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ABSTRACT

A lightweight algorithm for low latency timbre interpolation of two input audio streams using an autoencoding
neural network is presented. Short-time Fourier transform magnitude frames of each audio stream are encoded, and
a new interpolated representation is created within the autoencoder’s latent space. This new representation is passed
to the decoder, which outputs a spectrogram. An initial phase estimation for the new spectrogram is calculated
using the original phase of the two audio streams. Inversion to the time domain is done using a Griffin-Lim iteration.
A method for avoiding pops between processed batches is discussed. An open source implementation in Python is
made available.

1 Introduction

1.1 Neural Audio Effects and Synthesis

Deep neural networks have been increasingly used in
audio effects modelling and sound synthesis [1] [2] [3].
As the field has improved and computation has become
cheaper, networks have been developed to model in-
creasingly complex audio effects and synthesizers [4]
[5], and even synthesize entire songs [6].

A diversity of neural network architectures have been
used in the field of sound synthesis. These models
differ from models of audio effects as they do not per-
form a transformation of an input audio signal. Instead,
audio is generated via other means. For example, gen-
erative adversarial networks have been used for spec-
trogram based and raw audio based synthesis [7] [8].
The SampleRNN architecture uses an autoregressive
model to generate new audio sample-by-sample [3].

In another model, differentiable digital signal process-
ing (DDSP) can directly synthesize new audio using
modules such as harmonic oscillators, wavetable syn-
thesizers, and convolutional reverbs [9]. The network
presented in [2] uses WaveNet autoencoders to create
a latent space which contains various timbres. Timbre
can be described as the perceptual quality of a musi-
cal sound that is distinct from its loudness and pitch
[10]. The WaveNet synthesizes timbres by outputting
raw audio sample-by-sample based on an input latent
sampling, and can output interpolations of two timbres
by sampling from a line connecting the latent embed-
dings of the two timbres. Another implementation out-
lined in [11] creates a timbre embedding space using a
Mel2Mel neural network architecture and synthesizes
audio using a WaveNet vocoder.

Other implementations have used variational autoen-
coders, or VAEs, on such tasks as audio synthesis via a
parameter space [12], or synthesis via a timbre space
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[13]. The latter modifies the Kullback–Leibler diver-
gence term used to train a VAE so that the latent space
mirrors a distribution of a perceptually constructed tim-
bre space. The best performing model encodes timbre
using a non-stationary Gabor transform [14], with the
Equivalent Rectangular Bandwidth scale (ERB scale
[15]) of 400 bins outperforming all other models. In-
terpolation between timbres can be performed by sam-
pling along a path in the latent space. Since this embed-
ding space is 64-dimensional, a user can only traverse
it via dimension reduction, whereby the 64 dimensions
are projected to three.

Similarly, many different neural network architectures
have been used as audio effects. These models are all
trained to apply effects to arbitrary musical signals and
produce modified audio, but will not synthesize new au-
dio without an input. Some neural network models of
audio effects use convolutional neural networks to dig-
itally model analog effects, such as compressors [16],
distortion [17], spring reverb [18], and equalization
[19].

1.2 Timbre Transfer and Morphing

One effect which has seen widespread implementation
using neural networks is timbre transfer. A timbre
transfer audio effect takes an input signal with one
timbre, such as a recording of a violin playing a C note,
and outputs a signal with a different timbre, such as an
electric guitar playing a C note. DDSP modules have
been shown capable of performing timbre transfer via
explicit modelling of pitch tracking, loudness curves,
and a latent representation of timbre [9]. Similarly,
[20] uses one WaveNet encoder to generate a latent
representation of an input sound that can be decoded
via one of many trained WaveNet decoders to transfer
timbre.

Non-deep learning approaches to timbre transfer and
sound morphing can also be found in the literature. The
authors of [21] specify two analysis and synthesis al-
gorithms to interpolate between two signals’ timbres.
The first algorithm only uses spectral interpolation of
the magnitude spectra, and the second also uses at-
tack information to modify a sustain synthesized by
the spectral interpolation. In [22], automatic audio
morphing is performed by mapping two timbres into a
multi-dimensional space encoding spectral shape and
pitch on orthogonal axes. Mapping is performed us-
ing mel-frequency cepstral coefficients (MFCCs), and

synthesis is performed using spectral inversion. Us-
ing a framework similar to [22], the authors of [23]
specify an algorithm for morphing transient sounds
using discrete wavelet transforms and singular value
decomposition. The authors of [24] and [25] based
their interpolation algorithm on acoustic correlates of
salient timbre dimensions derived from perceptual stud-
ies, including log attack time, temporal centroid, and
measures of spectral shape.

