THE COOPER UNION FOR THE
ADVANCEMENT OF SCIENCE AND ART

Interactive Foreground
Extraction with Superpixels

by

Abrar RAHMAN

A thesis submitted in partial fulfilment
of the requirements for the degree of

Master of Engineering

September 2014

Dr. Sam KEENE
Advisor

http://www.cooper.edu
http://www.cooper.edu

THE COOPER UNION FOR THE
ADVANCEMENT OF SCIENCE AND ART

This thesis was prepared under the direction of the Candidates Thesis Advisor
and has received approval. It was submitted to the Dean of the School of
Engineering and the full Faculty, and was approved as partial fulfillment of the

requirements for the degree of Master of Engineering.

Dr. Teresa Dahlberg

Dean, School of Engineering

Dr. Sam Keene
Candidate’s Thesis Advisor

http://www.cooper.edu
http://www.cooper.edu

Acknowledgements

I would like to thank my advisor, Professor Keene, for his guidance and advice
throughout the project. I would also like to thank my family and friend for their

support and encouragement.

il

Abstract

Interactive segmentation plays a large part in image editing. Segmentation par-
titions an image into regions that share similarities. The GrabCut algorithm
provides a way to get a segmentation of a target object with minimal input from
the user and extracts it as foreground. In cases where the regions of the target
object is missing from the extraction or there are unwanted background pixels,
more user input is required to refine the segmentation. GrabCut performs this
refinement by iteratively updating its model for the foreground and background.
The novel contribution made is to simplify the refinement process by adding or
removing pieces from an image split into atomic regions called superpixels. This
reduces the number of interactions needed from the user to extract the desired

object from the image.

Contents

Acknowledgements
Abstract

List of Figures
List of Tables
1 Introduction

2 Automatic Segmentation
2.1 Segmentation Techniques
2.1.1 K-means Clustering
2.1.2 Mean-shift Clustering
2.1.3 Automatic Segmentation Summary

3 Interactive Segmentation Tools
3.1 Commercial Selection Tools
3.1.1 MagicWando
3.1.2 Magnetic Lasso o o
3.1.3 Quick Selectiono
3.2 Graph-cut Based Tools
321 Graph-cut
322 GrabCut
3.2.3 User Interaction with GrabCut

4 Other Approaches Investigated
4.1 Segmentation
4.1.1 Bag of Words Clustering
4.1.2 Simple Linear Iterative Clustering
4.2 Classification of Superpixels

5 Superpixel Selection Tool Design
5.1 Base Comparison
5.2 User Selection Tool,

ii

iii

vi

vii

16
16
16
18
22

Contents v
6 Results and Analysis 27
6.1 Automatic Segmentation L. 27
6.2 User Selection Tool 29
7 Conclusions and Recommendations 32
A Foreground Extraction Code 34
Al GrabCut 34
A.2 Superpixel Refinement L 37
A.3 Automatic Foreground Extraction 41
A4 Evaluation Code 42
Bibliography 45

List of Figures

2.1
2.2

3.1
3.2

3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

6.1
6.2
6.3

K-means segmentation into 4 clusters [1] 4
Mean-shift example [1] o Lo 5
[lustration of Paint Selection use [2] 9

Algorithmic comparison of several tools. Red markings indicates
labelling background while white markings indicates labelling fore-

ground [3] . .. 12
Easy extraction example 13
Harder extraction example 13
Harder extraction example with more user imput 13
Harder extraction example 14
Harder extraction example with more user imput 14
Difference of Gaussians[4] L. 17
SIFT Bag Of Words Clustering 19
SLIC Superpixels 21
Classification on Superpixels 23
Dataset 27
Comparing Refinement Methods 30
Reference Boundaries o L 31

vi

List of Tables

6.1 Automatic Segmentation Results: Cls S.pix = Classify Superpixels,
GC and SP = GrabCut and Superpixels

vil

Chapter 1

Introduction

In the field of Computer Vision, segmentation is often used a preprocessing step
to perform further processing. This is often used in applications of image match-
ing and object recognition [1]. The task of segmentation is to partion an image
into non-overlapping regions that are homogeneous over a set of features. The
standards for performing the task include splitting and merging, region growing,
and clustering, though clustering algorithms have become prevalent. Automatic
segmentation partitions an image into a number of segments based on an algo-
rithm and preset parameters. The pixels within these segments are assumed to
have some similarity with each other, so automatic segmentation can reduce the
processing needed when doing recognition or compression tasks. Procedures from
automatic segmentation can also be used to aid in interactive segmentation, which

is the focus of our efforts.

Interactive segmentation is commercially used primarily for photo editing tasks.
The tools provided to do so vary in quality of the segmention and the effort required
by the user to get the desired segment. All require some form of input from the
user and this could be as involved as roughly tracing out the desired segment to as
effortless at putting a box around desired segment [3]. The segmentation algorithm
then labels the part of the image that it believes the user wants as foreground,
while the rest of the image is labelled as background. The foreground is extracted

from the image to perform further editing tasks.

Though there are many interactive segmentation tools available, GrabCut stands
out because of its ease of use and segmentation performance compared to the

competition[3]. Even so, there are cases in which extracting the desired object

1

Chapter 1. Introduction 2

from the image requires further supervision from the user. This is done by adding
samples into the iterative learning model of GrabCut. If adding or removing
regions of monotonous color, this works quite well. There are difficulties though
in adding or removing certain types of regions, especially in portions of an image

that is noisy or has textures.

To deal with these trouble regions, we group them together with a superpixel
representation of the image. A superpixel representation reduces the complexity of
an image by going from working with hundreds of thousands of pixels to hundreds
of superpixels. A superpixel is perceptually meaningful unit of an image that is
most likely uniform in color and texture[5]. There is also a regional constraint
on superpixels which keep them small and compact. Regions that give GrabCut
trouble in adding or removing are consolidated into one or more superpixels and
can be manipulated as a unit. This makes it easier on the part of the user to make

adjustments to an extraction.

Chapter 2

Automatic Segmentation

The background information is split into two chapters. This chapter includes
commonly used segmentation algorithms that will aid in the understanding of the
interactive segmentation algorithms in Chapter 3. The techniques in this chapter
only segments the image and does not do anything toward selecting out an object
or foreground region, though it does not preclude using them as a step in that

process.

2.1 Segmentation Techniques

2.1.1 K-means Clustering

K-means clustering is a simple, but widely used clustering algorithm [6]. The user
would need to specify a K for the number of desired segments for the image to
be partitioned into. The segments are determined by grouping pixels by set of
property values. In the simplest case, the property value is the grayscale intensity
of the pixel. In color images the property values could be the color of the pixel
represented in RGB or the HSV format. The segments need not be a coherent
region unless some property values are included to encourage coherency, such as

the pixel position.

To perform the clustering, K clusters are initialized with a random value as their
mean property vector. A distance function determines how close the property

vector of each pixel is to any of the cluster means. The pixel is associated with

3

Chapter 2. Automatic 4

the cluster that is the most similar to it, which corresponds to the least distance
as calculated by the distance function. The cluster mean property vectors are
updated to be the mean of the vectors associated with the cluster. The process
begins again with the new mean property vector. The process continues until
convergence, where pixels no longer change their association. After convergence

each pixel is associated with K clusters.

The result of clustering an image with a K of 4 using color is shown in Figure 2.1.
With a small K we see that all of the people get lumped together with the ground
and roof. Furthermore, the parts of the building in shadow on the right fall into
the same cluster as the ground and the trees rather than the rest of the building.
To be useful for segmenting specific objects, many more segments are needed, and
some consideration to regionality is needed to prevent the ground and roof being
in the same cluster. Both these aspects can be found in the superpixel algorithm

based on K-means in Chapter 4.

