
THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

Joint Spatial-Temporal Equalization

of 3G HF Communications
by

Samantha G. Massengill

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Engineering

September 3, 2013

Advisor

Dr. Sam M. Keene

THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate’s Thesis Advisor and

has received approval. It was submitted to the Dean of the School of Engineering and

the full Faculty, and was approved as partial fulfillment of the requirements for the

degree of Master of Engineering.

Dr. Teresa A. Dahlberg

Dean, School of Engineering

Dr. Sam M. Keene

Candidate’s Thesis Advisor

Acknowledgments

Thank you to Sam Keene for his patience and guidance; to Glen Mabey for his

mentorship, encouragement, and friendship; to Ryan Casey and Jason Polendo for

their willingness to share time and expertise; to my parents for their love, support,

and understanding; to my friends for showing me what it means to truly be part

of a community; to Bryan for joyfully, lovingly, and tirelessly supporting me and

encouraging me in every way he knows how; and to God for sustaining me and giving

me strength.

i

Abstract

The high frequency (HF) spectrum is home to many military communication sig-

nals that rely on receivers to accurately equalize, demodulate, and decode signals of

interest. This is not a trivial task when faced with the challenges that arise from sig-

nals being reflected back to Earth by the ionosphere. To combat HF channel e↵ects,

it is desirable to exploit spatial diversity; however, the design of diversity receivers

becomes complicated especially when limited channel information is available.

This work describes the design and testing of an HF military standard (MIL-STD)

188-141B (ALE3G) diversity receiver that uses a joint spatial-temporal equalizer to

perform the dual task of combining and equalizing the signals received by multiple

antennas prior to demodulation and decoding of transmitted data. The receiver re-

quires no prior knowledge of the channel, array geometry, or angle of arrival of the

multipath signal. This design is evaluated against two diversity receivers that perform

linear combining followed by single-channel equalization. For various adaptive filter

parameters, the joint spatial-temporal equalizer has a shorter convergence time and

lower mean squared error (MSE) than the combiner and equalizer. At low SNRs, the

spatial-temporal equalizer also outperforms in terms of bit error rate (BER), showing

up to a 10 dB improvement over the single-channel equalizer structure.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Previous Work . 2
1.4 Proposed Solution . 5

2 HF Communications 7
2.1 Introduction to HF . 7
2.2 The Ionosphere . 7
2.3 Watterson Model . 9
2.4 MIL-STD-188-141B . 10

3 Adaptive Equalization 16
3.1 Basics of Equalization . 16
3.2 LMS Filtering . 19
3.3 RLS Filtering . 20

4 Receiver Diversity 23
4.1 Basics of Diversity . 23
4.2 Combining Techniques . 24

5 Joint Spatial-Temporal Equalization 26
5.1 System Model . 26
5.2 Simulation Details . 30

6 Experimental Results 32
6.1 Introduction . 32
6.2 Equalizer Convergence . 32
6.3 Receiver Performance . 44

7 Conclusions and Future Work 49

iii

A MATLAB Code 51
A.1 ALE3G Signal Generator . 51
A.2 ALE3G Demodulator . 56
A.3 Spatial-Temporal Equalizer . 61
A.4 Watterson Channel Simulator . 63
A.5 ALE3G Equalizer Comparison . 68

Bibliography 73

List of Figures

2.1 Ionospheric refraction [3] . 8

2.2 Burst waveform characteristics [13] . 12

2.3 BW5 descrambling, SNR 30 dB . 13

2.4 BW5 structure [13] . 14

2.5 Walsh modulation of coded bits to tribit sequences [18] 14

2.6 BW5 convolutional encoder [21] . 15

3.1 Symbol-spaced linear equalizer [16] . 18

4.1 Linear combiner [6] . 24

5.1 Linear combiner followed by single-channel equalizer 27

5.2 Joint spatial-temporal equalizer . 28

6.1 Equalized symbols: 24 taps, RLS(0.99), SNR 20 dB, 4 diversity branches 36

6.2 Learning curves: 24 taps, RLS(0.99), SNR 20 dB, 4 diversity branches 36

6.3 Equalized symbols: 24 taps, RLS(0.95), SNR 20 dB, 4 diversity branches 37

6.4 Learning curves: 24 taps, RLS(0.95), SNR 20 dB, 4 diversity branches 37

6.5 Equalized symbols: 12 taps, RLS(0.95), SNR 10 dB, 4 diversity branches 38

6.6 Learning curves: 12 taps, RLS(0.95), SNR 10 dB, 4 diversity branches 38

v

6.7 Equalized symbols: 12 taps, RLS(0.90), SNR 20 dB, 4 diversity branches 39

6.8 Learning curves: 12 taps, RLS(0.90), SNR 20 dB, 4 diversity branches 39

6.9 Equalized symbols: 36 taps, LMS(0.05), SNR 10 dB, 4 diversity branches 40

6.10 Learning curves: 36 taps, LMS(0.05), SNR 10 dB, 4 diversity branches 40

6.11 Equalized symbols: 36 taps, LMS(0.10), SNR 20 dB, 4 diversity branches 41

6.12 Learning curves: 36 taps, LMS(0.10), SNR 20 dB, 4 diversity branches 41

6.13 Equalized symbols: 12 taps, LMS(0.15), SNR 20 dB, 4 diversity branches 42

6.14 Learning curves: 12 taps, LMS(0.15), SNR 20 dB, 4 diversity branches 42

6.15 Equalized symbols: 12 taps, LMS(0.40), SNR 20 dB, 4 diversity branches 43

6.16 Learning curves: 12 taps, LMS(0.40), SNR 20 dB, 4 diversity branches 43

6.17 BER versus SNR for two receivers: 12 taps, RLS(0.99) 45

6.18 BER versus SNR for two receivers: 12 taps, RLS(0.95) 46

6.19 BER versus SNR for two receivers: 12 taps, RLS(0.90) 47

6.20 BER versus SNR for two receivers: 24 taps, LMS(0.01) 48

List of Tables

2.1 ITU-R F.1487 Ionospheric Channel Parameters [20] 10

6.1 Equalizer convergence comparisons, LMS 34

6.2 Equalizer convergence comparisons, RLS 35

vii

Chapter 1

Introduction

1.1 Motivation

Over the past decade, high frequency (HF) radio communications have witnessed a

period of renewal, largely due to the advances of third-generation (3G) and wideband

HF (WBHF) technologies [13]. Due to increasing popularity amongst military and

governmental communities, this thesis focuses on improving the reception of 3G au-

tomatic link establishment (ALE3G) tranmissions. Oftentimes, reception of ALE3G

signals is done by a third party for whom the transmitted message was not originally

intended. In addition to HF radio receivers having to overcome ionospheric channel

e↵ects, there are additional challenges that the passive listener faces which do not exist

for cooperative receivers; for example, the receiver may require additional information

from the transmitter in order to perform timing synchronization, demodulation, or

decoding. Furthermore, the channel quality is potentially worse for a passive listener

since he may be hundreds of kilometers away from the cooperative receiver. This

thesis addresses the need for improved receivers in the presence of HF channel e↵ects,

particularly when minimal information is available to the receiver.

1

1.2 Problem Statement

There are multiple ways in which a signal propagating through an HF channel can

be distorted. If copies of the signal are delayed in time and this delay is on the order

of one symbol period, intersymbol interference (ISI) can occur as a result. In a digital

communications system, equalizers are used to mitigate ISI by creating a filter that

estimates the inverse of the channel and then passing the ISI-corrupted signal through

the filter to recover the original transmitted message.

In addition to equalization, the reliability of receiving a multipath signal can im-

prove greatly with the use of receiver diversity. For a time-varying channel with

fading, using more than one receive antenna is useful since it is unlikely that each

antenna will be experiencing the same fading. The goal of this work is to introduce a

spatial-temporal equalizer that jointly performs equalization and diversity combining

in an HF channel. Possible benefits of introducing this scheme include the receiver

requiring less channel state information, lower computational complexity, better per-

formance under certain conditions, and reducing the need for additional components

in a modular software-defined radio dataflow architecture.

1.3 Previous Work

There has been a substantial amount of research done in investigating combined

spatial-temporal equalization for digital communications systems. In [15], subopti-

mal solutions to spatial-temporal decision feedback equalization were investigated in

hopes of greatly reducing computational complexity while still preserving good per-

formance. The authors compare three algorithms: the general beam decision feed-

back equalizer (GB-DFE), the multiple independent beam decision feedback equalizer

2

(MIB-DFE), and simultaneous beamforming and equalization iterating with the LS-

algorithm (SBE-LS). The GB-DFE is simply a MISO FIR decision feedback equalizer

where the signals from each array are delayed and summed before equalization. The

MIB-DFE, proposed by the authors, performs optimization on antenna weights prior

to equalization where the combiner weights and equalizer weights are optimized us-

ing two di↵erent criteria. The last algorithm, SBE-LS, also proposed by the authors,

optimizes beamformer weights and equalizer coe�cients using two RLS filters. The

algorithm is first applied to the equalizer coe�cients while holding the beamformer

weights fixed, then applied to the beamformer weights while equalizer coe�cients are

fixed. It is shown that for short training sequences, the MIB-DFE outperforms the

other two algorithms and requires the least number of computations.

In [8], it is shown that a joint space-time DFE (ST-DFE) is superior to a structure

having a preselection diversity switch followed by a temporal DFE for frequency-

selective cellular fading channels. For the ST-DFE, the authors use a QR-decomposi-

tion type of RLS algorithm for the weight adaptation due to its e�cient and stable

implementation.

In [7], antenna combiner weights and equalizer weights are jointly optimized but

remain separate entities. Typically, the combiner chooses its weights prior to symbol

detection and does not have access to the newest information available. The authors

design an equalizer-assisted combiner, where the error from the equalizer is fed back

to help the combiner adjust its weights after symbol decisions have been made. The

combiner optimization is performed using the LMS algorithm. A second algorithm is

proposed that jointly minimizes the output cluster variance by using LMS to adapt

the equalizer weights and “filtered-X LMS” to adjust the combiner weights.

In [10], a spatial-temporal equalizer has been simulated using an adaptive tapped

3

delay line antenna array and the Zero-Forcing algorithm and it was shown that this sys-

tem outperforms conventional temporal equalization. In [4], a multiple-input adaptive

combiner-equalizer is designed by adding tapped delay lines at each diversity branch

and then feeding the delayed signals to the inputs of a linear neuron whose weights are

updated using LMS or RLS. The authors show that replacing a maximal-ratio com-

biner and linear equalizer with a neural network yields results that are comparable in

performance but much less complex to implement especially on software defined ratio

(SDR) platforms.

Much work has also been done in simulating HF transmissions and proposing

enhancements to improve ALE3G reception. Simulations of MIL-STD-188-141B Ap-

pendix C, a US Department of Defense standard for HF radio where ALE3G is defined,

and STANAG 4538, a NATO standard that also defines ALE3G, are documented

in [25], [2], [14], [11], [12], [23] and proposed enhancements to STANAG 4538 are sug-

gested in [1]. Most of these simulations assume a single-channel receiver and minimal

research has been done in spatial diversity for HF communications. In [17], multi-

site combination is performed to improve demodulation of HF signals. The signals

are transmitted in Texas and received in Utah and Maryland, so receiving antennas

are separated too far apart to constitute spatial diversity. The author mentions joint

spatial-temporal equalization as a possibility for future work on HF demodulation.

In [5], blind spatial-temporal equalization in HF is developed using the Constant

Modulus Algorithm (CMA) on a polarization sensitive array of four collocated anten-

nas wherein spatial-temporal equalization improves performance significantly over the

single-channel case.

4

1.4 Proposed Solution

The algorithm most similar to the one actually implemented in this thesis is pre-

sented in [22]. The authors use spatial diversity equalization to improve reliability

of underwater communications. Each channel is linearly equalized and the outputs

are combined using an adaptive multi-channel combiner driven by the RLS algorithm.

The combiner input signals from all diversity channels are concatenated together to

form a single composite input signal and similarly, a composite tap-weight vector is

what is updated during the RLS optimization.

This idea is extended for HF communications. Instead of equalizing each channel

prior to combining, these operations are done simultaneously such that the equalizer

weights and combiner weights are optimized jointly. The RLS filter composite input

vector and composite tap-weight vector are formed similarly as in [22] such that each

iteration of the RLS algorithm contains both temporal and spatial information. After

the algorithm is developed, it is tested against a more traditional receiver that first

combines and then equalizes.

