Eci251, Computer Architecture — Assignment 1 Chris Curro

We analyze two functionally equivalent C programs. The two
programs each initialize a square array a single element at a time.
One program traverses the array in column major order (version
1); the second version traverses in row major order (version 2).
We measure version 1 to have a higher latency across all tested
array sizes compared to version 2. We posit that the explanation
Jor this discrepancy lies with the hierarchy of memories and the
principles of spatial locality. We attach all of the code required for
our analysis at the end of this document.

Consider an uninitialized two-dimensional array in C. We may traverse
this array and initialize each value to some integer along the way. We are
able to initialize each element in any order, however we choose to compare
initializing the elements in column-major and row-major order. If we
initialize in column-major order we proceed down the first column and
continue at the top of the second etc. In row-major order we proceed
across the first row and continue at the front of the second. In the
accompanying C program, two-dimensional arrays are allocated in memory
in row major order. In other words, we create an array of pointers each of
which point to the head of another array; each referred array is a row. This
implies that adjacent elements within a row are adjacent in memory while
adjacent elements within columns are not.

Now, let us consider how we may compare column-major traversal (version
1) with row-major traversal (version 2). We aim to measure the latency
(wall-time) of each variant. In recognition of the fact that we carry out our
experiments on a task-sharing operating system we perform two-hundred
trials of each program at each array size of interest. We conduct our
experiment for arrays with widths up to approximately three-thousand. To
compensate for any overhead associated with calling the programs from our
bench-marking script we measure the latency for calling an empty function
and subtract this from our measures of interest. Figure [l shows the results
of these experiments. Clearly, version 2 (row-major) executed with much
lower latency than version 1 (column-major) across all tested sizes.

So far, we have confirmed that traversing a two-dimensional array in
row-major order if it has been allocated in row-major order results in a
lower latency than traversing it in column-major order. Now, we attempt
to explain this phenomenon. First, we consider if the assembly code
associated with these two programs reveals the discrepancy. We analyze

assembly code for each program as compiled by the GNU C Compiler. We

Time (s) Latencies of the two programs
0.200 A
0.175 A
0.150 A
0.125 A
0.100 A
0.075 A
0.050 A
0.025 A

0.000 A

0 500 1000 1500 2000 2500 3000 3500

Array size

Figure 1: We compare the latencies of the two programs. Version 1 is represented by the
solid blue line, while version 2 is represented by the dashed orange line. The banded regions
show the range for a single standard deviation across 200 trials. The x-axis refers to the
number of rows and columns for the square array under consideration. We interpolate the
lines with B-splines.

notice that each program requires not only the same number of instructions
but also the very same instructions. This indicates that we should expect to
count the same number of cycles across executions of the programs. This
analysis does not reveal the discrepancy but rather motivates us consider if
some of the instructions may take a variable number of cycles to complete.

Once again analyzing the assembly code, we take note of the various types
of instructions. For some, we have no reason to expect a variable number of
cycles to completion; these include arithmetic instructions. On the other
hand, we recognize the existence of the hierarchy of memories and suggest
that data transfer instructions may require differing numbers of cycles to
complete. We expect this as “nearer” parts of the hierarchy have lower
access times while “further” parts have higher access times.

As we have already discussed, the two variants only differ in their memory
access patterns. The row-major variant moves from an element to its
neighbor in memory; we refer to the relationship between these two
elements as spatial locality. Contrariwise, the column-major variant jumps
between non-local elements. If our on/y memory were a random access
memory we would expect locality to not effect the performance of the
program. However locality does seem to effect the performance of the
program. Therefore we must assume that the hierarchy of memories relies
on locality for the increased performance.

'The only conclusion we can reach is that when we show an interest in a
location in memory the processor must assume we are also interested other
locations nearby — that is we have an interest in a local neighborhood.
'Therefore we propose that an automatic mechanism must exist that maps
potential regions of interest from the high-latency random access memory
to a low-latency memory “nearer” to the processor.

Thinking more specifically of our row-major program, we posit that when
the processor moves blocks of addresses to “nearer” memories, it has moved
not only the address we are interested in but also the next several as they
exist within a neighborhood. The column-major program does not have
this advantage therefore we assume it is slower because it more often needs

to access “further” memories.

