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Abstract

Reinforcement leaning attempts to train an agent to interact with their

environment so as to maximize its expected future reward. This framework

has successfully provided solutions to a variety of di�cult problems. Recent

advances in deep learning, a form of supervised learning with automatic feature

extraction, have been a significant factor in modern reinforcement learning

successes. We use the combination of deep learning and reinforcement learning,

deep reinforcement learning, to address the portfolio management problem,

in which an agent attempts to maximize its cumulative wealth spread over

a set of assets. We apply Deep Deterministic Policy Gradient, a continuous

control reinforcement learning algorithm, and introduce modifications based

on auxiliary learning tasks and n ≠ step rollouts. Further, we demonstrate its

success on the learning task as compared to several standard benchmark online

portfolio management algorithms.

ii



Contents

1 Background 1

1.1 Machine Learning Fundamentals . . . . . . . . . . . . . . . . . . . . . 1

1.2 Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . 4

1.2.3 The Bellman Equations . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 Learning from Experience . . . . . . . . . . . . . . . . . . . . 11

1.3 Practical Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Linear Value-Function Approximators . . . . . . . . . . . . . . 17

1.3.2 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . . 18

1.4 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Deep Learning and Reinforcement Learning . . . . . . . . . . 36

2 Problem Statement 56

3 Related Work 60

4 Methods & Results 68

5 Conclusion & Future Work 89

6 Appendix - Selected Code 95

iii



List of Figures

1 Model capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Agent environment interaction . . . . . . . . . . . . . . . . . . . . . . 4

3 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Feedforward neural network . . . . . . . . . . . . . . . . . . . . . . . 24

5 2-D convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Unrolled RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 RNN sequence prediction . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 LSTM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Performance of DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10 Double DQN v DQN, learning curves . . . . . . . . . . . . . . . . . . 40

11 Double DQN vs DQN, performance . . . . . . . . . . . . . . . . . . . 41

12 Dueling networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

13 Auxiliary tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

14 Cumming’s MRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

15 CNN EIIE actor network . . . . . . . . . . . . . . . . . . . . . . . . . 72

16 CNN EIIE critic network . . . . . . . . . . . . . . . . . . . . . . . . . 73

17 RNN EIIE actor network . . . . . . . . . . . . . . . . . . . . . . . . . 74

18 RNN EIIE critic network . . . . . . . . . . . . . . . . . . . . . . . . . 75

19 CNN EIIE actor network with auxiliary tasks . . . . . . . . . . . . . 76

20 History length e�ect on CNN agents, training set . . . . . . . . . . . 77

21 History length e�ect on CNN agents, testing set . . . . . . . . . . . . 78

22 History length e�ect on LSTM agents, training set . . . . . . . . . . . 79

23 History length e�ect on LSTM agents, testing set . . . . . . . . . . . 82

24 Gamma e�ect on CNN agents, training set . . . . . . . . . . . . . . . 82

25 Gamma e�ect on CNN agents, testing set . . . . . . . . . . . . . . . . 83

26 Gamma e�ect on LSTM agents, training set . . . . . . . . . . . . . . 83

iv



27 Gamma e�ect on CNN agents, testing set . . . . . . . . . . . . . . . . 84

28 Rollout length e�ect on CNN agents, training set . . . . . . . . . . . 84

29 Rollout length e�ect on CNN agents, testing set . . . . . . . . . . . . 85

30 Rollout length e�ect on LSTM agents, training set . . . . . . . . . . . 85

31 Rollout length e�ect on LSTM agents, testing set . . . . . . . . . . . 86

32 Auxiliary tasks e�ect on CNN agents, training set . . . . . . . . . . . 86

33 Auxiliary tasks e�ect on CNN agents, testing set . . . . . . . . . . . . 87

34 Auxiliary tasks e�ect on LSTM agents, training set . . . . . . . . . . 87

35 Auxiliary tasks e�ect on LSTM agents, testing set . . . . . . . . . . . 88

36 Auxiliary tasks e�ect on LSTM agents, testing set . . . . . . . . . . . 88

v



1 Background

1.1 Machine Learning Fundamentals

We first describe machine learning fundamentals using the notation developed by

Goodfellow et al. (2016) [3] and Bishop (2006) [1]. Machine learning encompasses

algorithms that aim to learn to perform tasks T from experience E. T can range

through many di�erent tasks, such as:

• Classification - the task of determining which category an item x is. This

function can be represented as f : Rn æ {1, ..., k}, where x œ Rn, and k is the

total number of categories the model is aware of.

• Regression - the task of determining a numerical value given an input x. This

function can be represented as f : Rn æ R, where x œ Rn.

Many other tasks exist, however classification and regression are two of the most

common types of tasks that machine learning systems are often built to perform.

We measure the performance of the machine learning system by a performance

metric that is specific to the task that the system performs. For classification, one

could use the accuracy of the model, while for regression one could use the mean-

squared error between the model’s predictions and the labels in the dataset.

When training a machine learning model, we are mainly concerned about its

generalization ability, or its ability to perform on previously unseen inputs. We can

approximate this error by splitting our dataset into two portions: a training set

and a testing set. We limit our model to only utilizing on the training set to perform

predictions and we estimate its generalization ability using the test set. Many models,

however, have hyperparameters that are not learned through training; instead, these

are set at the beginning before training. We can introduce a third split, the validation

set to choose these parameters.
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We expect our model to generalize to the test set because of the independently

and identically distributed (i.i.d.) assumptions, where we assume that the test set

and training set were produced by the same data generating process. By reducing the

error of our model on the training set, we expect our error on the testing set to be

reduced as well. Two problems can occur however. The model can either underfit

when it does not have enough capacity to fit the training set, and thus its training

error will be large. On the other hand, the model can overfit when it has too much

capacity, and thus memorizes features of the training set that may not necessarily

apply on the test set. In this case, the gap between the training error and test error

will be large [3]. This is visualized in Figure 1. What we have described thus far

Figure 1: Capacity of a model and its impact on generalization [3]

is the concept of supervised learning. Two other subcategories of machine learning

exist, unsupervised learning and reinforcement learning. Let us provide definitions of

all three:

• Supervised learning - learn to predict an outcome using labeled data

• Unsupervised learning - learn the underlying structure of data
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• Reinforcement learning - learn how to behave given a reward signal and state

information

1.2 Reinforcement Learning (RL)

1.2.1 The Framework

In stark contrast to supervised learning, the only signal that an agent trained

through RL receives is the reward signal that indicates a objective change of the

satisfaction level of the agent’s current state [39]. Furthermore, unlike supervised

learning, this reward signal can be delayed and samples of the reward signal are

inherently sequential and nonstationary. Although reinforcement learning does not

fall within the supervised learning umbrella, it cannot be categorized as a type of

unsupervised learning. The major task of unsupervised learning is to find inherent

structures within a dataset – and while this can be useful for maximizing an agent’s

cumulative reward – it is not the ultimate task of a reinforcement learning agent.

These complications require us to build a framework separate from that of widely

developed supervised and unsupervised learning methods[32]. The framework should

allow the agent to learn solely from interaction, and therefore must be broader than

standard supervised learning techniques.

Let us first consider the three essential components of the framework: the reward

signal, agent, and environment. The reward signal, Rt œ R, indicates how well the

agent is performing at time step t. The goal of the agent, at time step t, is to perform

actions optimally such that the cumulative reward (the return) it receives from t

onwards, Gt, is maximal. Reinforcement learning attempts to guide an agent to act

optimally within its environment, and has no fixed dataset, since its dataset consists

of the experience the agent has gained from interacting with its environment.

Gt =
Œÿ

i=t

Ri+1

(1)
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Therefore, we must assume that solutions to problems we wish to solve can be trans-

lated to maximizing an agent’s cumulative reward.

Figure 2: Interaction between agent and the environment [32]

Figure 2 characterizes the interactions of the agent (depicted by the brain), the

environment (portrayed by the Earth), and the reward signal within the reinforce-

ment learning framework. The agent performs actions, At, that alter its state in its

environment. It is then able to make observations, Ot, that provide information re-

garding its state. Lastly, the agent receives a reward signal, Rt, from the environment

that indicates how well the agent is performing.

1.2.2 Markov Decision Processes

At all time steps, the agent is aware of the history of information it has received:

Ht = {O
1

, R
1

, A
1

, ..., At≠1

, Ot, Rt}

Based on this history, the agent is able to choose the next action it believes will

maximize its cumulative reward. It is impractical to expect an agent to utilize the
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entire history to base its next action upon, as the memory costs associated with such

an agent would become enormous. Therefore, we introduce the notion of state, the

agent now utilizes the state instead of the history to influence its decision. The state

at a certain time step should thus capture all relevant information of the history:

Sa
t = f(Ht)

for example,

Sa
t = Ot

It is important to note that the state can be any function of the history (not just

simple ones as shown above), as long as it is able to distill relevant information [32].

Later we will demonstrate the usage of neural networks in extracting state information

from a history sequence.

We now make the simplifying assumption that the distribution of states has the

Markov property:

P[Sa
t+1

|Sa
t ] = P[Sa

t+1

|Sa
1

, ..., Sa
t ]

The environment, on the other hand, maintains its own state as well, Se
t . The

environment’s state, unlike the agent’s state is defined to be Markov, rather than

assumed. To illustrate the di�erences, an environment state could be a video game’s

internal state that determines the future dynamics of the player’s experience, while

an agent’s state would be what the player perceives their current placement in a game

to be.

If the agent has direct access to the environment state, it is in a fully observable

environment:

Sa
t = Se

t

If the agent does not have direct access to the environment state, such as a blackjack
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agent that can not view the dealer’s cards, it is in a partially observable environment:

Sa
t ”= Se

t

Given our current notion of a Markov state that contains all relevant information

of the history, the agent is now able to base actions upon the state it believes itself

to be in. We assume henceforth that St = Sa
t . The policy function maps agent states

to actions:

fi(a|s) = P[At = a|St = s]

When an agent performs an action in a given state, there are many states the

agent could end up in due to factors present in the environment. The transition

dynamics, P , describe the distribution of future states the agent could end up in

given its current state and action choice:

Pa
ssÕ = P[St+1

= sÕ|St = s, At = a]

Similarly, there are many rewards the agent could receive upon acting a certain way

in a given state. The reward function, R, governs this distribution:

Ra
s = E[Rt+1

|St = s, At = a]

We now have the facilities to describe reinforcement learning problems through

Markov Decision Processes (MDPs), which are defined by tuples of the form <

S, A, P , R, “ > [33]:

• S is the set of all states the agent could be in

• A is the set of all actions the agent can perform

• P is the transition dynamics of the environment, {P a
ssÕ ’a œ A}

6



• R is the reward function of the environment, {Ra
s ’a œ A}

• “ is the discount factor œ [0, 1] that governs how much the agent weighs future

rewards received. We modify Eq. 1 for the return at time step t as follows:

Gt =
Œÿ

i=t

“i≠tRi+1

(2)

Given a fully defined MDP, our problem statement reduces to determining the optimal

policy by which the agent should perform actions. We define two quantities, the state-

value function, vfi(s), and the action-value function, qfi(s, a) to aid us in determining

the optimal policy, fi.

vfi(s) = Efi[Gt|St = s] (3)

qfi(s, a) = Efi[Gt|St = s, At = a] (4)

vfi(s) is the expected return of following policy fi from the starting state s. qfi(s, a) is

the expected return of following policy fi after having taken action a from the starting

state s [33].

1.2.3 The Bellman Equations

The state and action value functions can be decomposed in terms of themselves:

vfi(s) = Efi[Rt+1

+ “vfi(St+1

)|St = s] (5)

qfi(s, a) = Efi[Rt+1

+ “qfi(St+1

, At+1

)|St = s, At = a] (6)

Eqs. 5 and 6 form the Bellman Equations for state and action-value functions, which

can also be decomposed in terms of each other [35]:

vfi(s) =
ÿ

aœA

fi(a|s)qfi(s, a) (7)
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qfi(s, a) = Ra
s + “

ÿ

sÕœS

Pa
ssÕvfi(sÕ) (8)

We can combine these equations to yield [35]:

vfi(s) =
ÿ

aœA

fi(a|s)[Ra
s + “

ÿ

sÕœS

Pa
ssÕvfi(sÕ)] (9)

qfi(s, a) = Ra
s + “

ÿ

sÕœS

Pa
ssÕ [

ÿ

aÕœA

fi(a|sÕ)qfi(sÕ, aÕ)] (10)

Eqs. 9 and 10 form the Bellman Expectation Equations and allow us to evaluate the

state and action value functions of a given policy fi for a given MDP [39]. What we

want, however, is the policy fi that maximizes the state and action value functions:

vú(s) = max
fi

vfi(s)

qú(s, a) = max
fi

qfi(s, a)

Once we have these optimal value functions, our agent can select actions optimally

by simply selecting the action that corresponds to the maximum action-value:

fiú(a|s) =

Y
__]

__[

1 a = arg maxaœA qú(s, a)

0 else

How do we go about finding qú(s, a) (and thus, vú(s, a))? We can use Eqs. 7 and 8

to describe vú(s) and qú(s, a) in terms of each other:

vú(s) =
ÿ

aœA

fiú(a|s)qú(s, a)

vú(s) = max
aœA

qú(s, a) (11)

qú(s, a) = Ra
s + “

ÿ

sÕœS

Pa
ssÕvú(sÕ) (12)

8



Once again, we can combine Eqs. 11 and 12 together to form the Bellman Optimality

Equations:

vú(s) = max
aœA

Ra
s + “

ÿ

sÕœS

Pa
ssÕvú(sÕ) (13)

qú(s, a) = Ra
s + “

ÿ

sÕœS

Pa
ssÕ max

aÕœA
qú(sÕ, aÕ) (14)

Unlike the Bellman Expectation Eqs. 9 and 10, the Bellman Optimality Equations

are nonlinear (due to the max operation present) and thus cannot be solved by a

simple matrix inverse. We must therefore use iterative methods to find the optimal

value functions.

1.2.4 Dynamic Programming

We now consider methods that determine optimal policies given a complete rep-

resentation of the environment through an MDP. First, we must be able to determine

vfi for any policy fi – this step is called policy evaluation. We can then use vfi to evolve

our current policy to fiÕ, such that vfiÕ(s) Ø vfi(s), ’s œ S – this step is termed policy

improvement. We can evaluate fiÕ and improve upon it – the interleaving of policy

evaluation and policy improvement is termed policy iteration. Using policy iteration

to reach the optimal policy fiú is solving the MDP through dynamic programming

[39].

Let us begin with policy evaluation by considering the Bellman Expectation Eq.

9 again. If we write:

Pfi
s,sÕ =

ÿ

aœA
fi(a|s)Pa

ssÕ

Rfi
s =

ÿ

aœA
fi(a|s)Ra

s

essentially averaging the transition dynamics and reward function over all actions, we

can simplify the Bellman Expectation Equation as follows [35]:

vfi = Rfi + “Pfivfi

9



We can then solve for vfi, or evaluate policy fi, with an O(N3) policy evaluation

solution for N states via a matrix inverse:

vfi = (I ≠ “Pfi)≠1Rfi

This solution, unfortunately, cannot be used for MDPs with large state spaces because

of the large runtime, so we turn to an iterative policy evaluation algorithm instead.

If we consider an initial approximation of the state value function for all states,

v
0

, and consider a sequence of repeated approximations by applying the Bellman

equation (Eq. 5), {v
1

, v
2

, ..., vn}, vn will converge to vfi, as shown in [39]. Given this

convergence guarantee, we can use the following to update our approximation of the

value function:

vn+1

(s) = Efi[Rt+1

+ “vn(St+1

)|St = s] (15)

Now we address policy improvement by considering the Bellman Eq. 6. We want

to form a policy fiÕ such that vfiÕ(s) Ø vfi(s), ’s œ S. Note that since

vfi(s) = Efi[qfi(S, A)|S = s]

if we choose action aÕ = arg maxaœA qfi(s, a), then qfi(s, aÕ) Ø vfi(s). If we perform this

greedy maximization on every state, we end up with a new policy fiÕ that fulfills our

requirements for policy improvement. Given both policy evaluation and improvement

techniques, we can simply interleave these operations to form the policy iteration

algorithm. A special case of the policy iteration algorithm exists where we only

perform one iteration of policy evaluation (rather than waiting for our approximations

to converge), this case is termed value iteration.