FIGURE 2.1: K-means segmentation into 4 clusters [1]

2.1.2 Mean-shift Clustering

The Mean-shift algorithm works to find dense clusters in a set of data [7]. The
procedure for mean-shift first involves taking a histogram of property values of
the pixels (e.g intensity) and a window size oy (in units of number of bins) is
chosen. A pixel is chosen and the corresponding histogram bin set as the center
of the window of size os. The property value of the pixels in the bins are averaged
and the window center is shifted to bin of that mean value. This averaging and

shifting continues until convergence. The center moves toward dense groups of

Chapter 2. Automatic 5

values incrementally. This procedure is run for each pixel, and by the end, all the
pixels will have converged toward local maxima in the histogram. The pixels that
converged to the same points are grouped together as a cluster. If the distribution
of the historgrom was Gaussian, you can expect that all the points would converge
to the center of the curve. If histogram has multiple peaks, points will cluster to
those peaks if the window size is not too small that it does not move from its local
group of points, or too large so that points gather to intermediary points bewteen

peaks.

The Figure 2.2, shows the result of mean-shift with o, = 50 and o, = 5 on
the same image as in Figure 2.1. As mentioned before o, is the window size for
averaging, and as seen in the example, the larger the window, the more clusters in
the image. With this method we do see much of the building clustered together
and has individually clustered the people in the image. In exchange it does seem

to be sensitive to noise with its fuzzy adherence to edges.

(a) os =50

FIGURE 2.2: Mean-shift example [1]

2.1.3 Automatic Segmentation Summary

If a user wanted to use the types of presented segmentation techniques to perform
foreground extraction, it would be a long arduous process. These segmentation
processes are slow to run because because multiple comparison operations are re-
quired for every single pixel, and that needs to be done multiple times because its

an iterative process. So running the segmentation with different parameters is a

Chapter 2. Automatic 6

long process. Furthermore, since color is the only metric used for separation, dis-
joint parts of the image are considered one segment even if they are from different
objects. These segmentation techniques were not designed to partition out specific
portions of an image, so interactive segmentation tools leverage information from
users to speed up segmentation and have a more accurate extraction of the desired

object.

Chapter 3

Interactive Segmentation Tools

Interactive segmentation tools provides a way for a user to extract out an object
from an image. The underlying algorithm uses user input to try and determine
what region the user wants to extract. This region is labelled as the foreground,
while the discarded region is taken to be background. Most tools allow for editing

of the extraction if portions need to be added or removed.

3.1 Commercial Selection Tools

The most widely used and recognizable user selection tools are included in the
Photoshop tool suite and the GNU Image Manipulation Program (Gimp). These
tools, the Magic Wand, Magnetic Lasso, and Quick Selection, do not have their

algorithms made public, but some details of their inner workings can be inferred.

3.1.1 Magic Wand

The Magic Wand (known as Fuzzy selection in the Gimp image editing program)
is a color based selection tool [8]. Starting off with a point or region, adjacent
points are added to the selected region if it is within a tolerable deviation from
the color based statistics of the originally selected region. The tool works well in
cases where the target selection is of a solid color and objects with clearly defined
edges. Otherwise it might be impossible to get close to the selection you want,

especially if the background has similar color statistics.

7

Chapter 3. Interactive 8

3.1.2 Magnetic Lasso

The Magnetic Lasso (similar to the Intelligent Scissors and Path tool in Gimp)
finds a contour to select around an object [9]. The user selects points around the
edge of the target object by placing nodes around the edge of the object. The
algorithm traces out the object by performing edge detection between nodes and
having the selection follow this detected edge. This tool works very well when the
target object has a well defined edge. Otherwise if the area between two nodes
is highly texturized or noisy it is unlikely that the edge detector will find a path

that follows the contour well.

3.1.3 Quick Selection

Though the algorithm for Photoshop’s Quick Selection tool has not been made
public, there is another tool called Paint Selection [2] that was inspired by Quick
Selection and has the same user interface. In both tools, the user clicks within
the target selection and drags over the object of interest. The points passed over
provides the initial seeding for the learning. The selection region grows from
the initial seeding to encompass what it believes to be the object, as shown in
Figure 3.1. When growing the region snaps to align with strong boundary edges.
The selected foreground is modelled as a color Gaussian Mixture Model (GMM)
with four components. An eight component GMM is learned from the random
sampling from the background. When the selection is dragged to a new region,
the backgound is resampled and recalculated. To actually cut out a foreground
region, a graph-cut is used. The details of graph-cuts will be discussed in the

following section.

3.2 Graph-cut Based Tools

Both the Foreground Selection tool in Gimp and the GrabCut algorithm uses a
form of Graph-cut as the basis for their operation. Both require some kind of
input for the region of interest (rough outline for the Foreground Selection tool
and a bounding box for GrabCut) and the Froeground Selection tool requires some
foreground labelling while GrabCut does not. Both use some form of the following

Graph-cut algorithm to perform its segmentation and extraction.

Chapter 3. Interactive 9

FIGURE 3.1: Illustration of Paint Selection use [2]

3.2.1 Graph-cut

Given a greyscale image is given as the array z = (z1,...,2p,...,2x5), and that
a = (ag,...,ay) for each image pixel to indicate a label for the pixel. For a hard
segmentation (no variable opacity at the edges) a, € {0,1}, where 0 indicates a
background label and 1 indicates foreground. The parameter 6 is a histogram of

grey level values defined as:

0 ={h(z;0),aa=0,1} (3.1)

one for both background and foreground. The histograms are normalized such
that they sum to 1: [h(z,«) = 1. The task is to learn the labels o given the

image z and model 6.

The energy function F is defined so that cutting out the minimum would result
in a good segmentation of the object based on the observations of the foreground

and background. This is written the form of a Gibbs energy function:

E(a.0,2) =U(a,0,2) + V(a, 2) (3.2)

where U evaluates whether the labels a fits the data z given the histrogram models
from 6. This is defined as:

Chapter 3. Interactive 10

Ua,0,2z) = Z —log h(zp,: an) (3.3)

n

and the smoothness term V is defined as:

Vi, z) =7 Z dis(m,n) o, #] exp —B(2m — 2,)* (3.4)
(m,n)eC

where C' is the set of neighboring pixels and dis(e) is the Euclidean distance
between adjacent pixels. This incentivises coherent regions minimizing the possi-
bility of having holes in the segmentation. If the constant 5 = 0 then smoothness
is encouraged everywhere (to a degree, controlled by the constant 7) and is called

the Ising prior. (8 is chosen to be:

B =(2((zm — 2a)") ™" (3.5)

where (o) is an expectation over an image sample. This value of 8 ensures that
exponential term in 3.4 switches between high and low contrast. The constant ~

was chosen to be 50 by experimental optimization.
With the energy model in 3.2 the selection is made by:

& = argmin E(a, 0) (3.6)

Several changes are made to build upon this graph-cut to make it into the GrabCut

algorithm.

3.2.2 GrabCut

The GrabCut algorithm is the one of the easiest methods for a user to extract a
foreground object from an image as it requires the least interaction from the user|3].
In many cases, the only input required from the user is to draw a bounding box
around the target object. If the selection is not ideal, the user could provide more
information in form of adding samples to the foreground and background to get a
more optimal cut. There are three main developments made in GrabCut to make

improvements on Graph-cut [3].