The rest of the thesis is outlined as follows. Chapter 2 discusses an overview of

HF communications, the ionosphere and how to simulate its behavior using the Wat-

terson model, and MIL STD 188-141B (ALE3G), the standard implemented for use

in the simulations presented in this work. Chapter 3 gives an overview of equaliza-

tion, followed by summaries of the LMS and RLS adaptive filtering algorithms used

for adaptive equalization in this thesis. Next, Chapter 4 illustrates the basic princi-

ples and advantages of receiver diversity by first giving a brief overview of diversity

techniques and then focusing on spatial diversity and combining methods. Chapter 5

introduces the joint spatial-temporal equalizer developed in this work and describes

the simulation platform. Chapter 6 presents and discusses experimental results, and

5

Chapter 7 draws conclusions and suggests possible avenues for future work.

6

Chapter 2

HF Communications

2.1 Introduction to HF

High frequency (HF) radio waves are transmitted in the 3-30 MHz range and have

wavelengths of 200 m or less. Due to these relatively short wavelengths, HF radio was

originally overlooked for commercial use despite many desirable characteristics when

compared to longer wavelength radios. For example, global ranges can be attained

in the HF band with less power than longer wavelength radios and HF antennas

are easier to build. Satellite communications also achieve global ranges but require

additional infrastructure making them less cost e�cient than HF networks. Therefore,

it is common to see HF radio used as a backup for satellite communications [13].

2.2 The Ionosphere

HF radio is able to achieve global ranges due to waves refracting o↵ the ionosphere

as shown in Figure 2.1 where a man receives signals that traveled to him via two

di↵erent paths. This is an example of skywave propagation where signals are launched

7

Figure 2.1: Ionospheric refraction [3]

skyward and are bounced back and forth between the Earth and the ionosphere. In

addition to skywaves, there exist surface waves and space waves in HF but neither

of these interact with the ionosphere. Surface wave propagation refers to signals

that travel near the Earth’s surface following its curvature such that over-the-horizon

ranges can be reached but not global ranges. Space waves are either line-of-sight

(direct) transmissions or signals that are reflected o↵ the Earth’s surface [3]. Skywaves

are more widely studied in HF channels due to the long distances these transmissions

can travel.

The ionosphere is a region of the atmosphere that has an abundance of free elec-

trons due to solar radiation and cosmic rays that ionize the air. The density of free

electrons and of gas molecules to be ionized varies with altitude. There are three

layers of the ionosphere: D layer, E layer, and F layer, in increasing distance from

the Earth. Due to the lowest level of ionizing radiation being the furthest from the

Sun, the D layer has a low electron density and high neutral gas density. The E layer

has higher electron density and lower neutral gas density, and the highest electron

8

density and lowest neutral gas density are found in the F layer at approximately 300

km above the Earth’s surface. The F layer has an additional layer during the day due

to solar radiation, where the F1 layer is between the E layer and the F2 layer and the

F2 layer is simply referred to the F layer at night. When a wave interacts with the

ionosphere, the wave is refracted according to the ionosphere’s free electron density

and the wave’s frequency; a higher frequency will result in decreased refraction [13].

In addition to the unpredictable nature of the ionospheric channel as a result of

its dependence on solar activity, there exist losses in signal strength associated with

reflection and refraction. Additionally, fading in both time and frequency make the

HF channel even more cumbersome to deal with. Due to the dispersive nature of the

ionosphere, multiple copies of a single transmitted signal arrive at a receiver. The

di↵erent paths taken by the signal are each di↵erent lengths and therefore also have

di↵erent phases. This multipath propagation could cause intersymbol interference

due to spreading in time and multipath fading due to shifts in frequency. Other

potential causes of fading are the Faraday e↵ect and ray interference [13]. These

channel impairments create many challenges for engineers who make HF modems and

so there is a need for standardized channel models that are used for testing of such

modems.

2.3 Watterson Model

The widely accepted mathematical model used for HF testing is the Watterson

model [24]. The Watterson model assumes the signal travels as two paths, each

having equal losses and separated by a fixed di↵erential time delay. At the receiv-

ing antennas, additive white Gaussian noise (AWGN) is added to simulate thermal

noise. The model also assumes a Doppler spread which is a fading-gain process with

9

Table 2.1: ITU-R F.1487 Ionospheric Channel Parameters [20]

Channel condition Delay spread (ms) Doppler spread (Hz)
Low latitude, quiet 0.5 0.5
Low latitude, moderate 2 1.5
Low latitude, disturbed 6 10
Mid-latitude, quiet 0.5 0.1
Mid-latitude, moderate 1 0.5
Mid-latitude, disturbed 2 1
Mid-latitude, disturbed NVI 7 1
High latitude, quiet 1 0.5
High latitude, moderate 3 10
High latitude, disturbed 7 30

a specified bandwidth. The ITU-R recommendation for Watterson channel simulator

representative values are shown in Table 2.1. Near vertical incidence (NVI) occurs

when a signal is sent almost straight up such that it is refracted back to a nearby

receiver that is separated from the transmitter by a physical obstruction. Engineers

who use the Watterson model to simulate HF channels must specify the delay spread,

Doppler spread, and SNR for their model.

2.4 MIL-STD-188-141B

Automatic link establishment (ALE) describes the process of finding and manag-

ing an HF frequency for voice and data (email, texting, file transfer, etc.) tra�c. To

combat increasing congestion in the HF band during the mid-1990’s and improve spec-

trum e�ciency, a third generation automatic link establishment (ALE3G) standard

was designed and described in the US Department of Defense MIL-STD-188-141B

Appendix C. ALE3G is also part of STANAG 4538, a NATO implementation that

includes additional capabilities not originally presented in MIL-STD-188-141B Ap-

pendix C. ALE3G is an 8-level PSK serial-tone waveform modulated onto an 1800 Hz

10

carrier with a baud rate of 2400 symbols per second. Like most other HF communica-

tions signals, ALE3G is filtered to a 3-kHz bandwidth and uses single-sideband mode

of operation.

The physical layer of ALE3G is manifested as “burst waveforms”; to date, there

are six of these waveforms that have been defined in standards [21], [18]: BW0, BW1,

BW2, BW3, BW4, BW5, and a seventh, BW1+, which is a proprietary burst waveform

developed by Harris Corporation [1] and has been proposed as an enhancement to

the standard. Only two of these waveforms, BW2 and BW3, send data tra�c (of

varied duration), while the remaining BWs are used for shorter transmissions (fixed

duration) such as acknowledgements (ACKs), link establishment, link management,

network time synchronization, and channel probing.

Generally, the structure of each burst waveform has three sections of PN-spread

8-ary PSK symbols. The first section is the transmit level control (TLC), followed

by an acquisition preamble, and ending with a data section. The purpose of the

TLC section is to give the system enough time for its transmitter TLC and receiver

automatic gain control (AGC) to adjust and stabilize. The preamble section contains

a di↵erent sequence of symbols that are unique to each di↵erent burst waveform in

terms of the order of symbols, the duration of the preamble, or both the order and

duration. Each burst waveform also has a di↵erent payload duration and structure.

In general, burst waveforms undergo error correction coding, interleaving, symbol

formation, and PN spreading before they are modulated and transmitted. Unlike the

rest of the waveforms, BW2 does not use Walsh symbol formation and instead forms

symbols using a series of rotation, gray coding, and frame formation. See Figure 2.2

for a summary of burst waveform characteristics, excluding the proprietary BW1+.

To introduce redundancy, the payload bits for the burst waveforms that carry

11

Figure 2.2: Burst waveform characteristics [13]

data information (BW2 and BW3) are encoding using convolutional encoding with

flush bits that are known to the receiver. For short burst waveforms (all but BW2

and BW3), the bits are encoded using tail-biting convolutional encoding. Tail-biting

ensures that the initial state of the encoder is the same as the final state so that the

use of flush bits is not necessary. The reason for this is to save additional overheard

that would be needed to transmit flush bits because for short payloads, the flush bits

could amount to a significant percentage of the total transmit bits.

After the data bits are convolutionally encoded, they are interleaved using either

a block interleaver or a convolutional block interleaver structure. The purpose of this

12

step is to spread out potential bursts of errors. The pseudo-code for filling and fetching

from the interleave matrix can be found in [18], [21]. For BW0, BW1, and BW5, the

deinterleave matrix is a simple matrix transpose of the interleave matrix.

With the exception of BW2, data bits are modulated using an orthogonal Walsh

function. In groups of either four or two bits, the bits are mapped to 16 symbols of 0s

and 4s. For BW0, BW1, and BW5, the tribit sequences in Figure 2.5 are repeated four

times per four coded bits. For BW3, the sequences are not repeated and for BW1+ the

sequences are repeated twice. BW4 maps two bits (00,01,10,11) to only the first four

tribit sequences in Figure 2.5 and each sequence is repeated 80 times. The symbols are

then added modulo-8 to a pseudo-noise (PN) scrambling sequence which is essentially

the mapping of a BPSK signal to an 8-PSK signal prior to transmission. On the

demodulation side, this step involves descrambling an 8-PSK signal to a BPSK signal,

as shown in 2.3.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) Raw symbols out of equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(b) Descrambled symbols

Figure 2.3: BW5 descrambling, SNR 30 dB

As an example, BW5 is discussed here in more detail. BW5 is an extended and

more robust verison of BW0, both of which are used for link setup at the beginning

of an ALE3G exchange. As shown in Figure 2.4, BW5 begins with a 256-symbol

TLC/AGC guard sequence, followed by 576 preamble symbols and 1600 payload sym-

13

Figure 2.4: BW5 structure [13]

Figure 2.5: Walsh modulation of coded bits to tribit sequences [18]

bols. The payload, consisting of 50 protocol bits, are encoded using a r = 1/2, k = 7

tail-biting convolutional encoder with polynomials b0 = x

6 + x

4 + x

3 + x

1 + 1 and

b1 = x

6 + x

5 + x

4 + x

3 + 1 as seen in Figure 2.6. After encoding, the 100 bits are

interleaved using a 10x10 block interleaver. Each group of four coded and interleaved

bits are mapped to a tribit sequence (Figure 2.5) repeated four times resulting in 64

14

Figure 2.6: BW5 convolutional encoder [21]

symbols for every four coded bits or 1600 total payload symbols; these symbols are

then component-wise modulo-8 added to a PN sequence and modulated onto an 1800

Hz carrier signal.

ALE3G is a complicated signal which includes many stages of redundancy due

to the challenges that must be overcome when transmitting through the ionosphere.

While redundancy is certainly helpful, the following chapters explain how adaptive

equalization and spatial diversity are also important tools that can be used to demod-

ulate and decode a reliable ALE3G signal.

15

Chapter 3

Adaptive Equalization

3.1 Basics of Equalization

In a digital communications system, time dispersion is caused when data passes

through any frequency-selective channel. The amount of time dispersion and its cause

varies amongst transmission systems, but higher-data-rate applications such as those

described in Chapter 2 are most susceptible to delay spread. If the delay spread is

significant enough, pulses will be distorted such that zero-crossings will no longer be

periodic due to adjacent pulses overlapping. This phenomenon is called intersymbol

interference (ISI). To mitigate the e↵ects of ISI caused by a dispersive channel, an

equalizer can be used to model the inverse of the channel and restore pulses.

Because wireless communication channels typically vary in time, the filter coef-

ficients for the equalizer may also be time-varying. If this is the case, an adaptive

equalizer is necessary so that tap weights can be adjusted adaptively and the equal-

izer can best approximate the time-varying channel response inversion in real time.

Typically, there is a training sequence at the beginning of a transmission where known

symbols are sent and the equalizer adjusts its filter parameters by comparing its output

16

to the known data. After the training sequence ends, the equalizer will leave training

mode and enter decision directed mode (also sometimes called tracking mode) where

the equalizer will have to make its own decisions based on what its learned from previ-

ous decisions made during training. Two adaptive filtering algorithms commonly used

in practice to adjust filter coe�cients are the least-mean-square (LMS) and recursive

least-squares (RLS) algorithms which are both described in the next two sections of

this chapter.