Figure 3 depicts how policy iteration brings us from a sub-optimal policy and an

approximate value function to the optimal policy and value function.
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Figure 3: Policy iteration [39]

1.2.5 Learning from Experience

The policy iteration method discussed in the previous section only allowed us

to find an optimal policy given a fully defined MDP. This constraint, however, is

unlikely to be satisfied in real environments, which are often extremely complex,

leaving us unable to determine the transition dynamics and the reward function of

the environment. Therefore, an agent must be able to learn solely from experience

if it is to be of practical use. Similarly to dynamic programming, we will approach

this problem by considering policy evaluation, improvement, and iteration algorithms

that are model-free.

1.2.5.1 Model-Free Prediction

We first consider policy evaluation algorithms, which, in the context of model-

free algorithms, are termed model-free prediction algorithms. Recalling Eqs. 3 and 4

which define the state and action-value functions, respectively:

vfi(s) = Efi[Gt|St = s]

qfi(s, a) = Efi[Gt|St = s, At = a]

11



it is clear that a simple way to estimate both value functions is through a Monte-Carlo

approach. We can sample episodes from the environment using policy fi to guide our

agent:

E = {S
1

, A
1

, R
2

, ..., Sk} ≥ fi (16)

where S
1

is an initial state and Sk is a terminal state. We can determine the return,

Gt, for each state s œ E or for each tuple (s, a) œ E . By running multiple episodes,

we can average the returns experienced for each state or state action pair, directly

approximating the value functions. Pseudocode that implements this approximation

of the state value function is shown in Algorithm 1. Since Monte-Carlo prediction

Algorithm 1 First-visit MC prediction of vfi [39]
1: procedure MCVPrediction(fi, N)
2: V (s) Ω 0 ’s œ S
3: Returns(s) Ω an empty list ’s œ S
4: n Ω 0
5: repeat
6: Generate an episode E using fi
7: for s œ E do
8: G Ω return following the first occurrence of s
9: Append G to Returns(s)

10: V (s) Ω average(Returns(s))
11: end for
12: n Ω n + 1
13: until n = N
14: Output V (s)
15: end procedure

directly estimates the value functions using their definitions, it is guaranteed to con-

verge correctly. On the flipside, it requires episodes to be run to completion in order

to calculate the returns G. Furthermore, MC prediction is a high variance method,

and thus takes many iterations to converge. We can trade o� some of these disad-

vantages using a method called Temporal-Di�erence (TD) learning, which performs

biased updates to our estimate of the value function.

MC prediction essentially updates our state value function estimate, V (St), to-

12



wards the actual return, Gt, which is an unbiased estimate of vfi(St):

V (St) Ω V (St) + –(Gt ≠ V (St))

where for Algorithm 1, – = 1

N(St)

, where N(St) is the number of times state St was

encountered. TD learning, instead, updates our state value function estimate towards

the TD target, Rt+1

+ “V (St+1

):

V (St) Ω V (St) + –(Rt+1

+ “V (St+1

) ≠ V (St))

Since TD learning uses our value function estimate to formulate the TD target, it is

called a bootstrapping method [36]. The TD target in this case is bootstrapped after

one signal of reward, so this method of learning is called one-step TD learning, or

TD(0). Since TD learning only requires the reward Rt+1

and not the return Gt, it

can be applied in an online fashion without requiring episodes to be completed.

Furthermore, considering the variance of the TD target in comparison to the MC

target, it is clear that:

VAR[Rt+1

+ “V (St+1

)] Æ VAR[Gt] = VAR[Rt+1

+ “Rt+2

+ “2Rt+3

+ ...]

and therefore, TD learning trades o� some of the variance of MC prediction for biased

updates, which can lead to faster learning in stochastic environments. Other versions

of TD earning exist, such as TD(⁄), where the ⁄ parameter controls the level of

bootstrapping we wish to use [36]. In TD(⁄), the TD target is now:

G⁄
t = (1 ≠ ⁄)

Œÿ

n=1

⁄n≠1G(n)

t

where G(n)

t = Rt+1

+“Rt+2

+...+“n≠1Rt+n+“nV (St+n) is the n-step return. A ⁄ value

closer to zero reduces our variance, while a value closer to one reduces our bias. Note
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that while model-free prediction of the state value function, vfi was discussed, analo-

gous results apply to the prediction of the action value function, qfi(s, a). Specifically,

for MC prediction, we use the update:

Q(St, At) Ω Q(St, At) + –(Gt ≠ Q(St, At))

where Q(St, At) is our action value function estimate and – = 1

N(St,At)

, where N(St, At)

is the number of times the tuple (St, At) was encountered. For TD learning, specifi-

cally TD(0), we use:

Q(St, At) Ω Q(St, At) + –(Rt+1

+ “Q(St+1

, At+1

) ≠ Q(St, At))

1.2.5.2 Model-Free Control

Now that we have methods to evaluate an agent’s policy, we can continue along the

policy iteration framework developed for dynamic programming. Here we consider

both policy improvement and policy iteration, which fall under the umbrella of model-

free control algorithms when we learn entirely from experience.

In the dynamic programming case, we were able to simply construct an improved

policy by greedily maximizing over the action-value function, fiÕ(s) = arg maxa qfi(s, a).

In practical scenarios, however, we are not able to run model-free prediction al-

gorithms until guaranteed convergence, which would require an infinite amount of

episodes, and thus we cannot fully trust our estimates of the value function. We

account for this by using ‘-greedy policies, which keep our policies stochastic as com-

pared to the deterministic policies produced by greedy maximization [34]:

fiÕ
‘(a|s) Ω

Y
__]

__[

1 ≠ ‘ + ‘
|A(s)| a = arg maxaœA Qfi(s, a)

‘
|A(s)| else

Where Qfi(s, a) is our current estimate of the action value function of policy fi. We can
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now use either MC or TD prediction as our policy evaluation method in conjunction

with ‘-greedy policy improvement to yield a model-free control algorithm. Shown

below is Sarsa(0), a control algorithm that uses TD(0) as its prediction method:

Sarsa is what is known as an on-policy control algorithm, in the sense that the agent

Algorithm 2 Sarsa control for estimating Q ¥ qú, fi ¥ fiú [39]
1: procedure Sarsa(N , “)
2: Q(s, a) Ω 0 ’s œ S, a œ A
3: n Ω 0
4: repeat
5: Obtain initial state S
6: A Ω action ≥ fi‘(a|S)
7: repeat
8: Take action A, obtain R, S Õ

9: AÕ Ω actionÕ ≥ fi‘(a|S Õ)
10: Q(S, A) Ω Q(S, A) + –(R + “Q(S Õ, AÕ) ≠ Q(S, A))
11: S Ω S Õ

12: A Ω AÕ

13: fi‘ Ω ‘ ≠ greedy(Q)
14: until terminated
15: n Ω n + 1
16: until n = N
17: fi Ω greedy(Q)
18: Output Q, fi
19: end procedure

is behaving with respect to policy fi‘ and the control algorithm is learning Q ¥ qfi‘

to guide its policy improvements. O�-policy control algorithms exist where we learn

the action-value function of policy di�erent from the one we are using to guide agent

behavior. Q-Learning is a notable o�-policy control algorithm that learns the action-

value function of qú while using fi‘ to guide its behavior. Specifically, we can replace

the update

Q(S, A) Ω Q(S, A) + –(R + “Q(S Õ, AÕ) ≠ Q(S, A))
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in Sarsa with

Q(S, A) Ω Q(S, A) + –(R + “ max
a

Q(S Õ, a) ≠ Q(S, A)) (17)

to yield the Q-Learning control algorithm.

1.3 Practical Reinforcement Learning

The control algorithms previously discussed (Sarsa and Q-Learning) explicitly

stored the an estimate of the action-value function for every tuple (s, a), s œ S, a œ

A. While this approach could be easily implemented for MDPs with small state

and action spaces via a hash table, this approach is unsustainable for large MDPs.

Instead, we must approximate the estimate of our action-value function using function

approximators that can generalize over state-action pairs. Specifically, the function

approximators are parameterized by ◊ – yielding Q(s, a; ◊). We wish to find the

parameters ◊ú that minimizes a cost function defined between Q(s, a; ◊) and qfi(s, a).

MDPs may also have bounded but continuous state and/or action spaces. This

makes the max operation in Eq. 17 intractable. In these scenarios we must turn to

policy gradient methods, where instead of approximating the action-value function,

we instead parameterize our policy fi with a set of parameters ◊ – fi(a|s; ◊). With

policy gradient methods we seek to find the optimal parameters ◊ú that maximize

the agent’s cumulative reward. Furthermore, policy gradient methods are useful in

finding solutions to MDPs whose optimal policies are stochastic, since value function

based approaches would be deterministic.

Modern agents trained with reinforcement learning heavily rely upon deep learn-

ing techniques for function approximation. We first discuss the theory of control

algorithms that use linear value-function approximators. We then overview policy

gradient methods and conclude the background section with a significant discussion

of deep reinforcement learning algorithms (and the deep learning techniques that
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enable them).

1.3.1 Linear Value-Function Approximators

A linear value function approximator, Q(s, a; w) aims to approximate the true

value function qfi(s, a) as closely as possible, where the notion of close is a metric that

must be defined. If we define our metric to be the mean-squared error between the

true value function and our approximator:

J (w) = Efi[(qfi(S, A) ≠ Q(S, A; w))2] (18)

then we can determine the optimal direction to change our parameters w using

Stochastic Gradient Descent [27], where we sample the gradient of the expectation.

Specifically, since

Q(s, a; w) = „(s, a)T w

where „(s, a) is the feature vector that encodes the state-action pair (s, a), we can

write [36]:

Ò
w

J (w) = ≠2(qfi(S, A) ≠ Q(S, A; w))Ò
w

Q(S, A; w)

= ≠2(qfi(S, A) ≠ Q(S, A; w))„(S, A)

To minimize J
w

, we must change our parameters in the direction of the negative

gradient:

�w = ≠–

2 Ò
w

J (w) = –(qfi(S, A) ≠ Q(S, A; w))„(S, A) (19)

where – is a parameter that controls the step size of our parameter update. Since we

do not actually have qfi(s, a) (otherwise we would not be approximating it), we cannot

actually calculate the gradient with this form of the equation. Instead, we use a target

determined by our prediction algorithm (MC or TD). To illustrate, if we were using

TD(0), we would substitute qfi(s, a) with the TD-target, Rt+1

+ “Q(St+1

, At+1

; w), in
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Eq. 19. This yields:

�w = ≠–

2 Ò
w

J (w) = –(Rt+1

+ “Q(St+1

, At+1

; w) ≠ Q(S, A; w))„(S, A)

While, in general, SGD can find the optimal parameters w in the case of linear

function approximators, it may take many steps to do so. Using linear function

approximators gives us the opportunity to solve directly for the parameters w that

minimize the cost function J . Since we expect our change in parameters to be zero

at the minimum of the cost function, we can state [36]:

E[�w] = 0

ÿ
–(qfi(S, A) ≠ Q(S, A; w))„(S, A) = 0

ÿ
„(S, A)(qfi(S, A) ≠ „(S, A)T w) = 0

ÿ
„(S, A)qfi(S, A) =

ÿ
„(S, A)„(S, A)T w

w = [
ÿ

„(S, A)„(S, A)T ]≠1

ÿ
„(S, A)qfi(S, A)

Solving for w directly in this manner is an O(N3) operation, where N is the length

of the feature vector „(S, A). Therefore, linear function approximators have the nice

property of being able to directly approximate the target on each step of policy

iteration.

1.3.2 Policy Gradient Methods

Policies built around value function estimators are intuitive because agents chose

actions they thought had the highest action-value in a greedy fashion. Unfortunately,

such policies have significant drawbacks. Value function estimators do not have great

convergence properties (as we saw, we had to trade o� variance of Monte-Carlo es-

timators for the bias of TD estimators to improve convergence). Furthermore, such
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policies will be deterministic, due to the agent’s greedy maximization of actions with

respect to the action-value function. Deterministic policies cannot, inherently, per-

form well on tasks whose optimal policies are stochastic. For example, such an agent

might choose to play Rock every single turn in the game of Rock-Paper-Scissors in-

stead of the optimal stochastic policy of evenly playing Rock, Paper, and Scissors

(and be easily exploited as well). Such policies are also infeasible in high-dimensional

or continuous action spaces, where a maximization over actions would be extremely

expensive. Lastly, small changes in value function estimates can drastically a�ect

policies; such high variance in behavior is undesirable.

We can address some of these issues by attempting to learn a policy directly,

rather than building them on top of learned value function estimates. If we consider

a parameterized policy:

fi(a|s; ◊)

our goal becomes to learn the optimal parameters ◊ú that maximizes the performance

of the agent’s behavior, which is measured by the expected cumulative reward the

agent receives. This objective can be characterized as follows [37] [39]:

J(◊) = vfi◊
(s

1

)

J(◊) =
⁄

sœS
flfi◊(s)

⁄

aœA
fi◊(s, a)r(s, a)da ds (20)

where

flfi◊(sÕ) =
⁄

sœS

Œÿ

t=1

“t≠1p
1

(s)p(s æ sÕ, t, fi◊)ds (21)

p(s
1

æ st, t, fi◊) =
⁄

{s1,s2,...st≠1}

t≠1Ÿ

i=1

⁄

aœA
Pa

sisi+1

A movement in the parameters ◊ implies both a shift in the distribution of actions

executed at each state as well as in the distribution of states experienced, as implied

by Eq. 21. Both these distributions have significant impacts on the objective function,

19



as demonstrated in Eq. 20. While we can determine the e�ect of such a shift on the

action distributions – since we have directly parameterized fi(a|s; ◊) – it is di�cult

for us to determine the change in the state distribution, since it is dependent on the

environment’s transition dynamics, P , which is information our model-free agent is

not privy to. Fortunately, however, the Policy Gradient Theorem [39] provides us an

expression for Ò◊J(◊) that does not involve a gradient of the state distribution [37]:

Ò◊J(◊) =
⁄

sœS
flfi◊(s)

⁄

aœA
Ò◊fi◊(a|s; ◊)qfi(s, a)dads (22)

We must be able to sample the gradient if we are to employ stochastic gradient descent

(or an equivalent variant optimizer). We can rewrite Eq. 22 as follows:

Ò◊J(◊) = Es≥flfi◊ [
⁄

aœA
Ò◊fi◊(a|s; ◊)qfi(s, a)da] (23)

Ò◊J(◊) = Es≥flfi◊ ,a≥fi◊
[Ò◊ log fi◊(a|s; ◊)qfi(s, a)] (24)

Similar to Monte-Carlo value function estimation, we can use the return, Gt as an

unbiased sample of qfi(St, At); this yields the REINFORCE algorithm [41] [39] This

Algorithm 3 REINFORCE - Monte Carlo Policy Gradient
1: procedure REINFORCE(fi◊, N)
2: Initialize ◊
3: n Ω 0
4: repeat
5: Generate an episode E = {S

0

, A
0

, R
1

, ..., ST ≠1

, AT ≠1

, RT } using fi◊

6: for t œ {0, ..., T ≠ 1} do
7: G Ω return from step t
8: ◊ Ω ◊ + “tGÒ◊ log fi(At|St; ◊)
9: end for

10: n Ω n + 1
11: until n = N
12: end procedure

version of the policy gradient algorithm has high variance, however we can reduce the
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variance by introducing a baseline, b(s). We can rewrite Eq. 23 as follows:

Ò◊J(◊) = Es≥flfi◊ [
⁄

aœA
Ò◊fi◊(a|s; ◊)(qfi(s, a) ≠ b(s))da] (25)

Since

Es≥flfi◊ [≠b(s)
⁄

aœA
Ò◊fi◊(a|s; ◊)da] = 0

A good baseline that is often chosen in the literature is b(s) = vfi(s). In practice,

however, we must estimate vfi(s) using a function approximator, V (s; v). We then

simply replace line 8 in Algorithm 3 with

◊ Ω ◊ + “t(Gt ≠ V (St, v))Ò◊ log fi(At|St; ◊)

We can learn the function approximator using a method such as TD-learning, as

discussed in the previous section.

