
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059

ece, Computer Architecture – Assignment 1
Submit by Mar. 9, 8pm

tldr: Uncover the underlying reason for the performance discrepancy between two
functionally equivalent C routines.

Problem Statement Consider an uninitialized two-dimensional array in C. We may
traverse this array and initialize each value to some integer along the way. Does the
order we initialize the elements the matter? For those of you with any DSA
experience you will know that accessing an element of an array takes constant time
in both the worse case and average case. This may lead you to believe that the order
of array access does not matter — but when executing on a computer it does! (This
is another example of why I suggest you divorce algorithms from their
implementations.) I ask you to consider why. While we have hinted at the
underlying reason in class, we have not explicitly discussed it.

For this assignment do not use a MIPS simulator. I ask you to compile the
provided C programs with GCC for your local (presumably x86) processor. The
observed phenomenon will be the same. That being said, I ask you to present your
argument using your knowledge of MIPS and to present any instructions in the
MIPS assembly language.

Please attach any code you write/modify and cite all third party sources you use to
supplement your own work.

nb: A “correct” hypothesis is not sufficent; I am interested in your argument.

Some suggestions to guide your analysis:

• Write a proper benchmark for the programs (need not be in C)

– Think about your performance metric. I will not grade you based on
your choice, but rather your argument for it.

– Be careful with what you are actually measuring.
– Report the 5th, 50th, and 95th percentiles.

• Sketch out what you except the MIPS assembly might look like.

• Vary the size of the two-dimensional array from very small to very large. It
may be helpful to plot the resulting benchmarks versus array size.

• Consider non-square arrays (you will need to modify the C to do this).

• Does repeating the routine in C change anything?

Some resources:

C Program http://ee.cooper.edu/~curro/comparch/hw1/main.c

Makefile Sketch http://ee.cooper.edu/~curro/comparch/hw1/Makefile

This Document http://ee.cooper.edu/~curro/comparch/hw1/assign.pdf

http://ee.cooper.edu/~curro/comparch/hw1/main.c
http://ee.cooper.edu/~curro/comparch/hw1/Makefile
http://ee.cooper.edu/~curro/comparch/hw1/assign.pdf