Equalizers can be linear or non-linear. Non-linear equalizers, such as decision

feedback equalizers (DFE) or maximum likelihood sequence estimation (MLSE), are

more complex to implement but are better at reducing noise enhancement. This the-

sis focuses on linear equalizers due to their simplicity but Chapter 7 mentions the

possibility of a DFE in future implementations of the joint spatial-temporal equalizer

algorithm. Linear equalizers can be implemented using either a transversal or lat-

tice structure, but the focus of this thesis is on transversal filters. Linear equalizers

can either be zero-forcing (ZF) equalizers or minimum mean square error (MMSE)

equalizers; ZF equalizers apply the inverse of the channel’s frequency response and

reduce ISI completely at the expense of enhancing noise, and MMSE equalizers aim

to minimize the error between the desired response and the actual response of the

equalizer. This thesis focuses on MMSE equalization.

It should be noted that a fractionally spaced equalizer is an equalizer that receives

an oversampled signal such that the output sample rate is K/T where K is an integer

corresponding to the number of input samples the equalizer received before producing

a single output sample. There are advantages to fractionally spaced equalizers when

the receiver does not know channel characteristics [19], however, as a simplification,

the focus of this work is on symbol-spaced equalization where the equalizer input and

17

Figure 3.1: Symbol-spaced linear equalizer [16]

output sampling rates are equal.

Figure 3.1 shows the general structure for a symbol-spaced equalizer consisting of

a tapped delay line with L�1 delay elements, L tunable complex weights, an adaptive

weight setting, decision device, and error calculator.

To quantify equalizer performance, the mean squared error (MSE) is plotted

against each iteration of the algorithm in time, or, the number of training symbols.

The MSE is in terms of the Euclidean distance between the desired symbol and the

actual symbol. These curves are called learning curves because they show how quickly

the equalizer is learning the channel and the learning rate is referred to as the rate

of convergence. In addition to convergence time, the value of the MSE to which the

equalizer converges can be used to show how well an equalizer is doing. Another

useful way to check equalizer performance is to plot the output symbols. For a PSK

signal, a constellation where each phase is tightly clustered together will imply that

18

the equalizer is working well.

3.2 LMS Filtering

The least-mean-square (LMS) algorithm is a type of stochastic gradient descent

algorithm [9]. Its feedback structure is a linear transversal (FIR) filter whose tap

weights are updated by an adaptive weight-control mechanism driven by minimizing

a cost function. For a Wiener filter, the cost function to be minimized is the mean

squared error:

J(n) = E[e(n)e⇤(n)] (3.1)

where the error signal e(n) is computed by comparing the filter output with a desired

response. If parameters are chosen appropriately, the LMS algorithm will converge

to an estimate of the optimum Wiener solution. Since the gradient vector rJ(n) at

each iteration of the steepest-descent algorithm is only an estimate, LMS will only

approach the optimal solution. Therefore, the cost function for LMS becomes the

instantaneous squared error:

J(n) = |e(n)|2 (3.2)

The LMS algorithm solves for the optimum value of the tap-weight vector ŵ(n+1) that

minimizes the cost function J(n). Using the notation, approximations, and steepest

descent method results described in [9], we summarize the algorithm as follows. First,

the tap-weight vector is initialized:

ŵ(0) = 0 (3.3)

19

An L-by-1 tap-input vector at time n is given:

u(n) = [u(n), u(n� 1), ..., u(n� L+ 1)]T (3.4)

where L is the length of the adaptive transversal filter. Also given is the desired

response d(n) at time n. For an adaptive equalizer, the desired response is usually a

training sequence or probes known to the receiver. Next, an estimate of the tap-weight

vector at time n+ 1 is computed using the system:

e(n) = d(n)� ŵH(n)u(n) (3.5)

ŵ(n+ 1) = ŵ(n) + µu(n)e⇤(n) (3.6)

where µ is the step size parameter, a small positive quantity. At each iteration, the

LMS algorithm requires only 2L+ 1 multiplications; it is a simple but powerful tool.

3.3 RLS Filtering

The recursive least-squares (RLS) algorithm is another method used to recursively

estimate the tap-weight vector of a linear transversal filter. Unlike LMS, it is an

extension of the method of least squares rather than a stochastic gradient descent

approach. At the cost of computational complexity, the RLS algorithm converges

significantly faster (usually by an order of magnitude) than the LMS algorithm [9].

The RLS cost function to be minimized is:

"(n) =
nX

i=1

�

n�i|e(i)|2 + ��

nkw(n)k2 (3.7)

20

where the first term of the cost function is the sum of exponentially weighted error

squares. The exponential weighting is due to the forgetting factor �n�i where � is a

positive constant less than but close to 1 and serves as a measure of the algorithm’s

memory for past data. Similar to LMS, the error is defined as the di↵erence between

the desired response and the actual response of the filter:

e(i) = d(i)�wH(n)u(i) (3.8)

where the tap-input vector and tap-weight vectors are defined by

u(i) = [u(i), u(i� 1), ..., u(i� L+ 1)]T (3.9)

w(n) = [w0(n), w1(n), ..., wL�1(n)]
T (3.10)

Note that only the tap weights remain fixed during the time interval. The second

term of the cost function is referred to as the regularizing term since the regularizing

parameter � is a positive real number included in the cost function for stability and

smoothing.

The RLS algorithm minimizes the cost function "(n) by using a reformulation

of the correlation matrix of the tap-input vector u(i) to compute the tap-weight

estimate ŵ(n). In order to do this computation, the matrix inversion lemma is used

to calculate the inverse of the correlation matrix, P(n) = ��1(n). Using the notation,

approximations, method of least-squares results, and matrix inverse lemma results

described in [9], we summarize the algorithm as follows. In similar fashion to the

LMS algorithm, the tap-weight vector is first initialized in addition to the inverse

correlation matrix:

ŵ(0) = 0 (3.11)

21

P(0) = �

�1I (3.12)

At every time instant, the following equations are computed:

⇡(n) = P(n� 1)u(n) (3.13)

k(n) =
⇡(n)

�+ uH(n)⇡(n)
(3.14)

⇠(n) = d(n)� ŵH(n� 1)u(n) (3.15)

ŵ(n) = ŵ(n� 1) + k(n)⇠⇤(n) (3.16)

P(n) = �

�1P(n� 1)� �

�1k(n)uH(n)P(n� 1) (3.17)

where k(n) is the gain vector, ⇠(n) is the a priori estimation error computed during the

filtering operation, ŵ(n) is the estimated tap-weight vector update, and the inverse

correlation matrix P(n) is used to update the gain vector. The biggest downfall of the

RLS algorithm is its computational complexity: it requires 2.5L2+4.5Lmultiplications

per iteration [6].

In summary, the LMS and RLS algorithms are powerful algorithms that can con-

trol the weight adaptation for adaptive equalization of signals blurred together from

ISI. The RLS algorithm converges much faster than LMS but is more complex to

implement. Both algorithms with varying parameters are used for the simulations

described later in Chapter 5.

22

Chapter 4

Receiver Diversity

4.1 Basics of Diversity

In a fading channel, it is unlikely that multiple independent signal paths will

all experience a deep fade at the same time [6]. Therefore, it is desirable to create a

situation in which the same data is being sent over multiple independent paths because

adding these signals together results in a higher SNR than the SNR from a single path.

Independent fading paths can be obtained in a number of ways. Spatial diversity

refers to a situation where there are multiple transmit or receive antennas, where

maximum diversity gain is achieved by separating antennas by approximately one half-

wavelength if the antennas are omnidirectional [6]. Other diversity techniques include

polarization diversity (where two antennas have vertical and horizontal polarizations),

directional diversity (by use of directional antennas that specify a particular receive

beamwidth), and frequency diversity (by transmitting at di↵erent carrier frequencies).

The focus of this thesis is on receiver spatial diversity so the combining techniques

described in the following sections will be discussed in such a context. Spatial diversity

was chosen because of the popularity of multi-channel HF receivers.

23

4.2 Combining Techniques

The general structure for a linear combiner is illustrated in Figure 4.1. The com-

plex weights ↵i are used to scale each of the received signals rie
j✓i

s(t) where s(t) is

the transmitted signal, ri is the amplitude of the signal at the ith branch, and ✓i is the

phase of the signal at the ith branch. Depending on the combining technique, ↵i will

take on di↵erent forms. For example, if ↵i is zero-valued at all but one branch, the

output results from selection combining or threshold combining; if ↵i is nonzero for

more than one branch, the output results from maximal-ratio combining or equal-gain

combining.

Figure 4.1: Linear combiner [6]

Selection combining (SC) is a combining technique where the the branch with the

highest SNR is the one that is output, and the other M�1 branches are multiplied by

↵i = 0 and disregarded. For SC, the SNR gain increases with an increasing number

of diversity branches but the relationship is not linear; the biggest gain occurs when

24

increasing from one branch to two [6]. If a system is continuously transmitting, the

SNR at each branch will change so each branch requires its own receiver to monitor

these changes. However, if threshold combining (TC) is used instead, only one receiver

is needed to scan each branch. The receiver selects the first branch whose SNR is above

a specified threshold and switches to scan another branch as soon as the SNR falls

below the threshold.

To achieve better SNR gain, maximal-ratio combining (MRC) can be used to sum

weighted versions of all the branches together. In order to allow coherent detection,

the phase ✓i must be removed from the received signals through multiplication by

↵i = aie
�j✓i where the gain of branch ai is real. This is called co-phasing and is

necessary when more than one branch is used in combining so that each signal has

the same phase and there is no constructive or destructive interference. The resulting

combiner SNR is equal to the sum of the SNRs on each branch. Thus, the array

gain increases linearly with M [6]. Without knowing the SNR on each branch, MRC

cannot be performed and instead equal gain combining (EGC) can be used to sum all

of the branches together. For EGC, co-phasing is again necessary but ↵i = e

�j✓i since

ai = 1 and each branch is equally weighted. Equal gain combining does not work as

e↵ectively as MRC since stronger signals are not weighted more heavily however the

di↵erence between EGC and MRC performance is typically less than 1 dB [6].

25

Chapter 5

Joint Spatial-Temporal

Equalization

5.1 System Model

Building upon the previous work and theory discussed in the earlier chapters of this

thesis, a joint spatial-temporal equalizer is developed to jointly optimize the combiner

weights and equalizer coe�cients for a multi-channel receiver. A synthetic ALE3G

waveform is transmitted through a Watterson channel simulator and received using a

uniform linear array (ULA). The signal received at each branch is then sampled every

symbol prior to combining and equalizing.

26

 ∑

𝑧ିଵ 𝑧ିଵ 𝑧ିଵ

𝑤ෝଵ∗(𝑛) 𝑤ෝଷ∗(𝑛) 𝑤ෝ௅ିଵ∗ (𝑛) 𝑤ෝ௅∗(𝑛) 𝑤ෝଶ∗(𝑛)

 ∑ ∑ ∑ ∑

 ∑ Adaptive weight-control mechanism

𝑟ଵ𝑒௝ఏభ𝑠(𝑡)

𝛼ெ

𝑢(𝑛) 𝑢(𝑛 − 1) 𝑢(𝑛 − 2) 𝑢(𝑛 − 𝐿 + 1)

𝑦(𝑛)

𝑑(𝑛)

𝑒(𝑛) −

+

𝛼ଶ 𝛼ଵ

𝑟ଶ𝑒௝ఏమ𝑠(𝑡) 𝑟ெ𝑒௝ఏಾ𝑠(𝑡)

Figure 5.1: Linear combiner followed by single-channel equalizer

27

Adaptive weight-control mechanism

𝑦(𝑛)

𝑑(𝑛)

𝑒(𝑛) −

+

𝑟ଵ𝑒௝ఏభ𝑠(𝑡)

𝛼ெ 𝛼ଶ 𝛼ଵ

𝑟ଶ𝑒௝ఏమ𝑠(𝑡) 𝑟ெ𝑒௝ఏಾ 𝑠(𝑡)

𝑧ିଵ 𝑧ିଵ 𝑧ିଵ

𝑐ଵ,ଵ∗ (𝑛)

 ∑ ∑ ∑ ∑

𝑣ଵ(𝑛)

𝑐ଵ,ଶ∗ (𝑛) 𝑐ଵ,ଷ∗ (𝑛) 𝑐ଵ, ௅
ெିଵ

∗ (𝑛) 𝑐ଵ, ௅
ெ

∗ (𝑛)

𝑣ଵ(𝑛 − 1) 𝑣ଵ(𝑛 − 2) 𝑣ଵ(𝑛 − 𝐿
𝑀 + 1)

𝑧ିଵ 𝑧ିଵ 𝑧ିଵ

𝑐ଶ,ଵ∗ (𝑛)

 ∑ ∑ ∑ ∑

𝑣ଶ(𝑛)

𝑐ଶ,ଶ∗ (𝑛) 𝑐ଶ,ଷ∗ (𝑛) 𝑐ଶ, ௅
ெିଵ

∗ (𝑛) 𝑐ଶ, ௅
ெ

∗ (𝑛)

𝑣ଶ(𝑛 − 1) 𝑣ଶ(𝑛 − 2) 𝑣ଶ(𝑛 − 𝐿
𝑀 + 1)

𝑧ିଵ 𝑧ିଵ 𝑧ିଵ

𝑐ெ,ଵ∗ (𝑛)

 ∑ ∑ ∑ ∑

𝑣ெ(𝑛)

𝑐ெ,ଶ∗ (𝑛) 𝑐ெ,ଷ∗ (𝑛) 𝑐ெ, ௅
ெିଵ

∗ (𝑛) 𝑐ெ, ௅
ெ

∗ (𝑛)

𝑣ெ(𝑛 − 1) 𝑣ெ(𝑛 − 2) 𝑣ெ(𝑛 − 𝐿
𝑀 + 1)

∑

∑

∑

Figure 5.2: Joint spatial-temporal equalizer

28

Before deriving the joint spatial-temporal equalizer system model, it is important

to understand the two-step system model of a linear combiner followed by equaliza-

tion shown in Figure 5.1. The sampled received signal at the ith branch is given

by rie
j✓i

s(n) where the only di↵erence between this model and the linear combiner

introduced in Chapter 4 is that the signals in this model are sampled every symbol.