We can further reduce variance by employing actor-critic methods. These methods

substitute a biased sample of qfi(s, a) instead of using the unbiased sample, Gt. For

example, if we use one-step actor critic methods, we substitute for Gt the one-step

return (or the TD-target, as discussed previously):

”t = Rt+1

+ “V (St+1

; v) ≠ V (St; v)

the update to ◊ can now be written as:

◊ Ω ◊ + –”tÒ◊ log fi(At|St; ◊)

where – is the learning rate. The complete algorithm for the one-step actor critic is

detailed below [39]
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Algorithm 4 One-step Actor-Critic
1: procedure ActorCritic(fi◊, V

w

, –v, –◊, N) [39]
2: Initialize ◊, v
3: n Ω 0
4: repeat
5: Obtain S, the first state of episode
6: I Ω 1
7: while S is not terminal do
8: Sample A ≥ fi◊

9: Take action A, observe S Õ, R
10: ” Ω R + “V (S Õ; v) ≠ V (S, v)
11: v Ω v + –vI”Ò

v

V (S; v)
12: ◊ Ω ◊ + –◊I”Ò◊ log fi(A|S; ◊)
13: I Ω “I
14: S Ω S Õ

15: end while
16: n Ω n + 1
17: until n = N
18: end procedure

1.4 Deep Reinforcement Learning

Instead of using linear functions to approximate value-functions, we can use deep

neural networks. Linear function approximators need a good set of features „(S, A)

in order to accurately estimate the true value functions, but extracting such features

often requires in-depth domain knowledge which can be prohibitive. Furthermore,

such manually curated features may take a significant time to develop and may not

be exhaustive [15]. Deep neural networks can circumvent the need for the in-depth

domain knowledge required to perform feature extraction, since neural networks are

often arranged in a hierarchical fashion that lends itself to progressively more abstract

feature extraction [13]. We first overview deep learning techniques and then discuss

reinforcement learning methods that have successfully employed deep neural networks

to either approximate value functions and/or parameterize policies.
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1.4.1 Deep Learning

1.4.1.1 Feedforward Neural Networks

The feedforward neural network, or multi-layer perceptron (MLP), is the most

basic form of deep learning architecture. The neural network consists of an input

layer, followed by one or more hidden layers, followed by an output layer. Information

flows in one direction only: from the input layer to the output layer – hence the

name feedforward. Neural networks are used to learn a function ŷ = f̂(x; ◊) that

approximates a function y = f(x) [3]

An example of a feedforward neural network is shown in Figure 4. The basic unit of

any neural network is a neuron, depicted by the circles in Figure 4. In the feedforward

case, a neuron takes a vector input, x, and computes the value g(wT x+b) œ R, where

w and b are parameters of the neuron and g is a non-linear activation function. The

stacking of non-linear functions of the input provides our model the capability to

learn more di�cult functions than standard linear models. In the neural network

of Figure 4, the first hidden layer consists of four neurons, each of which takes an

input x œ R3. The outputs of each of the four neurons are concatenated together to

form the input passed to the second hidden layer, x œ R4. We can write the overall

operation of the first hidden layer as y = g
1

(WT
1

x + b
1

), where W
1

œ R3◊4, b
1

œ R4,

and x œ R3. Since Figure 4 has 3 layers (excluding the input layer), the parameters

of the neural network ◊ are {Wi, bi}i=1...3. Thus, the output of the neural network,

given the input layer, x œ R3 is:

y = g
3

(WT
3

(g
2

(WT
2

(g
1

(WT
1

x + b
1

)) + b
2

)) + b
3

)
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Figure 4: An example feedforward neural network with two hidden layers.

1.4.1.2 Output Layers, Cost Functions, and the Backpropagation Algo-

rithm

Output layers of neural networks can vary depending on the task they are required

to perform. We consider the two main learning tasks posed in Section 1.1, regression

and classification.

• Regression - For regression we wish to closely approximate a function f : RN æ

R. Traditionally, we use an output layer consisting of one neuron with a linear

activation function g(z) = z for this case.

• Classification - For classification, we wish to predict the category C œ {1, ...k}

that an input x œ RN belongs to. For k > 2, our output layer consists of k

neurons. We use the softmax function, g(z)i = exp(zi)q
j

exp(zj)

to obtain probabilities

P (C = i|x) for i = {1...k} [3]. For k = 2, our output layer consists of 1

neuron. We use the sigmoid function, g(z) = 1

1+exp(≠z)

to obtain the probability

P (C = 2|z).
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In order for the neural network to make predictions, the parameters ◊ must be

learned using a dataset D consisting of labeled examples {(xi, yi)}i=1...N . Neural

networks employ the Backpropagation algorithm [28] to learn the parameters ◊ú that

minimizes a cost function J(◊). The Backpropagation algorithm is used to find the

gradient Ò◊J(◊) and take gradient descent steps until convergence:

◊ Ω ◊ ≠ –Ò◊J(◊)

where – is the learning rate. Cost functions vary between tasks, but aim to capture

the discrepancies between the function we wish to model and our estimation of that

function. For regression, we can use the mean squared error:

J(◊) = E
x,y≥D[(y ≠ f̂(x; ◊))2]

For classification, we can use the cross-entropy loss [3]:

J(◊) = E
x,C≥D[≠

kÿ

i=1

C=i log f̂(x; ◊)i]

f̂(x; ◊)i = P (C = i|x)

1.4.1.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialization of the neural network

architecture that are used for processing grid-like input data, such as images [3].

CNNs have achieved state-of-the-art performance on many image recognition and

object detection benchmarks, such as Mask R-CNN [7] which achieved state-of-the-

art on MS COCO, a popular object detection competition.

A CNN is composed of layered convolution and pooling operations. The standard
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definition of a convolution, from signal processing theory, is as follows:

y(t) = (x ú w)(t) =
⁄

x(a)w(t ≠ a)da

This results in the common flip and slide interpretation of the convolution operation.

CNNs employ convolution operations by setting x to be a multi-dimensional input,

w to be an adaptable kernel of weights, and y to be the output of the operation. For

example, a monochrome image can be represented by a 2-D matrix in Rheight◊width.

We can represent the 2-D convolution of this image, X with a 2-D kernel k as follows:

Y (i, j) = (X ú K)(i, j) =
ÿ

m

ÿ

n

X(m, n)K(i ≠ m, j ≠ n)

Typically, however, we remove the flip component of flip and slide and are left with:

Y (i, j) = (X ú K)(i, j) =
ÿ

m

ÿ

n

X(m, n)K(i + m, j + n) (26)

This is visualized in Figure 5. The convolution operations of CNNs, however, are not

simply analogous to extending Eq. 26 to further dimensions. We will consider the

three dimensional case, since most CNNs are built to process images. Images can be

represented as a 3-D tensor œ Rheight◊width◊channels. For example, an 80 ◊ 80 RGB

image would be represented in R80◊80◊3. A convolutional layer processing an input

tensor I of size [CI ◊ HI ◊ WI ] will employ a stack of kernels {Ki}i=1...M , each of

which will produce a feature map. Each of these kernels will be of the same size,

[HK ◊ WK ], and consist of HKWK weight vectors of length CI , one at each location

in the HK ◊ WK kernel grid, for a combined size of [CI ◊ HK ◊ WK ]. The operation

of kernel i on the input I can be written as:

Yi,j,k = g(
ÿ

l,m,n

Il,j+m≠1,k+n≠1

Ki,l,m,n + bi) (27)
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Figure 5: 2-D convolution without flipping and no activation function. The 2-D, [2
◊ 2] kernel block is slid over every [2 ◊ 2] square block in the 2-D input. At each
location, the kernel weights are multiplied by the respective value in the input, and
the results are summed to yield a singular value at that location. The results at each
location form the [2 ◊ 3] output. [3]

where bi is the bias parameter for kernel i and g is an activation function used to

introduce nonlinearities. HK ◊ WK is referred to as the receptive field of the kernel.

This operation can be expensive for large inputs and kernel receptive fields; we can

downsample our convolution by performing a strided convolution, where we slide our

kernel by s units instead of by i unit in each direction. In this case, the operation of
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kernel i on the input I can be written as:

Yi,j,k = g(
ÿ

l,m,n

Il,(j≠1)s+m,(k≠1)s+nKi,l,m,n + bi) (28)

Note that the summation over l, m, and n are only over indices where both I and Ki

can be indexed validly. We can also zero-pad our input in both the height and width

dimensions, such that the input size becomes [CI ◊ HI + 2PH ◊ WI + 2PW ], where

PH is the amount of padding added to the height dimension, and PW is the same but

for the width dimension. Both zero-padding and strided convolutions help us control

the size of the output of the convolutional operation, which is [M ◊ HO ◊ WO] where

M = number of kernels applied

HO = (HI ≠ HK + 2PH)/SH + 1

WO = (WI ≠ WK + 2PW )/SW + 1

S = stride length, in either the height or width dimensions

Convolutional layers are used because they make use of two important ideas [3]

• Sparse Interactions - In a feedforward neural network, every neuron in every

layer interacts with each output from the previous layer, resulting in a significant

number of parameters needed to parameterize the model. In a convolutional

network, however, since the kernel is typically smaller than the input, less

weights are used, so the network is able to more e�ciently model interactions

between input variables.

• Parameter sharing - A convolution operation slides a kernel over an input to

produce an output. Therefore, the parameters of the kernel are reused multiple

times, each time the kernel is slid. The model therefore only has to learn one

set of parameters that can be applied throughout all input locations, making
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the model easier to learn, since far fewer parameters are learned. Furthermore,

this allows the model to be equivariant to translation, which means that if an

input is translated, the output is translated in the same fashion [3]

Pooling operations are usually applied between convolutional layers. Two main

pooling operations exist: max pooling and average pooling. Any pooling operation

performs a function within a rectangular area of its input. For example, max pooling

applies the following operation:

Yi,j,k = max
l=1+(j≠1)h...1+jh,

m=1+(k≠1)w...1+kw

Ii,l,m

Pooling helps make CNNs translationally invariant, for small translations of input

images, since pooling outputs are representatives of the inputs in each of their neigh-

borhoods. Translational invariance can be an extremely useful characteristic for sys-

tems that must detect the existence of features, rather than the exact location of such

features [3].

1.4.1.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are another type of specialized neural network

architecture that excels at processing sequential data. RNNs leverage parameter

sharing, just like CNNs, allowing RNNs to process variable length sequences and

generalize across various positions. The output of an RNN is a temporally fixed

function of previous outputs produced by the RNN:

h(t) = f(h(t≠1), x(t); ◊) (29)

In Eq. 29, x(t) is an input to the RNN at time t, while h(t) is the state of the network

at time t. We can then apply a separate, temporally invariant function to h(t) to yield

predictions. For example, if we were trying to predict the next word given a sequence
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of words of length L and a dictionary size of D, we would first apply the RNN L times

to yield h(L). A single-layer feedforward neural network with D units and a softmax

activation function would then be used to predict the probability of the next word

for each element of the dictionary. The recurrent functional form of Eq. 29 is what

lends RNNs the ability to perform predictions on variable-length sequences, since it

is specified in terms of a singular time-step transition and all inputs to the recurrent

function are fixed in length (h(t) and x(t)).

We can unroll an RNN by applying Eq. 29 t times. For example:

h(2) = f(f(h(0), x(1); ◊), x(2); ◊)

Unrolling an RNN defines a computational graph from the beginning to the end of a

sequence. Doing so allows us to then use backpropagation to update our network’s

parameters after a cost function is defined.

Figure 6: . A recurrent network unrolled (Eq. 29). The left image depicts the
recurrent diagram, with the black box indicating the passage of a single time step.
The right image depicts unrolling the recurrent diagram through time. The unrolled
diagram forms a full computational graph from the beginning of time to the current
timestep.[3]

We could also obtain predictions every timestep, as shown in Figure 7. In Figure

7, the following standard RNN update equations are applied:

a(t) = b + Wh(t≠1) + Ux(t)
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Figure 7: . The unrolled network that predicts a sequence of values o for an input
sequence x. At each timestep, a loss L is computed between a target, y, and the
output o. The total loss of the network is 1

·

q·
i=1

L(t). Backpropagation is then used
to find the parameters W, U, and V that minimize the expected loss of the network
over a dataset of examples. [3]

h(t) = tanh(a(t))

o(t) = c + Vh(t)

ŷ(t) = softmax(O(t))

Backpropagating through an unrolled recurrent network is an expensive operation

that costs O(·) in both time and memory, where · is the number of unrolled iterations.

Furthermore, it is unparallelizable, since the output at each time step can only be

computed after all previous timesteps have been passed through. Therefore, RNNs,

on average, take longer to train than other neural network architectures.
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Vanilla RNNs, as described thus far, face the well-known issues of gradient vanish-

ing or gradient explosion, where gradients propagated across many timesteps either

turn to zero or become exponentially larger [3]. The long short-term memory unit

(LSTM) is one of the most common variations on the standard RNN that was intro-

duced to handle these two problems. The LSTM network is a type of gated RNN,

which attempts to create paths in the unfolded computational graph where gradients

neither vanish nor explode. Gated units allow the network to accumulate and forget

information over time. A LSTM cell is shown in Figure 8.

Figure 8: . An LSTM cell that has an inner recurrence on it [26]

The update equations are as follows [3]:

ft = ‡(Wf [ht≠1

, xt] + bf )

it = ‡(Wi[ht≠1

, xt] + bi)

ot = ‡(Wo[ht≠1

, xt] + bo)
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ct = ft · ct≠1

+ it · tanh(Wc[ht≠1

, xt] + bc)

ht = tanh(ct) · ot

Where ft is the forget gate that controls how much of the cell state ct gets passed over

from one time step to another. it is the input gate that controls which cell state values

we update. ot is the output gate that controls which parts of the cell state we wish to

output. LSTM networks have been successfully trained to learn both long-term and

short-term dependencies, and are the most common type of RNN network employed

when performing learning tasks on sequential data.

1.4.1.5 Regularization

As discussed in Section 1.1, we wish to make models that are able to generalize to

new inputs. Neural networks are highly prone overfitting on training data, since the

large number of parameters they have enables them to simply memorize the training

set if they are not regularized carefully. There are many regularization schemes one

can employ that either modify the cost function or perform augmentation on training

data such that our models can achieve lower test error:

1. L2 Regularization [12] [25] - L2 regularization is a form of parameter regular-

ization that adds the term ⁄
2

q
i w2

i to the cost function of the neural network

(note that the summation is only over the weights of our model, and not the

biases). This term encourages weights to be closer to the origin and is also

known as either weight decay or ridge regression. ⁄ controls the strength of the

regularization, the higher ⁄ is, the stronger the regularization.

2. L1 Regularization [25] - L1 regularization is another form of parameter regular-

ization that adds the term ⁄
q

i |wi| to the cost function of the neural network.

L1 regularization encourages the weights of our model to be sparse, such that

the optimal values of some weights are zero. ⁄ controls the strength of the

regularization.
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3. Dataset Augmentation [3] - For some tasks, it is simple to generate new dataset

pairs that our model can train on. For example, if our model is aimed at

classifying a picture of an animal, we can generate new data by applying slight

blurs our dataset or by horizontally flipping each of the images in our dataset.

Doing so will force our model to learn to classify blurry images and understand

the symmetry of animals.

4. Early stopping [42] - The training error of neural networks can often decrease

forever until it reaches zero – after the network has memorized its entire input

dataset. During this process however, the validation error will begin to rise after

the network has started to overfit on the training set. We can choose the best

parameters of our model by selecting the point at which the model achieves the

best validation error.

5. Dropout [38] - Dropout randomly samples a binary mask to apply to all input

and hidden units. The binary mask zeros out the outputs of the respective

units it covers. Dropout is usually applied with a probability p = 0.5, where p

is the probability that the mask for each unit is ”on”. Dropout approximates

the training of an ensemble of subnetworks that are constructed by removing

nonoutput units from the original neural network.

1.4.1.6 Training Optimizations

Neural network training is often slow and requires many cycles, or epochs of sam-

pling our dataset. We can improve convergence properties by utilizing these methods:

1. Minibatch Sampling [3] - Since our cost function is defined by:

J(◊) = E
x,y≥p̂data(x,y)

[L(f(x; ◊), y)]

finding the true gradient Ò◊J(◊) requires performing a summation over the
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entire training dataset, D. We can instead, find the gradient of

Ĵ(◊) = 1
M

Mÿ

i=1

L(f(xi; ◊), yi), (xi, yi) ≥ D

where M is our minibatch size. While Stochastic Gradient Descent (SGD), in

expectation, samples the true gradient using a minibatch size of 1, larger batches

are able to provide more accurate estimates of the gradient. Furthermore, larger

batches are able to be processed in parallel, allowing the network to see the

entire dataset faster.