Two algorithms which most closely resemble the work
presented in this paper are [26] and [27]. The neural
network architecture presented in [26] utilizes a stan-
dard autoencoding neural network with a long short-
term memory (LSTM) bottleneck to perform timbre
modification and transfer. This LSTM layer is im-
plemented in order to model the temporal dynamics
of a given input. The network is trained to encode
and decode both the magnitude and phase of three ad-
jacent frames of an input sound’s short-time Fourier
transform (STFT). Resynthesis is performed using the
inverse STFT (ISTFT) of the network’s output magni-
tude and phase predictions. In order to perform timbre
transfer, the authors begin by training an autoencoder
on a corpus containing only one timbre (i.e. trumpet
sounds). Then, an audio sample with a different timbre
is passed through the trained network (i.e. a woman’s
singing voice). Thus the authors transfer the timbral
characteristics of a trumpet onto a woman’s singing
voice.

The work in [27] presents an algorithm for portamento
between arbitrary audio sources which eschews neural
networks entirely. Instead, an optimal transport is cal-
culated to transform one spectrum into another. As the
authors describe it, optimal transport is an optimization
problem in which one distribution is transformed into
another distribution using the least “amount of work
(mass times distance) on each infinitesimal piece of
mass.” The authors introduce an interpolation parame-
ter as well, which can sample spectra along the optimal
transport route between two input sounds. Thus the
authors can produce a “portamento” between a piano
being struck and a person singing.

1.3 Contributions

Our previous work has focused on the standard multi-
layer neural network autoencoder [28] [29] [30], as
its lightweight implementation can put as much of
the design process into the hands of musicians. By
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“lightweight,” we mean a model that can be trained in a
reasonable amount of time and which does not require
powerful GPUs to train or infer. For example, an author
of [9] has mentioned that the paper’s timbre transfer
topology takes “a few hours to train on [an Nvidia Tesla
V100]” for a corpus of 14 minutes [31]. In comparison,
our network presented in [29] takes eight minutes to
train on a corpus eight minutes in length on a laptop’s
CPU.

The contributions of this paper are as follows. In this
paper we outline an algorithm that can perform in-
terpolation and morphing in a timbre space of two
streams of input audio with low latency using an au-
toencoder. This autoencoder constructs a latent space
containing representations of timbre by learning to en-
code and decode STFT magnitude frames. Timbre
interpolation and morphing can be performed by sam-
pling points in the latent space between those of the
two input streams on a frame-by-frame basis. More-
over, this latent representation can be morphed us-
ing multiplicative gains on the latent representation.
Our algorithm differs from [27] as we use a neural
network’s latent space containing representations of
timbre rather than an optimal transport to interpolate
between sounds. Our algorithm differs from [26] as
it can interpolate timbre between two input sounds
rather than only transferring the timbre of a training
corpus to a new input. Furthermore we provide open-
source code for our algorithm that runs online with
low latency, whereas [27] and [26] do not. We have
open-sourced this algorithm in Python with accompany-
ing demonstrations, and made it available on github at
github.com/JTColonel/timbre-interp.

When designing neural networks for creative purposes
one must strike a three-way balance between the ex-
pressivity of the system, the freedom given to a user to
train and interface with the network, and the compu-
tational overhead needed for sound synthesis. Given
the improvements of neural network APIs over the past
few years, it is now possible for musicians to train and
run a standard autoencoder in a reasonable amount of
time on a laptop, without needing a GPU. It is our hope
that engaging musicians in the design process of these
networks will lead to innovation in the field of neural
audio effects and synthesis.

2 Background

2.1 Autoencoders

An autoencoding neural network (i.e. autoencoder)
is a machine learning algorithm that is typically used
for unsupervised learning of an encoding scheme for
a given input domain, and is comprised of an encoder
and a decoder [32]. For the purposes of this work, the
encoder is forced to shrink the dimension of an input
into a latent space using a discrete number of values,
or “neurons.” The decoder then expands the dimension
of the latent space to that of the input, in a manner that
reconstructs the original input.