Chapter 3. Interactive 11

The first is that the grayscale histogram is replaced with a color Gaussian Mixture
Model (GMM). This takes into account multiple colors expected to be in the
foreground and background. A GMM is a convex combination of Gaussians (a
linear combination that sum to 1 and has non-negative coefficients). Samples from
the image are used as observations to use the expection-maximization algorithm

to learn the parameters of the GMM.

The next improvement made is that the one shot minimum energy cut is replaced
with an iterative algorithm that alternately learns parameters and performs seg-
mentation. The third is that the user can give an incomplete labelling; the fore-

ground region does not need to be explicitly labelled.

The new model is a K = 5 component GMM; one for each the foreground
and background. To introduce the GMM into the energy function, a vector
k= {ki... ky....,kn} is made with k, € {1,...,K}. Each pixel has a k,
value that assigns it to one of the mixture components from either the foreground
or background GMM. «a,, = 0 or 1 determines whether it is a background or

foreground component.

The new updated energy function from 3.2 is now:

E(Q? k?Q? Z) == U(Q’ k’Q? z) +V(g7 Z) (3.7>
with the new U as:
Ula, k,0,2) = Y _ D(ag, kn, 0, 2,) (3.8)
where:
D(Ozm kn7Q7 Zn) = - logp<zn‘am kna Q) - logﬂ-(ana kn) (39)

with p(e) as a Gaussian probability distribution and 7(e) are mixture weight

coefficients, so up to a constant:

1
D(ay, ky, 0, z,) = —log m(ap, kn) + 3 log det (v, ky,) (3.10)

2o = sl)T) 2 — et)

Chapter 3. Interactive 12

The smoothness term V' is unchanged from equation 3.4.

Magic Wand Intelligent Scissors Graph cut GrabCut

FI1GURE 3.2: Algorithmic comparison of several tools. Red markings indicates
labelling background while white markings indicates labelling foreground [3]

For the energy minimization, it is done iteratively. The initial labelling is done with
a bounding box with the outside being labelled as background and the inside of the
box labelled as foreground. The initial GMM’s are learned from these regions and
the first segmentation made. After the initial segmentation, the segmented section
is taken as the foreground and the GMM’s recalculated. A new segmentation is

made, and the process is repeated until convergence.

3.2.3 User Interaction with GrabCut

Figure 3.2 shows a comparison of the relative effort needed to use some of the
dicussed tools plus their segmentation results. Effort is shown by how many in-
teractions the user needed to get the desired segmentation. It is difficult to have a
direct comparison of which algorithm provides the best extraction result because
it is very dependant on the skill of the user with the tool and how much user input
is taken. Even so is evident that though GrabCut required the least user input
out of the shown methods and closely matches the extraction results of using a

graph-cut.

Though it works well in many cases, in some, additional input from the user is
sometimes needed to improve the segmentation. Figure 3.3 shows an example

where all that is needed from the user in GrabCut is the bounding box. In this

Chapter 3. Interactive 13

FiGURE 3.3: Easy extraction example

< 3B -

FiGURE 3.5: Harder extraction example with more user imput

Chapter 3. Interactive 14

example the taget object, the flowers, have clearly defined edges and have a sharp
color contrast with the background. In Figure 3.4 using only a bounding box gives
the majority of the target person, but their hair is missing from the selection. It
is understandable that the hair would be labelled as background because the wall

in the background is close in color. To remedy this, further unput from the user

is needed to label the missing hair region as shown in Figure 3.5.

FIGURE 3.7: Harder extraction example with more user imput

There are even harder cases where simple user inputs are not enough. As in the
case in Figure 3.6 we might assume its just like the case in Figure 3.4, where we
might be able to add the soldier’s boots and cap into the selection with a little

more labelling from the user. In Figure 3.7 we see that the boot works as we might

Chapter 3. Interactive 15

have though, but it does not work as well for the cap. This is most likely due to
the grid-like texture pattern on the cap. When the model is updating, the newly
labelled parts extend to contours within the texture rather than encompassing the
entire cap. So to compensate for cases such as these we propose to use superpixels

to easily add in those regions.

Chapter 4

Other Approaches Investigated

Before finding a solution for easier refinement, other avenues of trying to get a
better extraction was explored. Though they were not successful, they lead to

finding the current solution.

4.1 Segmentation

The goal in making an improvement over GrabCut is to take regions that are
difficult to easily add or remove and have them grouped together. Whether they
be noisy regions or difficult textures, if they are consolidated into one or more
segments, it would be a simpler task on the user’s part to manipulate them. The
first step in getting these segments is to find a segmentation method that has the

grouping properties we want.

4.1.1 Bag of Words Clustering

To look for something that would give segments that would keep relavent portions
together and make sure to get edges of objects we first turned to a feature normally
used for image classification and object detection, SIFT descriptors [10]. SIFT
stands for Scale-Invariant Feature transform. This feature looks for keypoints, or
points of interest, in the image that gave distinctive information about pieces of
the image. SIF'T features are commonly used in image recognition tasks, so it was

believed that the features would be able to group similar regions together.

16

Chapter 4. Approaches 17

octawve)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

F1GURE 4.1: Difference of Gaussians[4]

To find potential keypoints, the image is blurred at 4 different octaves, or sizes,
with a Gaussian window at 5 different scales of o, (o, ko, ... ,4ko). This makes
each pixel a weighed average of its neighbors. The weights are normally distributed
around center of a 2D matrix. The values of o and k are set as 1.6 and /2 respec-
tively which were found to be optimal in [10]. At each octave, after application
of the Gaussian filters, differences of paired filtered images of consecutive o values
are taken to produce 4 Difference of Gaussians (DoG) at each scale, as shown in
Figure 4.1. The potential keypoints from these DoG come from finding local ex-
trema in space and scale. A point is determined as a local extrema when compared

to its 8 neighboring pixels, and 9 pixels from each the scale before or after it.

After getting potential keypoints, a Taylor series expansion of scale gives a more
accurate location of the extrema, and if the intensity value of the extrema is
less than the threshold (found to be optimally 0.03 [10]), then it is rejected for
being too low contrast. DoG is known to give a very strong response at edges,
so keypoints at the edges are discarded as deteremined by a 2x2 Hessian matrix

that takes a second derivative as a measure of relative contrast. For the keypoints

Chapter 4. Approaches 18

that remain, they are made rotation invariant by assigning an orientation to each
keypoint. These are calculated by looking at a gradient magnitude and a Gaussian-
weighted circular window in an area around the keypoint’s location. From this an
orientation histogram is made and the strongest responses determine the direction

of the keypoint.

For the actual keypoint descriptor, a 16x16 neighborhood around the keypoint is
taken and split into 16 4x4 sub-blocks. Each sub-block has an 8 bin orientation
histogram giving a vector of 128 bin values. This vector is what comprises the

SIFT keypoint descriptor.

To use the descriptor to try and segment the image, we used a Bag of Words
approach to grouping descriptors. K-means clustering was used, with K = 1000,
to group descriptors into ”bags”. Each is mapped to a color so that the bag of each
point in the image can be displayed. This approach is shown in Figure 4.2. The
only portion from this segmentation is the sky. Though the contours of some of the
objects are visible, it is very evident that using the sift descriptor is not the best
approach to segmenting the image. The next features to be explored for clustering

were color and position which had already been done as SLIC superpixels.

4.1.2 Simple Linear Iterative Clustering

After trying out SIFT descriptors for clustering, we moved on to try to use color
as the clustering feature instead and found that it was already implemented as
Simple Linear Iterative Clustering (SLIC) [5]. SLIC is superpixel algorithm that
is meant to group pixels meaningfully so that it can replace a pixel grid structure.
They are often used in preprocessing steps to reduce the complexity of further
image precessing steps and used to extract features, both of which we hope to use

the superpixels for.