2. Batch Normalization [9] - While training a neural network, the distribution of

the inputs to each layer shifts, since the parameters of the network are being

updated. This internal covariate shift requires us to carefully specify the learn-

ing rates and initial parameters of a model. Batch Normalization, introduced

by Io�e and Szegedy, 2015, is a normalization method that allows us to use

larger learning rates and initialize parameters with less scrutiny. Batch normal-

ization reduces internal covariate shift by normalizing inputs to each layer over

the minibatch.

3. Rectified Linear Unit Activation [23] - As networks become deeper, gradients

have an increased likelihood to vanish if sigmoid activations are used within

hidden units. Instead, if the rectified linear activation is used, g(x) = max(0, x),

gradients become less likely to vanish.

4. Variance Scaling Initializer [6] - As models become progressively deeper, it be-

comes more di�cult to initialize the parameters of the model. Standard ini-

tialization schemes include initializing all weights from a N (0, v) distribution,

where v is a hyperparameter. Such an initialization, however, may not avoid

reducing or increasing the magnitude of the input by a significant amount as the

input signal propagates through the network. The variance scaling initializer
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initializes all weights from a N (0,
Ò

( 2

nl
)), where nl is the number of weights

connecting an input to an output for layer l. This initialization scheme avoids

the vanishing/exploding input problem and is able to allow deeper networks to

converge.

5. Adam Optimizer [11] - Rather than applying the standard gradient descent up-

date, ◊ Ω –Ò◊J(◊) + ◊, one can apply an update with momentum. Adam is a

momentum-based optimizer that works well with sparse gradients, invariant pa-

rameter updates, bounded step sizes, and automatic step size annealing. Adam

computes estimates of the first and second moments of the gradient, which are

used to compute the momentum-based updates.

1.4.2 Deep Learning and Reinforcement Learning

1.4.2.1 Deep Q-Networks

Deep Q-Networks (DQN) were first introduced in the landmark paper by Mnih

et al. 2013, Playing Atari with Deep Reinforcement Learning, which ignited the

field of Deep Reinforcement Learning. Prior to this work, it was not common to

use neural networks since nonlinear function approximators are prone to causing

instability or divergence in standard RL algorithms. DQN demonstrated usage of

the same convolutional neural network architecture to train an agent to play multiple

Atari 2600 games without feature engineering. The agent learned solely from RGB

pixel inputs and the reward signal, as compared to linear learners which require

heavy feature engineering. DQN was able to successfully mitigate instability issues

and demonstrate state-of-the-art performance on a subset of the Atari 2600 games

tested. Mnih et al. 2015 extended DQN with target networks to improve stability of

the algorithm [20], and demonstrated improved results.

The two main innovations that DQN introduced were the usage of experience

replay (originally introduced by [17]) and target networks. Experience replay uti-
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lizes a replay bu�er that stores experiences, et = (st, at, rt, st+1

) in a dataset, D =

{e
1

, ..., eN}. Q-learning updates are applied via minibatch updates obtained by sam-

pling D, rather than the online update discussed in earlier sections. Randomly sam-

pling a minibatch of experiences removes the temporal correlations associated with

online updates; furthermore, it allows the neural network to leverage experiences mul-

tiple times to perform gradient steps, bringing about greater data e�ciency. DQN

also utilizes target networks for bootstrapping, which reduces correlations between

estimated action-values and their target values [20]. The full algorithm is detailed in

Algorithm 5.

DQN specifically used a convolutional neural network to approximate the action-

value function of the agent’s policy, since CNNs are known to perform well for image-

processing tasks. The agent’s state, and thus the input to the neural network, were

the last four frames of game history, which were cropped to the same 84 ◊ 84 square

region.

1.4.2.2 Double Deep Q-Networks (D-DQN)

Q-learning, in general, has been shown to produce overestimates of action-values

[4]. This can be partially attributed to the construction of the Q-learning target,

shown below:

”t = Rt+1

+ “ max
a

Q(St+1

, a; ◊)

where the max operator both chooses an action and evaluates actions using the same

values: Q(·; ◊), biasing the estimator towards overestimated values. If we, instead,

learn two di�erent estimates of the value function, Q(St+1

, a; ◊) and Q(St+1

, a; ◊Õ), we

can separate this process of selection and evaluation:

”t,◊ = Rt+1

+ “Q(St+1

, arg max
a

Q(St+1

, a; ◊); ◊Õ)
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Algorithm 5 Deep Q-Network [20]
1: procedure DQN(M , N , C, G)
2: Initialize replay memory D
3: Initialize action-value function approximator Q with random weights ◊
4: Initialize target action-value function approximator Q’ with weights ◊Õ = ◊
5: Initialize ‘ according to ‘-annealing strategy G
6: for episode i:=1...M do
7: Obtain S

1

, the first state of episode
8: while St is not terminal do
9: Extract features „t Ω „(St)

10: Select at ≥ ‘-greedy policy fi‘ w.r.t Q(·, ◊)
11: Perform at, observe st+1

, rt

12: Extract features „t+1

Ω „(St+1

)
13: Store experience e = („t, at, rt, „t+1

) into D
14: B Ω A random minibatch of experiences {(„j, aj, rj, „j+1

)}N from D
15: for all experiences Ej = („j, aj, rj, „j+1

) œ B do

16: yj Ω

Y
]

[
rj sj+1

is terminal
rj + “ maxaÕ QÕ(„j+1

, aÕ; ◊Õ) else
17: end for
18: ◊ Ω ◊ ≠ Ò◊

qN
j=1

(yj ≠ Q(„j, aj; ◊))2

19: Every C steps, ◊Õ Ω ◊
20: end while
21: ‘ Ω ‘Õ according to ‘-annealing strategy G
22: end for
23: end procedure
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Figure 9: Performance of DQN vs using linear function approximators. DQN outper-
forms the best linear learner in all except three Atari games.[20]

Since DQN already makes use of two deep networks – an online and a target network,

parameterized by ◊ and ◊Õ, respectively – we can leverage them for selection and
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evaluation without having to introduce additional parameters [4]. Figures 10 and 11

depict the benefits of DDQN when training agents to play Atari games.

Figure 10: Learning curves of DDQN vs DQN on various Atari Games. DQN learning
curves are shown in orange, while DDQN learning curves are shown in blue. The
straight orange and blue lines show the actual cumulative reward achieved by the
best DQN and DDQN agents, respectively, averaged over several episodes. If the
learning algorithms were unbiased, their value function estimates would be equivalent
to the straight lines at the end of training (right side of the plots). DDQN estimates
are significantly less biased than DQN estimates. DDQN learning curves also exhibit
greater stability than DQN’s. Furthermore, DDQN’s resultant policy performs better
than DQN’s in most games.[4]
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Figure 11: .Performance comparisons of DDQN vs DQN on numerous Atari games.
DDQN was evaluated in the same manner as DQN. The white bars shows DDQN’s
performance with the same hyperparameters as DQN, while the blue bars indicate
DDQN’s performance with tuned hyperparameters. DDQN performs better than
DQN in most games.[4]
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1.4.2.3 Prioritized Experience Replay

While experience replay randomly samples experiences (st, at, rt, st+1

) uniformly

from a replay bu�er, prioritized experience replay samples experiences such that an

agent is able to learn faster. The key idea which Schaul et al. 2015 used was to

sample experiences based on their expected learning progress, as determined by the

magnitude of their TD error [29]. While this can lead to issues – such as a loss

of diversity in experiences the agent uses for learning and thus, an introduction of

bias due to the change in distribution of experiences – stochastic prioritization and

importance sampling can alleviate such problems. The stochastic sampling scheme

introduced is detailed below:

P (i) = p–
iq

k p–
k

Where P (i) is the probability of sampling experience i, pi is the priority of experience

i, and – is a parameter that controls how much we wish to prioritize experiences

associated with higher TD errors. Two schemes are introduced to define priority:

1. pi = |”i| + ‘, ”i is the TD-error for transition i, ‘ is a small, positive constant

2. pi = 1

rank(i) , rank(i) = rank of transition i when the replay memory is sorted

w.r.t |”i|

Both of these schemes ensure that all experiences have a nonzero probability of be-

ing sampled and that an experience’s sampling probability is a monotonic w.r.t its

priority. Following this sampling method, however, would introduce bias in learning

updates, since we would no longer be sampling the gradient of the objective func-

tion defined in Eq. 18. Therefore, we must weight an experience’s update to the

parameters by:

( 1
N

· 1
P (i))— · 1

maxj wj

Double DQN with prioritized experience replay is detailed below:
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Algorithm 6 Double DQN with Prioritized Experience Replay [29]
1: procedure DQNPri(M , N , C, G, K, “, –, —, ÷)
2: Initialize replay memory D
3: Initialize action-value function approximator Q with random weights ◊
4: Initialize target action-value function approximator Q’ with weights ◊Õ = ◊
5: Initialize ‘ according to ‘-annealing strategy G
6: for episode i:=1...M do
7: Obtain S

1

, the first state of episode
8: while St is not terminal do
9: Extract features „t Ω „(St)

10: Select at ≥ ‘-greedy policy fi‘ w.r.t Q(·, ◊)
11: Perform at, observe st+1

, rt

12: Extract features „t+1

Ω „(St+1

)
13: Store experience e = („t, at, rt, „t+1

) into D
14: if t © 0 mod K then
15: � Ω 0
16: for j:=1...N do
17: Sample ej = („j, aj, rj, „j+1

) from D with P (j) = p–
jq
i

p–
i

18: wj Ω (N ·P (j))

≠—

maxi wi

19: yj Ω

Y
]

[
rj sj+1

is terminal
rj + “QÕ(„j+1

, arg maxa Q(„j+1

, a; ◊); ◊Õ) else
20: ”j Ω yj ≠ Q(„j, aj; ◊)
21: pj Ω |”j|
22: � Ω � + wj”jÒ◊Q(„j, aj; ◊)
23: end for
24: ◊ Ω ◊ + ÷ · �
25: Every C steps, ◊Õ Ω ◊
26: end if
27: end while
28: ‘ Ω ‘Õ according to ‘-annealing strategy G
29: end for
30: end procedure
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1.4.2.4 Dueling Networks

Previous algorithms discussed have mostly made improvements that were not

specifically targeted towards the deep learning characteristics of the models, but

rather the way reinforcement learning integrates with deep learning. Dueling net-

works, however, are a direct improvement towards the neural network action-value

function approximator that is used in both DQN and Double DQN.

Previously, we discussed how policy gradient algorithms sample estimates of either

qfi(s, a) or qfi(s, a) ≠ b(s) to use in the gradient updates of equation 25. Furthermore,

we discussed how a good baseline function used is b(s) = vfi(s). The quantity

qfi(s, a) ≠ vfi(s) = afi(s, a) (30)

is known as the advantage function which describes the relative benefit of performing

action a when compared to the average return over all actions. In many states, the

exact choice of action is almost inconsequential, while in other states it is of great

importance. Therefore, it makes sense to estimate the advantage of a state-action pair

rather than its action value. However, it is also essential to estimate the state-value

function since it is necessary for bootstrapping [40].

Wang et al. 2016, introduced the dueling network architecture to estimate both

the state-value and the advantage functions. The architecture introduced is shown in

Figure 12. The architecture has two streams of information flow, one which provides

an estimate of the value function, V (s; ◊v), and another which provides an estimate

of the advantage function, A(s, a; ◊a). The two estimates are then combined to pro-

duce Q(s, a), an estimate of the action-value function, which is used as the function

approximator for the DQN or DDQN algorithms.

The estimates, however, cannot be combined as simply as:

Q(s, a) = V (s; ◊v) + A(s, a; ◊a)
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Figure 12: Dueling network architecture [40]

since opposite shifts in the function approximators by the same constant would still

produce the same value:

V (s; ◊v) + A(s, a; ◊a) = (V (s, a; ◊v) ≠ k) + (A(s, a; ◊a) + k)

such shifts would imply that the information being learned by the separate streams

are not actually the state-value and advantage functions. Rather, if we consider the

optimal deterministic policy fiú and the optimal action aú = arg maxa qfiú(s, a), then

afiú(s, aú) = 0. Therefore, the estimates are combined as follows:

Q(s, a) = V (s; ◊v) + (A(s, a; ◊a) ≠ max
aÕ

A(s, aÕ; ◊a))

With this separation of information, they were able to improve the results of DDQN

on many Atari games.

1.4.2.5 Deep Recurrent Q-Networks (DRQN)

The DQN algorithm proposed by Mnih et al (2015) utilized a feature vector „(st)

composed of a stack of four 84 ◊ 84 cropped images, each from the last four frames

of history of the Atari game the agent was training on [21]. DQN thus forms poli-
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cies based on states with limited history and will be unable to master games whose

optimal policies require performing actions dependent on a history of more than four

frames. In these scenarios, the state being supplied to the DQN no longer satisfies the

Markov assumption we made earlier when discussing the general RL framework. The

game, therefore, can no longer be represented by an MDP and must instead be repre-

sented by a Partially Observable Markov Decision Process (POMDP), which renders

standard Q-learning useless. As discussed previously, RNNs have been able to form

state representations that summarize sequences of arbitrary length. Such state rep-

resentations would fit the Markov assumption more closely than those used by DQN.

DRQN (Hausknecht & Stone, 2015) leverages RNNs to build its Q-function approx-

imator so that the game can more closely fit into the standard MDP representation

[5].

RNNs require sequences to be trained on – therefore, we must alter the way we

sample experiences from the replay memory. In the DQN algorithm, experiences were

uniformly sampled from the replay memory without taking into account the timestep

at which the experience occurred at. Instead we must sample a batch of sequential

experiences. We can either randomly sample full episodes or we could randomly

sample a fixed-length sequence of experiences. Sampling full episodes allows us to

set the RNN’s initial state to zero and propagate an update state at each timestep,

until the end of the episode. On the other hand, sampling fixed-length sequences

require us to set the RNN’s initial state to zero at a timestep that might not occur

at the beginning of an episode. While the former sampling scheme is more intuitive,

both sampling schemes were shown to yield similar agent performance [5]. Thus, the

latter’s computational simplicity lends itself to being the sampling choice in practice.

For the Atari games that DQN reported performance for, four frames of history

was su�cient to guarantee that the game satisfied MDP assumptions. Therefore,

Hausknecht & Stone 2015 introduced Flickering Atari Games to change the Atari

environment from an MDP to a POMDP. DRQN modified Atari games such that
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at every timestep, there was a probability p = 0.5 that the frame would be fully

obscured. This modification required the agent to incorporate knowledge from a

history of timesteps. The Q-function approximator consisted of convolutional layers,

a single-layer LSTM, and a single fully connected layer with 18 hidden units (the

number of available actions), and the agent was trained on sequences of 10 frames,

through the BPTT algorithm. [5] demonstrated that the agent was able to successfully

play the flickering version of Pong, a game that requires an understanding of object

velocities (which is dependent on multiple timesteps of position information). Unlike

the game environments that many RL algorithms are tested on, physical environments

can rarely be fitted into the MDP framework. DRQN provides a potential avenue to

help approximate POMDPs as MDPs to utilize Deep Q-Learning.

1.4.2.6 Generalized Advantage Estimation

Previous policy gradient methods discussed sampled the gradient

Ò◊J(◊) = Es0:Œ,a0:Œ [
Œÿ

t=0

Afi,“(st, at)Ò◊ log fi◊(at|st)]

where Afi,“ is the discounted advantage function of the policy fi with discount factor

“:

Afi,“ = q“
fi(st, at) ≠ v“

fi(st)

q“
fi(st, at) = Est+1:Œ,at+1:Œ [

Œÿ

l=0

“lrt+l]

v“
fi(st) = Est+1:Œ,at:Œ [

Œÿ

l=0

“lrt+l]

If we consider the following estimator of Afi,“:

Ât = ”V
t = rt + “V (st+1

) ≠ V (st)

47



it is clear that it is unbiased for V (st+1

) = V fi,“(st+1

):

Est+1 [rt + “V fi,“(st+1

) ≠ V fi,“(st)

Est+1 [Qfi,“(st, at) ≠ V fi,“(st) = Afi,“(st, at)

If V (st) is an estimate of the state-value function, however, then we obtain a poten-

tially biased estimator. We can lower the bias of our estimator by performing longer

rollouts and considering k ≠ step estimates:

Â(k)

t =
k≠1ÿ

l=0

“l”V
t+l = ≠V (st) + rt + “rt+1

+ ... + “k≠1rt+k≠1

+ “kV (st+k)

as k æ Œ, the bias of Â(k)

t æ 0. Similar to TD(⁄), we can exponentially weigh

the k ≠ step advantage estimates to trade-o� between the bias and variance of our

estimator. This results in the Generalized Advantage Estimate:

ˆAGAE
t = (1 ≠ ⁄)(Â(1)

t + ⁄Â(2)

t + ⁄2Â(3)

t + ...) =
Œÿ

l=0

(“⁄)l”V
t+l

Like TD(⁄), a ⁄ value closer to 0 has higher bias, while a lambda closer to 1 has

higher variance.

