ ·X (2.9)

Decoding Layer: X̂ = W ·H (2.10)

where once again X 2 RM⇥N

�0 is a nonnegative input matrix, W 2 RM⇥K

�0 ,

and H 2 RK⇥N

�0 . Here, W ⇤ are the weights of the encoder layer and W are the

weights of the encoder layer. W and H are the weights and bases matrices just as

they were in the classic NMF formulation from Equation 2.6.

As presented, Equations 2.9 and 2.10 are equivalent to the NMF algorithm

and do not add any additional benefit. Furthermore, the non-negativity constraints

would be burdensome to implement under the proposed framework [Smaragdis,

2017]. As we have previously seen, however, leveraging activation functions not

only introduces non-linearities that can be helpful for modeling purposes, but also

allows us to transform our data as desired. The addition of an activation function,

g(), brings us to our definition of a Non-Negative Autoencoder:

Encoding Layer: H = g(W ⇤ ·X) (2.11)

Decoding Layer: X̂ = g(W ·H) (2.12)

where g() is a function that maps its input into a non-negative output space

such that g : RM⇥N 7! RM⇥N

�0 . Unlike the classic NMF implementation, we have

loosened the nonnegativity constraint here as W is no longer to required to be
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non-negative.

It should be apparent from our discussion of training schemas in Section 2.8

that we can use the backpropogation algorithm with gradient descent to iteratively

update W and H such that we can train the autoencoder network to produce

an accurate approximation for the input matrix. After training the network on

an input matrix, we will have successfully found a bases matrix and activations

matrix to explain the input sound. While this is certainly a neural network based

implementation of NMF, it is not very useful on its own.

Now that we have a method for learning how to decompose a clean training

sample into a matrix factorization, we extend this idea to approximate new input

matrices with the same underlying structure as the matrices that we trained on.

The key here is that there is some underlying structure in the input matrices under

observation. This underlying structure is captured in the basis vectors of the W

matrix and should theoretically be able to explain mmethod used in NMFs with

the same latent structure. By fixing the bases matrix and learning a new activation

matrix, we can use the bases matrix learned from one input matrix to explain a

new input matrix with the same structure. That is, given an input matrix X and

a learned model W , we can estimate H such that X̂ ⇡ X. This estimation can

be performed using a single-layer non-linear network given by:

X̂ = g(W ·H) (2.13)

We can estimate H once again using the back propagation algorithm with

gradient descent. In summary, we have introduced a neural network based imple-
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mentation of NMF that consists of a non-negative autoencoder and a single layer

neural network. The autoencoder serves the purpose of learning a bases model for

the class of input matrices under observation, while the single layer neural network

allows us to explain a new input matrix by activating these fixed bases.

2.10.3 The Benefits of a Neural Network Based Approach

Now that we have defined a framework for learning a model for a class of input

matrices and a method for explaining new input matrices with the same underlying

structure, we must address the question of why this implementation is necessary

or better than the classic NMF implementations. Beginning with the activation

function that di↵erentiates our denoising autoencoder from a linear autoencoder,

we have introduced a non-linearity in our algorithm that allows us to model more

complex patterns in our input matrices. By implementing the NMF algorithm with

neural networks, we can introduce arbitrary complexities such as multiple encoding

and decoding layers that are suited for the task at hand. Although not investigated

in this thesis, this formulation also allows for various alternative neural network

architectures to be analyzed in their e↵ectiveness in NMF applications. Such

alternative architectures include Convolutional and Recurrent Neural Networks,

which are known for strong performance in image and audio processing due to their

spatial and temporal dependencies, respectively [Krizhevsky et al., 2012][Mikolov,

2010].

Perhaps the most appealing benefit of this implementation is the level of

support surrounding the implementation of neural networks. As we will discuss

in Section 3, various libraries and frameworks have out-of-the-box neural network
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implementations that allow for quick, modular experimentation. These packages

provide implementations for various layer structures, activation functions, and auto-

di↵erentiation for backpropagation with gradient descent. These tools allow us to

quickly experiment with various architectures to determine the optimal architecture

for the problem at hand, without getting bogged down in the underlying imple-

mentation details. In addition to these structural and convenience improvements,

neural network implementations have been demonstrated comparable performance

to classical NMF implementations [Smaragdis, 2017].

2.11 NMF and Speech Denoising

Thus far, most of our discussion surrounding the theory of NMF has been presented

for the general case for some non-negative input matrix. We now turn our attention

here and for the rest of this thesis to the application of NMF for targeted speech

denoising.

In the audio samples analyzed in this thesis, we are exclusively dealing with

discrete-time, real-valued signals, denoted by x[n], where each point in time, n,

represents a sample of the continuous-time signal, x(t). As mentioned, NMF only

works for non-negative input matrices and we have already stated that x[n] is a

real-valued signal. Therefore, we must somehow transform our input audio vector

such that it is represented by a non-negative matrix. The transform used in this

thesis is known as the Discrete Time Fourier Transform (DTFT) given by

X(!) =
1X

n=�1
x[n]e�j!n (2.14)
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The DTFT transforms the signal from the time domain into the frequency

domain where the signal is observed as the sum of sinusoids given by e�j!n, where

! represents the frequency of the sinusoid. The magnitude of the DTFT is given by

|X(!)| (2.15)

and determines the presence of a sinusoid ej!n in x[n]. The phase of the

DTFT is given by

✓(!) = \X(!) (2.16)

and represents the alignment of the sinusoids in relation to one another to

make up x[n].

Instead of analyzing the raw time-domain signal itself, we use the DTFT to

produce a magnitude spectrogram, which is a non-negative matrix describing the

time-frequency relationship of the signal. Once we form our approximation for

the target spectrogram, we can then use the inverse DTFT to return to the time

domain and reconstruct the target speech signal. More details on our construction

of the magnitude spectrogram for an input audio wave will be detailed in Chapter

3.

Now that we have the ability to transform a real-valued speech signal into a

non-negative matrix, we can pass magnitude spectrograms of a target speaker or

source of sound and model it as demonstrated in Section 2.10.2. For demonstrative

purposes, we will look at a simple example of the NMF algorithm’s ability to learn

how to model the notes of a piano.
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Figure 2.6: The bases and activation matrices obtained by performing the classic
NMF algorithm with K = 4. [Smaragdis, 2017]

Example: NMF for Modeling Piano Notes

Figure 2.5: The input magnitude spectrogram of a piano playing 5 notes as
labelled. [Smaragdis, 2017]

Figure 2.5 shows the resulting magnitude spectrogram from taking the DTFT of an

audio clip of five notes being played consecutively on a piano. Since four distinct

notes are played in the sequence, it makes sense to model the sound of the piano

using an NMF algorithm with a rank of K = 4.

Figure 2.6 shows the bases and activations matrices that are obtained by

performing the classic implementation of the NMF algorithm to factorize the input
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spectrogram into bases and activations factors. As you can see, the activations

in Figure 2.6 are clearly aligned to the boundaries of the notes in the sequence

in Figure 2.5. Each vector in the activations matrix operates on a corresponding

basis vector, implying that each note in the piano sequence is modeled by a single

basis vector and activated by a single activation vector. Since notes are played by

themselves in the sequence, only a single basis vector is ever activated at any one

time.

Figure 2.7: The bases and activation matrices obtained by performing the NMF
algorithm with a neural network implementation with K = 4. [Smaragdis, 2017]

Figure 2.7 shows the bases and activation matrices obtained by using our

neural network implementation of the NMF algorithm. While the multiplication of

the bases and activation matrices will approximate the input spectrogram, they

are distinctly di↵erent from the matrices that we found using the classic NMF

algorithm. The reason for this is that we have relaxed the non-negativity constraint

in our neural network implementation of the NMF algorithm by only requiring that
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the input, latent state, and output of the autoencoder network be non-negative.