The SLIC method is built upon a K-means clustering approach, much like we were
trying to accomplish using SIF'T descriptors. More details on K-means clustering
can be found in Chapter 2. To get superpixels by using K-means, the features
used for the clustering is color information and the position of the pixel in the
image. The user needs to provide the number of desired superpixels. This number
of cluster centers are equally distributed spacially throughout the image. Then

in a 3x3 pixel patch in the neighborhood around the cluster centers the lowest

Chapter 4. Approaches 19

(a) Original Image

(b) Clustered Image

F1cUrE 4.2: SIFT Bag Of Words Clustering

Chapter 4. Approaches 20

gradient position is found and chosen as the new cluster center. This is to prevent

the superpixel from being centered on an edge or seeding with a noisy pixel.

Then pixels are labelled part of the cluster center it is closest to in its feature
space. Unlike a standard K-means clustering, the search for the nearest cluster
center is limited to four times the area of the average superpixel around the point
(twice the length and with of the average superpixel). Limiting the search space
significantly improves the speed of the algorithm. The distance measure to deter-
mine how close a point is to a cluster needs to be a combination of the color and
position information of the pixels. The color is is represented in CIELAB color
space. In CIELAB representation RGB becomes Lab, where L is lightness, a is
the red/green attribute, and b is the blue/yellow attribute. The CIELAB space is
often used because the Euclidean distance between colors approximates a percep-
tually uniform measure for color distances. Simply using the raw x and y pixel
position would inconsistently weigh the position against color information based

on the size of the superpixels and image. The algorithm is summarized as:

Algorithm 1 Efficient superpixel segmentation

1: Initialize cluster centers Ci = [lk, ag, by, Tk, yk}T by sampling pixels at regular grid

steps S.
2: Perturb cluster centers in an n X n neighborhood, to the lowest gradient position.
3: repeat
4: for each cluster center C} do
: Assign the best matching pixels from a 25 x 25 square neighborhood around
the cluster center according to the distance measure (Eq. 1).
6: end for
7: Compute new cluster centers and residual error E {L1 distance between previous

centers and recomputed centers}
8: until FE < threshold
9: Enforce connectivity.

where [,a, and b are the colors in CIELAB color space and x and y is the position

within the image.

The distance measure in SLIC normalizes the color and spatial by their maximum
within a cluster. The maximum spatial distance corresponds to the superpixel
size. The maximum color distance is left as a constant that can be set by the
user to control the weights between the color and spatial information. The higher
this normalization value is set, the more grid-like the superpixels become. The

lower the value is, the closer it adheres to edges within the image. With this

Chapter 4. Approaches 21

distance measure, the algorithm iterates by adjusting the cluster centers based on
the means of the color and spatial features within the cluster. A new cluster is
then form based on the new cluster centers. Normally the algorithm would iterate
until change in the cluster centers went below a certain threshold, but in most

cases 10 iterations suffice.

e

S O o e

FicURE 4.3: SLIC Superpixels

Performing superpixel segmentation on the image from the previous section gives
us the result in Figure 4.3. The the relatively monochromatic sky, the color infor-
mation does not provide much distinction, so the spatial component of the features
force the superpixels into a grid shape. In the busier portions of the image the
superpixels generally do a good job of adhering to the contours of objects. Other
methods for creating superpixels exist, but the SLIC superpixels were used be-
cause they were the fastest at runtime and had the best adherence to boundaries.
We went on to use these superpixels to perform classification on the images to

label superpixels as either foreground or background.

Chapter 4. Approaches 22

4.2 Classification of Superpixels

There are a few challenges in trying to successfully label a foreground region. One
is that forming superpixels decimates the number of data points that can be used
to learn a model for the image. Using pixels alone gives in the neighborhood of
hundreds of thousands of points, but after superpixel segmentation, we are down
to hundreds when using enough superpixels to . Another is that when given a
bounding box for an object, there is a good set of background data from outside
the bounding box, but within the bounding box there are both background and

foreground segments.

A second difficulty is that the training sets are contaminated. We are trying to
perform binary classification when the samples labelled as foreground for training
are both foreground and background samples. Superpixels outside the bounding
box are labelled as background and the ones inside labelled as foreground. For the
superpixels that were on both sides of the bounding box, it was only considered
to be within the bounding box if more than two-thirds of the pixels comprising
the superpixels were within the bounding box. Two-thirds was the ratio chosen
because it was unlikely that a superpixel that was more than halfway outside
the bounding box was part of the foreground. The features extracted from the
superpixels was the RGB mean and standard deviation for each color channel. A

secondary feature set was a 10 bin color histogram for each color channel.

It was not possible to create Gaussian Mixture Models like the ones used in the
GrabCut algorithm because there were too few observations to build more than a
two component GMM, and in some image cases there was not enough observations
even for that. Unable to use a GMM for classification, we turned to common binary
classifiers such as Fishers Linear Discrminant (FLD) and Support Vector Machines
(SVM). These classifiers were trained with the superpixels outside and inside the
bounding box as described and then a binary classification was performed on the
superpixels within the bounding box. The outcomes of these classifications are
compiled with the results of the current solution in Chapter 6. Generally the
accuracy was not terrible, it was close to that of GrabCut. The issue that made it
unfeasible was the near 50% false positive rate. This meant half the background

pixels within the bounding box remained falsely labelled as foreground.

The output of some of the images from the classification is shown in Figure 4.4.

The same images were used as examples for GrabCut in Chapter 3 so a direct

Chapter 4. Approaches 23

comparison can be made. One of the clearly evident issues is that there is nothing
preventing a stray segment not connected to the rest of the extraction from being
included in the foreground. In each of the images in Figure 4.4 there is at least one
background segment extracted that is not adjacent to and of the segments within
the majority of the extraction. Some logical checks could possibly address these
segments. There is also the issue of some of the true foreground segments not be-
ing included in the extraction despite being surrounded by foreground segments.
Furthermore, the high false positive rate would only increase the amount of refine-
ment users would have to do to get a good segmentation rather than simplifying

work for them.

(a) Image

(b) Bounding Box (¢) Ground Truth

FIGURE 4.4: Classification on Superpixels

Chapter 4. Approaches 24

We looked into a few more avenues of classification, but it was evident that they
behaved similarly and creating the models for that background and forground
from just the superpixels was not enough. To deal with the issues of having
too few samples to learn good models, the logical solution would be to just get
more samples. This could be done by using the pixels composing the superpixel
as samples for learning the foreground and background models. After that a
minimum energy cut could be used to try and have connectivity with the segments.
With these changes, the algorithm essentially becomes GrabCut. So instead of
implementing our own GrabCut like algorithm, the actual GrabCut algorithm is
used to the learning and initial extraction and superpixels overlays the algorithm

to aid in performing refinements.

Chapter 5

Superpixel Selection Tool Design

Performing foreground extraction with superpixels is divided into two tasks with
different priorities. The first task is to use superpixels to perform foreground
extraction of an object only using a bounding box as input. These bounding
boxes are the same for each extraction method so that extraction results can be
directly compared. This is the basic extraction made before any further user input
to make sure overlaying superpixels on GrabCut does not significantly degrade the
results. The second task is to perform the extraction task and refinements with

superpixels and demonstrate their relative ease of use compared to GrabCut.

5.1 Base Comparison

The basic foreground procedure, the code of which can be found in Appendix A,
first requires a set of images with objects to extract and corresponding bounding
boxes. The GrabCut algorithm is performed to create an initial mask which is
then fed back into the GrabCut algorithm to iterate 10 times to converge the
segmentation. This is extraction result that is the baseline comparison for our

own methods.