In a single layer model, the encoder maps an input
vector x ∈ Rd to the hidden layer y ∈ Re, where d > e.
Then, the decoder maps y to x̂∈Rd . In this formulation,
the encoder maps x→ y via

y = f (Wx+b) (1)

where W ∈ R(e×d), b ∈ Re, and f (·) is an activation
function that imposes a non-linearity in the neural net-
work. The decoder has a similar formulation:

x̂ = f (Wouty+bout) (2)

with Wout ∈ R(d×e), bout ∈ Rd .

A multi-layer autoencoder acts in much the same way
as a single-layer autoencoder. The encoder contains
n > 1 layers and the decoder contains m > 1 layers.
Using Equation 1 for each mapping, the encoder maps
x→ x1→ . . .→ xn. Treating xn as y in Equation 2, the
decoder maps xn→ xn+1→ . . .→ xn+m = x̂.

The autoencoder trains the weights of the W ’s and b’s
to minimize some cost function. This cost function
should minimize the distance between input and output
values. The choice of activation functions f (·) and cost
functions depends on the domain of a given task.

2.2 Activations

The sigmoid function

f (x) =
1

1+ e−x (3)

and rectified linear unit (ReLU)

f (x) =
{

0, x < 0
x, x≥ 0 (4)
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Fig. 1: Signal flow diagram of the timbre interpolation and morphing algorithm

are often used to impose the nonlinearities f (·) in an
autoencoding neural network. A hybrid autoencoder
topology combining both sigmoid and ReLU activa-
tions was shown to outperform all-sigmoid and all-
ReLU models in a timbre encoding task [28].

More recently, the leaky rectified linear unit (LReLU)
[33]

f (x) =
{

βx, x < 0
x, x≥ 0 (5)

has been shown to avoid both the vanishing gradient
problem introduced by using the sigmoid activation
[34] and the dying neuron problem introduced by using
the ReLU activation [35]. The hyperparameter β is typ-
ically small, and in this work fixed at 0.1. In [30], we
demonstrated that a hybrid model imposing ReLU acti-
vations on the output, sigmoid activations in the latent
space, and LReLU activations elsewhere encouraged
an autoencoder to produce a well-distributed latent em-
bedding of an input corpus. This is beneficial because
it creates a well populated latent space for an arbitrary
corpus without a potentially inexperienced user having
to tune hyperparameters.

2.3 Training Regime

In this work a multi-layer neural network autoencoder
is trained to learn representations of musical timbre.
The aim is to train the autoencoder to contain high
level descriptive features in a low dimensional latent

space that can be easily manipulated by a musician.
As in the formulation above, dimension reduction is
imposed at each layer of the encoder until the desired
dimensionality is reached. All audio used to generate
the corpora for this work is stored as a 16-bit PCM wav
file with 44.1kHz sampling rate.

The various corpora used to train the autoencoding neu-
ral network are formed by taking 2049 values from a
4096-point magnitude STFT sn(m) as its target, where
n denotes the frame index of the STFT and m denotes
the frequency index, with 75% frame overlap. The
2049 values span the frequency bins from 0Hz to half
the Nyquist frequency, in this case 22050Hz. The Hann
window is used in all cases. Each frame is normalized
to [0,1]. This normalization allows the autoencoder
to ignore a frame’s peak level relative to other obser-
vations within the corpus. In this work mean squared
error is used as the cost function, although both spectral
convergence and mean absolute error have also been
investigated in previous work [29].