This allows our bases matrix to contain negative values. This does not a↵ect our

approximation of the input, but it does allow for cross-cancellation between the

basis resulting from multiple bases being unnecessarily activated at a given time.

We can use the L1-Regularization penalty described in Section 2.8.1 to encourage

sparsity in our activation matrix.

Figure 2.8: The bases and activation matrices obtained by performing the NMF
algorithm with an L1-regularized neural network implementation with K = 4.

[Smaragdis, 2017]

The results of approximating the input spectrogram with L1 regularization

added to the neural network implementation of the NMF algorithm are shown in

Figure 2.8. These learned matrices look much more like what we would expect,

given the results shown in Figure 2.6. Now that we have learned a model for these

4 piano notes, we could fix the learned bases matrix and use the single layered

neural network to learn an activation matrix to explain a completely new sequence
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of these notes.
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Chapter 3

Problem Statement and

Implementation Details

Motivated by the demonstrated ability of NMF to model piano notes and, by

extension, the voice of a human speaker, we aim to apply a neural network based

NMF implementation to the Cocktail Party Problem. In this chapter, we will

define a general framework and data model that we will use in the experiments

described in Chapter 5.

3.1 Noisy Speech Generation

Given a clean speech signal from our target speaker, x[n], we can create a noisy

speech signal, y[n], given by

y[n] = x[n] +N [n] (3.1)

where N [n] is additive noise that is applied to the clean speech signal to
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create a noisy speech signal. We can measure the level at which the noise obfuscates

the clean speech signal by measuring the Signal-to-Noise Ratio (SNR) of the noisy

speech signal. SNR is essentially the ratio of the average power of the speech signal

to the average power of the noise signal. We can then, therefore, adjust this SNR

as we desire by scaling the magnitudes of the noise signal and thus scaling the

average power of the noise signal.

The clean data sources that were used in this thesis are:

1. An Audiobook of ”The History of the Four Georges” by Justin McCarthy

2. The CHiME Utterances Dataset

3. Clean sentences from 5 speakers [Smaragdis, 2017]

The noise sources that were considered are:

1. Bar Noise from YouTube

2. Babble noise formed by combining sentences from speakers other than the

target speakers [Smaragdis, 2017]

As we are seeking to build o↵ of the previous work of Paris Smaragdis, we

will mostly limit our analysis to the set of speakers and sentences that he used in

his papers.

3.2 Frequency Transform and Inverse Transform

As discussed in Section 2.11, we use a frequency transform known as the DTFT

to represent the input data as a magnitude spectrogram. As is performed in the

Smaragdis paper, we use a 512 DFT and applying a square root Hann window
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with a hop size of 25%. We reconstruct our target speech signal by applying the

following to the output of the model of each known source (See Section 4.1):

s
i

(t) = STFT�1(
X̂iP
j

X̂j

�X � ei�) (3.2)

where STFT�1() is the inverse spectrogram operator, � indicates element

wise multiplication, � is the phase of the noisy input mixture, and Xi is the

estimated magnitude spectrogram of the i’th source.

3.3 Implementation Details

The experiments in this thesis were performed using Python3, Numpy, Tensorflow,

and Librosa. Tensorflow is an neural network package that was internally developed

and eventually open-sourced by Google [Abadi et al., 2015]. Numpy is a package

known for scientific computing and matrix operations within python. Finally,

Librosa is a python package for music and audio analysis [Mcafee et al., 2015].

All experiments were performed on a CPU with 16GB of RAM and a 2.6 GHz

processor.

In order to quantitatively analyze our results, we leverage the Google Speech

Recognizer to define a ground truth value for an audio clip. Using the Google Speech

Recognizer transcription as a ground truth, we can compare the transcription of our

reconstructions and compute a Word Error Rate (WER) to quantitatively assess

the performance of our targeted speech denoising experiments. In situations where

the Google Speech Recognizer was unable to present a ground truth value, we used

the MSE as a quantitative measure of the performance of our estimate. Finally,
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we evaluate our semi-supervised results using the perceptual evaluation of speech

quality (PESQ), which is the telecommunications standard for the evaluation of

intelligibility [Rix et al., 2001].
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Chapter 4

Proposed Methods and

Experiments

We will begin our discussion of our proposed methods and experiments by reviewing

previous research done towards a neural network NMF implementation. The

modeling techniques that have been presented herein are mostly taken directly

from prior implementations, however our application is di↵erent since we would like

to analyze the implementations performance in a semi-supervised setting. After

a brief overview of the prior research, we will describe the approaches that were

taken to research the e↵ectiveness of a neural network based NMF algorithm for

targeted speech denoising in a semi-supervised setting.
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4.1 A Neural Network Based NMF Implementation for

Source Separation

In previous work on neural network based NMF implementations, the modified

NMF algorithm is applied to the problem of supervised source separation. Clean

sentences from multiple speakers are used to learn speech models for each source in

a mixture. What is of importance here is the fact that multiple speech models are

being learned: one speech model for each speaker, meaning one set of basis vectors

for each speaker in the mixture. New sentences, which have not been trained

on, for each speaker are used to create a mixture signal by summing the signals

together. Using the fixed, learned speech bases, a single layered neural network is

built for each speaker to learn a new activation matrix. Finally, the reconstructions

produced by each speakers’ neural network are summed together to approximate

the input mixture. This approximation is compared to the original mixture using

the loss function of Equation 2.8. Based on this comparison of the sum of the

individual sources to the original input mixture, each source’s activation matrices

are updated using gradient descent and the process is repeated for thousands of

training epochs.

4.2 Application to Speech Denoising

The method proposed in the previous section works well for its intended purpose

under most conditions. The obvious issue that we will run into in our application of

this method is that all components of the input mixture must be known beforehand.

In other words, the application of NMF to source separation is a completely
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supervised problem. In the case of targeted speech denoising, we will rarely have

any prior information about the additive noise that is corrupting our clean, target

signal.

4.2.1 Unsupervised Approach

The unsupervised approach to the targeted speech denoising problem was the first

solution that we tried in our experimentation. Unfortunately, due to the definition

of the NMF algorithm’s loss function, any unsupervised approach leads to the

target speaker’s bases being activated in an attempt to explain the entire mixture.

However, attempts to solve the unsupervised problem were not wholly unsuccessful.

In fact, the ability of the NMF bases to attempt to explain foreign signals was the

motivation for the semi-supervised approach that we will be working towards over

the next few sections. If one set of bases could be forced to explain all components

of a mixture, we hypothesize that we would be able to use the target speaker’s bases

to explain the target signal and some general set of bases to explain everything

else.

4.2.2 Semi-Supervised Targeted Speech Denoising

While we may not have any prior indication of what kind of noise is corrupting

the clean target speech, we can make a general assumption that there is in fact

noise corrupting the target speech. Making the assumption that there is some

noise present allows us to create a universal noise model just as we would for a

completely independent source. By modeling an unknown noise source with a

general noise model, we are transforming the problem of targeted source separation
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into a semi-supervised source separation problem. With this approach, we hope

that the speaker’s bases will be used to explain only the speaker’s contribution to

the noisy signal, while the bases of the general noise model will be able to explain

any other noise that we encounter.