The image is then segmented into superpixels with the SLIC algorithm with the
desired number of superpixels set at 1000. Around a thousand superpixels en-
sures for most images that for the most part the superpixels will keep separate
the regions meant for different labels without having to enforce connectivity. The

output of the superpixel algorithm labels each pixel with a value denoting which

25

Chapter 5. Selection Tool Design 26

superpixel it is assigned to. Applying the GrabCut mask onto the superpixel rep-
resentation of the image informs us as to which superpixels contain pixels labelled
as foreground by GrabCut. If more than 75% of a superpixel’s pixels are within
the GrabCut mask, then it is included in the foreground segmentation. The set
of superpixels that pass this criteria is then used as the new mask for foreground

and is used to extract the object for evaluation.

5.2 User Selection Tool

The selection tool builds off of the OpenCV implementation of the GrabCut algo-
rithm [11]. The GrabCut tool implemention code is shown in Appendix A. With
the GrabCut extraction tool, the procedure is to put a bounding box around the
object, let the algorithm iterate a few times and then make any refinements that

are needed. Examples of this done can be found in Chapter 3.

The selection tool operates very much like the GrabCut tool. The user defines a
bounding box around the desired object to extract and lets the algorithm iterate.
In the displayed extration, the superpixels overlay the GrabCut mask and the
superpixels with over 75% of its pixels in the mask is extracted. To refine the
extraction there is a separate window that shows the superpixel representation of
the image, so the user can pick and choose which segments to keep or remove. The
interactions made are kept on the original image to be able to compare the effort

needed to get the desired extraction compared to GrabCut.

Chapter 6

Results and Analysis

To test the automatic segmentation and user selection tools we used a subset of
50 images from the Berkeley Image database [12]. These images have a bounding
box defined for desired object to extract and a ground truth mask. An example

from the dataset is shown in Figure 6.1.

(b) Bounding Box (¢) Ground Truth

FIGURE 6.1: Dataset

6.1 Automatic Segmentation

To evaluate how well a method extracts the foreground, two scores are given
to the extraction. The first is accuracy which indicates what percent of ground
truth mask is part of the automatic extraction. The second score is the false
positive what percent of the background within the bounding box was extracted
as foreground. The whole background is not used because nothing outside the
bounding box would be extracted as foreground, so including all of background in
the calculation does not make sense. If all background was included, it would be

impossible to get a 100% false positive rate.

27

Chapter 6. Results and Analysis 28

Method Number of | Features Accuracy | False Positive
Superpixels

GrabCut N/A Color GMM 0.963 0.188

Cls S.pix 500 Mean Color and | 0.933 0.496
STD

Cls S.pix 1000 Mean Color and | 0.956 0.518
STD

Cls S.pix 1000 Color Histogram | 0.828 0.740

GC and SP | 1000 Color GMM (C | 0.957 0.206
True)

GC and SP | 1000 Color GMM (C | 0.967 0.224
False)

TABLE 6.1: Automatic Segmentation Results: Cls S.pix = Classify Superpixels,
GC and SP = GrabCut and Superpixels

For the accuracy on a single image, the number of pixels in the intersection between
the ground truth foreground mask and the foreground mask generated by the au-
tomatic segmentation is divided by the total number of pixels in the ground truth
mask. For the false positive rate, the number of pixels extracted as foreground
that are outside the ground truth mask is divided by the number of background
pixels within the bounding box. The accuracy and false positive rates are averaged
over the images to get an overall accuray and false positive scores for an extraction
method.

From the dataset of 50 images, one image was removed because the bounding box
encompassed the entire image so there were no background samples for certain

methods to learn from. The automatic segmentation results are shown in Table
6.1.

As mentioned in Chapter 4, using just the features from the superpixels was not
enough to separate out the data. In Table 6.1 the only classifier result displayed
is for the Fisher Linear Descriminant, but the other classifiers performed com-
parably to it. In the GrabCut and Superpixel cases whether C is true of false
indicates whether connectivity was enforced or not. With connectivity, all points
within a superpixel should be a contiguous group. Without connectiviy enforced,

a superpixel is allowed to be disjoint regions.

Based on the results from the results of the automatic segmentation, GrabCut+Superpixels

performs close enough to GrabCut alone that it would not be a hinderance to use

Chapter 6. Results and Analysis 29

it as an initial step for the user selection tool.

6.2 User Selection Tool

Unfortunately, unlike the automatic segmentation, evaluating the selection tool is
more subjective. What can be compared is the relative number of actions needed
to refine a selection in both the procedures. for this, we will be using the example
previously seen in Figure 3.7. Figure 6.2 Shows what it would take a user to do
to include the missing boots and cap of the soldier in the segmentation. With the
GrabCut procedure, after each additional group of pixels are added to the model,
the user needs to iterate through the updating process to see if the refine given
was enough. While there is some guesswork involved for getting the regions by
Grabcut, if using the superpixels, the user can see how much it would take to add

the desired region by referencing the superpixel boundaries as in Figure 6.3.

Chapter 6. Results

and Analysis

30

(¢) Superpixel Refinement

FIGURE 6.2: Comparing Refinement Methods

Chapter 6. Results and Analysis

31

FIGURE 6.3: Reference Boundaries

Chapter 7

Conclusions and

Recommendations

Adding superpixels on top of the GrabCut process did not degrade the segmen-
tation results significantly, but did provide a convenient procedure to refine the
segmentation. Having a superpixel segmentation on hand allowed a way to in-
clude portions of the image in the foreground without the previous porcedure of
guessing at how much to add to the foreground model and hoping it was enough
to learn the new region. There is a few downsides in speed because the superpixel
segmentation takes a few seconds to perform, and it is inconvenient to edit the
superpixel parameters because of the time it would take to reprocess. For a better
metric for the ease of use, it would have been prudent to have multiple users to

evaluate the user experience of the tool.

There were a few area of inquiry left to explore to further see the possibilities
in making segmentation improvements using superpixels. One is that the pixels
contained within the superpixels could be used within the iterations GrabCut uses
to automatically refine the segmentation. This would also mean that when you
add a superpixel to the foreground you add all the pixels within the superpixel
into the foreground color model. Another avenue left unexplored is using texture
features from the superpixels for classification. Though using pixels for learning
models provides a lot of data points to draw from, more complex features cannot
be drawn from pixels. On the other hand, it is possible to get texture information
from a superpixel patch and could possibly aid in classifcation. The difficulty

arises from extracting features from irregularly shaped superpixels. Usually to get

32

Chapter 7. Conclusions and Recommendations 33

texture features a filter is used or a patch of the image is compared to a template.
This might be possible to do if a rectangular portion of the superpixel was used

for the feature calculation.

There is a lot more that could have possibly been done to fully explore potential
for using superpixels in foreground extraction and there is still work to be done to
have a more concrete evaluation of the GrabCut+Superpixel procedure. For dis-
semination, the GrabCut+4Superpixel tool is planned to be submitted as a module

for Gimp.

Appendix A

Foreground Extraction Code

A.1 GrabCut

GrabCut implementation from OpenCV [11].

#!/usr/bin/env python

Interactive Image Segmentation using GrabCut algorithm.

This sample shows interactive image segmentation using grabcut algorithm.

USAGE:
python grabcut.py <filename>

README FIRST:

Two windows will show up, one for input and one for output.

At first, in input window, draw a rectangle around the object using
mouse right button. Then press ’n’ to segment the object (once or a few times)
For any finer touch-ups, you can press any of the keys below and draw lines on

the areas you want. Then again press ’n’ for updating the output.