1.4.2.7 Deterministic Policy Gradient

Our previous discussion of policy gradient algorithms was limited to the case of

stochastic policies. Recalling Eq. 22, an integration over the action space is required

to calculate the policy gradient, which results in the stochastic formulation of Eq. 24

where actions are sampled according to the current parameterized policy fi◊. In high

dimensional scenarios, or in large spaces, a prohibitively high number of samples may

be required in order to accurately follow the gradient of the objective function [37].

In this scenario, a deterministic policy, µ◊ can be used to more e�ciently learn. It
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is unclear, however, how such a policy can fit within the framework of Eq. 24. The

Deterministic Policy Gradient algorithm (Silver et al. 2014 [37]) states that gradient

of the objective function is as follows:

Ò◊J(◊) =
⁄

sœS
flµ(s)Ò◊µ◊(s)Òaqµ(s, a)|a=µ◊(s)

ds (31)

Ò◊J(◊) = Es≥flµ [Ò◊µ◊(s)Òaqµ(s, a)|a=µ◊(s)

] (32)

where flµ is defined analogously to flfi. Note the contrast with Eq. 24 – there is

no second expectation with respect to the actions selected by the policy, since the

policy is deterministic. Furthermore, we now take the gradient of the action-value

function with respect to the action selected by the policy. We cannot, however, learn

on-policy as suggested by Eq. 32, since we would not be exploring our action space

adequately, resulting in convergence at a local optima. Therefore, our agent must

learn using a stochastic behavior policy, — which allows the agent to explore while it

learns the deterministic actor policy, µ. The gradient of the objective function can

then be stated as:

Ò◊J(◊) = Es≥fl— [Ò◊µ◊(s)Òaqµ(s, a)|a=µ◊(s)

] (33)

In practice we approximate qµ(s, a) through methods previously discussed, such as

TD-learning or Q-learning.

1.4.2.8 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) combines the methods introduced

in DPG [37] with the methods of DQN [21]. Specifically, they utilize the methods of

replay bu�er sampling and target networks that were introduced in DQN to stabilize

the training of deterministic policy networks. They modify the abrupt target network
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updates from DQN to soft updates such that the target networks slowly track the

online networks. The full algorithm is detailed in Algorithm 7.

DDPG can also be extended, like DQN, with both Prioritized Experience Replay

(for more e�cient sampling of experiences) and Double-Q Learning (for obtaining

better estimates from the critic).
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1.4.2.9 Trust Region Policy Optimization

Previous policy gradient algorithms discussed did not enforce a guarantee on

whether subsequent policies improved the objective function. The algorithms merely

provided methods to sample the gradient of the objective function; therefore, the im-

provement of the policy is subject to high variance. Trust Region Policy Optimization

(Schulman et al. 2015 [31] aims to provide greater assuredness that policy iteration

steps result in actual improvement with regards to the objective function.

Letting

÷(fi) = Es0 [vfi(s
0

)]

It has been shown that

÷(fiÕ) = ÷(fi) + Es0,a0,...≥fiÕ [
Œÿ

t=0

“tAfi(st, at)]

We can rewrite ÷(fiÕ) as follows:

÷(fi) +
ÿ

s

flfiÕ(s)
ÿ

a

fiÕ(a|s)Afi(s, a)

where

flfi(s) =
Œÿ

t=0

“tP (st = s)

Therefore, if we are able to guarantee that q
a fiÕ(a|s)Afi(s, a) Ø 0 ’s, then we

can say with certainty that our policy has improved or stayed the same. However,

since Afi(s, a) is estimated, this cannot be guaranteed. Ensuring that the entire sum,
q

s flfiÕ(s) q
a fiÕ(a|s)Afi(s, a) Ø 0, requires knowledge of flfiÕ , which is often di�cult to

obtain. If, instead, we approximate ÷(fiÕ) with:

Lfi(fiÕ) = ÷(fi) +
ÿ

s

flfi(s)
ÿ

a

fiÕ(a|s)Afi(s, a)

We can use an estimate of the current policy’s discounted state distribution, which is
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Algorithm 7 Deep Deterministic Policy Gradient [16]
1: procedure DDPG(M , N , C, G, K, “, ÷Q, ÷µ, ·)
2: Initialize replay memory D
3: Initialize critic Q(s, a|◊Q) with random weights ◊Q

4: Initialize actor µ(s|◊u)
5: Initialize target networks QÕ and µÕ with weights ◊QÕ = ◊Q and ◊µÕ = ◊µ

6: for episode i:=1...M do
7: Initialize a random process N for exploration according to strategy G.
8: Obtain S

1

, the first state of episode
9: while St is not terminal do

10: Extract features „t Ω „(St)
11: Select at = µ(„t|◊µ) + Nt

12: Perform at, observe st+1

, rt

13: Extract features „t+1

Ω „(St+1

)
14: Store experience e = („t, at, rt, „t+1

) into D
15: �Q Ω 0
16: �µ Ω 0
17: for j:=1...N do
18: Sample ej = („j, aj, rj, „j+1

) from D

19: yj Ω

Y
]

[
rj sj+1

is terminal
rj + “QÕ(„j+1

, µÕ(„j+1

|◊µÕ); ◊QÕ) else

20: ”j Ω yj ≠ Q(„j, aj; ◊Q)
21: �Q Ω �Q + wj”jÒ◊Q(„j, aj; ◊Q)
22: �µ Ω �µ + ÒaQ(„j, a|◊Q)|a=µ(sj)

Ò◊µµ(s|◊µ)|s=sj

23: end for
24: ◊Q Ω ◊Q + ÷Q · �Q

25: ◊µ Ω ◊µ + ÷µ · �µÕ

26: ◊QÕ Ω ·◊Q + (1 ≠ ·)◊QÕ

27: ◊µÕ Ω ·◊µ + (1 ≠ ·)◊µÕ

28: end while
29: ‘ Ω ‘Õ

30: end for
31: end procedure
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easier to obtain, to change our policy. Lfi(fiÕ) is a local, first-order approximation to

÷(fiÕ) if we restrict ourselves to di�erentiable policies.

It has been shown that

÷(fiÕ) Ø Lfi(fiÕ) ≠ 4‘“

(1 ≠ “)2

Dmax

KL (fi, fiÕ)

where

Dmax

KL (fi, fiÕ) = max
s

DKL(fi(s)||fiÕ(s))

and DKL is the KL-divergence between two distributions,

DKL(P ||Q) =
⁄ Œ

≠Œ
p(x) log p(x)

q(x)dx

We can then write, letting C = 4‘“
(1≠“)

2

÷(fiÕ) ≠ ÷(fi) Ø [Lfi(fiÕ) ≠ CDmax

KL (fi, fiÕ)] ≠ [Lfi(fi) ≠ CDmax

KL (fi, fi)]

÷(fiÕ) ≠ ÷(fi) Ø [Lfi(fiÕ) ≠ CDmax

KL (fi, fiÕ)] ≠ [Lfi(fi)]

If we maximize the quantity [Lfi(fiÕ) ≠ CDmax

KL (fi, fiÕ)], we are guaranteed to either

improve or stagnate with respect to the objective function, since the lower bound of

÷(fiÕ) ≠ ÷(fi) is guaranteed to be 0, if fiÕ = fi. Maximizing this quantity, theoretically,

is a tradeo� between maximizing Lfi(fiÕ) and minimizing Dmax

KL (fi, fiÕ), i.e., finding the

policy that maximizes the objective function while being close to the original policy.

TRPO encapsulates policy update algorithms that solve the optimization problem:

max
fiÕ

Lfi(fiÕ) subject to Dflfi
KL(fi, fiÕ) Æ ”

where

Dflfi
KL(fi, fiÕ) = Es≥flfi [DKL(fi(s)||fiÕ(s))]
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1.4.2.10 Asynchronous Advantage Actor Critic (A3C)

All of the methods discussed thus far have relied on the use of a replay memory

to train an agent. The replay memory serves to decorrelate updates to the agent and

reduce the non-stationarity of the data [19]. Sampling past experiences, however,

constrains us to o�-policy learning methods, since the learned data is sampled from a

distribution di�erent from that derived from the agent’s policy. Furthermore, using a

replay memory results in greater computational and memory ine�ciencies of learning

algorithms. Mnih et al, 2016 introduced a framework for asynchronous training of

agents. By training a set of parallel agents in parallel environments, one can obtain

further decorrelated and stationary samples. Furthermore, this allows for more e�-

cient training - the authors were able to train an agent that surpassed the previous

state-of-the-art in half the time and using only a single, multi-core CPU (instead of

a GPU). The most notable asynchronous algorithm developed in [19] is the Asyn-

chronous Advantage Actor-Critic Algorithm, which fits the standard policy gradient

algorithm (with a critic for baseline estimation) into the asynchronous framework.

This algorithm is detailed in Algorithm 8.

1.4.2.11 Auxiliary Tasks

Many environments that agents are tasked to learn a policy in provide sparse

reward signals. In such environments, it may be di�cult for the agent to learn a

policy quickly and to assign credit to actions. Mirowski et al. 2017 use auxiliary

learning tasks to supplement the reward signal, allowing the agent to learn more

e�ciently [18]. Specifically, in [18], an agent is tasked with learning to navigate a

complex maze, with the goal state providing a reward signal to the agent and ”fruits”

placed in the environment provide rewards to the agent for exploring its environment.

These reward signals are sparse and thus [18] supplements the reward signal through

the auxiliary task of loop closure prediction and depth map inference. Note that these

tasks are beneficial for the agent if it wishes to learn how to navigate. For the first
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Algorithm 8 Asynchronous Advantage Actor-Critic [19]
1: procedure A3C(Tmax, tmax, ◊, ◊v)
2: // ◊, ◊v are globally shared parameters
3: // ◊Õ, ◊Õ

v are thread-specific parameters
4: t Ω 1
5: repeat
6: d◊ Ω 0, d◊v Ω 0
7: ◊Õ Ω ◊, ◊Õ

v Ω ◊v

8: tstart = t
9: Observe state st

10: repeat
11: Perform at ≥ fi(at|st; ◊Õ)
12: Observe rt, st+1

13: t Ω t + 1
14: T Ω T + 1
15: until st is terminal, or t ≠ tstart = tmax

16: R =
Y
]

[
0 st terminal
V (st; ◊Õ

v) st non-terminal
17: for i := t ≠ 1, ..., tstart do
18: R Ω ri + “R
19: d◊ Ω d◊ + Ò◊Õ log fi(ai|si; ◊Õ)(R ≠ V (si; ◊Õ

v))
20: d◊v Ω d◊v + Ò◊Õ

v
(R ≠ V (si; ◊Õ

v))2

21: end for
22: ◊ Ω ◊ + d◊, ◊v Ω ◊v + d◊v

23: until T > Tmax

24: end procedure
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task, the agent must predict whether it has navigated to a point that it has already

visited before, while for the latter task, the agent must predict the depth of all pixels

in the RGB image supplied to it.

Mirowski et al. 2017 train an agent to learn the auxiliary tasks by modifying the

policy and value networks of a vanilla A3C agent. The modifications they perform

are shown in Figure 13. They demonstrate that the modified A3C agent outperforms

the vanilla A3C agent in a variety of navigation environments.

Figure 13: [18] uses the auxiliary tasks of loop closure prediction (L) and depth map
inference (D

1

, D
2

) to provide denser training signals to their modified A3C agent
shown in d. Backpropagation is used to minimize the losses associated with each
task.

.

2 Problem Statement

We consider in this thesis the portfolio management problem, wherein we try to

maximize our cumulative wealth after a certain time period. We primarily utilize the

notation and development of Jiang et al. 2017 [10], supplemented by Necchi 2015
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[24], and Li and Hoi 2013 [14].

Our agent starts with an initial portfolio value, p
0

. At each time step t, it can

reallocate a percentage of its total value, pt, in each of m di�erent assets, according

to bt. This formalism necessitates that

mÿ

i=1

bt,i = 1 (34)

where bt,i is the fraction of the agent’s total assets that are allocated towards asset i

at time step t. Changes in the prices of the assets from time step t to time step t + 1

result in a change, either positive or negative, in our agent’s total holdings. We can

write

xt = vt / vt≠1

(35)

where xt is the relative price vector computed by taking the element-wise division of

the price vector, vt, at time step t with respect to t ≠ 1.

vt / vt≠1

=
1 vt,1

vt≠1,1
,

vt,2

vt≠1,2
, ...,

vt,m

vt≠1,m

2T
(36)

Without considering any commission costs, we can state

pt = pt≠1

bT
t≠1

xt

our final, cumulative wealth after n periods is thus

pn = p
0

n+1Ÿ

t=1

bT
t≠1

xt (37)

where b
0

is our initial portfolio allocation. The rate of return over period t is defined

as

flt = pt

pt≠1

≠ 1 = bT
t≠1

xt ≠ 1 (38)
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and the logarithmic rate of return is defined as

rt = log pt

pt≠1

(39)

We can then define the cumulative reward of the agent after n periods:

J =
nÿ

t=1

rt =
nÿ

i=t

log bT
t≠1

xt (40)

Where the log returns of Eq. 39 have allowed us to convert the product in Eq. 37

to the sum in Eq. 40. This conversion is performed because reinforcement learning

agents need an objective of the form of a sum of returns over timesteps, such as in

Eq. 2. Note in both the portfolio allocation vector (bt,i)T
i=1...m and the price vector,

(vt,i)T
i=1...m, index i = 1 is reserved for cash. Therefore, vt,1 = 1 for all t, and thus

xt,1 = 1.

The problem statement as thus formulated is both unrealistic and uninteresting.

From a purely reinforcement learning perspective, the optimal action our agent can

take at time step t is not dependent on steps before t, since the rewards our agent

receives at step t is solely dependent on the action taken immediately before, bt≠1

,

and the immediate dynamics of the environment, xt. Far-sightedness of our agent is

thus useless, as individually maximizing rewards at each timestep will result in the

greatest return (i.e., we can set “ = 0).

We can modify the current problem statement to include commission costs – on

buying, selling, and holding. We shall first consider buying and selling commissions.

Consider the price movements from time step t≠1 to t and their e�ect on agent’s port-

folio bt≠1

. Right before the agent reallocates its assets to bt, its portfolio allocation

is:

bÕ

t = bt≠1

· xt

bT
t≠1

xt

(41)
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and its portfolio value is:

p
Õ

t = bT
t≠1

xt (42)

After reallocating its assets to the portfolio allocation bt, commission costs consume a

certain portion of the portfolio value p
Õ
t. We can summarize this with the transaction

factor µt:

pt = µtp
Õ

t (43)

The net wealth allocated towards each asset i just before reallocation is bÕ

t,i · p
Õ
t.

Analogously, after reallocation, it is bt,i · pt. If the net wealth before reallocation is

greater than that after, then we have sold some amount of asset i, and have thus

incurred a selling commission on that transaction. The net amount of cash obtained

from selling is thus

(1 ≠ cs)
mÿ

i=2

(pÕ

tb
Õ

t,i ≠ ptbt,i)+ (44)

where cs is the commission rate for selling, 0 Æ cs < 1, and (x)+ = max(0, x). The

total capital used to buy assets is thus

(1 ≠ cs)
mÿ

i=2

(pÕ

tb
Õ

t,i ≠ ptbt,i)+ + p
Õ

tb
Õ

t,1 ≠ ptbt,1 (45)

after accounting for buying commission costs, the net amount of capital used to

purchase new assets is

(1 ≠ cp)
Ë
(1 ≠ cs)

mÿ

i=2

(pÕ

tb
Õ

t,i ≠ ptbt,i)+ + p
Õ

tb
Õ

t,1 ≠ ptbt,1

È
(46)

where cp is the commission rate for buying, 0 Æ cp < 1. This amount must equal the

net non-cash assets purchased, thus

(1 ≠ cp)
Ë
(1 ≠ cs)

mÿ

i=2

(pÕ

tb
Õ

t,i ≠ ptbt,i)+ + p
Õ

tb
Õ

t,1 ≠ ptbt,1

È
=

mÿ

i=2

(ptbt,i ≠ p
Õ

tb
Õ

t,i)+ (47)

Substituting pt = µtp
Õ
t and dividing by p

Õ
t on both sides of Eq. 47, we can state
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(1 ≠ cp)
Ë
(1 ≠ cs)

mÿ

i=2

(bÕ

t,i ≠ µtbt,i)+ + bÕ

t,1 ≠ µtbt,1

È
=

mÿ

i=2

(µtbt,i ≠ bÕ

t,i)+ (48)

We can use Eq. 48 to solve for µt. Specifically, we can use the following result proved

by Jiang et al. 2017 [10], that sequence 49 converges to the true transaction factor

µt, if cs = cp = c.