4.2.3 An Improved Cost Function

One observation that we made during our own implementation of the NMF al-

gorithm was that the algorithm did not tend to perform well in the presence

of inputs that were very similar to each other. This held true even in the fully

supervised source separation problem. Given the presence of two similar sources

in the mixture, such as two men with similar voices speaking, the bases of one

speaker can be activated to reconstruct the speach of another. This results in the

individual reconstruction components being correlated to one another. In order to

address this, we propose a modification to the KL-Divergence cost function from

Equation 2.8. The modified cost function is given by

D(X, X̂) =
X

i,j

(X
i,j

[log(X
i,j

)� log(X̂
i,j

)]�X
i,j

+X̂
i,j

)+�
X

k

kH
k

k
L1+r2 (4.1)

where the second term is a sparsity regularizer and r2 is the square of the

Pearson Correlation of the individual mixture components of X̂. The pearson

correlation component between two signals, X and Y, is given by
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This correlation term acts as a penalty that discourages the model from

learning activation functions that act on the bases of one component to explain

another. This correlation component is shown to produce improved results in

targeted speech denoising and source separation when the input mixture.
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Chapter 5

Results and Discussion

Given the poor performance that was observed in an unsupervised setting, we

then turn our focus to a ground-up approach. We start simply by analyzing our

ability to model a speaker’s speech and use this learned model to explain a new

testing sentence. Next, we assess the ability of our model to perform the supervised

source separation technique from prior neural network based NMF research in the

presence of:

1. Additive White Gaussian Noise (AWGN)

2. Additional Speaker’s

3. Bar Noise

Finally, we present results for numerous semi-supervised cases in which a target

speaker model is found and a general noise model (one that was not trained with

the class of noise used in the testing mixture) is used to explain the testing mixture.

Unless otherwise noted, we use the data preprocessing techniques introduced in

Chapter 3 along with the below choices for free parameters. These choices were
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informed by either experimental confirmation or by the findings presented in

previous research [Smaragdis, 2017].

Parameter Value

Activation Function SoftPlus

Learning Rate 0.01

Training Epochs 50000

L1-Regularization � 0.001

NMF Rank 20

SNR 0 dB

Autoencoder Architecture Shallow

5.1 Model Validation

By ensuring that we have the ability to reproduce comparable results to those

presented in the Smaragdis paper, we can confirm that our neural network imple-

mentation of NMF is correct.

5.1.1 Learning a Speech Model

First, we learn speech models for each of the speakers that we will encounter in

the mixture. We will refer to the speakers as Male 1, Male 2, Male 3, and Female

1. We present the results for Male 1 in this section. The procedure and results for

learning the bases of the other speakers follow an identical procedure.

Using four concatenated sentences as training data, we first train a shallow

non-negative autoencoder to find the bases matrix, W , of Male 1. We train the

autoencoder by feeding the entire training set as a single batch to the autoencoder
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Figure 5.1: Loss value over the training phase of learning a speech model for Male
1. The autoencoder, despite being shallow, quickly converges to a minima and

does so monotonically as expected.

network and using the Adam Optimizer to perform backpropagation with gradient

descent for parameter updates [Kingma and Ba, 2014]. Previous research e↵orts

have used the RProp algorithm for backpropagation, however, we did not observe

any noticeable performance di↵erences as a result of this change.

Figure 5.1 shows the value of our observed loss over the course of the training

period. As mentioned earlier, the loss values are expected to decrease monotonically

until they arrive at a minima. This is confirmed by the plot in Figure 5.1

5.1.2 Learning an Out-Of-Sample Activation Matrix

Now that we have learned bases for Male 1, we should confirm that we are able

to approximate new testing sentences from Male 1 that we have not seen in the

training of the bases. We confirm this by using the W matrix that we just learned

as a fixed parameter in a single layer neural network. We again use the Adam
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Optimizer to learn an activation matrix, H , such that the activation vectors of H

activate the learned bases to approximately reconstruct the new testing sentence.

We present the results of this test for speaker 1 below and the observer WER across

all speakers.

• Male 1 Ground Truth: “wipe the grease o↵ his dirty face”

• Male 1 Reconstruction: “what’s the grease o↵ his dirty face”

• WER Across All Speakers: 6%

Qualitatively, the reconstructions of the out-of-sample testing sentences sound

almost identical to the samples themselves. Quantitatively, we observed that the

speech recognition system returned a missing, substituted, or deleted word 3 times

out of 33 possible words in the speakers’ testing sentences. We note that the ground

truth labels were not always 100% accurate, perhaps elevating the true error. We

also note that this is a fairly small sample size of testing sentences and we would

expect further experimentation to drive the WER down. Nonetheless, we consider

these results and our qualitative assessment of the reconstructions as validation

that our model is working as intended.

5.2 Supervised Source Separation

After validating our model and implementation, we now turn our attention to the

problem of supervised source separation as demonstrated in the Paris paper. As

the Google Speech Recognition software was unable to produce a transcription of

the audio signals, we abandon the WER metric in favor of the Mean-Squared Error

(MSE) given by
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Source 1 Source 2 r2? Source 1 MSE Source 2 MSE Mixture MSE
Male AWGN N 0.000292 0.471941 0.000168
Male AWGN Y 0.000292 0.471662 0.000169
Male Bar Noise N 0.000811 0.006157 0.000132
Male Bar Noise Y 0.000750 0.005967 0.000137
Male Female N 0.000609 0.000668 0.000073
Male Female Y 0.000617 0.000624 0.000105
Male 1 Male 2 N 0.001329 0.001434 0.000420
Male 1 Male 2 Y 0.001277 0.001483 0.000113

Table 5.1: MSE Values for the Case of Supervised Source Separation

MSE =
1

n

nX

i=1

(Ŷ
i

� Y
i

)2 (5.1)

where hatY
i

is our approximation for Y
i

.

The results of the supervised source separation are shown in Table 5.1. We

present the source separations of multiple pairs of source mixtures. Once again, the

supervised case performed as expected. The only exception this time is given by

the source separation of the Male 1 speaker and the Male 2 speaker, which perform

an order of magnitude worse than all other separations. This does not follow any

of the results put forth by in prior research, however, we believe that this can be

attributed to the underperformance of the NMF algorithm in the presence of a

mixture comprised of correlated components. We observed that the individual

components contained parts of each other’s signal because their bases were being

activated in order to explain both signals. This was the original motivation behind

the addition of the Pearson correlation parameter. The addition of this parameter

makes a big improvement in the accuracy of the mixture reconstruction and also

reduces the crosstalk in the individual sound samples.
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Target Source Noise Source Noise Bases r2? Target MSE
Male AWGN Bar Noise N 0.000541
Male AWGN Bar Noise Y 0.000542
Male AWGN Female N 0.000822
Male AWGN Female Y 0.000640
Male Bar Noise AWGN N 0.001240
Male Bar Noise AWGN Y 0.001240
Male Bar Noise Female N 0.001035
Male Bar Noise Female Y 0.001239
Male Female AWGN N 0.001189
Male Female AWGN Y 0.001303
Male Female Bar Noise N 0.000844
Male Female Bar Noise Y 0.000781
Male Male 2 AWGN N 0.001408
Male Male 2 AWGN Y 0.001440
Male Male 2 Bar Noise N 0.001194
Male Male 2 Bar Noise Y 0.001191
Male Male 2 Female 2 N 0.001060
Male Male 2 Female 2 Y 0.001014

Table 5.2: MSE Values for the Case of Semi-Supervised

5.3 Semi-Supervised Targeted Speech Denoising

We finally move onto the case most related to the Cocktail Party Problem, which

is the semi-supervised targeted speech denoising. We present results below for

the MSE between the target speech signal and our approximation of it from a

semi-supervised training of a neural network based NMF algorithm using the bases

of noise classes other than the one being applied in the testing phase.

Table 5.2 shows a consistent improvement for the semi-supervised approach

with the addition of the correlation penalty had on the target MSE for the case of

both inputs of Male 1 and Male 2 being highly correlated.

Finally, we present results for another semi-supervised case where the general
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Figure 5.2: PESQ results for the semi-supervised case with no correlation penalty

Figure 5.3: PESQ results for the semi-supervised case with the addition of the
correlation penalty

noise model is trained using data from all sources except samples from the noise

and target sources present in the mixture. Figures 5.2 and 5.3 show the PESQ

results for this scenario. PESQ values range from -0.5 (worst) to 4.5 (best).

These results show mixed e↵ects for the addition of the correlation penalty.

While we mostly see increased performance over the base case, we do see some

instances of generally decreased performance for the case of a female noise source.