Key ’0’ - To select areas of sure background

Key ’1’ - To select areas of sure foreground

Key ’2’ - To select areas of probable background
Key ’3’ - To select areas of probable foreground
Key ’n’ - To update the segmentation

Key ’r’ - To reset the setup

Key ’s’ - To save the results

34

Appendix A. Code 35

import numpy as np
import cv2

import sys

BLUE = [255,0,0] # rectangle color
RED = [0,0,255] # PR BG

GREEN = [0,255,0] # PR FG

BLACK = [0,0,0] #

WHITE = [255,255,255] #

sure BG

sure FG

DRAW_BG = {’color’ : BLACK, ’val’ : 0}
DRAW_FG = {’color’ : WHITE, ’val’ : 1}
DRAW_PR_FG = {’color’ : GREEN, ’val’ : 3}
DRAW_PR_BG = {’color’ : RED, ’val’ : 2}

setting up flags
rect = (0,0,1,1)

drawing = False # flag for drawing curves

rectangle = False # flag for drawing rect

rect_over = False # flag to check if rect drawn
rect_or_mask = 100 # flag for selecting rect or mask mode
value = DRAW_FG # drawing initialized to FG

thickness = 3 # brush thickness

def onmouse (event,x,y,flags,param):

global img,img2,drawing,value ,mask,rectangle ,rect,rect_or_mask,ix,iy,rect_over

Draw Rectangle
if event == cv2.EVENT_RBUTTONDOWN:
rectangle = True

ix,iy = x,y

elif event == cv2.EVENT_MOUSEMOVE:
if rectangle == True:
img = img2.copy ()
cv2.rectangle (img, (ix,iy), (x,y) ,BLUE,2)
rect = (min(ix,x),min(iy,y),abs(ix-x),abs(iy-y))

rect_or_mask = 0

elif event == cv2.EVENT_RBUTTONUP:
rectangle = False
rect_over = True
cv2.rectangle (img, (ix,iy),(x,y) ,BLUE,2)
rect = (min(ix,x),min(iy,y),abs(ix-x),abs(iy-y))
rect_or_mask = 0

print " Now press the key ’n’ a few times until no further change \n"

draw touchup curves

if event == cv2.EVENT_LBUTTONDOWN :
if rect_over == False:
print "first draw rectangle \n"
else:
drawing = True

cv2.circle(img,(x,y) ,thickness,value[’color’],-1)

Appendix A. Code

36

cv2.circle(mask,(x,y),thickness,value[’val’],-1)

elif event == cv2.EVENT_MOUSEMOVE:
if drawing == True:
cv2.circle(img,(x,y),thickness,value[’color’],-1)

cv2.circle(mask,(x,y),thickness ,value[’val’],-1)

elif event == cv2.EVENT_LBUTTONUP:
if drawing == True:
drawing = False

cv2.circle(img, (x,y),thickness,value[’color’],-1)

cv2.circle(mask,(x,y),thickness,value[’val’],-1)

print documentation

print __doc__

Loading images
if len(sys.argv) == 2:
filename = sys.argv[1] # for drawing purposes

else:

print "No input image given, so loading default image, lena.jpg \n"

print "Correct Usage: python grabcut.py <filename> \n"

filename = ’C:/Users/arahman/Pictures/fuji.jpg’
img = cv2.imread(filename)
img2 = img.copy () # a copy of original image

mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG

output = np.zeros(img.shape,np.uint8) # output image to be shown

input and output windows
cv2.namedWindow (’ output ’)
cv2.namedWindow (’input ’)
cv2.setMouseCallback (’input’, onmouse)

cv2.moveWindow (’input’, img.shape [1]1+10,90)

print " Instructioms: \n"

print " Draw a rectangle around the object using right mouse button \n"

cv2.imwrite(’M:/CIED_CDWS/segmenting/badroad.bmp’,img)
while (1):

cv2.imshow (’output’,output)
cv2.imshow (’input’,img)

k = OxFF & cv2.waitKey (1)

key bindings

if k == 27: # esc to exit
break
elif k == ord(’0’): # BG drawing
print " mark background regions with left mouse button \n"

value = DRAW_BG
elif k == ord(’1’): # FG drawing

print " mark foreground regions with left mouse button \n"

value = DRAW_FG
elif k == ord(’2’): # PR_BG drawing
value = DRAW_PR_BG

Appendix A. Code 37

elif k == ord(’3’): # PR_FG drawing
value = DRAW_PR_FG
elif k

= ord(’s’): # save image
bar = np.zeros ((img.shape[0],5,3) ,np.uint8)
res = np.hstack((img2,bar,img,bar,output))
cv2.imwrite(’grabcut_output.png’,res)
print " Result saved as image \n"
elif k == ord(’r’): # reset everything
print "resetting \n"
rect = (0,0,1,1)
drawing = False
rectangle = False
rect_or_mask = 100
rect_over = False
value = DRAW_FG
img = img2.copy ()
mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG

output = np.zeros(img.shape ,np.uint8) # output image to be shown
elif k == ord(’n’): # segment the image
print """ For finer touchups, mark foreground and background after pressing keys 0-3

and again press ’n’ \n"""
if (rect_or_mask == 0): # grabcut with rect
bgdmodel = np.zeros((1,65),np.float64)
fgdmodel = np.zeros((1,65),np.float64)
cv2.grabCut (img2 ,mask ,rect ,bgdmodel ,fgdmodel ,1,cv2.GC_INIT_WITH_RECT)
rect_or_mask = 1
elif rect_or_mask == 1: # grabcut with mask
bgdmodel = np.zeros((1,65) ,np.float64)
fgdmodel = np.zeros((1,65),np.float64)
cv2.grabCut (img2 ,mask ,rect ,bgdmodel , fgdmodel ,1,cv2.GC_INIT_WITH_MASK)

mask2 = np.where((mask==1) + (mask==3),255,0).astype(’uint8’)

output = cv2.bitwise_and(img2,img2,mask=mask2)

cv2.imwrite(’M:/CIED_CDWS/segmenting/badroadmask.bmp’,output)

cv2.destroyAllWindows ()

A.2 Superpixel Refinement

Implemention of refinement of GrabCut using superpixels.

Abrar Rahman: Superpixel Refinemment

import numpy as np

import cv2

from skimage import segmentation
import os

import sys

Appendix A. Code 38

BLUE = [255,0,0] # rectangle color
RED = [0,0,255] # PR BG

GREEN = [0,255,0] # PR FG

BLACK = [0,0,0] #

WHITE = [255,255,255] #

sure BG

sure FG

DRAW_BG = {’color’ : BLACK, ’val’ : 0}
DRAW_FG = {’color’ : WHITE, ’val’ : 1}
DRAW_PR_FG = {’color’ : GREEN, ’val’ : 3}
DRAW_PR_BG = {’color’ : RED, ’val’ : 2}

setting up flags
rect = (0,0,1,1)

drawing = False # flag for drawing curves

rectangle = False # flag for drawing rect

rect_over = False # flag to check if rect drawn
rect_or_mask = 100 # flag for selecting rect or mask mode
value = DRAW_FG # drawing initialized to FG

thickness = 3 # brush thickness

include = [] # manually added segments
exclude = [] # manually removed segments

threshold = 0.75 # overlap of segment with grabcut needed to be included

def onmouse (event,x,y,flags,param):

global img,img2,drawing,value ,mask,rectangle ,rect,rect_or_mask,ix,iy,rect_over ,outline,inclu