After being scaled by the combiner weights, the signal at the ith branch becomes

airis(n) regardless of the combining method being MRC or EGC. After each of these

signals are summed together, the combiner output is the input to a single-channel

linear adaptive equalizer. The complex output of the equalizer y(n) is demodulated

and decoded as per the ALE3G standard as described in Chapter 2.

The joint spatial-temporal equalizer is di↵erent from the two-step system model

previously discussed because it requires only one step to perform both temporal and

spatial processing. The system model is shown in 5.2. For simplicity, we will only

derive the LMS case, but the same derivation can be extended for the RLS case. The

signals received at each antenna are passed through a tapped-delay line having L/M

delay elements, where M is the total number of diversity branches and L is an integer:

vi(n) = [vi(n), vi(n� 1), ..., vi(n� L/M + 1)] (5.1)

and a composite input vector of length L is constructed:

u(n) = [v1(n),v2(n), ...,vM (n)]T (5.2)

The combiner weights at each branch are given by

ĉi(n) = [ĉi,1(n), ĉi,2(n), ..., ĉi,L/M (n)]T (5.3)

29

which are initialized to ĉi(n) = 0 at the start of the algorithm. Each of these combiner

weights are concatenated together to create a composite tap-weight vector of length

L:

ŵH(n) = [ĉH1 (n), ĉH2 (n), ..., ĉHM (n)] (5.4)

and the filter output is given by

y(n) = ŵH(n)u(n) (5.5)

The error signal e(n) and estimated tap-weight vector update ŵ(n + 1) are given in

Chapter 3 (Equations 3.5 and 3.6) and reproduced here for convenience:

e(n) = d(n)� y(n)

ŵ(n+ 1) = ŵ(n) + µu(n)e⇤(n)

Note that there is a restriction on the selection of filter length L given M diversity

branches; Lmust be a multiple ofM . This constraint exists for ease of implementation

and so that the same amount of spatial information from each branch is weighted

and equalized. After symbol decisions are made, the waveform is demodulated and

decoded.

5.2 Simulation Details

An ALE3G BW5 payload of 50 bits is formed into PSK symbols as described

in Chapter 2. The symbols are then upsampled by an upsampling factor of four

samples per symbol and filtered by a raised cosine pulseshaping filter with a stopband

attenuation of 60 dB and a rollo↵ factor of 0.5. The modulated symbols are then

30

transmitted at 9600 symbols per second (the baud rate upsampled by four) through the

ionosphere simulated using the Watterson model with mid-latitude quiet conditions:

two paths, 0.1 Hz Doppler spread, 0.5 ms relative path delay, path gains of 0 dB

and -1 dB, various SNR values ranging from -20 dB to 35 dB, and specified angles of

arrival for each signal path.

A simulated array manifold is created for a ULA having between one and four

isotropic elements spaced one half-wavelength apart. After the signal is received by

the antenna array, it is downsampled and aligned in time according to its baud rate.

For both the combiner followed by single-channel equalizer and joint spatial-temporal

equalizer cases, the same equalizer parameters are used to give valid comparisons.

Tap weights are initialized to all zeros, the total number of taps varies across simu-

lations and ranges from 12 to 48, the step size (LMS) varies from 0.01 to 0.40, the

regularization parameter (RLS) is 0.01, the forgetting factor (RLS) ranges from 0.85

to 0.99. After equalization, the symbols are demodulated and decoded according to

the ALE3G BW5 standard and results are compared, evaluated, and discussed.

31

Chapter 6

Experimental Results

6.1 Introduction

The joint spatial-temporal equalizer was compared against two other diversity

receiver structures: an EGC followed by a single-channel (temporal) equalizer, and

an MRC followed by a single-channel equalizer. It is found that EGC and MRC

performance are comparable for the simulations performed so for ease of legibility, the

results presented in the following sections compare the joint spatial-temporal equalizer

to only one other receiver structure. The next two sections present results for equalizer

convergence and overall system performance through demodulation and decoding.

6.2 Equalizer Convergence

The joint spatial-temporal equalizer was compared against the single-channel equal-

izer following a linear combiner. For various SNRs, total number of tap weights, and

step size µ (for LMS) or forgetting factor � (for RLS), the convergence times and

MSEs (where the error is the Euclidean distance between constellation points) were

32

recorded for four branches of diversity after averaging 20 independent trials and are

shown in Table 6.1 and Table 6.2 where SCE refers to the single-channel equalizer

after combining using an EGC and JSTE refers to the joint spatial-temporal equal-

izer. Convergence times are in terms of number of training symbols (out of 832) and

are calculated by choosing a threshold and selecting the last training symbol that

remained under the threshold as the point of convergence. The MSE was recorded as

the error at the last training symbol. If neither equalizer converged before the last

training symbol, convergence was not recorded. These tables are presented to help

the reader understand the e↵ect of di↵erent parameters on equalization. It should be

noted that for many combinations of parameters, the equalizers converged but only

after training mode ended; the results from these experiments were not recorded ex-

cept for the LMS cases when the joint spatial-temporal equalizer converged during

training but the single-channel equalizer did not.

There are only three runs of the LMS convergence simulations shown in Table 6.1

where the MSE for SCE is lower then the MSE for JSTE and not a single case where

the SCE converged faster than the STE. There are also only three runs from Table 6.2

where the MSE was lower for SCE than JSTE and again no cases of faster convergence.

For both the RLS and LMS algorithms, the joint spatial-temporal equalizer learns

its tap weights faster than the single-channel equalizer and in general more closely

approaches the optimal weights. This is an advantage especially for when there are

short training sequences without any probes such as those seen in ALE3G BW0, BW1,

BW3, and BW5.

For selected experiments, learning curves for 20 iterations and 8-PSK constellations

for a single iteration are presented to o↵er side-by-side comparisons between the joint

spatial-temporal equalizer and the combiner followed by single-channel equalizer. The

33

Table 6.1: Equalizer convergence comparisons, LMS

µ Taps SNR (dB) Conv., SCE Conv., JSTE MSE, SCE MSE, JSTE
0.05 24 10 – 570 0.0185 0.0017
0.05 24 20 – 270 0.0550 0.0009
0.05 24 35 – 733 0.0298 0.0004
0.05 36 10 – 553 0.0262 0.0050
0.05 36 20 – 727 0.0507 0.0003
0.10 12 10 – 130 0.0103 0.0059
0.10 12 20 – 339 0.0295 0.0101
0.10 24 10 – 266 0.0242 0.0138
0.10 24 20 – 225 0.0189 0.0009
0.10 36 10 – 714 0.0044 0.0162
0.10 36 20 – 523 0.0264 0.0002
0.10 48 10 – 254 0.0272 0.0071
0.10 48 20 – 400 0.0121 0.0003
0.15 12 10 – 551 0.0316 0.0081
0.15 12 20 – 784 0.0240 0.0018
0.15 24 10 – 95 0.0234 0.0089
0.15 24 20 774 335 0.0028 0.0004
0.15 36 10 – 417 0.0123 0.0114
0.15 36 20 – 546 0.0174 0.0018
0.20 12 10 – 227 0.0037 0.0065
0.20 12 20 389 296 0.0030 0.0004
0.20 24 20 719 136 0.0054 0.0008
0.20 36 10 – 127 0.0374 0.0052
0.20 36 20 792 274 0.0187 0.0317
0.30 12 10 – 73 0.0072 0.0063
0.30 12 20 749 616 0.0100 0.0004
0.40 12 10 144 58 0.0387 0.0101
0.40 12 20 351 205 0.0160 0.0008

learning curves are a way to visualize much of the same data presented in Table 6.1 and

Table 6.2 and the symbol constellations show further a�rmation that the equalizer is

doing a good job at making symbol decisions. The symbol constellations tend to be

more closely clustered around correct symbols for the joint spatial-temporal equalizer

symbols. It should be noted that the constellations show all of the symbols in a

34

Table 6.2: Equalizer convergence comparisons, RLS

� Taps SNR (dB) Conv., SCE Conv., JSTE MSE, SCE MSE, JSTE
0.99 12 20 502 476 0.0087 0.0002
0.99 24 10 559 379 0.0316 0.0062
0.99 24 20 600 446 0.0173 0.0007
0.99 36 10 556 376 0.0139 0.0028
0.99 36 20 693 586 0.0073 0.0094
0.99 48 10 589 430 0.0325 0.0036
0.99 48 20 693 587 0.0013 0.0012
0.95 12 10 275 110 0.0258 0.0076
0.95 12 20 791 679 0.0108 0.0010
0.95 24 10 123 76 0.0116 0.0182
0.95 24 20 143 137 0.0278 0.0020
0.95 36 10 123 76 0.0116 0.0182
0.95 36 20 143 137 0.0278 0.0020
0.95 48 20 208 123 0.0045 0.0009
0.90 12 10 58 54 0.0256 0.0017
0.90 12 20 69 69 0.0272 0.0009
0.90 24 10 69 51 0.0489 0.0061
0.90 24 20 79 74 0.0193 0.0037
0.90 36 10 86 51 0.0558 0.0267
0.90 36 20 81 67 0.0067 0.0012
0.90 48 10 109 51 0.0515 0.0295
0.90 48 20 96 62 0.0074 0.0049
0.85 12 10 70 33 0.0376 0.0124
0.85 12 20 54 46 0.0810 0.0014
0.85 24 10 54 37 0.0692 0.0260
0.85 24 20 192 43 0.0157 0.0052
0.85 24 30 58 50 0.0227 0.0002
0.85 36 20 66 49 0.0109 0.0024
0.85 48 20 87 47 0.0205 0.0148
0.85 48 30 96 53 0.0004 0.0003

transmission including the transient period before the equalizers converged.