To summarize: we consider the layout of our two-dimensional array in
memory, compare the two different paths we take through the array,
recognize the corresponding assembly code is virtually identical, and posit
that there is some unseen and automatic process occurring to lower the
latency of spatially local memory accesses. We recognize that this proposal
meshes with the concept of the hierarchy of memories and suggest that this
is how the performance discrepancy between the two variant programs
manifests itself.

main.c
#include <stdlib.h>

int v1Q {
int** array;
if ((array = malloc(SIZE*sizeof(int*))) == NULL)
{ /* error handling*/ }

for (int i = 0; i < SIZE; i++)
{
if ((array[i]l = malloc(SIZExsizeof(int))) == NULL)
{ /* error handling*/ }
}

for(int i = 0; i<SIZE; i++) {
for(int j = 0; j<SIZE; j++) {
array[jl[i] = 0;
}
}

free(array);
return O;

}

int v20) {
int** array;
if ((array = malloc(SIZE*sizeof(int*))) == NULL)
{ /* error handling*/ }

for (int i = 0; i < SIZE; i++)
{
if ((array[i]l = malloc(SIZExsizeof(int))) == NULL)
{ /* error handling*/ }
}

for(int i = 0; i<SIZE; i++) {
for(int j = 0; j<SIZE; j++) {
array[i] [j] = O;
¥
}

free(array);

return O;

}

int main() {

#ifdef V1
viQ;
#endif

#ifdef V2
v20);
#endif

main.s

vi:

$L3:

.file
.section
.previous
.nan
.module
.module
.abicalls
.text
.align
.globl
.set

.set

.ent

.type

.frame
.mask
.fmask
.set
.cpload
.set
addiu
sw

swW

sw

move

movz
.cprestor
1i

1w

nop

move
.reloc

jalr
nop

1w
SwW
sSW
b
nop

1w
nop
sll
1w
nop
addu
1i
1w
nop
move
.reloc
jalr
nop

1 nn
.mdebug.abi32

legacy

fpH32
nooddspreg

2
vl
nomips16
nomicromips
vl
vl, @function

$£p,56,$31
0xc0010000,-4
0x00000000,0
noreorder
$25
nomacro
$sp,$sp,-56
$31,52($sp)
$£p,48($sp)
$16,44 ($sp)
$fp,$sp
$31,$31,$0
e 16
$4,4000
$2,%calli6(malloc) ($28)

$25,82
1f,R_MIPS_JALR,malloc
$25

$28,16($£fp)

$2,36($fp)

$0,24($fp)
$L2

$2,24($fp)

$2,$2,2
$3,36($fp)

$16,$3,$2
$4,4000
$2,%calli6(malloc) ($28)

$25,82
1f ,R_MIPS_JALR,malloc
$25

vars= 16, regs= 3/0, args= 16, gp= 8

Ozfa0

Ozfa0

$L2:

$L7:

$L6:

$L5:

$L4:

1w

sW

1w
nop
addiu
swW

1w

nop
slt
bne
nop

SwW

nop

SW

nop

1w
nop
s1l
1w
nop
addu
1w
1w
nop
sll
addu
sW
1w
nop
addiu
sW

1w

nop
slt
bne
nop

1w
nop
addiu
sW

1w

nop
slt
bne
nop

1w

$28,16($£p)
$2,0($16)
$2,24($fp)

$2,$2,1
$2,24(8£p)

$2,24($fp)
$2,$2,1000

$2,$0,$L3

$0,28($fp)
$L4

$0,32($£p)
$L5

$2,32($fp)

$2,$2,2
$3,36($fp)

$2,$3,$2
$3,0($2)
$2,28($£p)
$2,$2,2
$2,$3,%$2
$0,0($2)
$2,32($1p)

$2,$2,1
$2,32($1p)

$2,32($fp)
$2,$2,1000
$2,80,8L6

$2,28($fp)

$2,$2,1
$2,28($fp)

$2,28($fp)
$2,$2,1000

$2,$0,8$L7

$4,36($fp)

v2:

$L11:

1w $2,%call16(free) ($28)

nop

move $25,$2

.reloc 1f ,R_MIPS_JALR,free
jalr $25

nop

1w $28,16($£p)

move $2,$0

move $sp, $fp

1w $31,52($sp)

1w $£p,48($sp)

1w $16,44($sp)

addiu $sp,$sp,56

h| $31

nop

.set macro

.set reorder

.end vl

.size vli, .-vi

.align 2

.globl v2

.set nomips16

.set nomicromips

.ent v2

.type v2, @function

.frame $£fp,56,$31

.mask 0xc0010000,-4

.fmask 0x00000000,0

.set noreorder

.cpload $25

.set nomacro

addiu $sp,$sp,-56

sw $31,52($sp)

sw $£p,48($sp)

sw $16,44($sp)

move $fp,$sp

movz $31,$31,%0

.cprestore 16

1i $4,4000

1w $2,%calli6(malloc) ($28)

nop

move $25,%2

.reloc 1f ,R_MIPS_JALR,malloc
jalr $25

nop

1w $28,16($£fp)

sw $2,36($fp)

sw $0,24($£p)

b $L10

nop

1w $2,24($£p)

nop

sll $2,$2,2

vars= 16, regs= 3/0, args= 16, gp= 8

Ozfa0

$L10:

$L15:

$L14:

$L13:

1w

nop

addu

1i

1w

nop

move

.reloc
jalr

nop

1w

swW

1w
nop
addiu
swW

1w

nop
slt
bne
nop

sSw

nop

sSw

nop

1w
nop
sll
1w
nop
addu
1w
1w
nop
sll
addu
swW
1w
nop
addiu
sW

1w

nop
slt
bne
nop

1w
nop

$3,36($fp)

$16,$3,$2
$4,4000
$2,%calli6(malloc) ($28)

$25,82
1f,R_MIPS_JALR,malloc
$25

$28,16($fp)
$2,0($16)
$2,24($£p)

$2,$2,1
$2,24($fp)

$2,24($£p)
$2,$2,1000

$2,$0,$L11

$0,28($fp)
$L12

$0,32($£p)
$L13

$2,28($fp)

$2,$2,2
$3,36($fp)

$2,$3,$2
$3,0($2)
$2,32($fp)

$2,$2,2
$2,$3,$2

$0,0(%$2)
$2,32($fp)

$2,$2,1
$2,32($fp)

$2,32($£p)
$2,$2,1000

$2,$0,$L14

$2,28($£p)

Ozfal

addiu $2,$2,1

sw $2,28($fp)
$L12:

1w $2,28($fp)

nop

slt $2,$2,1000

bne $2,$0,$L15

nop

1w $4,36($fp)

1w $2,%calli6(free) ($28)

nop

move $25,$2

.reloc 1f ,R_MIPS_JALR,free
jalr $25

nop

1w $28,16($£p)

move $2,%0

move $sp, $fp

1w $31,52($sp)

1w $£p,48($sp)

1w $16,44($sp)

addiu $sp,$sp,56

j $31

nop

.set macro

.set reorder

.end v2

.size v2, .-v2

.ident "GCC: (Ubuntu 5.4.0-6ubuntul~16.04.9) 5.4.0 20160609"
bench.py

#!/bin/python3.6

import os
import numpy as np

from time import perf_counter
num_trials = 200
version = 'V2'
num_samples = 12
def get_perf_trials(cmd, num_trials=num_trials):
trials = []
for trial in range(num_trials):
start_time = perf_counter()
os.system(f'{cmd}")
end_time = perf_counter()
trials.append(end_time-start_time)

return np.array(trials)

empty_cmd = 'true'

call_latency = get_perf_trials(empty_cmd) .mean()

for size in np.power(2, np.arange(0O, num_samples, 0.25)).astype(np.int32):
compile_cmd = f'gcc main.c -00 -D SIZE={size} -D {version}=1 -o {version}'
os.system(compile_cmd)

test_cmd = f'./{version}'
print(size, *(get_perf_trials(test_cmd) - call_latency), sep=',')

plot.py
#!1/bin/python3.6

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
import matplotlib

from scipy.interpolate import splrep, splev

def smooth(x, y):
tck = splrep(x, y, s=1)
xnew = np.arange(x.min(), x.max(), 100)
ynew = splev(xnew, tck, der=0)
return xnew, ynew

font = {'family' : 'Adobe Caslon Pro',
'size' . 10}

matplotlib.rc('font', #**font)

def read_data(file_name):
with open(file_name) as f:
data = []
for line in f.readlines():
data.append(np.fromstring(line, sep=','))

data = np.stack(data)
sizes = datal[:,0].astype(np.int32)
times = datal:,1:]

return sizes, times

vl_sizes, vl_times = read_data('vl.data')
v2_sizes, v2_times = read_data('v2.data')

fig, ax = plt.subplots(l,1, figsize=(6, 3.5), dpi=900)
_, vl_means = smooth(vl_sizes, vl_times.mean(axis=1))
_, v2_means = smooth(v2_sizes, v2_times.mean(axis=1))
vl_sizes, vl_stddevs = smooth(vl_sizes, vl_times.std(axis=1))
v2_sizes, v2_stddevs = smooth(v2_sizes, v2_times.std(axis=1))

plt.plot(vl_sizes, vl_means)
plt.fill_between(vl_sizes, vl_means-vl_stddevs, vl_means+vl_stddevs, alpha=.1)

plt.plot(v2_sizes, v2_means, '-.')
plt.fill_between(v2_sizes, v2_means-v2_stddevs, v2_means+v2_stddevs, alpha=.1)

for line in ax.get_lines():
line.set_solid_capstyle('round')
plt.setp(line, linewidth=0.5)

h = ax.set_ylabel('Time (s)')
h.set_rotation(0)
ax.yaxis.set_label_coords(0,1.02)
ax.set_xlabel('Array size')

ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.title('Latencies of the two programs')

plt.tight_layout()
plt.savefig('plot.pdf')