Draw Rectangle
if event == cv2.EVENT_RBUTTONDOWN:
rectangle = True

ix,iy = %,y

elif event == cv2.EVENT_MOUSEMOVE:
if rectangle == True:
img = img2.copy ()
cv2.rectangle (img, (ix,iy), (x,y),BLUE,2)
rect = (min(ix,x),min(iy,y),abs(ix-x),abs(iy-y))

rect_or_mask = 0

elif event == cv2.EVENT_RBUTTONUP:
rectangle = False
rect_over = True
cv2.rectangle (img, (ix,iy),(x,y) ,BLUE,2)
rect = (min(ix,x),min(iy,y),abs(ix-x),abs(iy-y))
rect_or_mask = 0

print " Now press the key ’n’ a few times until no further change \n"

draw touchup curves

if event == cv2.EVENT_LBUTTONDOWN:
if rect_over == False:
print "first draw rectangle \n"
else:

drawing = True

Appendix A. Code 39

cv2.circle(img,(x,y),thickness ,value[’color’],-1)
cv2.circle(mask,(x,y),thickness ,value[’val’],-1)

modify (outline[y,x],valuel[’val’])

elif event == cv2.EVENT_MOUSEMOVE:
if drawing == True:
cv2.circle(img,(x,y),thickness,value[’color’],-1)
cv2.circle(mask,(x,y),thickness ,value[’val’],-1)

modify (outline[y,x],value[’val’])

elif event == cv2.EVENT_LBUTTONUP:
if drawing == True:
drawing = False

cv2.circle(img,(x,y) ,thickness,value[’color’],-1)
cv2.circle(mask,(x,y),thickness ,value[’val’],-1)

modify (outline[y,x],valuel[’val’])

def modify(v,mode):
if mode:
if v not in include:
include.append (v)
if v in exclude:
exclude.remove (v)
else:
if v in include:
include.remove (v)
if v not in exclude:

exclude.append (v)

if len(sys.argv) == 3:
filename = sys.argv[1] # for drawing purposes
seg = int(sys.argv[2])
else:
print "No input image given, so loading default image, lena.jpg \n"

print "Correct Usage: python supercut.py <filename> \n"

filename = ’C:/Users/Rafi/Dropbox/data/images/376043. jpg’
seg = 1000
img = cv2.imread(filename)
img2 = img.copy () # a copy of original image

mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG
stain = np.zeros (img.shape,dtype = np.uint8) # mask initialized to PR_BG

output = np.zeros(img.shape,np.uint8) # output image to be shown

segmenting

outline = segmentation.slic(img2,sigma=1,n_segments=seg,enforce_connectivity=False, compactness=1
segments = np.unique (outline)
boundaries = segmentation.mark_boundaries(img2,outline)

cv2.namedWindow (’output ’)
cv2.namedWindow (’ input ’)
cv2.namedWindow (’boundaries ’)
cv2.setMouseCallback (’input’, onmouse)

cv2.setMouseCallback (’boundaries’,onmouse)

Appendix A. Code 40

while (1):

cv2.imshow (’output’,output)
cv2.imshow (’input’,img)
cv2.imshow (’boundaries ’,boundaries)

k = OxFF & cv2.waitKey (1)

key bindings

if k == 27: # esc to exit
break
elif k == ord(’0’): # BG drawing, not used currently
print " mark background regions with left mouse button \n"
value = DRAW_BG
elif k == ord(’1’): # FG drawing
print " mark foreground regions with left mouse button \n"

value = DRAW_FG
elif k == ord(’s’): # save image
bar = np.zeros ((img.shape[0],5,3) ,np.uint8)
res = np.hstack((img2,bar,img,bar,output))
cv2.imwrite (’supercut_output.png’,res)
print " Result saved as image \n"
elif k == ord(’r’): # reset everything
print "resetting \n"
rect = (0,0,1,1)
drawing = False
rectangle = False
rect_or_mask = 100
rect_over = False
value = DRAW_FG
img = img2.copy ()
mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG

output = np.zeros(img.shape,np.uint8) # output image to be shown
elif k == ord(’n’): # segment the image
print """ For finer touchups, mark foreground and background after pressing keys 0-3

and again press ’n’ \n"""
if (rect_or_mask == 0): # grabcut with rect
bgdmodel = np.zeros((1,65),np.float64)
fgdmodel = np.zeros((1,65),np.float64)
cv2.grabCut (img2 ,mask ,rect ,bgdmodel ,fgdmodel ,1,cv2.GC_INIT_WITH_RECT)

rect_or_mask = 1
elif rect_or_mask == 1: # grabcut with mask
bgdmodel = np.zeros((1,65) ,np.float64)

fgdmodel = np.zeros((1,65),np.float64)
cv2.grabCut (img2 ,mask ,rect ,bgdmodel , fgdmodel ,1,cv2.GC_INIT_WITH_MASK)

sections from grabcut

grab_mask = np.where ((mask==2)|(mask==0),0,1).astype(’uint8’)
regions = outline*grab_mask

segmented = np.unique(regions)

segmented = segmented[l:len(segmented)]

manual segments
for i in include:

if i not in segmented:

Appendix A. Code 41

segmented = np.append(segmented,i)

pxtotal = np.bincount(outline.flatten())

pxseg = np.bincount(regions.flatten(),minlength=len(segments))

seg_mask = np.zeros(img.shape[:2],np.uint8)

label = (pxseglsegmented]/pxtotal [segmented].astype(float))<.75

for i in include:

label [segmented==i] = 0
for i in exclude:
label [segmented==i] = 1

for j in range(0,len(label)):

if label[j] == O0:
temp = (outline == segmented[j])
seg_mask = seg_mask+temp
fin_mask = seg_mask>0

mask2 = np.where((fin_mask==1),255,0).astype(’uint8’)

output = cv2.bitwise_and(img2,img2,mask=mask2)

cv2.destroyAllWindows ()

A.3 Automatic Foreground Extraction

Performing foreground extraction with a given bounding box.

import cv2
import os
import numpy as np

from skimage import segmentation

base_dir = "C:/Users/Rafi/Dropbox/data/"
img_dir = base_dir + "images/"

box_dir = base_dir + "boxes/"

img_files = os.listdir(img_dir)

box_files = os.listdir (box_dir)

n = 1000 # approximate number of superpixels

for i in range(0,len(img_files)):
for i in range(0,2):

img = cv2.imread(img_dir + img_files[i])

Appendix A. Code 42

mask = np.zeros (img.shape[:2],np.uint8)
bgdModel = np.zeros((1,65) ,np.float64)
fgdModel = np.zeros((1,65),np.float64)

read bounding box data

f = open(box_dir + box_files[i])

points = f.read()

f.close()

points = points.split ()

rect0 = (int(float(points[0])),int(float(points[1])),int(float(points[2])),int(float(points[
rect = (rect0[0],rectO[1],rect0O[2]-rect0[0], rect0[3]-rectO0[1])

output = np.zeros(img.shape,np.uint8) # output image to be shown
outline = segmentation.slic(img,n_segments=n,enforce_connectivity=False)
outline = segmentation.quickshift (img)

perform GrabCut
cv2.grabCut (img ,mask ,rect ,bgdModel ,fgdModel ,1,cv2.GC_INIT_WITH_RECT)
cv2.grabCut (img ,mask ,rect ,bgdModel , fgdModel ,10,cv2.GC_INIT_WITH_MASK)

use GrabCut mask on superpizxels

grab_mask = np.where ((mask==2)|(mask==0),0,1).astype(’uint8’)
regions = outline*grab_mask

segmented = np.unique(regions)

segmented = segmented[l:len(segmented)]

pxtotal = np.bincount (outline.flatten())

pxseg = np.bincount(regions.flatten())
determine which superpixels to include
seg_mask = np.zeros(img.shape[:2] ,np.uint8)

label = (pxsegl[segmented]/pxtotal[segmented].astype(float))<.75

for j in range(0,len(label)):

if label[j] == 0:
temp = (outline == segmented[j])
seg_mask = seg_mask+temp
mask = seg_mask>0

mask2 = np.where((mask==1),255,0).astype(’uint8’)

output = cv2.bitwise_and(img,img,mask=mask2)

cv2.imwrite(base_dir+str(n)+"/cut2/"+img_files[i][0:-4]+’. jpg’,output)