35

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) EGC + single-channel equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(b) Joint spatial-temporal equalizer

Figure 6.1: Equalized symbols: 24 taps, RLS(0.99), SNR 20 dB, 4 diversity branches

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Symbols

Joint spatial−temporal equalizer
MRC + single−channel equalizer

Figure 6.2: Learning curves: 24 taps, RLS(0.99), SNR 20 dB, 4 diversity branches

36

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) EGC + single-channel equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(b) Joint spatial-temporal equalizer

Figure 6.3: Equalized symbols: 24 taps, RLS(0.95), SNR 20 dB, 4 diversity branches

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Symbols

Joint spatial−temporal equalizer
MRC + single−channel equalizer

Figure 6.4: Learning curves: 24 taps, RLS(0.95), SNR 20 dB, 4 diversity branches

37

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) EGC + single-channel equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(b) Joint spatial-temporal equalizer

Figure 6.5: Equalized symbols: 12 taps, RLS(0.95), SNR 10 dB, 4 diversity branches

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Symbols

Joint spatial−temporal equalizer
MRC + single−channel equalizer

Figure 6.6: Learning curves: 12 taps, RLS(0.95), SNR 10 dB, 4 diversity branches

38

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) EGC + single-channel equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(b) Joint spatial-temporal equalizer

Figure 6.7: Equalized symbols: 12 taps, RLS(0.90), SNR 20 dB, 4 diversity branches

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Symbols

Joint spatial−temporal equalizer
MRC + single−channel equalizer

Figure 6.8: Learning curves: 12 taps, RLS(0.90), SNR 20 dB, 4 diversity branches

39

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) EGC + single-channel equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(b) Joint spatial-temporal equalizer

Figure 6.9: Equalized symbols: 36 taps, LMS(0.05), SNR 10 dB, 4 diversity branches

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Symbols

Joint spatial−temporal equalizer
MRC + single−channel equalizer

Figure 6.10: Learning curves: 36 taps, LMS(0.05), SNR 10 dB, 4 diversity branches

40

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) EGC + single-channel equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(b) Joint spatial-temporal equalizer

Figure 6.11: Equalized symbols: 36 taps, LMS(0.10), SNR 20 dB, 4 diversity branches

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Symbols

Joint spatial−temporal equalizer
MRC + single−channel equalizer

Figure 6.12: Learning curves: 36 taps, LMS(0.10), SNR 20 dB, 4 diversity branches

41

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) EGC + single-channel equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase
Q
ua
dr
at
ur
e

(b) Joint spatial-temporal equalizer

Figure 6.13: Equalized symbols: 12 taps, LMS(0.15), SNR 20 dB, 4 diversity branches

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Symbols

Joint spatial−temporal equalizer
MRC + single−channel equalizer

Figure 6.14: Learning curves: 12 taps, LMS(0.15), SNR 20 dB, 4 diversity branches

42

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(a) EGC + single-channel equalizer

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−Phase

Q
ua
dr
at
ur
e

(b) Joint spatial-temporal equalizer

Figure 6.15: Equalized symbols: 12 taps, LMS(0.40), SNR 20 dB, 4 diversity branches

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Symbols

Joint spatial−temporal equalizer
MRC + single−channel equalizer

Figure 6.16: Learning curves: 12 taps, LMS(0.40), SNR 20 dB, 4 diversity branches

43

6.3 Receiver Performance

In order to measure how well the entire systems are performing through demodu-

lation and decoding, bit error rates (BERs) are plotted against various signal-to-noise

ratios (SNRs) for all three diversity receivers. Each simulation is averaged over 1000

independent trials and the results are presented in Figures 6.17, 6.18, 6.19, 6.20.

Figure 6.17 shows the BER for SNRs of -20 dB to 5 dB for two 12-tap RLS

equalizers with forgetting factors of 0.99. This combination of parameters performs

the best overall for all three receivers at low SNRs, but the EGC receiver is left

out of the plot for clarity since it performs similarly to MRC; this is also the case

for subsequent simulations. With increasing the number of equalizer filter taps but

holding other parameters the same, performance across all receivers drops slightly

because there are more weights to be learned. The joint spatial-temporal equalizer

has less than 1 dB improvement for two branches of diversity, 1.5 dB improvement

for three branches, and 2 dB improvement for four branches.

Figure 6.18 shows the BER for SNRs of -10 dB to 20 dB for two 12-tap RLS

equalizers with forgetting factors of 0.95. Decreasing the forgetting factor from 0.99

results in good performance but for a higher range of SNRs. This figure more clearly

shows the performance gain of the joint spatial-temporal equalizer; there is a 6 dB

improvement for two branches of diversity, 9 dB improvement for three branches,

and 10 dB improvement for four branches. Reducing the forgetting factor to 0.90

as shown in Figure 6.19 illustrates an even greater performance gap between the

joint spatial-temporal equalizer and the MRC followed by single-channel equalizer.

However, overall performance drops slightly for the JSTE and drastically for the

other receivers. The majority of the LMS simulations did not work as well as the RLS

equalizers. As seen in Figure 6.20, the MRC receiver performs better than JSTE at the

44

lowest SNRs. At -8.5 dB, the JSTE for two diversity branches begins to outperform

but not significantly. For three diversity branches, the JSTE begins to perform better

than MRC at around -10 dB and shows a 1 dB improvement. At -11 dB, the JSTE

for four diversity branches begins to outperform and reaches an improvement of 2 dB.

−20 −15 −10 −5 0 5

10−2

10−1

100

Signal−to−Noise Ratio, dB

Bi
t E

rro
r R

at
e

M=1
MRC + single−channel equalizer M=2
MRC + single−channel equalizer M=3
MRC + single−channel equalizer M=4
Joint spatial−temporal equalizer M=2
Joint spatial−temporal equalizer M=3
Joint spatial−temporal equalizer M=4

Figure 6.17: BER versus SNR for two receivers: 12 taps, RLS(0.99)

45

−10 −5 0 5 10 15 20

10−2

10−1

100

Signal−to−Noise Ratio, dB

Bi
t E

rro
r R

at
e

M=1
MRC + single−channel equalizer M=2
MRC + single−channel equalizer M=3
MRC + single−channel equalizer M=4
Joint spatial−temporal equalizer M=2
Joint spatial−temporal equalizer M=3
Joint spatial−temporal equalizer M=4

Figure 6.18: BER versus SNR for two receivers: 12 taps, RLS(0.95)

46

−5 0 5 10 15 20

10−2

10−1

100

Signal−to−Noise Ratio, dB

Bi
t E

rro
r R

at
e

M=1
MRC + single−channel equalizer M=2
MRC + single−channel equalizer M=3
MRC + single−channel equalizer M=4
Joint spatial−temporal equalizer M=2
Joint spatial−temporal equalizer M=3
Joint spatial−temporal equalizer M=4

Figure 6.19: BER versus SNR for two receivers: 12 taps, RLS(0.90)

47

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0

10−2

10−1

100

Signal−to−Noise Ratio, dB

Bi
t E

rro
r R

at
e

M=1
MRC + single−channel equalizer M=2
MRC + single−channel equalizer M=3
MRC + single−channel equalizer M=4
Joint spatial−temporal equalizer M=2
Joint spatial−temporal equalizer M=3
Joint spatial−temporal equalizer M=4

Figure 6.20: BER versus SNR for two receivers: 24 taps, LMS(0.01)

48

Chapter 7

Conclusions and Future Work

The joint spatial-temporal equalizer outperformed linear combiners followed by

single-channel equalization under many di↵erent conditions in terms of equalizer con-

vergence times, equalizer MSE, and overall BER, especially at low SNRs. By jointly

combining and equalizing, there is no need to compute the channel gain or perform co-

phasing of received signals. For an SDR framework that uses a dataflow architecture,

this is advantageous since the receiver requires less software components to perform

combining and equalizing. The proposed algorithm is easily scalable for multiple input

channels if a software defined receiver already implements a single-channel equalizer.

Possible avenues for future work include implementing and testing di↵erent adap-

tive algorithms for linear equalizer tap-weight estimation, using fractionally spaced

equalization instead of symbol-spaced, or using a nonlinear equalizer such as a DFE.

Another avenue to explore for future work is to treat the equalizer as a classifier and

use machine learning algorithms to learn the combiner and equalizer weights for a

spatial-temporal equalizer. Lastly, rewriting the code in python and C++ and testing

the algorithm with live multi-channel data on a Southwest Research Institute system

49

is another potential opportunity for future work.

50

Appendix A

MATLAB Code

The following Matlab functions were used for the simulations in this thesis.

The script ALE3G Watterson EqCompare calls the functions ALE3Gmod, ALE3Gdemod,

equalizer, and ChannelSimulator v5, an HF channel simulator modified from one

originally written by Ryan Casey of Southwest Research Institute.

A.1 ALE3G Signal Generator

1 function [msg,tx,upsamp,syms] = ALE3Gmod(BW)

2 % ALE3G modulation

3 % 8�PSK, 1800 Hz carrier, 2400 baud

4

5 % parameters

6 %Fc = 1800; % carrier frequency, Hz

7 %baud = 2400; % symbols per second

8 upsamp = 4; % upsample factor, samples per symbol

9 %Fs = upsamp*baud; % sampling frequency, Hz

10

11 % TLC/AGC guard sequence, 256 syms

12 tlc = textread('tlcagc.txt','%n');

13

14 switch BW

51

15 case '0'

16 bits = 26; % number of payload bits

17 constlen = 7; % encoder constraint length

18 codegen = [133 171]; % generator polynomials in octal

19 row = 4; col = 13; % interleaving matrix

20 base = 16; % for mapping bits to syms

21 chip = 64;

22 pn = 'PNseqBW0.txt'; % pn scrambling sequence

23 pre = 'pre0.txt'; % preamble

24 payload = 832; % number of payload syms

25 case '1'

26 bits = 48;

27 constlen = 9;

28 codegen = [711 663 557];

29 row = 16; col = 9;

30 base = 16;

31 chip = 64;

32 pn = 'PNseqBW1.txt';

33 pre = 'pre1.txt';

34 payload = 2304;

35 case '1+'

36 bits = 51;

37 constlen = 7;

38 codegen = [133 171];

39 puncpat = [1,1,0];

40 base = 16;

41 chip = 32;

42 pn = 'PNseqBW1.txt';

43 tlc = tlc(1:192);

44 pre = 'pre1plus.txt';

45 payload = 544;

46 case '2' % make add'l cases for variable lengths

47 constlen = 8;

48 codegen = [];

49 pn = 'PNseqBW2.txt';

50 tlc = tlc(1:240);

51 pre = 'pre2.txt';

52 %payload = 2880; %5760,11520,23040, 304+(n*960), n=3,6,12,24

53 case '3' % make add'l cases for variable lengths

54 constlen = 7;

55 codegen = [];

56 base = 16;

57 chip = 16;

52

58 pn = 'PNseqBW3.txt';

59 tlc = 0;

60 pre = 'pre3.txt';

61 %payload = 2304; %4352,8448,16640

62 case '4'

63 bits = 2;

64 base = 4;

65 chip = 1280;

66 pn = 'PNseqBW4.txt';

67 payload = 1280;

68 case '5'

69 %crc = []; % 8�bit CRC

70 bits = 50;

71 constlen = 7;

72 codegen = [133 171];

73 row = 10; col = 10;

74 base = 16;

75 chip = 64;

76 pn = 'PNseqBW5.txt';

77 pre = 'pre5.txt';

78 payload = 1600;

79 end

80

81 % binary data stream

82 msg = round(rand(bits,1));

83 % crc = CRC BW5(msg,poly,etc.)

84 %msg = cat(1,msg,crc);

85

86 if ˜strcmp(BW,'4')

87 % FEC

88 init state = msg(end:�1:bits�constlen+2); % last constlen�1 bits

89 init state = bin2dec(num2str(init state'));

90 trellis = poly2trellis(constlen,codegen);

91 if ˜strcmp(BW,'1+')

92 coded = convenc(msg,trellis,init state);

93 else

94 coded = convenc(msg,trellis,puncpat,init state);

95 end

96 % CHECK: viterbi decode

97 % tblen = 5*constlen;

98 % vit = vitdec([coded;coded],trellis,tblen,'trunc','hard');

99 % vit = vit(bits+1:end); % check: is vit same as msg?