These results somewhat contradict a qualitative assessment of the intelligibility
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of the denoising result, however, as the denoised reconstructions sound notice-

ably better than the original noisy mixture. We attribute this discrepancy to

distortion introduced by the reconstruction algorithm, as well as phase artifacts

that are introduced by applying the noisy mixture phase to the estimated target

reconstruction.
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Chapter 6

Future Work and Conclusions

The benefit o↵ered by the addition of the correlation penalty for similar inputs

leads me to believe that research in this direction could potentially allow the

NMF algorithm to to be applied more easily to mixtures containing highly similar

data. We have shown improvement over the baseline implementation using a naive

addition of the correlation penalty. We believe that a cross-validation scheme to

find an ideal weighting of the correlation penalty could possibly yield even greater

results.

In a real world application of this procedure, we believe that a more com-

prehensive set of noise training data, consisting of common, everyday noise and

situations, should be used. As this training set of noise data became more exhaus-

tive over time, the problem would approach the supervised domain, where we were

able to show good results for all cases of noise.
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Appendix

Model File

1 ## Matthew Smarsch
2 ## Cooper Union E l e c t r i c a l Engineering Master ’ s Thesis
3 ## Advisor : Pro fessor Sam Keene
4 ## Neural Network NNMF Implementation fo r the Cock ta i l Party Problem
5
6 import argparse
7 import sys , os
8 os . env i ron [ ’TF CPP MIN LOG LEVEL ’ ]= ’ 2 ’
9 import t en so r f l ow as t f

10 import math
11 import numpy as np
12 import datet ime
13 import wave
14 import matp lo t l i b . pyplot as p l t
15 import pylab
16 import l i b r o s a
17 import l i b r o s a . d i sp l ay
18 import s c ipy
19 from s c ipy . i o import wav f i l e
20 from s c ipy . f f t p a ck import f f t
21 from s c ipy import s i g n a l
22 from keras import backend as K
23
24 # Attempts to ad ju s t the SNR to the t a r g sn r on the s c a l e s p e c i f i e d by s c a l e
25 # Looks to ad ju s t no ise accord ing ly , s t a r t i n g with no i se arr , then c l ean arr ,
26 #
27 # IMPLEMENTATION REQUIRED: Sca le both c lean and noise i f SNR can ’ t be achieved
28 # by only ad ju s t i n g one array
29 #
30 # Returns ad jus t ed c l ean ar r and no i s e a r r
31 def adjust SNR ( c l e an a r r , n o i s e a r r , t a rg sn r , s c a l e = ’db ’ ) :
32 db snr , l i n s n r = get SNR ( c l e an a r r , n o i s e a r r )
33 i f s c a l e == ’db ’ :
34 t a r g sn r = math .pow(10 , t a r g sn r /10)
35 i f l i n s n r == ta r g sn r :
36 return c l e an a r r , n o i s e a r r
37 else :
38 s c a l e f a c t o r = math . s q r t ( l i n s n r / t a r g sn r )
39 n o i s e a r r = np . mult ip ly ( no i s e a r r , s c a l e f a c t o r )
40 return c l e an a r r , n o i s e a r r
41
42 # Ca lcu l a t e s SNR of a c lean and noise array
43 #
44 # Return : SNR in dB and on a l i n e a r s c a l e
45 def get SNR ( c l e an a r r , n o i s e a r r ) :
46 p c l ean = np .mean(np . square ( c l e a n a r r ) )
47 p no i s e = np .mean(np . square ( n o i s e a r r ) )
48 l i n s n r = p c l ean / p no i s e
49 db snr = 10⇤math . log10 ( l i n s n r )
50 return db snr , l i n s n r
51
52 def c o r r e l a t i o n c o e f f i c i e n t l o s s ( y true , y pred ) :
53 x = y t rue
54 y = y pred
55 mx = K.mean(x )



56 my = K.mean(y )
57 xm, ym = x�mx, y�my
58 r num = K.sum( t f . mul t ip ly (xm,ym) )
59 r den = K. sq r t ( t f . mul t ip ly (K.sum(K. square (xm) ) , K.sum(K. square (ym) ) ) )
60 r = r num / r den
61
62 r = K.maximum(K.minimum( r , 1 . 0 ) , �1.0)
63 return K. square ( r )
64
65 # Al ias f o r wa v f i l e . read �> reads . wav to numpy array
66 #
67 # Returns : Numpy array r ep r e s en ta t i on o f . wav f i l e
68 def read wav ( f i l ename ) :
69 return l i b r o s a . load ( f i l ename , None )
70
71 def s av e p l o t ( values , f i l ename ) :
72 p l t . f i g u r e ( )
73 p l t . p l o t ( va lue s )
74 p l t . s a v e f i g ( f i l ename , bbox inches=’ t i g h t ’ )
75
76 class SentenceMixture :
77 #def i n i t ( s e l f , speaker model , sess , speaker , no i sy speaker = None ,

bases hack = None) :
78 def i n i t ( s e l f , s e s s , speaker , no i s y speake r = None , bases hack = None ) :
79 #s e l f . speaker mode l = speaker model
80 #s e l f . rank = s e l f . speaker mode l . rank
81 s e l f . rank = 20
82 s e l f . s e s s = s e s s
83 s e l f . speake r = speaker
84 s e l f . ba se s hack = bases hack
85 s e l f . n o i s y sp e ak e r = no i sy speake r
86 #s e l f . b a s e s = s e l f . speaker mode l . ba s e s
87 s e l f . ba s e s = bases hack [ 0 ]
88 i f no i sy speake r i s None :
89 s e l f . t e s t i n g s e n t e n c e = s e l f . speake r . t e s t i n g s e n t e n c e
90 s e l f . c l e a n t e s t i n g s e n t e n c e = s e l f . t e s t i n g s e n t e n c e
91 else :
92 s e l f . c l e a n t e s t i n g s e n t e n c e , s e l f . t e s t i n g s e n t e n c e = s e l f .

c r e a t e t e s t i n g s e n t e n c e ( )
93 s e l f . t e s t i n g f s = s e l f . speake r . t e s t i n g f s
94 s e l f . compute tes t ing spect rogram ( )
95 s e l f . t e s t i n g d a t a = s e l f . t e s t i n g sp e c t r og r am [ 0 ]
96 s e l f . lambduh = 0
97 s e l f . num epochs = 10000
98 s e l f . l e a r n i n g r a t e = 0.01
99 #s e l f . b u i l d s i n gu l a r mode l ( )

100 s e l f . bu i ld doub le mode l ( )
101
102 def c r e a t e t e s t i n g s e n t e n c e ( s e l f ) :
103 min length = min(np . shape ( s e l f . speake r . t e s t i n g s e n t e n c e ) [ 0 ] , np . shape (

s e l f . n o i s y sp e ak e r . t e s t i n g s e n t e n c e ) [ 0 ] )
104 c l e an s en t en c e = s e l f . speake r . t e s t i n g s e n t e n c e [ : min length ]
105 #noi s e s en t ence = s i g n a l . decimate ( s e l f . no i s y sp eake r . t e s t i n g s en t en c e ,

6) [2000:2000+min length ]
106 no i s e s en t en c e = s e l f . n o i s y sp eak e r . t e s t i n g s e n t e n c e [ : min length ]
107 c l ean s en t ence , n o i s e s en t en c e = adjust SNR ( c l ean sen t ence , no i s e s en t enc e

, 0)
108 no i s y s en t enc e = c l e an s en t en c e + no i s e s en t en c e
109 #clean sen t ence = s e l f . speaker . t e s t i n g s e n t e n c e
110 #pr in t (np . shape ( c l ean sen t ence ) )
111 #pr in t (np . shape ( s e l f . no i s y sp eake r . t e s t i n g s e n t e n c e ) )
112 #noi sy sen t ence = np . append ( c l ean sentence , s e l f . no i s y speake r .



t e s t i n g s e n t e n c e )
113 l i b r o s a . output . write wav ( ’ no i sy . wav ’ , no i sy s entence , int ( s e l f . speake r .