Ó
µ̂(k)

t |µ̂(0)

t = µ · and µ̂(k)

t = f
1
µ̂(k≠1)

t

2
, k œ Z+} (49)

where

µ · = c
mÿ

i=2

---bÕ

t,i ≠ bt,i

--- (50)

We can now expand Eq. 39 as

rt = log pt

pt≠1

= log(µtbT
t≠1

xt) (51)

and reformulate the cumulative reward from Eq. 40 using commission costs:

J = log pf

p
0

=
nÿ

t=1

log(µtbT
t≠1

xt) (52)

It is now apparent that the reward at time step t has recurrent dependencies – since

µt is a function of bt≠1

, bt, and xt.

3 Related Work

We discuss selected pieces of significant related work. It is important to note that

while policy-gradient based methods are the main methods discussed, other methods

such as Q-learning have been applied.
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3.0.0.1 Moody, et al. 1998

One of the first applications of reinforcement learning to the portfolio manage-

ment problem was Moody, et al. 1998 [22]. Recognizing that the reward function of

portfolio management is a recurrent function, they utilized recurrent learning updates

to guide their agent. Specifically, for a utility function UT capturing the economic

benefit of the agent’s actions, we can write

dUT (◊)
d◊

=
Tÿ

t=1

dUT

dRt
·

I
dRt

dbt

dbt

d◊
+ dRt

dbt≠1

dbt≠1

d◊

J

(53)

They used real-time recurrent learning (Williams and Zisper, 1989 [41]) to compute

the derivatives of the agent’s action with respect to the model parameters (dbt
d◊ ).

In addition to using recurrent reinforcement learning (RRL), Moody et al. ex-

plored the use of di�erent utility functions, specifically pure additive profits, power

law utility functions with risk aversion, and di�erential Sharpe ratios. We will discuss

the latter two as they are unique compared to the approach taken in this thesis.

Power law utility functions can represent di�erent levels of risk sensitivity an

investor may have [22]:

U‹(pt) =

Y
__]

__[

p‹
t
‹ ‹ ”= 0

log pt ‹ = 0
(54)

Risk aversion is then defined as

R(p) = ≠d log U
Õ(p)

d log p
= 1 ≠ ‹ (55)

Where R(p) = 0 is risk-neutral (i.e., ‹ = 1), and R(p) increasing implies heightened

risk aversion.

Di�erential Sharpe ratios are a utility function that can allow an agent to max-

imize the Sharpe ratio when learning in an online fashion. The Sharpe ratio is a

measure of risk-adjusted returns that modern portfolio managers use to quantify
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their performance:

ST = Average(Rt)
StandardDeviation(Rt)

(56)

ST = AT

KT (BT ≠ A2

T ) 1
2

(57)

where

AT = 1
T

Tÿ

i=1

Ri

KT = ( T

T ≠ 1) 1
2

BT = 1
T

Tÿ

i=1

R2

i

For the di�erential Sharpe ratio, Moody et al. replace estimates of first and second

moments by moving averages:

AT = AT ≠1

+ ÷(RT ≠ AT ≠1

)

BT = BT ≠1

+ ÷(R2

T ≠ BT ≠1

)

Plugging in the above moving average estimates into Eq. 57, we obtain the di�erential

Sharpe ratio:

Dt = dSt

d÷
=

Bt≠1

(Rt ≠ At≠1

) ≠ 1

2

At≠1

(R2

t ≠ Bt≠1

)
(Bt≠1

≠ A2

t≠1

) 3
2

(58)

which can be used as a utility function Ut. It was shown in [22] that that training

an agent to maximize the di�erential Sharpe ratio outperformed maximization of

pure profit. Specifically, they note that as transaction costs increase, Sharpe ratio

optimization outperforms that of pure profit when comparing the average cumulative

wealth of various backtests on S&P 500 and 3-month T-bill time series.
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3.0.0.2 Cumming, 2015 [2]

Cumming, 2015 targets the forex market specifically in their approach. They

develop a novel feature extraction model for candlestick data, where dt œ R4 =

(opent, hight, lowt, closet)T . Specifically, they define the candlestick history of length

n to be

sh = (d
1

, d
2

, ..., dn)T œ R4n

where (d
1

, d
2

, ..., dn) are the past n candlesticks. They define m center histories,

c œ Rm◊4n which are equally spaced through the dataset’s candlestick histories. The

center histories are used to compute a new feature vector

„gauss(sh, c) = (exp ≠(‘||sh≠c
1

||)2, exp ≠(‘||sh≠c
2

||)2, ..., exp ≠(‘||sh≠cm||)m)T œ Rm

where ‘ is a parameter that controls the width of each RBF term. Their agent uses

a long/short MRP with sparse rewards produced only by closing out a position:

Figure 14: Cumming 2015’s MRP model. The agent can either be in a long, short,
or idle state. It only obtains a reward after closing out either a long or short state by
returning to the idle state.[2]
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Therefore, the agent in [2] is trained to maximize the cumulative profit realized by

taking either long or short actions of equal magnitude. For each state, the agent

receives di�erent feature vectors based on the unrealized profit and loss it would

receive for closing out its position. We define:

Lpnl = value
current

≠ value
opening

Spnl = value
opening

≠ value
current

Ipnl = 0

The feature vector that the agent then uses to make decisions is:

„(sh, s) = „gauss(sh, c) + „state(s)

where + means the concatenation of both vectors, s is the agent’s current state

(either long, short, or idle), and

„state(s) =

Y
_______]

_______[

(Spnl, 1, 0, 0)T s = short state

(Ipnl, 0, 1, 0)T s = idle state

(Lpnl, 0, 0, 1)T s = long state

Least-Squares Temporal Di�erence Learning (LSTD) and Least-Squares Policy Iter-

ation (LSPI) is used by [2] instead of SGD to update their linear state-value function

approximator of the form wT „(sh, s). They utilize these methods instead of standard

TD(⁄) learning procedures because one can avoid tuning the learning rate parameter

– of Eq. 19. Instead, one is just required to set the same ⁄ parameter for bias-variance

tradeo� as one would do in TD(⁄).

Using one year’s worth of data across 11 di�erent currency pairs (around 350,000

candlesticks per pair), split into training and backtesting datasets, [2] achieves a
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maximum annualized return of 0.0103% using LSPI. However, unlike the problem

statement developed in Sec. 2, the action space of the agent is discrete, posing an

easier and less general learning task. Furthermore, since positions can only be held or

closed after opening them, there is no dependency of previous actions on the current

commission costs experienced by the agent.

3.0.0.3 Necchi, 2016 [24]

Unlike both [22] and [2], Necchi, 2016 uses policy gradient methods to tackle the

portfolio management problem developed in Section 2. Since portfolio management

is a continuous process that does not have episodes, [24] modifies the reward function

of Eq. 52 to the average reward:

Javg(◊) = ES≥fl◊

a≥fi◊

[R(s, a)]

While one can use the policy gradient algorithms discussed earlier, such as Monte

Carlo Policy Gradient (Algorithm 3), sampled histories can have great variability.

To combat this issue, [24] uses Policy Gradient with Parameter-Based Exploration

(PGPE). Instead of using a stochastic policy for exploration, PGPE explores the

model parameter space ◊ directly, using a deterministic policy fi : S ◊ � æ A,

drawing the policy parameters from a distribution, ◊ ≥ p’ .

Similar to Cumming 2015, Necchi 2016 uses pure profit as the reward signal to

guide the agent. However, Necchi does not use any feature extraction method for

candlestick histories like Cumming. Instead, [24] uses the past n returns and the

current portfolio allocation vector as their features:

„(st) = {xt≠(n≠1)

, xt≠(n≠2)

, ...xt, bÕ

t}

where xt and bt are defined as in Section 2. Using a simulated time series gener-

ated from an AR process, [24] trains a PGPE agent and a natural gradient variant,
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NPGPE on seven thousand time samples and tests the agent on a two thousand time

sample backtest. They also demonstrate their agent’s accountability of commission

costs by detailing how the agent’s frequency of reallocation reduces significantly as

commission costs are increased. Thus, the reinforcement learning approach to port-

folio management successfully takes into account commission costs of the trading

environment.

3.0.0.4 Jiang et al. 2017 [10]

Contrasting the previous works discussed, [10] uses deep learning methods to

form the deterministic policy µ◊(s) = a. They specifically target the cryptocurrency

market, utilizing the same problem formulation as Section 2. The reward signal

provided to the agent during training is the average reward per timestep

J = 1
n

nÿ

i=1

log(µtbT
t≠1

xt) (59)

Jiang et al. 2017 also processes candlestick data, however they process the data

di�erently from Cumming 2015. Using the notation of Section 2, the feature vector

provided to the network at timestep t is {Xt, bt≠1

}, where

Xt =
Ë
Vt, Vhi

t , Vlow
t

È
(60)

Vt =
C

vt≠n+1

/ vt

-----vt≠n+2

/ vt

-----...

-----vt≠1

/ vt

-----1
D

Vhi
t =

C

vhi
t≠n+1

/ vhi
t

-----v
hi
t≠n+2

/ vhi
t

-----...

-----v
hi
t≠1

/ vhi
t

-----1
D

Vlow
t =

C

vlow
t≠n+1

/ vlow
t

-----v
low
t≠n+2

/ vlow
t

-----...

-----v
low
t≠1

/ vlow
t

-----1
D

and n is the window size of the model.

The main innovations of [10] are the Ensemble of Identical Independent Evaluators
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(EIIE) policy network topology and the Portfolio Vector Memory (PVM) reformula-

tion of the standard replay memory employed by DQN and similar deep reinforcement

learning methods. A policy network can be considered an EIIE network if the same

parameters ◊ are shared across evaluating di�erent assets. Jiang et al. 2017 constructs

EIIE networks of both CNN and RNN flavors, which we adapt and will discuss later.

The parameter updates in [10] are executed as follows

◊ Ω ◊ + –Ò◊J[tb1 ,tb2 ]

(fi◊)

where [tb1 , tb2 ] is a randomly sampled consecutive window of candlesticks from the

cryptocurrency timeseries dataset. Note that although the paper terms this as a

Deterministic Policy Gradient update, this does not follow the actual DPG algorithm

proposed by [37]. Furthermore, the agent of Jiang et al. is maximally shortsighted,

in the sense that “ = 0.

The PVM proposed by [10] facilities more e�cient batch updates. The PVM is a

stack of portfolio weight vectors arranged in chronological order. During training, the

PVM is first initialized to uniform weights and each action the agent takes is stored

in the PVM, in the respective slot. The agent reads weight vectors from the PVM to

obtain bt≠1

, which its action is dependent on. Jiang et al. 2017 show that during the

course of training, the contents of the PVM converge to that of the true actions the

agent would have taken sequentially.

3.0.0.5 Zhang and Chen 2017 [43]

Zhang and Chen 2017 modify the problem statement of Jiang et al. 2017 such

that the reward signal has no recurrent dependencies. Specifically, they consider an

agent that begins each time period with all of its value in cash, reallocates to a diverse

set of more risky assets, and then sells all assets back to cash at the end of the period.

This problem formulation allows the agent’s observation to solely be dependent on a
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historical window of price data. The exact features that [43] provides to the agent is:

„(st) = {xt, xt≠1

, xt≠2

, ..., xt≠n+1

} (61)

and the reward signal the agent is trained on is pure profit, averaged over the number

of timesteps. Contrasting [10], [43] uses Deep Deterministic Policy Gradient (DDPG,

discussed in section 1.4.2) to solve this problem statement. They show for a variety of

window sizes and policy/critic network structures that DDPG is able to successfully

solve their posed problem. Their results indicate that using a CNN for both the policy

and critic network architectures with a window size of 3 performs the best in terms

of cumulative wealth. Although they set “ = 0.99 in their model, maximal reward

could have been achieved by setting “ = 0, since there is no dependence on future or

previous timesteps in the reward signal.

4 Methods & Results

Deep Deterministic Policy Gradient (DDPG), along with TRPO and A3C, has

been shown to be a state of the art continuous control learning method. We choose

to utilize DDPG because of its greater interpretability, ease of implementation, and

greater sample e�ciency in stable environments [8]. Unlike Zhang and Chen 2017,

we tackle the problem statement originally posed by Jiang et al. 2017. This problem

statement poses a significantly more di�cult learning task than that of [43] because

of the multi-timestep dependency of the reward signal as discussed in section 2.

To more e�ectively handle this type of reward signal, we modify the original

DDPG algorithm for n step learning. Furthermore, we incorporate auxiliary learning

tasks into our model, as their e�ectiveness was demonstrated in [18]. Although the

environment of [18] produced sparse rewards, we believe that auxiliary learning tasks

can bootstrap the learning process. Such objectives can allow the networks to perform

well on tasks that are necessary towards forming a good portfolio management policy.
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4.0.0.1 n ≠ step DDPG

If we consider the problem statement formulation of Section 2, the reward observed

by the agent at timestep t is a function of (xt, bt, bt≠1

). The reward consists of two

components – the commission on the reallocation, which is dependent on (bt, bt≠1

)

and the profit obtained on the changes in prices during the period, dependent on

(xt, bt). The original DDPG algorithm uses one step rollouts as detailed in Algorithm

7. One step rollouts, however, prevent the algorithm at any single timestep, from fully

realizing the total e�ect of its action, as the commission and profit reward components

are o�set from each other by one timestep. We therefore modify the original DDPG

algorithm to an n ≠ step formulation, detailed in Algorithm 9.

4.0.0.2 Actor and Critic Networks

We adapt the Ensemble of Independent Identical Evaluators (EIIE) from Jiang et

al. 2017 [10] for use in both the actor and critic networks of DDPG. Specifically, we

utilize two di�erent paradigms for the models, an EIIE convolutional neural network

(CNN) and an EIIE recurrent neural network (RNN). The state for the agent is a

window of price returns, {xt≠n+1

, xt≠n+2

, ..., xt} and the current portfolio allocation

vector, bÕ

t. We choose to use bÕ

t instead of bt≠1

since it contains the most current

information available. We depict the various structures of both the actor and critic

networks in Figures 15 through 18.