100 % sum(vit == msg) % should = 50 for BW5

53

101

102 if ˜strcmp(BW,'1+')

103 % interleave

104 deintrlvd = reshape(coded,row,col);

105 intrlvd = reshape(deintrlvd',row*col,1);

106 % CHECK: deinterleave

107 % i = reshape(intrlvd,col,row)';

108 % codedBits = reshape(i,col*row,1);

109 % sum(codedBits == coded) % should = 100 for BW5

110

111 % base change

112 bc = reshape(intrlvd,log2(base),row*col/log2(base))';

113 else % BW 1+ � yes FEC but no interleaving

114 bc = reshape(coded,log2(base),length(coded)/log2(base))';

115 end

116 else % BW 4 � no FEC or interleaving

117 bc = reshape(msg,log2(base),bits/log2(base))';

118 end

119 corr = bin2dec(num2str(bc));

120

121 % walsh modulation

122 if strcmp(BW,'4')

123 % Table C�XVIII, mapped to complex [0,4] ��> [1,�1]
124 tribitSeq = zeros(chip,4);

125 tribitSeq(:,1) = ones(chip,1); % 00

126 tribitSeq(:,2) = repmat([1;�1;1;�1],chip/4,1); % 01

127 tribitSeq(:,3) = repmat([1;1;�1;�1],chip/4,1); % 10

128 tribitSeq(:,4) = repmat([1;�1;�1;1],chip/4,1); % 11

129 else

130 % Table C�VIII, mapped to complex [0,4] ��> [1,�1]
131 tribitSeq = zeros(chip,16);

132 tribitSeq(:,1) = ones(chip,1); % 0000

133 tribitSeq(:,2) = repmat([1;�1;1;�1],chip/4,1); % 0001

134 tribitSeq(:,3) = repmat([1;1;�1;�1],chip/4,1); % 0010

135 tribitSeq(:,4) = repmat([1;�1;�1;1],chip/4,1); % 0011

136 tribitSeq(:,5) = repmat([1;1;1;1;�1;�1;�1;�1],chip/8,1); % 0100

137 tribitSeq(:,6) = repmat([1;�1;1;�1;�1;1;�1;1],chip/8,1); % 0101

138 tribitSeq(:,7) = repmat([1;1;�1;�1;�1;�1;1;1],chip/8,1); % 0110

139 tribitSeq(:,8) = repmat([1;�1;�1;1;�1;1;1;�1],chip/8,1); % 0111

140 tribitSeq(:,9) = repmat([ones(8,1);�1*ones(8,1)],chip/16,1); % 1000

141 tribitSeq(:,10) = repmat([repmat([1;�1],4,1);repmat([�1;1],4,1)],...
142 chip/16,1); % 1001

143 tribitSeq(:,11) = repmat([1;1;�1;�1;1;1;�1;�1;�1;�1;1;1;�1;�1;1;1],...

54

144 chip/16,1); % 1010

145 tribitSeq(:,12) = repmat([1;�1;�1;1;1;�1;�1;1;�1;1;1;�1;�1;1;1;�1],...
146 chip/16,1); % 1011

147 tribitSeq(:,13) = repmat([ones(4,1);�1*ones(8,1);ones(4,1)],...
148 chip/16,1); % 1100

149 tribitSeq(:,14) = repmat([1;�1;1;�1;repmat([�1;1],4,1);1;�1;1;�1],...
150 chip/16,1); % 1101

151 tribitSeq(:,15) = repmat([1;1;�1;�1;�1;�1;1;1;�1;�1;1;1;1;1;�1;�1],...
152 chip/16,1); % 1110

153 tribitSeq(:,16) = repmat([1;�1;�1;1;�1;1;1;�1;1;1;�1;1;�1;�1;1;1],...
154 chip/16,1); % 1111

155 end

156

157 chunks = payload/chip;

158 correlated = corr + ones(chunks,1); % fix matlab indexing

159

160 y = zeros(chip,chunks);

161 for i = 1:chunks

162 y(:,i) = tribitSeq(:,correlated(i));

163 end

164 % CHECK: correlate

165 % y = y.';

166 % yy = y*tribitSeq; % inner product

167 % [maxVals, cor] = max(yy,[],2);

168 % sum(cor == correlated) % should = 25 for BW5

169 walsh = reshape(y,payload,1);

170

171 % PN spreading

172 PNseq = textread(pn,'%n');

173 PNseq IQ = exp((�1j*2*pi/8)*PNseq); % map to complex conjugate

174 lenpn = length(PNseq);

175 reps = payload/lenpn;

176 PNseq IQ = repmat(PNseq IQ,ceil(reps),1);

177 PNseq IQ = PNseq IQ(1:payload);

178 PNsyms = walsh./PNseq IQ;

179 % CHECK: descramble

180 % descrambled = PNseq IQ.*syms; % component�wise mod 8 addition

181 % sum(descrambled == walsh); % should = 1600 for BW5

182

183 % add TLC/AGC + preamble

184 if strcmp(BW,'4')

185 preamble = [];

186 else

55

187 preamble = textread(pre,'%n');

188 end

189 presyms = cat(1,tlc,preamble); % TLC/AGC + preamble tribit symbols

190

191 % map tribits to phases

192 presyms = exp(1j*2*pi/8*presyms);

193

194 % append TLC/AGC + preamble to beginning of payload symbols

195 syms = cat(1,presyms,PNsyms);

196 % figure()

197 % plot(syms,'o')

198 % axis([�1.2 1.2 �1.2 1.2])

199

200 % modulate onto carrier

201 upsyms = upsample(syms,upsamp);

202 h = fdesign.pulseshaping(upsamp,'Raised Cosine','Ast,Beta',60,0.50);

203 Hd = design(h);

204 filtered = conv(Hd.Numerator, upsyms);

205 del = (length(Hd.Numerator)�1)/2; % group delay

206 tx = filtered(del+1:end�del);

A.2 ALE3G Demodulator

1 function [bits] = ALE3Gdemod(BW,tx,graph)

2 % ALE3G demodulation

3

4 % parameters

5 switch BW

6 case '0'

7 tlc = 256; % number of tlc/agc syms

8 preamble = 384; % number of preamble syms

9 payload = 832; % number of payload syms

10 filename = 'PNseqBW0.txt'; % pn descrambling sequence

11 chip = 64;

12 row = 4; col = 13; % deinterleaving matrix

13 rate = 1/2; % decoder rate

14 constlen = 7; % decoder constraint length

15 codegen = [133 171]; % generator polynomials in octal

16 case '1'

17 tlc = 256;

18 preamble = 576;

56

19 payload = 2304;

20 filename = 'PNseqBW1.txt';

21 chip = 64;

22 row = 16; col = 9;

23 rate = 1/3;

24 constlen = 9;

25 codegen = [711 663 557];

26 case '1+'

27 tlc = 192;

28 preamble = 192;

29 payload = 544;

30 filename = 'PNseqBW1.txt';

31 chip = 32;

32 rate = 3/4;

33 constlen = 7;

34 codegen = [133 171];

35 puncpat = [1,1,0];

36 case '2' % make add'l cases for variable lengths

37 tlc = 240;

38 preamble = 64;

39 %payload = 2880; %5760,11520,23040, 304+(n*960), n=3,6,12,24

40 filename = 'PNseqBW2.txt';

41 rate = 1/2;

42 constlen = 8;

43 codegen = [];

44 case '3' % make add'l cases for variable lengths

45 tlc = 0;

46 preamble = 640;

47 %payload = 2304; %4352,8448,16640

48 filename = 'PNseqBW3.txt';

49 chip = 16;

50 rate = 1/2;

51 constlen = 7;

52 codegen = [];

53 case '4'

54 tlc = 256;

55 preamble = 0;

56 payload = 1280;

57 filename = 'PNseqBW4.txt';

58 chip = 1280;

59 case '5'

60 tlc = 256;

61 preamble = 576;

57

62 payload = 1600;

63 filename = 'PNseqBW5.txt';

64 chip = 64;

65 row = 10; col = 10;

66 rate = 1/2;

67 constlen = 7;

68 codegen = [133 171];

69 end

70

71 % we only want the payload syms � trim off preamble

72 trimmedSyms = tx(tlc+preamble+1:tlc+preamble+payload);

73

74 % descramble

75 PNseq = textread(filename,'%n');

76 lenpn = length(PNseq);

77 reps = payload/lenpn;

78 PNseq IQ = exp((�1j*2*pi/8)*PNseq);
79 PNseq IQ = repmat(PNseq IQ,ceil(reps),1);

80 PNseq IQ = PNseq IQ(1:payload);

81

82 descrambled = PNseq IQ.*trimmedSyms; % component�wise mod 8 addition

83 if graph==1

84 figure()

85 plot(descrambled,'o') % 8�PSK becomes BPSK

86 axis([�1.2 1.2 �1.2 1.2])

87 title('Descrambled Syms')

88 end

89

90 % symbol error rate

91 %d = csvread('descrambled.txt');

92 %descrambled exp = d(:,1) + 1j*d(:,2);

93 %symerr = 100*numel(find(abs(descrambled exp � descrambled)>0.01))/payload;

94

95 % normalize to unit vectors to get rid of outliers

96 normalized = zeros(length(descrambled),1);

97 for i = 1:length(descrambled)

98 normalized(i) = descrambled(i)/norm(descrambled(i));

99 end

100

101 % correlate

102 if strcmp(BW,'4')

103 % Table C�XVIII, mapped to complex [0,4] ��> [1,�1]
104 tribitSeq = zeros(chip,4);

58

105 tribitSeq(:,1) = ones(chip,1); % 00

106 tribitSeq(:,2) = repmat([1;�1;1;�1],chip/4,1); % 01

107 tribitSeq(:,3) = repmat([1;1;�1;�1],chip/4,1); % 10

108 tribitSeq(:,4) = repmat([1;�1;�1;1],chip/4,1); % 11

109 else

110 % Table C�VIII, mapped to complex [0,4] ��> [1,�1]
111 tribitSeq = zeros(chip,16);

112 tribitSeq(:,1) = ones(chip,1); % 0000

113 tribitSeq(:,2) = repmat([1;�1;1;�1],chip/4,1); % 0001

114 tribitSeq(:,3) = repmat([1;1;�1;�1],chip/4,1); % 0010

115 tribitSeq(:,4) = repmat([1;�1;�1;1],chip/4,1); % 0011

116 tribitSeq(:,5) = repmat([1;1;1;1;�1;�1;�1;�1],chip/8,1); % 0100

117 tribitSeq(:,6) = repmat([1;�1;1;�1;�1;1;�1;1],chip/8,1); % 0101

118 tribitSeq(:,7) = repmat([1;1;�1;�1;�1;�1;1;1],chip/8,1); % 0110

119 tribitSeq(:,8) = repmat([1;�1;�1;1;�1;1;1;�1],chip/8,1); % 0111

120 tribitSeq(:,9) = repmat([ones(8,1);�1*ones(8,1)],chip/16,1); % 1000

121 tribitSeq(:,10) = repmat([repmat([1;�1],4,1);repmat([�1;1],4,1)],...
122 chip/16,1); % 1001

123 tribitSeq(:,11) = repmat([1;1;�1;�1;1;1;�1;�1;�1;�1;1;1;�1;�1;1;1],...
124 chip/16,1); % 1010

125 tribitSeq(:,12) = repmat([1;�1;�1;1;1;�1;�1;1;�1;1;1;�1;�1;1;1;�1],...
126 chip/16,1); % 1011

127 tribitSeq(:,13) = repmat([ones(4,1);�1*ones(8,1);ones(4,1)],...
128 chip/16,1); % 1100

129 tribitSeq(:,14) = repmat([1;�1;1;�1;repmat([�1;1],4,1);1;�1;1;�1],...
130 chip/16,1); % 1101

131 tribitSeq(:,15) = repmat([1;1;�1;�1;�1;�1;1;1;�1;�1;1;1;1;1;�1;�1],...
132 chip/16,1); % 1110

133 tribitSeq(:,16) = repmat([1;�1;�1;1;�1;1;1;�1;1;1;�1;1;�1;�1;1;1],...
134 chip/16,1); % 1111

135 end

136

137 chunks = payload/chip;

138 y = reshape(normalized,chip,chunks).'; % non�conjugate transpose

139

140 % find indices where inner product is maximum

141 yy = y*tribitSeq; % inner product

142 [˜, correlated] = max(yy,[],2);

143 correlated = correlated � ones(chunks,1); % fix matlab indexing

144 % symbol error rate

145 %correlated exp = textread('correlated.txt','%n');

146 %symerr = 100*numel(find((correlated == correlated exp) == 0))/chunks;

147

59

148 % decode

149 if ˜strcmp(BW,'4')

150

151 % base change

152 bin = dec2bin(correlated,4)';

153 bin = str2num(reshape(bin,numel(bin),1));

154

155 if ˜strcmp(BW,'1+')

156 % deinterleave

157 bin = reshape(bin,col,row)';

158 codedBits = reshape(bin,numel(bin),1);

159 else

160 codedBits = bin;

161 end

162

163 % coded bit error rate

164 %codedBits exp = textread('codedbits.txt','%n');

165 %biterr = 100*numel(find((codedBits == codedBits exp) == 0))/numel(bin)

166

167 % viterbi decode w/ tail�biting, 2 iterations

168 trellis = poly2trellis(constlen,codegen);

169 tblen = 5*constlen;

170 if ˜strcmp(BW,'1+')

171 vit = vitdec([codedBits;codedBits],trellis,tblen,'trunc','hard');

172 %vit = vitdec(codedBits,trellis,tblen,'term','hard');

173 else

174 vit = vitdec([codedBits;codedBits],trellis,tblen,'trunc',...