f s ) )
114 return c l ean sen t ence , no i s y s en t enc e
115
116 def compute tes t ing spect rogram ( s e l f ) :
117 f f t s i z e = 512
118 D = l i b r o s a . s t f t ( s e l f . t e s t i n g s e n t e n c e , n f f t=f f t s i z e , hop length=int (

f f t s i z e /4) )
119 mag , phase = l i b r o s a . magphase (D)
120 s e l f . t e s t i n g sp e c t r og r am = (mag , phase )
121
122 def bu i l d s i n gu l a r mode l ( s e l f ) :
123 s e l f . x = t f . p l a c eho ld e r ( t f . f l o a t 3 2 )
124 s e l f . w = t f . p l a c eho ld e r ( t f . f l o a t 3 2 )
125 s e l f . H act = mode l va r i ab l e ( [ s e l f . rank , np . shape ( s e l f . t e s t i n g d a t a )

[ 1 ] ] , ’ H act mix ’ )
126 t f . a d d t o c o l l e c t i o n ( ’ l 1 ’ , t f . reduce sum ( t f . abs ( s e l f . H act ) ) )
127 s e l f . r e c on s t r u c t i o n = t f . nn . s o f t p l u s ( t f . matmul ( s e l f . w , s e l f . H act ) )
128 s e l f . c o s t f u n c t i o n = t f . reduce mean ( t f . add ( t f . subt rac t ( t f . mul t ip ly ( s e l f .

x , t f . subt rac t ( t f . l og ( s e l f . x ) , t f . l og ( s e l f . r e c on s t r u c t i o n ) ) ) , s e l f .
x ) , s e l f . r e c on s t r u c t i o n ) )

129 s e l f . l 1 p e n a l t y = t f . reduce sum ( t f . g e t c o l l e c t i o n ( ’ l 1 ’ ) )
130 s e l f . l o s s = s e l f . c o s t f u n c t i o n + s e l f . lambduh ⇤ s e l f . l 1 p e n a l t y
131
132 def bui ld doub le mode l ( s e l f ) :
133 s e l f . x 1 = t f . p l a c eho ld e r ( t f . f l o a t 3 2 )
134 s e l f . w 1 = t f . p l a c eho ld e r ( t f . f l o a t 3 2 )
135 s e l f . H act 1 = mode l va r i ab l e ( [ s e l f . rank , np . shape ( s e l f . t e s t i n g d a t a )

[ 1 ] ] , ’ H act 1 ’ )
136 t f . a d d t o c o l l e c t i o n ( ’ l 1 ’ , t f . reduce sum ( t f . abs ( s e l f . H act 1 ) ) )
137 s e l f . x 2 = t f . p l a c eho ld e r ( t f . f l o a t 3 2 )
138 s e l f . w 2 = t f . p l a c eho ld e r ( t f . f l o a t 3 2 )
139 s e l f . H act 2 = mode l va r i ab l e ( [ s e l f . rank , np . shape ( s e l f . t e s t i n g d a t a )

[ 1 ] ] , ’ H act 2 ’ )
140 t f . a d d t o c o l l e c t i o n ( ’ l 1 ’ , t f . reduce sum ( t f . abs ( s e l f . H act 2 ) ) )
141 s e l f . r e c o n s t r u c t i o n 1 = t f . nn . s o f t p l u s ( t f . matmul ( s e l f . w 1 , s e l f . H act 1

) )
142 s e l f . r e c o n s t r u c t i o n 2 = t f . nn . s o f t p l u s ( t f . matmul ( s e l f . w 2 , s e l f . H act 2

) )
143 s e l f . r e c on s t r u c t i o n = s e l f . r e c o n s t r u c t i o n 1 + s e l f . r e c o n s t r u c t i o n 2
144 s e l f . c o s t f u n c t i o n = t f . reduce mean ( t f . add ( t f . subt rac t ( t f . mul t ip ly ( s e l f .

x 1 , t f . subt rac t ( t f . l og ( s e l f . x 1 ) , t f . l og ( s e l f . r e c on s t r u c t i o n ) ) ) ,
s e l f . x 1 ) , s e l f . r e c on s t r u c t i o n ) )

145 s e l f . l 1 p e n a l t y = t f . reduce sum ( t f . g e t c o l l e c t i o n ( ’ l 1 ’ ) )
146 s e l f . c o r r e l a t i o n p e n a l t y = c o r r e l a t i o n c o e f f i c i e n t l o s s ( s e l f .

r e c on s t r u c t i on 1 , s e l f . r e c o n s t r u c t i o n 2 )
147 #s e l f . mse pena l ty = t f . s q r t ( t f . reduce mean ( t f . square ( s e l f .

r e c on s t r u c t i on 1 � s e l f . r e c on s t r u c t i on 2 ) ) )
148 #s e l f . l o s s = s e l f . c o s t f u n c t i o n + s e l f . lambduh ⇤ s e l f . l 1 p e n a l t y +

s e l f . c o r r e l a t i o n p en a l t y
149 s e l f . l o s s = s e l f . c o s t f u n c t i o n + s e l f . lambduh ⇤ s e l f . l 1 p e n a l t y
150
151 def t r a i n i n i t ( s e l f ) :
152 mode l va r i ab l e s = t f . g e t c o l l e c t i o n ( ’ mode l va r i ab l e s ’ )
153 s e l f . optim = t f . t r a i n . AdamOptimizer ( s e l f . l e a r n i n g r a t e ) . minimize ( s e l f .

l o s s , v a r l i s t=mode l va r i ab l e s )
154 s e l f . s e s s . run ( t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) )
155
156 def t r a i n s i n g l e ( s e l f ) :
157 l o s s v a l u e s = [ ]
158 s e l f . t r a i n i n i t ( )



159 print ( ”BEGINNING MIXTURE TRAINING: ” )
160 print ( s e l f . t e s t i n g d a t a )
161 for epoch in range ( s e l f . num epochs ) :
162 i t e r l o s s = s e l f . t r a i n s i n g l e i t e r ( s e l f . t e s t i n g d a t a )
163 i f epoch % 100 == 0 :
164 print ( ’ epoch : {} ’ . format ( epoch ) )
165 print ( ’ l o s s : {} ’ . format ( i t e r l o s s ) )
166 l o s s v a l u e s . append ( i t e r l o s s )
167 return l o s s v a l u e s
168
169 def t r a i n s i n g l e i t e r ( s e l f , data ) :
170 l o s s , = s e l f . s e s s . run ( [ s e l f . l o s s , s e l f . optim ] , f e e d d i c t={ s e l f . x :

data , s e l f . w : s e l f . ba s e s })
171 return l o s s
172
173 def s i n g l e t e s t ( s e l f ) :
174 return s e l f . s e s s . run ( [ s e l f . r e c on s t ru c t i on , s e l f . H act ] , f e e d d i c t={ s e l f

. x : s e l f . t e s t i n g da t a , s e l f . w : s e l f . ba s e s })
175
176 def t r a i n doub l e ( s e l f ) :
177 l o s s v a l u e s = [ ]
178 s e l f . t r a i n i n i t ( )
179 print ( ”BEGINNING MIXTURE TRAINING: ” )
180 print ( s e l f . t e s t i n g d a t a )
181 for epoch in range ( s e l f . num epochs ) :
182 i t e r l o s s = s e l f . t r a i n d o u b l e i t e r ( s e l f . t e s t i n g d a t a )
183 i f epoch % 100 == 0 :
184 print ( ’ epoch : {} ’ . format ( epoch ) )
185 print ( ’ l o s s : {} ’ . format ( i t e r l o s s ) )
186 l o s s v a l u e s . append ( i t e r l o s s )
187 return l o s s v a l u e s
188
189 def t r a i n d o u b l e i t e r ( s e l f , data ) :
190 l o s s , = s e l f . s e s s . run ( [ s e l f . l o s s , s e l f . optim ] , f e e d d i c t={ s e l f . x 1 :

data , s e l f . w 1 : s e l f . ba se s hack [ 0 ] , s e l f . x 2 : data , s e l f . w 2 : s e l f
. ba se s hack [ 1 ] } )

191 return l o s s
192
193 def doub l e t e s t ( s e l f ) :
194 return s e l f . s e s s . run ( [ s e l f . x 1 , s e l f . r e c on s t r u c t i on 1 , s e l f . w 1 , s e l f .