3 Timbre Interpolation Algorithm

In short, the timbre interpolation algorithm works by
encoding normalized spectrograms of two input audio
streams into a timbre space, decoding a new spectro-
gram from interpolated and morphed points in the la-
tent space, and inverting the new spectrogram into a
time domain signal. Refer to Figure 1 for a signal flow
diagram.
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Algorithm 1: Timbre Interpolation Algorithm for
nth chunk of audio
input :Audio batches a1,a2, previous output

audio chunk aprev[n−1 : n], interpolation
value α , morphing vector w, encoding
map E, decoding map D

output :Interpolated audio anew[n : n+1]
aprev[n]← x f adeout(aprev[n]) ;
while Make Next Frame do

batch1← a1[n−3 : n+2] ;
batch2← a2[n−3 : n+2] ;
S1← ST FT (batch1) ;
max1← max(S1) ;
S1← S1/max1 ;
S2← ST FT (batch2) ;
max2← max(S2) ;
S2← S2/max2 ;
s1← αw�E(S1);
s2← (1−α)w�E(S2);
snew← s1 + s2 ;
Snew← (αmax1 +(1−α)max2)D(snew) ;
∠Snew← wrap(α∠S1 +(1−α)∠S2) ;
repeat

anew← Gri f f in_Lim(Snew,∠Snew) ;
until convergence criterion;

end
anew[n]← x f adein(anew[n])+aprev[n] ;
aprev← anew ;
return

To describe this algorithm, assume an autoencoder with
a d dimensional latent space, two audio signals a1 and
a2 with STFTs S1 and S2, morphing vector w∈Rd , and
interpolation value α .

Assume we want to output a batch of audio that is com-
posed of N chunks of 1024 samples. Due to the 75%
overlap used when performing the STFT, the algorithm
requires two batches of audio size (N +5)×1024 sam-
ples from the two input audio streams. The algorithm
begins by performing a STFT on each batch of the two
audio streams. 3 look-back and 1 look-forward chunks
are necessary to perform 4098 point STFTs with hop
size 1024 samples and Hann window on the N×1024
samples of audio, and the additional 1 look-forward
frame is used to eliminate pops between batches. The
magnitude and phase response are separated for each
STFT. Then, the magnitude response is normalized to
[0,1] for each frame in preparation for the autoencoder.
These normalizing gains and phase responses are stored
for later use.

S1 and S2 are encoded into two representations s1 and
s2 of size d×N. A new representation is calculated
using α and w such that

snew = w� [αs1 +(1−α)s2] (6)

where � is an element-wise multiplication across each
latent dimension. The α parameter determines which
point along the line that connects s1 and s2 within the
latent space gets sampled and passed to the decoder,
with α = 0 just passing s1 to the decoder and α = 1
just passing s2 to the decoder. The morphing vector w
is an additional effect that can be applied to the latent
representation of the input. When each element of w is
set to 1, the representation is unmodified. Otherwise,
the element-wise multiplication of w stretches αs1 +
(1−α)s2 towards an arbitrary region in the latent space,
thus morphing the timbre.

snew is then decoded to synthesize Snew. Note that each
frame of Snew only takes values from [0,1], thus to
transfer the dynamic qualities of a1 and a2,

Snew← (α||S1||∞ +(1−α)||S2||∞)�Snew (7)

where || · ||∞ refers to the L-infinity norm and � refers
to an element-wise multiplication across time slices of
S.
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Finally, Snew is inverted into the time domain using the
Griffin-Lim algorithm initialized with a phase of

∠Snew = wrap(α∠S1 +(1−α)∠S2) (8)

This phase initialization is informed by complex addi-
tion, in which the phase of the sum of two complex
numbers falls on the closed interval bound by the phase
of each number. Furthermore, this linear sum of coher-
ent phase responses from two real audio signals pro-
duces a coherent phase initialization across all frames.

The output of the Griffin-Lim iterations is an (N+4)×
1024 batch of synthesized audio anew. The first 3∗1024
samples are dropped due to the 75% overlap used in
this work, leaving (N +1)×1024 samples.

To avoid pops in between two adjacent batches of N×
1024 samples, a linear crossfade is applied to the N +
1st frame of the previous batch and the 1st frame of the
current batch.

4 Implementation

We provide an open-source implementation of our
algorithm in Python, as well as additional code to
train an autoencoder on a user’s dataset. Python
bindings for Port Audio are used to handle the call-
back function for audio output. Keras with a Ten-
sorFlow backend is used to handle the neural net-
work. Scipy is used for the Griffin-Lim iterations. The
GUI is coded using TKinter. The code is available
at github.com/JTColonel/timbre-interp.
A screenshot of our GUI can be found in Figure 2.