175 'hard',puncpat);

176 end

177 n = rate*numel(bin); % number of decoded bits

178 bits = vit(n+1:end);

179

180 % bit error rate

181 %bits exp = textread('bits.txt','%n');

182 %biterr = 100*numel(find((bits == bits exp) == 0))/n;

183 else

184 % base change

185 bin = dec2bin(correlated,2)';

186 bits = str2num(reshape(bin,numel(bin),1));

187 end

60

A.3 Spatial-Temporal Equalizer

1 function [symbols, error, weightsOutput] = equalizer(rxsig, ...

2 trainsig, initialWeights, resetWeights, eqMode, ...

3 refTap, stepSize, lambda, delta1, M)

4 % Spatial�temporal adaptive 8�PSK equalizer using LMS or RLS algorithms

5 %

6 % function [symbols, error, weightsOutput] = equalizer(rxsig, ...

7 % trainsig, initialWeights, resetWeights, eqMode, ...

8 % refTap, stepSize, lambda, delta1, M)

9 % Inputs:

10 % rxsig, the signal to be equalized

11 % trainsig, the training sequence

12 % initialWeights, initial tap weight vector

13 % resetWeights, set to 1 to reset the weights

14 % eqMode, set to 1 for LMS, else RLS

15 % refTap, reference tap

16 % stepSize, step size when using LMS

17 % lambda, forgetting factor when using RLS

18 % delta1, regularization parameter when using RLS

19 % M, the number of inputs to the multichannel equalizer; set to

20 % 1 for single�channel (conventional temporal equalizer) operation.

21

22 % Equalizer settings

23 L = length(initialWeights); % number of tap weights

24

25 persistent weights

26 if(isempty(weights))

27 weights = initialWeights + 0j;

28 end

29

30 % Initialize

31 k = zeros(L, 1) + 0j; % Gain vector (both LMS and RLS)

32 Delta = zeros(L, L) + 0j; Delta(1:L+1:end) = delta1; % inv. corr. mtx.

33 if resetWeights==1

34 weights = initialWeights + 0j;

35 end

36

37 % input vector u(n)

38 for mm=1:M

39 evalstr=['u' num2str(mm) '= zeros(L/M,1) + 0j;'];

61

40 eval(evalstr);

41 end

42

43 delay = refTap � 1;

44 symbols = zeros(length(rxsig),1);

45 error = zeros(length(rxsig),1);

46 for n = 1:length(rxsig)

47

48 % tapped delay line

49 evalstr2='u=[';

50 for mm=1:M

51 evalstr=['u' num2str(mm) '= [rxsig(n,mm); u' num2str(mm) ...

52 '(1:L/M�1)];'];
53 eval(evalstr);

54 evalstr2 = [evalstr2 'u' num2str(mm) ';'];

55 end

56 evalstr2 = [evalstr2 '];'];

57 eval(evalstr2);

58

59 if n >= delay

60 y = weights' * u;

61 m = n � delay + 1;

62 if n<=length(trainsig)

63 % training mode

64 d = trainsig(m);

65 else

66 % decision�directed mode

67 d = pskdemod(y,8);

68 d = exp(1j*2*pi/8*d);

69 end

70 e = d � y; % symbol estimation error

71 if eqMode==1

72 % LMS

73 k = stepSize*u;

74 else

75 % RLS

76 k = Delta * u / (lambda + u'*Delta*u);

77 Delta = 1/lambda * (Delta � k*u'*Delta);

78 end

79 weights = weights + k*conj(e); % update weights

80 symbols(m) = y; % note: last (delay�1) symbols not estimated

81 error(m) = e;

82 end

62

83 end

84 weightsOutput = weights;

A.4 Watterson Channel Simulator

1 function [y,a i] = ChannelSimulator v5(x,fs,model,K,fd,tau,gaindB,...

2 SNRdB,state,graph,response,angle0,angle1)

3 % [y,SNRret] = ChannelSimulator v2(x,fs,model,K,fd,tau,gaindB,SNRdB,...

4 % state,graph)

5 % implements & applies a time�varying channel using the model specified by

6 % K different paths, each of which have an fd Doppler measuarement,

7 % separated by tau ms, and have gains of gaindB. The overall SNR is given

8 % by SNRdB.

9 %

10 % INPUT

11 % x �> signal exciting the channel

12 % fs �>sample rate of x

13 % model �> string representing model type [Clarke,Watterson]

14 % K �> number of differnt paths

15 % fd �> Doppler measurment for each path

16 % tau �> relative path delays

17 % gaindB �> path gains

18 % SNRdB �> SNR of channel output in dB

19 % state �> seed for internal random number generators, if empty no seed

20 % is provided (DEFAULT state = [])

21 % graph �> plot the intermediate results of channel

22 % M �> number of receive antennas

23 % OUTPUT

24 % y �> signal output of channel simulator

25 % SNRret �> measured SNR of channel

26 %

27 % Version 1.1 RC 11.15.2006

28 %

29 % July, 2013 SGM added array response

30 % August, 2013 SGM added MRC gains

31

32 numArgs = 10;

33 if(nargin<numArgs)

34 graph = 0;

35 end

36 if(nargin<numArgs�1)

63

37 state = [];

38 end

39

40 %��
41 % Ver1: Initial release (11.03.2006)

42 % Ver1.1: Added a parameter for seeding the internal number generators

43 % (11.15.2006)

44 % Ver2: Added different doppler measreuments for each path

45 %��
46

47 %==

48 % Required functions that are not standard

49 % Matlab toolbox functions

50 % interp() �> interpolates a signal

51 % rand() �> random number generator

52 % randn() �> Gaussian number generator

53 % conv2() �> 2�D convolution

54 %

55 % Self written

56 % OptInt() �> find optimal minimal sampling rate with easy

57 % upconversion

58 % DopplerSpect() �> calculats the Doppler spectrum

59 % interpMat() �> diminsional interpolation of a matrix

60 %==

61

62 %��
63 % Initialized the function

64 Ps = x(:)'*x(:)/length(x);

65 N0 = Ps/(10ˆ(SNRdB/10));

66 if(size(x,2)==1)

67 x = x(:).';

68 end

69 lenX = length(x);

70 gain = 10.ˆ(gaindB/10);

71

72 %��
73 % construct the basis channel vector and where the different taps

74 % representing the different paths will lie

75

76 % must account for the case where someone enters a delay of zero

77 if(tau(1)==0)

78 tau = tau(2:end);

79 end

64

80 if(K==1)

81 flen = 1;

82 h = 0;

83 tapNdx = 1;

84 else

85 flen = ceil(sum(tau)*1E�3*fs)+1;
86 h = zeros(flen,1);

87 tap = h;

88 tap(1)=1;

89 lasttap = 1;

90 for ii=1:length(tau)

91 tapspot = round(tau(ii)*1E�3*fs);
92 tap(lasttap+tapspot) = 1;

93 lasttap = lasttap+tapspot;

94 end

95 tapNdx = find(tap==1);

96 end

97 %��
98

99

100 %��
101 % Compute the Doppler for each individual tap and apply to said tap

102 H = [];

103 for ii=1:K

104 %��
105 % Compute the appropriate spectrum

106 % determine an optimal intermidiate sample rate

107 fm = 32*fd(ii);

108 if(rem(fs,fm)==0)

109 ifs = fm;

110 else

111 ifs = OptInt(fs,fm);

112 end

113 [sd,fsDop] = DopplerSpect(model,fd(ii),ifs,graph);

114 [˜,gpdel] = max(abs(sd));

115 %��
116 %��
117 % compute each tap in blocks and apply these as they are generated

118 trunc = gpdel;

119 % compute interpolation factor

120 up = fs/fsDop;

121

122 % generate white noise for each tap

65

123 % q is 2*K because it has both real and imag of each path

124 if(˜isempty(state))

125 randn('state',state*342)

126 end

127 q = randn(2,ceil(lenX/up)+2*trunc);

128 if(graph)

129 fprintf('created random noise\n')
130 figure;plot(q.')

131 end

132

133 % shape to the desired spectrum

134 q = conv2(q,sd);

135 if(graph)

136 fprintf('shaped noise\n')
137 figure;plot(q.')

138 end

139 q = q(:,trunc:end�trunc);
140 if(graph)

141 figure;plot(q')

142 end

143

144 % concatenate with percent of overlap from previous block

145 % and interpolate tot eh desired sample rate

146 if(graph)

147 fprintf('starting interpolation\n')
148 tic

149 end

150 %qsz1 = size(q)

151 %up

152 q = interpMat(q,up);

153 if(graph)

154 t1 = toc;

155 fprintf('Interpolation took %f sec\n',t1);
156 end

157 %qsz2 = size(q)

158

159 % Add new tap to channel STORAGE matrix and concatinate if needed

160 if ((size(H)==0) | (size(H,2)==size(q(:,1:lenX),2)))

161 H = [H;q(:,1:lenX)];

162 elseif(size(H,2)>size(q,2))

163 H = [H;q(:,1:size(H,2))];

164 elseif(size(H,2)<size(q,2))

165 H = [H;[q zeros(2,size(H,2)�size(q,2))]];

66

166 else

167 H = [H;q];

168 end

169 end

170

171 % Get array response here for each path

172 M = size(response,1); % number of rx antennas

173 A = zeros(length(h),M);

174 A(1,:) = response(:,angle0); A(end,:) = response(:,angle1);

175

176 % apply channel to the signal for this block

177 for jj=1:lenX�flen+1
178 xvec = x(jj:jj+flen�1);
179 %length(gain(:))

180 %size(H(1:2:end,jj))

181 %size(H(2:2:end,jj))

182 h(tapNdx) = gain(:).*(H(1:2:end,jj)+1j*H(2:2:end,jj));

183 % construct hM here with an intersting combo of h and array responses

184 % possibly through the use of transpose and kahtri�Rao products

185 % hM will be a flenxM matirx

186 % dimenstions will need to be worked out.

187 hMat = repmat(h,1,M).*A;

188 y(jj,:) = xvec*hMat;

189 %y(jj) = xvec*h;

190 end

191

192 % add white noise of specified power

193 if(˜isempty(state))

194 randn('state',state*751);

195 end

196 w = sqrt(N0/2)*(randn(size(y))+1j*randn(size(y)));

197 sig2 n = zeros(1,M);

198 SNRret = zeros(1,M);

199 a = zeros(1,M);

200 for mm = 1:M % number of rx antennas

201 sig2 n(mm) = w(:,mm)'*w(:,mm)/length(w);

202 a(mm) = Ps/sig2 n(mm);

203 SNRret(mm) = 10*log10(a(mm));

204 end

205 a i = a/sum(a);

206 y = y + w;

207 if(graph)

208 figure;plot(y,'o')

67

209 end

210

211 return

212

213 %==

214 % EXAMPLE INPUTS FOR THIS FUNCTION

215 % this example is equivalent to the ITU "good" condition.