H act 1 , s e l f . r e c on s t r u c t i on 2 , s e l f . w 2 , s e l f . H act 2 ] , f e e d d i c t
={ s e l f . x 1 : s e l f . t e s t i n g da t a , s e l f . w 1 : s e l f . ba se s hack [ 0 ] , s e l f .
x 2 : s e l f . t e s t i n g da t a , s e l f . w 2 : s e l f . ba se s hack [ 1 ] } )

195
196 class SentenceSpeaker :
197 def i n i t ( s e l f , aud i o d i r e c t o ry , name) :
198 s e l f . a ud i o d i r e c t o r y = aud i o d i r e c t o r y
199 s e l f . name = name
200 s e l f . s en tence 1 , s e l f . f s 1 = s e l f . p r ep r o c e s s s en t en c e ( aud i o d i r e c t o r y +

’ Sentence 1 . wav ’ )
201 s e l f . s en tence 2 , s e l f . f s 2 = s e l f . p r ep r o c e s s s en t en c e ( aud i o d i r e c t o r y +

’ Sentence 2 . wav ’ )
202 s e l f . s en tence 3 , s e l f . f s 3 = s e l f . p r ep r o c e s s s en t en c e ( aud i o d i r e c t o r y +

’ Sentence 3 . wav ’ )
203 s e l f . s en tence 4 , s e l f . f s 4 = s e l f . p r ep r o c e s s s en t en c e ( aud i o d i r e c t o r y +

’ Sentence 4 . wav ’ )
204 s e l f . s en tence 5 , s e l f . f s 5 = s e l f . p r ep r o c e s s s en t en c e ( aud i o d i r e c t o r y +

’ Sentence 5 . wav ’ )
205 s e l f . t r a i n i n g s e n t e n c e s = [ s e l f . s en tence 1 , s e l f . s en tence 2 , s e l f .

s en tence 3 , s e l f . s en t en c e 4 ]
206 s e l f . t e s t i n g s e n t e n c e = s e l f . s en t en c e 5
207 s e l f . b i g t r a i n i n g s e n t e n c e = s e l f . g e t b i g t r a i n i n g s e n t e n c e ( )



208 s e l f . f s = s e l f . f s 1
209 s e l f . t r a i n i n g f s = [ s e l f . f s 1 , s e l f . f s 2 , s e l f . f s 3 , s e l f . f s 4 ]
210 s e l f . t e s t i n g f s = s e l f . f s 5
211 s e l f . m ix tu r e s en t ence = s e l f . s en t en c e 5
212
213 def g e t b i g t r a i n i n g s e n t e n c e ( s e l f ) :
214 r e shaped sent ence s = [ ]
215 for t r a i n i n g s e n t e n c e in s e l f . t r a i n i n g s e n t e n c e s :
216 r e shaped sent ence s . append (np . reshape ( t r a i n i ng s en t en c e , (�1 ,1) ) )
217 return np . reshape ( s c ipy . vstack ( r e shaped sent ence s ) , (�1 ,) )
218
219 def p r ep r o c e s s s en t en c e ( s e l f , s e n t e n c e f i l e ) :
220 sentence , f s = read wav ( s e n t e n c e f i l e )
221 return sentence , f s
222
223 def compute t ra in ing spect rograms ( s e l f ) :
224 f f t s i z e = 512
225 s e l f . t r a i n i ng sp e c t r o g r ams = [ ]
226 for f s , s entence in zip ( s e l f . t r a i n i n g f s , s e l f . t r a i n i n g s e n t e n c e s ) :
227 D = l i b r o s a . s t f t ( sentence , n f f t=f f t s i z e , hop length=int ( f f t s i z e /4) )
228 mag , phase = l i b r o s a . magphase (D)
229 s e l f . t r a i n i ng sp e c t r o g r ams . append ( (mag , phase ) )
230
231 def compute b ig t ra in ing spec t rog ram ( s e l f ) :
232 f f t s i z e = 512
233 D = l i b r o s a . s t f t ( s e l f . b i g t r a i n i n g s e n t e n c e , n f f t=f f t s i z e , hop length=

int ( f f t s i z e /4) )
234 mag , phase = l i b r o s a . magphase (D)
235 s e l f . b i g t r a i n i n g sp e c t r o g r am = (mag , phase )
236
237 def p lo t spec t rog rams ( s e l f ) :
238 for sp e c t r in s e l f . t r a i n i ng sp e c t r o g r ams :
239 p l t . f i g u r e ( f i g s i z e =(12 , 8) )
240 l i b r o s a . d i sp l ay . specshow ( spe c t r [ 0 ] , y ax i s=’ l i n e a r ’ , x ax i s=’ time ’ )
241 p l t . c o l o rba r ( format=’%+2.0 f ’ )
242 p l t . t i t l e ( ’ Linear�f r equency power spectrogram ’ )
243 p l t . t i g h t l a y ou t ( )
244 p l t . show ( )
245
246 def r econs t ruct wave (magnitude , phase ) :
247 r e c on s t r = l i b r o s a . i s t f t ( magnitude ⇤ phase )
248 return r e c on s t r
249
250 def r e c on s t ru c t t a r g e t wave ( no i sy input , r e c on s t r u c t i on t a r g , r e c on s t r u c t i o n no i s e

, phase ) :
251 r e c on s t r = l i b r o s a . i s t f t ( ( r e c on s t r u c t i o n t a r g + r e c on s t r u c t i o n n o i s e ) ⇤ phase )
252 r e con s t r 1 = l i b r o s a . i s t f t ( ( r e c on s t r u c t i o n t a r g ) ⇤ phase )
253 r e con s t r 2 = l i b r o s a . i s t f t ( ( r e c o n s t r u c t i o n n o i s e ) ⇤ phase )
254 #recons t r1 = l i b r o s a . i s t f t (np . mu l t i p l y (np . mu l t i p l y (np . d i v i d e (

r e cons t ruc t i on t a r g , np . add ( r econs t ruc t i on no i s e , r e c on s t r u c t i on t a r g ) ) ,
no i s y inpu t ) , np . exp (1 j ⇤ phase ) ) )

255 #recons t r2 = l i b r o s a . i s t f t (np . mu l t i p l y (np . mu l t i p l y (np . d i v i d e (
r e cons t ruc t i on no i s e , np . add ( r econs t ruc t i on no i s e , r e c on s t r u c t i on t a r g ) ) ,
no i s y inpu t ) , np . exp (1 j ⇤ phase ) ) )

256 return r e cons t r , r econs t r1 , r e c on s t r 2
257
258 def mode l va r i ab l e ( shape , name) :
259 va r i a b l e = t f . g e t v a r i a b l e (name=name ,
260 dtype=t f . f l o a t32 ,
261 i n i t i a l i z e r=t f . random uniform ( shape , �0.1 , 0 . 1 ) )
262 t f . a d d t o c o l l e c t i o n ( ’ mode l va r i ab l e s ’ , v a r i a b l e )
263 return va r i ab l e