A.4 FEvaluation Code

Get evaluation score as described in Chapter 6.

import cv2

Appendix A. Code 43

import os

import numpy as np

base_dir = "C:/Users/Rafi/Dropbox/data/"

img_dir = base_dir + "images/"

segment_dir = base_dir + "segment/"

box_dir = base_dir + "boxes/"

img_files = os.listdir(img_dir)

segment_files = os.listdir(segment_dir)

box_files = os.listdir(box_dir)

]
o

back_score

fore_score = 0

for i in range(0,len(img_files)):
img = cv2.imread(img_dir + img_files[il)

mask = np.zeros(img.shape[:2],np.uint8)

bgdModel = np.zeros((1,65) ,np.float64)
fgdModel = np.zeros((1,65),np.float64)

f = open(box_dir + box_files[i])
points = f.read()

f.close()

points = points.split ()

rect0 = (int(float(points[0])),int(float(points[1])),int(float(points[2])),int(float(points[
rect = (rect0[0],rectO[1],rect0[2]-rect0[0], rect0[3]-rectO0[1])

Performing GrabCut
cv2.grabCut (img ,mask ,rect ,bgdModel ,fgdModel ,1,cv2.GC_INIT_WITH_RECT)
cv2.grabCut (img ,mask ,rect ,bgdModel , fgdModel ,10,cv2.GC_INIT_WITH_MASK)
#
mask2 = np.where((mask==2) | (mask==0),0,1).astype(’uint8’)
img = img*mask2[:,:,np.newaxis]
#
pt2 = (rect[2]+rect[0],rect[3]+rect[1])
#
cv2.rectangle (img, (rect[0],rect[1]), pt2,BLUE,2)
#
cv2.imwrite(base_dir + ’grabcut_’ +img_files[i], img)
Extract Segmented Image

img = cv2.imread(base_dir + ’grab_results/grabcut_’ +img_files[i])
img = cv2.imread(base_dir + ’1000/out_base/’ +img_files[i]1[0:-4]1+’.jpg’)

img = cv2.imread(base_dir + ’1000/out/’ +img_files[il)

Appendix A. Code

segment = cv2.imread(segment_dir + segment_files[i])
bg = 0

bg0d = 0

fg = 0

fgdo = 0

for j in range(rectO[1],rect0[3]):
for k in range(rectO0[0],rect0[2]):

if (segment[jl[k] == 0).all():
bg +=1
if (imgl[jl[k] == 0).all():
bg0 += 1
if ((segment[jl[k] == 255) + (segment[jl[k] == 128)).all():
fg += 1
if (imgl[jl[k] == 0).al1():
fgo += 1

back_score += (1-bg0/float(bg))/len(img_files)
fore_score += (1-fg0/float(fg))/len(img_files)

print fore_score

print back_score

Bibliography

1]

Dingding Liu, Bilge Soran, Gregg Petrie, and Linda Shapiro. A review of
computer vision segmentation algorithms, 2012. URL https://courses.cs.

washington.edu/courses/cseb576/12sp/notes/remote.pdf.

Jiangyu Liu, Jian Sun, and Heung-Yeung Shum. Paint selec-
tion. ACM Transactions on Graphics, 28, August 20009. URL
http://research.microsoft.com/en-us/um/people/jiansun/papers/
PaintSelection_SIGGRAPHO9.pdf.

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Inter-
active foreground extraction using iterated graph cuts. ACM Transactions
on Graphics, 23:309-314, August 2004. URL http://research.microsoft.
com/pubs/67890/siggraph04-grabcut . pdf.

Opencv 3.0.0 documentation: Introduction to sift (scale-invariant fea-
ture transform), 2014. URL http://docs.opencv.org/trunk/doc/py_
tutorials/py_feature2d/py_sift_intro/py_sift_intro.html.

R. Achanta, A Shaji, K. Smith, A Lucchi, P. Fua, and S. Susstrunk. Slic
superpixels compared to state-of-the-art superpixel methods. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, 34(11):2274-2282, Nov
2012. ISSN 0162-8828. doi: 10.1109/TPAMI.2012.120.

J.B MacQueen. Some methods for classification and analysis of multivari-
ate observations. In Processings of 5th Berkeley Mathematical Statistics and
Probability, pages 281-297. University of California Press, 1967.

D. Comaniciu and P. Meer. Mean shift analysis and applications. [EFEFE
International Conference on Computer Vision, pages 1197-1203, 1999.

45

https://courses.cs.washington.edu/courses/cse576/12sp/notes/remote.pdf
https://courses.cs.washington.edu/courses/cse576/12sp/notes/remote.pdf
http://research.microsoft.com/en-us/um/people/jiansun/papers/PaintSelection_SIGGRAPH09.pdf
http://research.microsoft.com/en-us/um/people/jiansun/papers/PaintSelection_SIGGRAPH09.pdf
http://research.microsoft.com/pubs/67890/siggraph04-grabcut.pdf
http://research.microsoft.com/pubs/67890/siggraph04-grabcut.pdf
http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html

Bibliography 46

8]

[10]

[11]

[12]

Gnu image manipulation program user manual: 2.5. fuzzy selection (magic
wand), 2014. URL http://docs.gimp.org/en/gimp-tool-fuzzy-select.
html.

Gnu image manipulation program user manual: 2.7. intelligent scissors, 2014.

URL http://docs.gimp.org/en/gimp-tool-iscissors.html.

David G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91-110, November 2004. ISSN 0920-5691. doi:
10.1023/B:VISI.0000029664.99615.94. URL http://dx.doi.org/10.1023/
B:VISI.0000029664.99615.94.

G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools, 2000.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision,
volume 2, pages 416-423, July 2001.

http://docs.gimp.org/en/gimp-tool-fuzzy-select.html
http://docs.gimp.org/en/gimp-tool-fuzzy-select.html
http://docs.gimp.org/en/gimp-tool-iscissors.html
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Automatic Segmentation
	2.1 Segmentation Techniques
	2.1.1 K-means Clustering
	2.1.2 Mean-shift Clustering
	2.1.3 Automatic Segmentation Summary

	3 Interactive Segmentation Tools
	3.1 Commercial Selection Tools
	3.1.1 Magic Wand
	3.1.2 Magnetic Lasso
	3.1.3 Quick Selection

	3.2 Graph-cut Based Tools
	3.2.1 Graph-cut
	3.2.2 GrabCut
	3.2.3 User Interaction with GrabCut

	4 Other Approaches Investigated
	4.1 Segmentation
	4.1.1 Bag of Words Clustering
	4.1.2 Simple Linear Iterative Clustering

	4.2 Classification of Superpixels

	5 Superpixel Selection Tool Design
	5.1 Base Comparison
	5.2 User Selection Tool

	6 Results and Analysis
	6.1 Automatic Segmentation
	6.2 User Selection Tool

	7 Conclusions and Recommendations
	A Foreground Extraction Code
	A.1 GrabCut
	A.2 Superpixel Refinement
	A.3 Automatic Foreground Extraction
	A.4 Evaluation Code

	Bibliography