216 % x = exp(j*2*pi/8*fix(8*rand(1,2000))); % input signal

217 % fd = 0.1; % Doppler measurement (Hz)

218 % fs = 2.4E3; % sample rate (Hz)

219 % K = 2; % number of paths

220 % tau = 0.5; % relative path delays (msec)

221 % gaindB = [0 �1]; % gain of relative paths (dB)

222 % model = 'Watterson'

223 % SNRdB = 15;

224 % graph = 1;

225 %==

A.5 ALE3G Equalizer Comparison

1 % ALE3G comparison of diversity receivers

2 clear all;close all;clc

3

4 % simulation parameters

5 iter = 1000;

6 SNRdB = �20:15;%�20:20; % rx noise only

7 M = 4;

8

9 % equalizer parameters

10 nWeights = 24; % 48,36,24,12 must be >= M*refTap and a multiple of 1:M

11 refTap = 6; % 12,9,6,3 % nWeights/M;

12 eqMode = 0; % RLS=0,LMS =1

13 lambda = 0.95; % forgetting factor (RLS)

14 mu = 0.01; % step size (LMS)

15 delta1 = 0.01; % regularization parameter (RLS)

16 initialWeights = zeros(nWeights,1);

17 resetWeights = 1;

18

19 % array parameters

20 c = 299.79246; % speed of light, km/ms

21 fc = 1.8; % carrier freq, MHz

68

22

23 % channel parameters

24 baud = 2400;

25 fs = 4*baud; % sample rate (Hz) % upsamp = 4

26 model = 'Watterson';

27 K = 2;

28 fd = [0.1 0.1]; % Doppler measurement (Hz)

29 tau = 0.5; % relative path delays (msec)

30 gaindB = [0 �1]; % gain of relative paths (dB)

31 state = [];

32 graph = 0;

33 angle0 = 20; % this is the angle to use for MRC if gaindB(1) > gaindB(2)

34 angle1 = 80;

35

36 % initializations

37 lenSNR = length(SNRdB);

38 e1 = zeros(2432,iter);

39 e2 = zeros(2432,iter);

40 e3 = zeros(2432,iter);

41 mse1 = zeros(2432,iter);

42 mse2 = zeros(2432,iter);

43 mse3 = zeros(2432,iter);

44 berVec1 = zeros(lenSNR,M,iter);

45 berVec2 = zeros(lenSNR,M,iter);

46 berVec3 = zeros(lenSNR,M,iter);

47

48 for ii = 1:iter

49 % modulate

50 [bits tx,tx,upsamp,syms] = ALE3Gmod('5');

51 train = syms(1:832);

52 lenTx = length(tx);

53 tx = cat(1,tx,zeros(upsamp+1,1)); % channel chops last upsamp+1 syms

54

55 for mm = 1:M

56 % more array parameters

57 M vec = ones(1,mm�1);
58 el r = [0 c/(fc*2).*M vec];

59 el r = cumsum(el r); % distance between each antenna

60 el az = 0*el r;

61 z = 0*el r;

62

63 % create array manifold

64 [resp,az] = Omni res(el r,el az,z,fc,180,0,0);

69

65

66 % initialize rx signal

67 rxWatterson = zeros(mm,lenTx);

68 for jj = 1:lenSNR

69

70 % channel and noise

71 [rxWatterson,a i] = ChannelSimulator v5(tx,fs,model,K,...

72 fd,tau,gaindB,SNRdB(jj),state,graph,resp,angle0,angle1);

73

74 % baud sample

75 rx = downsample(rxWatterson,upsamp);

76

77 %%%% method 1: Joint spatial�temporal equalizer

78 % equalize

79 [y1,e1(:,ii),˜] = equalizer(rx,train,initialWeights,...

80 resetWeights,eqMode,refTap,mu,lambda,delta1,mm);

81 mse1(:,ii) = e1(:,ii).ˆ2;

82

83 % demodulate

84 bits rx1 = ALE3Gdemod('5',y1,0);

85 [˜,berVec1(jj,mm,ii)] = biterr(bits rx1,bits tx);

86

87

88 %%%% method 2: MRC followed by single�channel equalizer

89 % maximal ratio combining

90 wtMRC = resp(:,angle0);

91 wtRep = repmat(wtMRC,1,lenTx/upsamp);

92 a iRep = repmat(a i,lenTx/upsamp,1);

93 rx2 = a iRep.*rx;

94 rxMRC = sum(conj(wtRep).*rx2.',1)./sum(wtMRC.*conj(wtMRC),1);

95

96 % equalize

97 [y2,e2(:,ii),˜] = equalizer(rxMRC,train,initialWeights,...

98 resetWeights,eqMode,refTap,mu,lambda,delta1,1);

99 mse2(:,ii) = e2(:,ii).ˆ2;

100

101 % demodulate

102 bits rx2 = ALE3Gdemod('5',y2,0);

103 [˜,berVec2(jj,mm,ii)] = biterr(bits rx2,bits tx);

104

105

106 %%%% method 3: EGC followed by single�channel equalizer

107 % equal gain combining

70

108 rxEGC = sum(conj(wtRep).*rx.',1)./sum(wtMRC.*conj(wtMRC),1);

109

110 % equalize

111 [y3,e3(:,ii),˜] = equalizer(rxEGC,train,initialWeights,...

112 resetWeights,eqMode,refTap,mu,lambda,delta1,1);

113 mse3(:,ii) = e3(:,ii).ˆ2;

114

115 % demodulate

116 bits rx3 = ALE3Gdemod('5',y3,0);

117 [˜,berVec3(jj,mm,ii)] = biterr(bits rx3,bits tx);

118 end

119 end

120 fprintf('Iteration %d of %d complete.\n',ii,iter);
121 end

122

123 % calculate MSE across all independent trials

124 mse1av = mean(mse1,2);

125 mse2av = mean(mse2,2);

126 mse3av = mean(mse3,2);

127

128 % calculate BER across all independent trials

129 ber1 = mean(berVec1,3);

130 ber2 = mean(berVec2,3);

131 ber3 = mean(berVec3,3);

132

133 % plotting

134 figure,plot(y1,'x');

135 %title('Joint Spatial�Temporal Equalizer Raw Symbols')

136 xlabel('In�Phase'), ylabel('Quadrature')

137 axis([�1.2 1.2 �1.2 1.2])

138 figure,plot(y2,'x');

139 %title('Single�Channel Equalizer Raw Symbols')

140 xlabel('In�Phase'), ylabel('Quadrature')

141 axis([�1.2 1.2 �1.2 1.2])

142 % NOTE: equalizer raw syms constellations are for a single sample at a

143 % single SNR value and for a single # of diversity branches

144

145 figure,plot(abs(mse1av(1:832)));

146 hold on,plot(abs(mse2av(1:832)),'r');

147 ylabel('Mean Squared Error')

148 xlabel('Training Symbols')

149 legend('Joint spatial�temporal equalizer','MRC + single�channel equalizer')

150 %title('Learning curves for both diversity receivers')

71

151 % NOTE: learning curve are for a single SNR value and single # of diversity

152 % branches, but averaged over independent trials

153

154 figure,semilogy(SNRdB,ber3,':','LineWidth',2.5)

155 xlabel('Signal�to�Noise Ratio, dB')

156 ylabel('Bit Error Rate')

157 %title('BER vs SNR for both diveristy receivers')

158 %xlim([�20 0])

159 %ylim([0.004 1])

160 grid on

161 hold on, semilogy(SNRdB,ber2,'��','LineWidth',2.5)
162 semilogy(SNRdB,ber1,'LineWidth',2.5)

163 legend('EGC + single�channel equalizer M=1',...

164 'EGC + single�channel equalizer M=2',...

165 'EGC + single�channel equalizer M=3',...

166 'EGC + single�channel equalizer M=4',...

167 'MRC + single�channel equalizer M=1',...

168 'MRC + single�channel equalizer M=2',...

169 'MRC + single�channel equalizer M=3',...

170 'MRC + single�channel equalizer M=4',...

171 'Joint spatial�temporal equalizer M=1',...

172 'Joint spatial�temporal equalizer M=2',...

173 'Joint spatial�temporal equalizer M=3',...

174 'Joint spatial�temporal equalizer M=4')

72

Bibliography

[1] M.W. Chamberlain and W.N. Furman. HF data link protocol enhancements

based on STANAG 4538 and STANAG 4539, providing greater than 10 kbps

throughput over 3 khz channels. In HF Radio Systems and Techniques, 2003.

Ninth International Conference on (Conf. Publ. No. 493), pages 64–68, 2003.

[2] M.W. Chamberlain, W.N. Furman, L. F. Palum, and G. R. Robertson. Perfor-

mance of US MIL-STD-188-141b appendix c data link protocols. In HF Radio

Systems and Techniques, 2000. Eighth International Conference on (IEE Conf.

Publ. No. 474), pages 145–149, 2000.

[3] Frank’s Web Space: Radio Communications. http://www.frankswebspace.org.uk

/scienceandmaths/physics/physicsgce/radiocomms.htm, 2007.

[4] LigiaChira Cremene, Nicolae Crisan, and Marcel Cremene. An adaptive

combiner-equalizer for multiple-input receivers. In Tarek Sobh, Khaled Elleithy,

and Ausif Mahmood, editors, Novel Algorithms and Techniques in Telecommu-

nications and Networking, pages 385–390. Springer Netherlands, 2010.

[5] Y. Erhel. A blind spatio temporal equalization operating on a polarization sen-

sitive array. 13th European Signal Processing Conference, 2005.

[6] A. Goldsmith. Wireless Communications. Cambridge University Press, 2005.

73

[7] R.P. Gooch and B.J. Sublett. Joint spatial and temporal equalization in a

decision-directed adaptive antenna system. In Signals, Systems and Computers,

1988. Twenty-Second Asilomar Conference on, volume 1, pages 255–259, 1988.

[8] J.S. Hammerschmidt, C. Drewes, and A.A. Hutter. Adaptive space-time equal-

ization for mobile receivers. In Acoustics, Speech, and Signal Processing, 2000.

ICASSP ’00. Proceedings. 2000 IEEE International Conference on, volume 5,

pages 3013–3016 vol.5, 2000.

[9] S.S. Haykin. Adaptive filter theory. Prentice-Hall information and system sciences

series. Prentice Hall, 2002.

[10] N. Ishii and R. Kohno. Spatial and temporal equalization based on an adaptive

tapped-delay-line array antenna. In Personal, Indoor and Mobile Radio Com-

munications, 1994. Wireless Networks - Catching the Mobile Future., 5th IEEE

International Symposium on, volume 1, pages 232–236, 1994.

[11] E.E. Johnson. Third-generation technologies for HF radio networking. InMilitary

Communications Conference, 1998. MILCOM 98. Proceedings., IEEE, volume 2,

pages 386–390, 1998.

[12] E.E. Johnson. Simulation results for third-generation HF automatic link estab-

lishment. In Military Communications Conference, 1999. MILCOM 99. Proceed-

ings., IEEE, 1999.

[13] E.E. Johnson, E. Koski, W.N. Furman, M. Jorgenson, and J. Nieto. Third-

Generation and Wideband HF Radio Communications. Artech House mobile

communications series. Artech House, 2012.

74

[14] E.N. Koski. STANAG 4538 implementation and field testing lessons learned.

Ninth International Conference on HF Radio Systems and Techniques, pages

256–261(5).

[15] Erik Lindskog, A. Ahlen, and M. Sternad. Combined spatial and temporal equal-

ization using an adaptive antenna array and a decision feedback equalization

scheme. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995

International Conference on, volume 2, pages 1189–1192 vol.2, 1995.

[16] MATLAB. version 8.1.0.604 (R2013a). The MathWorks Inc., Natick, Mas-

sachusetts, 2013.

[17] J. McGehee. Multi-site spatially diverse demodulation of HF propagated signals.

InMilitary Communications Conference, 2008. MILCOM 2008. IEEE, pages 1–6,

2008.

[18] MIL-STD-188-141B. Military Standard - Interoperability and Performance Stan-

dards for Medium and High Frequency Radio Systems. US Dept of Defense, March

1999.

[19] J.G. Proakis and M. Salehi. Digital Communications 5th Edition. McGraw Hill,

2007.

[20] Recommendation ITU-R F.1487. Testing of HF Modems with Bandwidths of up

to about 12 kHz using ionospheric Channel Simulators. International Telecom-

munication Union, Radiocommunication Sector, Geneva, 2000.

[21] STANAG 4538. Technical Standards for an Automatic Radio Control System for

HF Communications Links. NATO Standarization Agency, February 2009.

75

[22] Lin Sun, Ruo Li, and Tian Zhou. Improvement of passive time reversal commu-

nications using spatial diversity equalization. In Instrumentation, Measurement,

Computer, Communication and Control (IMCCC), 2012 Second International

Conference on, pages 256–261, 2012.

[23] M.A. Wadsworth. Performance simulation of HF subnetworks employing third

generation HF link establishment protocols. In Frequency Selection and Manage-

ment Techniques for HF Communications (Ref. No. 1999/017), IEE Colloquium

on, pages 13/1–13/6, 1999.

[24] C. Watterson, J. Juroshek, and W.D. Bensema. Experimental confirmation

of an HF channel model. Communication Technology, IEEE Transactions on,

18(6):792–803, 1970.

[25] Fan Zhang, Benxiong Huang, Lai Tu, and Jian Zhang. Simulation and evalu-

ation of an HF email network. In Military Communications Conference, 2006.

MILCOM 2006. IEEE, pages 1–5, 2006.

76