264
265 class SpeechModel :
266
267 def i n i t ( s e l f , s e s s , speaker , a rgs ) :
268 s e l f . s e s s = s e s s
269 s e l f . speake r = speaker
270 s e l f . a c t i v a t i o n = args . a c t i v a t i o n
271 s e l f . rank = args . rank
272 s e l f . l e a r n i n g r a t e = args . alpha
273 s e l f . num epochs = args . epochs
274 s e l f . lambduh = args . lambduh
275 s e l f . t r a i n i n g d a t a = speaker . b i g t r a i n i n g sp e c t r o g r am [ 0 ]
276 s e l f . bu i ld model ( )
277
278 def bui ld model ( s e l f ) :
279 s e l f . x = t f . p l a c eho ld e r ( t f . f l o a t 3 2 )
280 W enc = mode l var i ab l e ( [ s e l f . rank , np . shape ( s e l f . t r a i n i n g d a t a ) [ 0 ] ] , ’

W enc ’ )
281 i f s e l f . a c t i v a t i o n == ’SOFTPLUS ’ :
282 s e l f . H act = t f . nn . s o f t p l u s ( t f . matmul (W enc , s e l f . x ) )
283 e l i f s e l f . a c t i v a t i o n == ’RELU’ :
284 s e l f . H act = t f . nn . r e l u ( t f . matmul (W enc , s e l f . x ) )
285 t f . a d d t o c o l l e c t i o n ( ’ l 1 ’ , t f . reduce sum ( t f . abs ( s e l f . H act ) ) )
286 s e l f . W dec = mode l va r i ab l e ( [ np . shape ( s e l f . t r a i n i n g d a t a ) [ 0 ] , s e l f . rank

] , ’W dec ’ )
287 i f s e l f . a c t i v a t i o n == ’SOFTPLUS ’ :
288 s e l f . r e c on s t r u c t i o n = t f . nn . s o f t p l u s ( t f . matmul ( s e l f . W dec , s e l f .

H act ) )
289 e l i f s e l f . a c t i v a t i o n == ’RELU’ :
290 s e l f . r e c on s t r u c t i o n = t f . nn . r e l u ( t f . matmul ( s e l f . W dec , s e l f . H act ) )
291 s e l f . c o s t f u n c t i o n = t f . reduce mean ( t f . add ( t f . subt rac t ( t f . mul t ip ly ( s e l f .

x , t f . subt rac t ( t f . l og ( s e l f . x ) , t f . l og ( s e l f . r e c on s t r u c t i o n ) ) ) , s e l f .
x ) , s e l f . r e c on s t r u c t i o n ) )

292 s e l f . l 1 p e n a l t y = t f . reduce sum ( t f . g e t c o l l e c t i o n ( ’ l 1 ’ ) )
293 s e l f . l o s s = s e l f . c o s t f u n c t i o n + s e l f . lambduh ⇤ s e l f . l 1 p e n a l t y
294
295 def t r a i n i n i t ( s e l f ) :
296 mode l va r i ab l e s = t f . g e t c o l l e c t i o n ( ’ mode l va r i ab l e s ’ )
297 s e l f . optim = t f . t r a i n . AdamOptimizer ( s e l f . l e a r n i n g r a t e ) . minimize ( s e l f .

l o s s , v a r l i s t=mode l va r i ab l e s )
298 s e l f . s e s s . run ( t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) )
299
300 def t r a i n ( s e l f , l o g f i l e ) :
301 l o s s v a l u e s = [ ]
302 s e l f . t r a i n i n i t ( )
303 print ( ”BEGINNING TRAINING: ” , f i l e=l o g f i l e )
304 print ( s e l f . t r a i n i ng da t a , f i l e=l o g f i l e )
305 for epoch in range ( s e l f . num epochs ) :
306 i t e r l o s s = s e l f . t r a i n i t e r ( s e l f . t r a i n i n g d a t a )
307 i f epoch % 100 == 0 :
308 print ( ’ epoch : {} ’ . format ( epoch ) , f i l e=l o g f i l e )
309 print ( ’ l o s s : {} ’ . format ( i t e r l o s s ) , f i l e=l o g f i l e )
310 l o s s v a l u e s . append ( i t e r l o s s )
311 return l o s s v a l u e s
312
313 def t r a i n i t e r ( s e l f , data ) :
314 l o s s , = s e l f . s e s s . run ( [ s e l f . l o s s , s e l f . optim ] , f e e d d i c t={ s e l f . x :

data })
315 return l o s s
316
317 def t e s t ( s e l f ) :
318 return s e l f . s e s s . run ( [ s e l f . r e c on s t ru c t i on , s e l f . W dec , s e l f . H act ] ,



f e e d d i c t={ s e l f . x : s e l f . t r a i n i n g d a t a })
319
320
321 def main ( ) :
322
323 ’ ’ ’
324
325 ENVIRONMENT SETUP
326
327 ’ ’ ’
328
329 par s e r = argparse . ArgumentParser ( )
330 par s e r . add argument ( ’�a ’ , ’��alpha ’ , des t=’ alpha ’ , type=f loat , d e f au l t =0.01 ,

help=’ the l e a rn i ng ra t e f o r backpropagat ion ’ )
331 par s e r . add argument ( ’�act ’ , ’��a c t i v a t i o n ’ , des t=’ a c t i v a t i o n ’ , type=str ,

c ho i c e s =[ ’RELU’ , ’SOFTPLUS ’ ] , d e f au l t=’SOFTPLUS ’ , help=’ a c t i v a t i o n
func t i on f o r the speech model ’ )

332 par s e r . add argument ( ’�c ’ , ’��c l ean ’ , des t=’ c lean model ’ , type=str , c ho i c e s =[ ’
Sentences ’ , ’Book ’ , ’ Piano ’ ] , d e f au l t=’ Sentences ’ , help=’ c l ean speech type
that we are t ry ing to model ’ )

333 par s e r . add argument ( ’�e ’ , ’��epochs ’ , des t=’ epochs ’ , type=int , d e f au l t =50000 ,
help=’number o f pas s e s through the t r a i n i n g s e t ’ )

334 par s e r . add argument ( ’� l ’ , ’��lambduh ’ , des t=’ lambduh ’ , type=f loat , d e f au l t =0,
help=’L1 r e g u l a r i z a t i o n c o e f f i c i e n t ’ )

335 par s e r . add argument ( ’�r ’ , ’��rank ’ , des t=’ rank ’ , type=int , d e f au l t =20, help=’
number o f s p e c t r a l components in the W ( bases ) matrix ’ )

336 args = par s e r . pa r s e a r g s ( )
337
338 s imu l a t i o n s d i r = ’ /Users /MSmarsch/Documents/Thes i s / S imulat ions / ’ + datet ime .

datet ime . now( ) . s t r f t im e ( ’%Y�%m�%d %H�%M�%S ’ ) + ’ / ’
339 os . mkdir ( s imu l a t i o n s d i r )
340 ’ ’ ’
341
342 AUDIO PREPROCESSING
343
344 ’ ’ ’
345
346 i f args . c lean model == ’ Sentences ’ :
347 ## Load Sentences in
348 s e n t e n c e s d i r = ’ /Users /MSmarsch/Documents/Thes i s /Audio/Clean Speech /

Sentences / ’
349 male speaker 1 = SentenceSpeaker ( s e n t e n c e s d i r + ’Male 1/ ’ , ’ Male 1 ’ )
350 male speaker 2 = SentenceSpeaker ( s e n t e n c e s d i r + ’Male 2/ ’ , ’ Male 2 ’ )
351 male speaker 3 = SentenceSpeaker ( s e n t e n c e s d i r + ’Male 3/ ’ , ’ Male 3 ’ )
352 f ema l e speake r 1 = SentenceSpeaker ( s e n t e n c e s d i r + ’ Female 1/ ’ , ’ Female 1 ’

)
353 f ema l e speake r 2 = SentenceSpeaker ( s e n t e n c e s d i r + ’ Female 2/ ’ , ’ Female 2 ’