4.0.0.3 Auxiliary Losses

In addition to n ≠ step DDPG, we modify Algorithm 9 to incorporate auxiliary

losses, similar to Mirowski et al. 2017 [18]. While Mirowski et al. 2017 primarily uses

auxiliary tasks to supplement the sparse rewards of their navigation environment,

we use auxiliary tasks as a bootstrapping method, serving a similar role as the bias-

variance tradeo� methods of TD(⁄) methods. Although such learning tasks can aid

the model in learning the overall portfolio management task, they can hamper the
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overall learning task, causing early, sub-optimal convergence. We form two main

auxiliary tasks – minimizing the net change in the agent’s portfolio allocation vector

bt and performing a prediction of the price relative vector at the subsequent timestep,

xt+1

. The first of these auxiliary tasks can only be incorporated into the actor network

and is implemented via a simple mean squared error loss term, 1

N

qN
i=1

qm
i=1

(bÕ

t,i ≠

bt,i)2. The latter of these tasks can be implemented in both the actor and critic

networks; the approach we take is detailed in Figure 19. The methodology for the

CNN critic network and the RNN actor and critic networks follow an analogous

approach. We use a mean squared error loss term, 1

N

qN
i=1

qm
i=1

(xt+1,i ≠ x̂t+1,i)2 to

provide the learning signals for the predictive task. Thus we result in three auxiliary

objectives: 1) applying the first auxiliary commission minimization task to the actor

network, 2) applying the second auxiliary prediction task to the actor network, and

3) applying the second auxiliary prediction task to the critic network.
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Algorithm 9 n ≠ step Deep Deterministic Policy Gradient
1: procedure DDPG(M , N , C, G, K, S, “, ÷Q, ÷µ, ·)
2: Initialize replay memory D
3: Initialize critic Q(s, a|◊Q) with random weights ◊Q

4: Initialize actor µ(s|◊u)
5: Initialize target networks QÕ and µÕ with weights ◊QÕ = ◊Q and ◊µÕ = ◊µ

6: for episode i:=1...M do
7: Initialize a random process N for exploration according to strategy G.
8: Initialize deque Q
9: Obtain s

1

, the first state of episode
10: Add s

1

to Q
11: for rollout step t :=1...S ≠ 1 do
12: st Ω last element in Q
13: Extract features „t Ω „(st)
14: Select at = µ(„t|◊µ) + Nt

15: Perform at, observe st+1

, rt

16: Add at, rt, st+1

to Q
17: end for
18: while st = last element in Q is not terminal do
19: Extract features „t Ω „(st)
20: Select at = µ(„t|◊µ) + Nt

21: Perform at, observe st+1

, rt

22: Add at, rt, st+1

to Q
23: Store a copy of Q into D
24: �Q Ω 0
25: �µ Ω 0
26: for j:=1...N do
27: Sample rollout Qe from D
28: sf Ω first state in Qe

29: af Ω first action in Qe

30: sl Ω last state in Qe

31: re Ω sequence of all rewards in Qe

32: yj Ω

Y
]

[

qS
i=1

“i≠1re,i sl is terminal
qS

i=1

“i≠1re,i + “SQÕ(„(sl), µÕ(„(sl)|◊µÕ); ◊QÕ) else

33: ”j Ω yj ≠ Q(„(sf ), af ; ◊Q)
34: �Q Ω �Q + ”jÒ◊Q(„(sf ), af ; ◊Q)
35: �µ Ω �µ + ÒaQ(„(sf ), a|◊Q)|a=µ(„(sf ))

Ò◊µµ(s|◊µ)|s=„(sf )

36: end for
37: ◊Q Ω ◊Q + ÷Q · �Q

38: ◊µ Ω ◊µ + ÷µ · �µÕ

39: ◊QÕ Ω ·◊Q + (1 ≠ ·)◊QÕ

40: ◊µÕ Ω ·◊µ + (1 ≠ ·)◊µÕ

41: end while
42: ‘ Ω ‘Õ

43: end for
44: end procedure
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Figure 15: CNN actor network using the EIIE paradigm. Since the convolutional
layers employ kernels of size 1◊k, the weights of each layer are shared between all asset
classes. Therefore, the model cannot explicitly memorize features corresponding to
individual asset classes. Furthermore, the EIIE paradigm prevents the network from
memorizing which asset performs the best on the training set, allowing it to learn
general features solely based on a history of price returns [10]. Two layers are used to
first extract a feature vector based purely on the history of price relative vectors. We
then incorporate the current portfolio allocation vector bÕ

t by concatenating it along
the feature axis. A 1 ◊ 1 convolution is used to incorporate the current portfolio
allocation vector into the agent’s actions

.

4.0.0.4 Experimental Methodology

We demonstrate that DDPG and our variant n≠step DDPG can be used to tackle

the portfolio management problem. Five years of S&P 500 data sourced from Kaggle

are used, which amounts to 1825 daily candlesticks, starting from 2012-08-13 and end-

ing at 2017-08-11. We specifically use the following tickers: AAPL, ATVI, CMCSA,

COST, CSX, DISH, EA, EBAY, FB, GOOGL, HAS, ILMN, INTC, MAR, REGN,

SBUX, selected because [43] curated the dataset. We modified two code repositories to

obtain our results: Zhang et al’s and OpenAI baseline’s DDPG repositories, which can

be found at https://github.com/vermouth1992/drl-portfolio-management and

https://github.com/openai/baselines/tree/master/baselines/ddpg respectively.

All models are trained and tested using a 60/40 train-test split.

Our agent is provided, at each timestep, a normalized version of the history of a
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Figure 16: The CNN critic network uses the CNN actor network as its base. However,
we no longer restrict the result of the 1◊1 convolution after the feature concatenation
to one feature map. Furthermore, we combine state and action information using fully
connected networks. Both the state and action at timestep t are passed through fully
connected networks of equal sizes. The results are added and then passed through a
final fully connected layer of 1 neuron to result in the Q-value approximation. This
idea of combining state and action information through adding is taken from the
original DDPG paper [16].

.

certain window length, f({xt≠n+1

, xt≠n+2

, ..., xt}), where f(x) = 100 ú (x ≠ 1). This

observation is used to perform the action bt. Our agent uses the average reward

per time step, following Eq. 59, however we perform reward scaling by a factor of

1000. We use an Ornstein-Uhlenbeck process for exploration, inspired by the original

DDPG paper [16]:

dxt = ◊(µ ≠ xt)dt + ‡dWt

with ◊ = 0.50, ‡ = 0.2, dt = 0.01, x
0

= 0. Perturbed actions are re-clipped and

normalized such that q
i bt,i = 1 and bt,i œ [0, 1] ’i.

For both the actor and critic CNN architectures, our first convolutional layer

employs a 1 ◊ 3 kernel, while the second kernel is dynamically sized based on the

history length of the agent’s observation, as detailed in Figure 15. Each of these
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Figure 17: RNN actor network using the EIIE paradigm. The original price input
features are unstacked along the asset axis and individually fed through a shared
LSTM layer. The resulting output is restacked and reshaped to form a m ◊ 1 ◊ h
tensor. Similarly to the CNN actor, the network incorporates the current portfolio
allocation vector bÕ

t by concatenating it with the output of the LSTM along the
feature dimension. A 1 ◊ 1 convolutional layer with a softmax activation results in
the action the agent performs at timestep t.

.

layers uses 32 filters. For the LSTM architecture, we use a LSTM layer with 32

neurons for both the actor and critic. The final convolutional layer, using a 1 ◊ 1

kernel, has 1 filter for both the actor and critic architectures. For the critic, state and

action information are passed through two separate fully connected layers, as detailed

in Figures 16 and 18, with 64 neurons each.

4.0.0.5 Experimental Results

We show the experimental results of various models on both the training and test

sets. For all results shown, a batch size of 64 is used for each learning iteration.

The actor and critic networks use the Adam Optimizer with learning rates of 0.0001

and 0.001, respectively. · = 0.001 is used for both networks. Shown in Figures 20

and 21 are the training and testing performance, respectively, of our n ≠ step DDPG
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Figure 18: RNN critic network using the EIIE paradigm. This network uses the RNN
actor network as its base. Similarly to the CNN critic, we do not restrict the 1 ◊ 1
convolution to one feature map, and combine state and action information using fully
connected networks.

.

algorithm using CNN-based actor and critic architectures with various history lengths.

We use “ = 0.5, n = 2, no auxiliary learning tasks, and train our agents for 200, 000

iterations each. The training set performance, as seen in Figure 20 indicates that all

models are able to fit to the training set, with a history length of seven performing

the best. Figure 21, however, indicates that history lengths above nine overfit, while

a history length of size three performs optimally. Agents using a history length of

three, seven, and nine significantly outpace the market value.

Analogous results are shown for LSTM networks in Figures 22 and 23. We see sim-

ilar patterns as those demonstrated with CNN-based agents – higher history lengths

tend to overfit, while window lengths of 3, 7 and 9 are able to generalize to the test

set. LSTM agents also tend to fit the training data better, as seen in Figure 22.

We also evaluate agents trained with various values of “. Training and testing

performance are shown for CNN agents in Figures 24 and 25, respectively. We use a
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Figure 19: CNN actor network with auxiliary losses. A 1◊1 convolutional layer with
1 filter predicts the price relative vector xt+1

of the subsequent time period using
solely features derived from the price returns fed to the actor network. We do not
incorporate bÕ

t into this prediction because xt+1

has no dependence with bÕ

t. Note
that this convolutional layer uses a linear activation function..

.

history length of 3, n = 2, no auxiliary learning tasks, and train agents for 200, 000

iterations each. Note how while “ values of 0.1, 0.25 and 0.5 are able to perform

well on the training set, a “ value of 0.99 ends up performing poorly. It was observed

during training, however, that performance for “ = 0.99 degraded after hitting a max-

imal performance around 40, 000 iterations. This can be attributed to the instability

caused by the excessive bootstrapping of “ = 0.99. We can observe that “ = 0.25

performs best on the test set, compared to the “ = 0 approach taken by [10]. This

is in alignment with the recognition that the reward signal is recurrent in nature and

that future actions are decreasingly dependent on previous actions.

Similar results are shown for LSTM-based agents with a history length of 3 in
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Figure 20: Training set performance of various CNN-based agents with di�erent
history lengths.

.

Figures 26 and 27. LSTM-based agents do not su�er the same boostrapping problems

associated with high “ values that a�ict CNN-based agents, as their structure allows

them to retain information for longer time steps.

We also vary n to test the impact of variance on learned policies. We use a history

length of 3, “ = 0.25, and no auxiliary learning tasks for all agents. Training and

testing performance of CNN-based agents are shown in Figures 28 and 29. We see

that while n = 1 and n = 2 match each other in performance on the training set,

n = 4 performs substantially worse. These results are mirrored on the testing set.

We believe that the additional variance caused increasing values of n outweighs the

stability measures imposed by using a replay bu�er and soft target networks.

We show similar results for LSTM-based agents, where we vary n for “ = 0.25 and

a window length of 3. No auxiliary learning tasks are used for these agents. LSTM

agents are observed to be more robust to the additional variance introduced by higher

n values.
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Figure 21: Testing set performance of various CNN-based agents with di�erent
history lengths.

.

Lastly, we experiment with di�erent strengths for our auxiliary tasks. We show

training and testing results for agents using n = 1, “ = 0.25 and a window length of

3 in Figures 32 and 33. We can observe from Figures 32 through 35 that auxiliary

learning tasks can bootstrap learning, depending on where they are applied. The

auxiliary task of minimizing commission significantly hampers learning and gener-

alization performance, while the auxiliary task of predicting the next price relative

vector is able to successfully bootstrap the training process for a number of di�erent

strengths. As expected, however, the generalization performance of models trained

with auxiliary tasks is largely sub-optimal, due to early convergence.

Finally, we compare our agents’ performance versus that of standard benchmark

algorithms. We compare versus the Best Stock, Anti Correlation, Online Moving

Average Reversion, and Online Newton Step algorithms defined in Li and Hoi 2014

([14]). We use Jiang et al. 2017’s implementation of these standard algorithms. These

comparisons are shown in Figure 36 and it can be seen that our agent outperforms the
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Figure 22: Training set performance of various LSTM-based agents with di�erent
history lengths.

.

standard algorithms by a significant amount for a variety of auxiliary task strengths.

Although our agent does not beat these standard models by a similar amount as

Jiang et al. 2017, it is tough to compare the results since their agents trade on

the cryptocurrency markets, an inherently more volatile market than our S&P 500

dataset. Rather, these results indicate that a more standard deep-RL based approach

using state-of-the-art deep continuous control methods can be applied to the portfolio

management problem. We tally all results in Tables 1 through 5, and report the final

accumulated portfolio value (fAPV), maximum drawdown (MDD), and Sharpe ratio

for each of these agents. We also report these same metrics for standard benchmark

algorithms.
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“ = 0.5, n = 2, w variable
Model type w fAPV MDD Sharpe

CNN 3 4.56 -0.117 0.774
CNN 7 3.83 -0.119 0.709
CNN 9 2.17 -0.111 0.416
CNN 13 1.19 -0.119 0.131
CNN 21 0.457 -0.114 -0.326
CNN 31 0.520 -0.117 -0.304

LSTM 3 4.18 -0.116 0.699
LSTM 7 4.48 -0.115 0.752
LSTM 9 3.39 -0.088 0.727
LSTM 13 1.31 -0.110 0.172
LSTM 21 1.61 -0.114 -0.283
LSTM 31 2.39 -0.109 0.454

Table 1: CNN and LSTM agents with variable history lengths

w = 3, n = 2, “ variable
Model type “ fAPV MDD Sharpe

CNN 0.1 5.45 -0.156 0.778
CNN 0.25 7.26 -0.120 0.963
CNN 0.5 4.56 -0.116 0.774
CNN 0.99 0.437 -0.095 -0.387

LSTM 0.1 5.29 -0.111 0.842
LSTM 0.25 3.25 -0.111 0.596
LSTM 0.5 4.18 -0.116 0.699
LSTM 0.99 4.12 -0.110 0.700

Table 2: CNN and LSTM agents with variable “

w = 3, “ = 0.25, n variable
Model type n fAPV MDD Sharpe

CNN 1 9.15 -0.113 1.02
CNN 2 7.26 -0.120 0.963
CNN 4 2.34 -0.121 0.412

LSTM 1 6.53 -0.113 0.931
LSTM 2 3.24 -0.111 0.596
LSTM 4 5.91 -0.110 0.870

Table 3: CNN and LSTM agents with variable n
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w = 3, n = 1, “ = 0.25, with auxiliary tasks
Model type auxiliary strengths fAPV MDD Sharpe

CNN (0, 0, 0) 9.15 -0.113 1.02
CNN (0, 0, 0.1) 3.38 -0.152 0.592
CNN (0, 0, 1.0) 2.63 -0.152 0.464
CNN (0, 0.1, 0.0) 2.63 -0.152 0.502
CNN (0, 0.1, 0.1) 5.34 -0.156 0.798
CNN (0, 1, 0) 7.40 -0.151 0.944
CNN (1, 0, 0) 1.01 -0.002 0.444
CNN (0, 0, 10) 8.19 -0.117 0.983
CNN (0, 10, 0) 4.67 -0.118 0.773
CNN (0, 1, 1) 7.62 -0.156 0.934

LSTM (0, 0, 0) 6.53 -0.113 0.932
LSTM (0, 0, 0.1) 4.31 -0.119 0.716
LSTM (0, 0, 1.0) 4.70 -0.114 0.741
LSTM (0, 0.1, 0.0) 5.50 -0.116 0.865
LSTM (0, 0.1, 0.1) 5.73 -0.116 0.861
LSTM (0, 1, 0) 6.47 -0.116 0.942
LSTM (1, 0, 0) 1.01 -0.002 0.458
LSTM (0, 0, 10) 5.04 -0.111 0.780
LSTM (0, 10, 0) 4.03 -0.112 0.704
LSTM (0, 1, 1) 7.21 -0.113 0.942

Table 4: CNN and LSTM agents with variable auxiliary task strengths. The strengths
of the tasks are arranged in order in the second column, according to the ordering of
Paragraph 4.0.0.3.

Benchmark algorithms
Model type fAPV MDD Sharpe
Best Stock 1.94 -0.194 0.372

Anticor 1.16 -0.090 0.157
OLMAR 0.31 -0.236 -0.501

ONS 1.52 -0.061 0.407

Table 5: Results for standard benchmark algorithms.
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Figure 23: Testing set performance of various LSTM-based agents with di�erent
history lengths.

.

Figure 24: Training set performance of CNN-based agents for various values of “.
.
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Figure 25: Test set performance of CNN-based agents for various values of “.
.

Figure 26: Training set performance of various LSTM-based agents with di�erent
“’s.

.
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Figure 27: Testing set performance of various LSTM-based agents with di�erent “’s.
.

Figure 28: Training set performance of CNN-based agents for various values of n.
.
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Figure 29: Test set performance of CNN-based agents for various values of n.
.

Figure 30: Training set performance of LSTM-based agents for various values of n.
.
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Figure 31: Test set performance of LSTM-based agents for various values of n.
.

Figure 32: Training set performance of CNN-based agents for various auxiliary
learning task strengths.

.
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Figure 33: Test set performance of CNN-based agents for various values auxiliary
learning task strengths.

.

Figure 34: Training set performance of LSTM-based agents for various auxiliary
learning task strengths.

.
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Figure 35: Test set performance of LSTM-based agents for various auxiliary learning
task strengths.

.

Figure 36: Test set performance of LSTM-based agents for various auxiliary learning
task strengths.

.
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5 Conclusion & Future Work

Reinforcement learning (RL) continues to be applied successfully to many di�-

cult problem scenarios due to innovations in both RL and deep learning. We have

presented a technique that utilizes a state-of-the-art deep continuous control method,

Deep Deterministic Policy Gradient (DDPG) [16], to perform the portfolio manage-

ment task. Furthermore, we have augmented DDPG with both n ≠ step rollouts and

with auxiliary learning tasks. While n ≠ step rollouts were unable to provide perfor-

mance gains due to the inherent volatility of the environment, auxiliary learning tasks

were able to bootstrap training, with the side e�ect of hampering generalization, as

predicted. Our agent is able to significantly outperform standard benchmark online

portfolio management algorithms.