To begin, a user trains an autoencoder on a target cor-
pus. Once trained, a model is saved in Keras such
that it takes two batches of normalized spectrogram
frames, an interpolation scalar, and multiplicative gain
constants. These tensors, as well as two copies of the
encoder weights locally connected, are pre-allocated
and pre-broadcast to improve execution time. After the
user chooses two audio files to load into memory, the
network begins to process the audio streams and output
a new audio stream. The user can choose an interpola-
tion that "crossfades" the two audio streams within the
latent space, and modify this new latent representation
with gain constants set by the vertical sliders. The ac-
tual gain constants applied to the latent representation
are the number presented next to each slider divided by
10, such that they range from [0,3].

Currently, our implementation takes two saved audio
files as the audio streams. While we have not imple-
mented it by the time of writing, we believe the algo-
rithm will function with an input from a recorded audio
stream, such as a microphone.

Fig. 2: Screenshot of the timbre interpolation GUI. The
10 sliders correspond to gain multipliers sent
to each of the 10 dimensions of the latent em-
bedding.

5 Performance

Our current implementation processes a batch of 5
chunks at a time, with each chunk being 1024 samples.
At 44.1kHz sampling rate, this results in a maximum
of 10ms of latency between user input and processed
audio being output. The network only polls the α and
w parameters once to begin processing a batch; in other
words, the α and w parameters do not vary within a
batch.

The loading of a trained model and instantiation of its
graph requires approximately 500MB of RAM with en-
coder widths 2049→ 256→ 128→ 64→ 32→ 16→
10 and mirrored decoder widths. Additional layers be-
tween the 2049 wide layer and 256 wide layers would
improve the network’s reconstruction performance [28],
at the cost of increased RAM usage. The authors note
that the majority of the weight parameters in this topol-
ogy are produced by the first layer of the encoder (and
last layer of the decoder). For example, reducing the
2049 dimensional input to 256 dimensions requires
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about 1 million weight parameters between the encoder
and decoder; whereas reducing from 2049 to 1024 re-
quires over 4 million weight parameters.

Figure 4 illustrates the spectra produced when two
streams of audio with the same fundamental frequency
but distinct timbres are processed by the interpolation
algorithm when varying α . From top to bottom, α takes
values {0,0.2,0.4,0.6,0.8,1}. Figure 5 illustrates the
spectra of the same two streams of audio processed by
the interpolation algorithm, but with a warping vector
{1.29,0.73,1.33,0.86,1.62,0.54,1.32,1.33,1.82,0.2}
applied. In both cases, the algorithm retains the fun-
damental frequency while altering harmonics. For
this example, the autoencoder was trained on the one
octave dataset mentioned in [30], and thus was tasked
with encoding a latent space with single note timbres.

Figure 3 illustrates the waveforms produced when a
stream of audio with stationary timbre and another
stream of a drum loop are processed by the interpola-
tion algorithm when varying α . From top to bottom, α

takes values {0,0.25,0.5,0.75,1}. This demonstrates
that the interpolation tool can interpolate dynamics as
well. Because this autoencoder was trained on the one
octave dataset, the α = 1 output has more harmonic
content than the unprocessed drum loop.

Recordings of all the examples shown here
can be found at github.com/JTColonel/
timbre-interp.

6 Conclusion

We outline an algorithm for low latency interpolation
of timbre between two audio streams using an autoen-
coding neural network. The autoencoder is trained
to encode and decode normalized short-time Fourier
transform magnitude frames. The timbre interpolation
algorithm encodes two spectrograms from two audio
streams and calculates a new encoding by interpolation.
This new encoding is passed to the decoder, which pro-
duces a new spectrogram. This spectrogram is inverted
to the time domain using a Griffin-Lim algorithm. This
Griffin-Lim iteration is initialized with a weighted sum
of the two input audio streams’ phase responses. A
short linear crossfade is applied between two processed
batches to avoid pops and clicks. Our implementation
is purely Python and open-source. The architecture
is lightweight, allowing musicians to train the autoen-
coder on their own corpus and run the algorithm in a
live setting without the need for powerful GPUs.
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Fig. 3: Snapshots of the waveforms produced by inter-
polating between an audio stream of stationary
timbre and a drum loop.
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Fig. 4: Snapshots of the spectra that are produced when
interpolating between two stationary timbres.

Fig. 5: Spectra produced by interpolating and warping
between the two stationary timbres in Fig 4.
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