)
354 ba r no i s e = SentenceSpeaker ( s e n t e n c e s d i r + ’ Noise / ’ , ’ Noise ’ )
355 awgn speaker = SentenceSpeaker ( s e n t e n c e s d i r + ’AWGN/ ’ , ’AWGN’ )
356 #speakers = [ bar no ise , awgn speaker ]
357 #speakers = [ male speaker 1 , male speaker 2 , male speaker 3 ,

f ema le speaker 2 ]
358 speaker s = [ male speaker 1 , f ema l e speake r 2 ]
359 #noi sy speaker = speakers [ 1 ]
360 no i s y speake r = male speaker 2
361 bases hack = [ ]
362
363 ## Compute Training Spectrogram by tak ing 512 pt . DFT with hann window and

25% over lap
364 ’ ’ ’
365 ta rge t speake r mode l = None



366 f o r speaker in speaker s :
367 sp e ak e r d i r = s imu l a t i o n s d i r + speaker . name + ’/ ’
368 os . mkdir ( s p e ak e r d i r )
369 aud i o d i r = sp eak e r d i r + ’Audio / ’
370 os . mkdir ( aud i o d i r )
371 p l o t d i r = sp eak e r d i r + ’ P lo t s / ’
372 os . mkdir ( p l o t d i r )
373 mode l d i r = sp eak e r d i r + ’Model / ’
374 os . mkdir ( mode l d i r )
375
376 speaker . compute b ig t ra in ing spec t rog ram ( )
377 r e c on s t r = reconst ruct wave ( speaker . b i g t r a i n i n g sp e c t r o g r am [ 0 ] ,

speaker . b i g t r a i n i n g sp e c t r o g r am [ 1 ] )
378 l i b r o s a . output . write wav ( aud i o d i r + speaker . name + ’ Input . wav ’ ,

r e cons t r , i n t ( speaker . f s ) )
379 with t f . S e s s i on ( ) as s e s s :
380 speech model = SpeechModel ( s e s s , speaker , a rgs )
381 l o g f i l e = open ( sp e ak e r d i r + ’ output . l og ’ , ’w+ ’)
382 l o s s v a l u e s = speech model . t r a i n ( l o g f i l e )
383 pr ed i c t i on , bases , a c t i v a t i o n s = speech model . t e s t ( )
384 bases hack . append ( bases )
385 r e c on s t r = reconst ruct wave ( p r ed i c t i on , speaker .

b i g t r a i n i n g sp e c t r o g r am [ 1 ] )
386 l i b r o s a . output . write wav ( aud i o d i r + speaker . name + ’

Recons t ruc t i on . wav ’ , r e cons t r , i n t ( speaker . f s ) )
387 l o s s f i l e n ame = p l o t d i r + ’ Loss . png ’
388 s av e p l o t ( l o s s v a l u e s , l o s s f i l e n ame )
389 ba s e s f i l e name = p l o t d i r + ’ Bases . png ’
390 s av e p l o t ( bases , ba s e s f i l e name )
391 a c t i v a t i o n s f i l e n ame = p l o t d i r + ’ Act iva t i on s . png ’
392 s av e p l o t ( a c t i v a t i on s , a c t i v a t i o n s f i l e n ame )
393 bas e mat r i x f i l ename = mode l d i r + ’ Bases . npy ’
394 np . save ( base matr ix f i l ename , bases )
395 speaker . ba s e s = bases
396 speech model . ba s e s = speaker . ba s e s
397 i f t a rge t speake r mode l i s None :
398 ta rge t speake r mode l = speech model
399 t f . r e s e t d e f a u l t g r a ph ( )
400 ’ ’ ’
401 for speaker in speaker s :
402 bases hack . append (np . load ( ”/Users /MSmarsch/Documents/Thes i s /

S imulat ions /A l l Speake r s /” + speaker . name + ”/Model/Bases . npy” ) )
403 no i s y speake r . ba s e s = bases hack [ 1 ]
404 for speaker in speaker s :
405 speaker . ba s e s = bases hack [ 0 ]
406 with t f . S e s s i on ( ) as s e s s :
407 #sentence mix ture = SentenceMixture ( targe t speaker mode l , sess ,

speaker , no i sy speaker , bases hack )
408 sentence mixture = SentenceMixture ( s e s s , speaker , no i sy speaker ,

bases hack )
409 #sentence mix ture = SentenceMixture ( speech model , sess , speaker )
410 #speaker . speech mode l = speech model
411 speaker . s en t ence mix tu re = sentence mixture
412 l o s s v a l u e s = sentence mixture . t r a i n doub l e ( )
413 #l o s s v a l u e s = sentence mix ture . t r a i n s i n g l e ( )
414 no i sy input , r e c on s t r u c t i on t a r g , base s ta rg , a c t i v a t i o n s t a r g ,

r e c on s t r u c t i on no i s e , ba s e s no i s e , a c t i v a t i o n s n o i s e =
sentence mixture . d oub l e t e s t ( )

415 #recons t ruc t ion , a c t i v a t i o n s = sentence mix ture . s i n g l e t e s t ( )
416 #recons t r = recons t ruc t wave ( recons t ruc t ion , sentence mix ture .

t e s t i n g s p e c t r o g ram [ 1 ] )
417 #l i b r o s a . output . wr i te wav ( speaker . name + ’ Test . wav ’ , speaker .



c l e an t e s t i n g s en t e n c e , i n t ( speaker . f s ) )
418 #l i b r o s a . output . wr i te wav ( speaker . name + ’ Recons truc t ion . wav ’ ,

reconstr , i n t ( speaker . f s ) )
419 recons t r , r econs t r1 , r e c on s t r 2 =re con s t ru c t t a r g e t wave (

no i sy input , r e c on s t r u c t i on t a r g , r e c on s t r u c t i o n no i s e ,
s entence mixture . t e s t i n g sp e c t r og r am [ 1 ] )

420 l i b r o s a . output . write wav ( ’ Mixture Reconstruct ion . wav ’ , r e cons t r ,
int ( speaker . f s ) )

421 l i b r o s a . output . write wav ( ’ Target . wav ’ , speaker . t e s t i n g s e n t e n c e ,
int ( speaker . f s ) )

422 l i b r o s a . output . write wav ( ’ Mixture Reconstruct ion Target . wav ’ ,
r econs t r1 , int ( speaker . f s ) )

423 l i b r o s a . output . write wav ( ’ Mixture Reconst ruct ion No i se . wav ’ ,
r econs t r2 , int ( speaker . f s ) )

424 for va r i ab l e in t f . t r a i n a b l e v a r i a b l e s ( ) :
425 print ( v a r i a b l e )
426 print ( ba s e s t a r g )
427 print ( ’������������������������������������� ’ )
428 print ( speaker . ba s e s )
429 print ( ’������������������������������������� ’ )
430 print ( b a s e s n o i s e )
431 print ( ’������������������������������������� ’ )
432 print ( no i s y speake r . ba s e s )
433 sys . e x i t ( )
434 t f . r e s e t d e f a u l t g r a ph ( )
435
436
437 i f name == ’ ma in ’ :
438 main ( )



MSE Calculation

1 import numpy as np
2 import l i b r o s a
3 import sys
4
5 def getMSE( f i l e 1 , f i l e 2 ) :
6 s i gna l 1 , s r1 = l i b r o s a . load ( f i l e 1 , None )
7 s i gna l 2 , s r2 = l i b r o s a . load ( f i l e 2 , None )
8 min length = min( len ( s i g n a l 1 ) , len ( s i g n a l 2 ) )
9 s i g n a l 1 = s i gna l 1 [ : min length ]

10 s i g n a l 2 = s i gna l 2 [ : min length ]
11 #return (( s i gna l1�s i gna l 2 ) ⇤⇤ 2) .mean( ax i s=1)
12 #return np . shape ( s i gna l 1 )
13 return ( ( s i gna l 1�s i g n a l 2 ) ⇤⇤ 2) .mean(None )
14
15 def main ( ) :
16 print ( str (getMSE( sys . argv [ 1 ] , sys . argv [ 2 ] ) ) )
17
18 i f name == ’ ma in ’ :
19 main ( )