Much more, however, can still be accomplished to expand the results of this work.

Concerning DDPG itself, one can leverage the results of Double DQN in tandem

with Dueling Networks, as discussed in section 1.4.2 to obtain more accurate critic

estimates. Furthermore, a large portion of the actor and critic parameters can be

shared, allowing for greater generalization capabilities, specifically, all parameters

computing the growth assessment vectors of both the actor and critic architectures.

Prioritized Experience Replay [29] can also be leveraged to improve training speed,

while Generalized Advantage Estimation [30] can be used as a more general form of

our n ≠ step algorithm. Although we have used DDPG in this thesis, Trust Region

Policy Optimization (TRPO) [31] provides an exciting avenue of future research due

to its performance in unstable environments. Lastly, we can also explore the usage

of various reward signals, such as the di�erential Sharpe ratio, so that our agent can

learn to maximize other criteria rather than just pure profit.
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1 """
2 Modified from https://github.com/vermouth1992/drl−portfolio−management/blob/master/src/stock_trading.py
3 """
4
5 from __future__ import print_function, division
6
7 from model.ddpg.actor import ActorNetwork
8 from model.ddpg.critic import CriticNetwork
9 from model.ddpg.ddpg import DDPG
10 from model.ddpg.ornstein_uhlenbeck import OrnsteinUhlenbeckActionNoise
11
12 from environment.portfolio import PortfolioEnv
13 from utils.data import read_stock_history, read_stock_history_csvs, normalize
14
15 import argparse
16 import numpy as np
17 import tflearn
18 import tensorflow as tf
19 import pandas as pd
20 import pprint
21 import utils.datacontainer
22
23 DEBUG = True
24
25
26 def get_model_path(window_length, predictor_type, use_batch_norm, learning_steps

=0, gamma=0.5,
27                    auxiliary_commission=0, actor_auxiliary_prediction=0, critic_

auxiliary_prediction=0):
28     if use_batch_norm:
29         batch_norm_str = ’batch_norm’
30     else:
31         batch_norm_str = ’no_batch_norm’
32
33     learning_steps_str = ’learning_steps_’+str(learning_steps)
34     gamma_str = ’gamma_’+str(gamma)
35     auxiliary_str = ’ac_{}_aap_{}_cap_{}’.format(str(float(auxiliary_commission)),
36                                                  str(float(actor_auxiliary_predi

ction)),
37                                                  str(float(critic_auxiliary_pred

iction)))
38
39     return ’weights/{}/window_{}/{}/{}/{}/{}/’.format(predictor_type, window_length, bat

ch_norm_str,
40                                                       learning_steps_str, gamma_

str, auxiliary_str)
41
42
43 def get_result_path(window_length, predictor_type, use_batch_norm, learning_step

s=0, gamma=0.5,
44                     auxiliary_commission=0, actor_auxiliary_prediction=0, critic

_auxiliary_prediction=0):
45     if use_batch_norm:
46         batch_norm_str = ’batch_norm’
47     else:
48         batch_norm_str = ’no_batch_norm’
49
50     learning_steps_str = ’learning_steps_’+str(learning_steps)
51     gamma_str = ’gamma_’+str(gamma)
52     auxiliary_str = ’ac_{}_aap_{}_cap_{}’.format(str(float(auxiliary_commission)),
53                                                  str(float(actor_auxiliary_predi

ction)),
54                                                  str(float(critic_auxiliary_pred
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iction)))
55
56     return ’results/{}/window_{}/{}/{}/{}/{}/’.format(predictor_type, window_length, batc

h_norm_str,
57                                                       learning_steps_str, gamma_

str, auxiliary_str)
58
59 def get_infer_path(window_length, predictor_type, use_batch_norm, learning_steps

=0, gamma=0.5,
60                     auxiliary_commission=0, actor_auxiliary_prediction=0, critic

_auxiliary_prediction=0):
61     if use_batch_norm:
62         batch_norm_str = ’batch_norm’
63     else:
64         batch_norm_str = ’no_batch_norm’
65
66     learning_steps_str = ’learning_steps_’+str(learning_steps)
67     gamma_str = ’gamma_’+str(gamma)
68     auxiliary_str = ’ac_{}_aap_{}_cap_{}’.format(str(float(auxiliary_commission)),
69                                                  str(float(actor_auxiliary_predi

ction)),
70                                                  str(float(critic_auxiliary_pred

iction)))
71
72     return ’infer/{}/window_{}/{}/{}/{}/{}/’.format(predictor_type, window_length, batch

_norm_str,
73                                                     learning_steps_str, gamma_st

r, auxiliary_str)
74
75
76 def get_variable_scope(window_length, predictor_type, use_batch_norm, learning_s

teps=0, gamma=0.5,
77                        auxiliary_commission=0, actor_auxiliary_prediction=0, cri

tic_auxiliary_prediction=0):
78     if use_batch_norm:
79         batch_norm_str = ’batch_norm’
80     else:
81         batch_norm_str = ’no_batch_norm’
82
83     learning_steps_str = ’learning_steps_’+str(learning_steps)
84     gamma_str = ’gamma_’+str(gamma)
85     auxiliary_str = ’ac_{}_aap_{}_cap_{}’.format(str(float(auxiliary_commission)),
86                                                  str(float(actor_auxiliary_predi

ction)),
87                                                  str(float(critic_auxiliary_pred

iction)))
88
89     return ’{}_window_{}_{}_{}_{}_{}’.format(predictor_type, window_length, batch_no

rm_str,
90                                              learning_steps_str, gamma_str, auxi

liary_str)
91
92
93 def stock_predictor_actor(inputs, predictor_type, use_batch_norm, use_previous, 

previous_input,
94                           actor_auxiliary_prediction, target):
95     window_length = inputs.get_shape()[2]
96     assert predictor_type in [’cnn’, ’lstm’], ’type must be either cnn or lstm’
97     if predictor_type == ’cnn’:
98         net = tflearn.conv_2d(inputs, 32, (1, 3), padding=’valid’)
99         if use_batch_norm:

100             net = tflearn.layers.normalization.batch_normalization(net)
101         net = tflearn.activations.relu(net)
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102         net = tflearn.conv_2d(net, 32, (1, window_length − 2), padding=’valid’)
103         if use_batch_norm:
104             net = tflearn.layers.normalization.batch_normalization(net)
105         net = tflearn.activations.relu(net)
106         if DEBUG:
107             print(’After conv2d:’, net.shape)
108
109         with tf.variable_scope("actor_auxiliary_prediction"+str(target)):
110             auxiliary_prediction = None
111             if actor_auxiliary_prediction > 0:
112                 auxiliary_prediction = tflearn.conv_2d(net, 1, (1, 1), padding=’

valid’)
113                 auxiliary_prediction = tflearn.flatten(auxiliary_prediction)
114
115         if use_previous:
116             net = tflearn.layers.merge_ops.merge([previous_input, net], ’concat’,

 axis=−1)
117             if DEBUG:
118                 print(’After concat:’, net.shape)
119             net = tflearn.conv_2d(net, 1, (1, 1), padding=’valid’)
120             if DEBUG:
121                 print(’After portfolio conv2d:’, net.shape)
122         net = tflearn.flatten(net)
123         if DEBUG:
124             print(’Output:’, net.shape)
125
126     elif predictor_type == ’lstm’:
127         num_stocks = inputs.get_shape()[1]
128         hidden_dim = 32
129         net = tf.transpose(inputs, [0, 2, 3, 1])
130         resultlist = []
131         reuse = False
132         for i in range(num_stocks):
133             if i > 0:
134                 reuse = True
135             print("LAYER:", i)
136             result = tflearn.layers.lstm(net[:, :, :, i],
137                                          hidden_dim,
138                                          dropout=0.5,
139                                          scope="lstm_actor"+str(target),
140                                          reuse=reuse)
141             resultlist.append(result)
142         net = tf.stack(resultlist)
143         net = tf.transpose(net, [1, 0, 2])
144         print("STACKED Shape:", net.shape)
145         net = tf.reshape(net, [−1, int(num_stocks), 1, hidden_dim])
146
147         with tf.variable_scope("actor_auxiliary_prediction"+str(target)):
148             auxiliary_prediction = None
149             if actor_auxiliary_prediction > 0:
150                 auxiliary_prediction = tflearn.conv_2d(net, 1, (1, 1), padding=’

valid’)
151                 auxiliary_prediction = tflearn.flatten(auxiliary_prediction)
152
153         if use_previous:
154             net = tflearn.layers.merge_ops.merge([previous_input, net], ’concat’,

 axis=−1)
155             if DEBUG:
156                 print(’After concat:’, net.shape)
157             net = tflearn.conv_2d(net, 1, (1, 1), padding=’valid’)
158         net = tflearn.flatten(net)
159         if DEBUG:
160             print(’Output:’, net.shape)
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161
162     else:
163         raise NotImplementedError
164
165     return net, auxiliary_prediction
166
167 def stock_predictor_critic(inputs, predictor_type, use_batch_norm, use_previous,

 previous_input,
168                            critic_auxiliary_prediction, target):
169     window_length = inputs.get_shape()[2]
170     assert predictor_type in [’cnn’, ’lstm’], ’type must be either cnn or lstm’
171     if predictor_type == ’cnn’:
172         net = tflearn.conv_2d(inputs, 32, (1, 3), padding=’valid’)
173         if use_batch_norm:
174             net = tflearn.layers.normalization.batch_normalization(net)
175         net = tflearn.activations.relu(net)
176         net = tflearn.conv_2d(net, 32, (1, window_length − 2), padding=’valid’)
177         if use_batch_norm:
178             net = tflearn.layers.normalization.batch_normalization(net)
179         net = tflearn.activations.relu(net)
180         if DEBUG:
181             print(’After conv2d:’, net.shape)
182
183         with tf.variable_scope("critic_auxiliary_prediction"+str(target)):
184             auxiliary_prediction = None
185             if critic_auxiliary_prediction > 0:
186                 auxiliary_prediction = tflearn.conv_2d(net, 1, (1, 1), padding=’

valid’)
187                 auxiliary_prediction = tflearn.flatten(auxiliary_prediction)
188
189         if use_previous:
190             net = tflearn.layers.merge_ops.merge([previous_input, net], ’concat’,

 axis=−1)
191             if DEBUG:
192                 print(’After concat:’, net.shape)
193             net = tflearn.conv_2d(net, 1, (1, 1), padding=’valid’)
194             if DEBUG:
195                 print(’After portfolio conv2d:’, net.shape)
196         net = tflearn.flatten(net)
197         if DEBUG:
198             print(’Output:’, net.shape)
199     elif predictor_type == ’lstm’:
200         num_stocks = inputs.get_shape()[1]
201         hidden_dim = 32
202         net = tf.transpose(inputs, [0, 2, 3, 1])
203         resultlist = []
204         reuse = False
205         for i in range(num_stocks):
206             if i > 0:
207                 reuse = True
208             print("Layer:", i)
209             result = tflearn.layers.lstm(net[:, :, :, i],
210                                          hidden_dim,
211                                          dropout=0.5,
212                                          scope="lstm_critic"+str(target),
213                                          reuse=reuse)
214             resultlist.append(result)
215         net = tf.stack(resultlist)
216         net = tf.transpose(net, [1, 0, 2])
217         net = tf.reshape(net, [−1, int(num_stocks), 1, hidden_dim])
218
219         with tf.variable_scope("critic_auxiliary_prediction"+str(target)):
220             auxiliary_prediction = None
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221             if critic_auxiliary_prediction > 0:
222                 auxiliary_prediction = tflearn.conv_2d(net, 1, (1, 1), padding=’

valid’)
223                 auxiliary_prediction = tflearn.flatten(auxiliary_prediction)
224
225         if use_previous:
226             net = tflearn.layers.merge_ops.merge([previous_input, net], ’concat’,

 axis=−1)
227             if DEBUG:
228                 print(’After concat:’, net.shape)
229             net = tflearn.conv_2d(net, 1, (1, 1), padding=’valid’)
230         net = tflearn.flatten(net)
231         if DEBUG:
232             print(’Output:’, net.shape)
233
234     else:
235         raise NotImplementedError
236
237     return net, auxiliary_prediction
238
239 class StockActor(ActorNetwork):
240     def __init__(self, sess, state_dim, action_dim, action_bound, learning_rate,

 tau, batch_size,
241                  predictor_type, use_batch_norm, use_previous=False, auxiliary_c

ommission=0,
242                  actor_auxiliary_prediction=0):
243         self.predictor_type = predictor_type
244         self.use_batch_norm = use_batch_norm
245         self.use_previous = use_previous
246         self.auxiliary_commission = auxiliary_commission
247         self.actor_auxiliary_prediction = actor_auxiliary_prediction
248         ActorNetwork.__init__(self, sess, state_dim, action_dim, action_bound, l

earning_rate, tau, batch_size)
249
250     def create_actor_network(self, target):
251         """
252         self.s_dim: a list specifies shape
253         """
254         nb_classes, window_length = self.s_dim
255         assert nb_classes == self.a_dim[0]
256         assert window_length > 2, ’This architecture only support window length larger than 2.’
257         inputs = tflearn.input_data(shape=[None] + self.s_dim + [1], name=’input’

)
258
259         portfolio_inputs = None
260         portfolio_reshaped = None
261         if self.use_previous:
262             portfolio_inputs = tflearn.input_data(shape=[None] + self.a_dim, nam

e=’portfolio_input’)
263             portfolio_reshaped = tflearn.reshape(portfolio_inputs, new_shape=[−1

]+self.a_dim+[1, 1])
264
265         net, auxil = stock_predictor_actor(inputs, self.predictor_type, self.use

_batch_norm, 
266                                            self.use_previous, portfolio_reshaped

, self.actor_auxiliary_prediction,
267                                            target)
268         out = tf.nn.softmax(net)
269         scaled_out = tf.multiply(out, self.action_bound)
270
271         loss = None
272         future_y_inputs = None
273         if self.actor_auxiliary_prediction > 0:
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274             future_y_inputs = tflearn.input_data(shape=[None] + self.a_dim, name
=’portfolio_input’)

275             loss = self.actor_auxiliary_prediction* \
276                 tf.reduce_mean(tf.reduce_sum(tf.square(auxil − future_y_inputs),

 axis=−1))
277
278         return inputs, out, scaled_out, portfolio_inputs, loss, future_y_inputs
279
280     def train(self, inputs, a_gradient, portfolio_inputs=None, future_y_inputs=N

one):
281         window_length = self.s_dim[1]
282         inputs = inputs[:, :, −window_length:, :]
283         if not self.use_previous:
284             self.sess.run([self.optimize], feed_dict={
285                 self.inputs: inputs,
286                 self.action_gradient: a_gradient
287             })
288         else:
289             if self.actor_auxiliary_prediction > 0 and self.auxiliary_commission

:
290                 self.sess.run([self.optimize, self.optimize_comm, self.optimize_

prediction], feed_dict={
291                     self.inputs: inputs,
292                     self.portfolio_inputs: portfolio_inputs,
293                     self.action_gradient: a_gradient,
294                     self.future_y_inputs: future_y_inputs
295                 })
296             elif self.actor_auxiliary_prediction > 0:
297                 self.sess.run([self.optimize, self.optimize_prediction], feed_di

ct={
298                     self.inputs: inputs,
299                     self.portfolio_inputs: portfolio_inputs,
300                     self.action_gradient: a_gradient,
301                     self.future_y_inputs: future_y_inputs
302                 })
303             elif self.auxiliary_commission > 0:
304                 self.sess.run([self.optimize, self.optimize_comm], feed_dict={
305                     self.inputs: inputs,
306                     self.portfolio_inputs: portfolio_inputs,
307                     self.action_gradient: a_gradient
308                 })
309             else:                
310                 self.sess.run([self.optimize], feed_dict={
311                     self.inputs: inputs,
312                     self.portfolio_inputs: portfolio_inputs,
313                     self.action_gradient: a_gradient
314                 })
315
316     def predict(self, inputs, portfolio_inputs=None):
317         window_length = self.s_dim[1]
318         inputs = inputs[:, :, −window_length:, :]
319         if not self.use_previous:
320             return self.sess.run(self.scaled_out, feed_dict={
321                 self.inputs: inputs
322             })
323         else:
324             return self.sess.run(self.scaled_out, feed_dict={
325                 self.inputs:inputs,
326                 self.portfolio_inputs: portfolio_inputs
327             })
328
329     def predict_target(self, inputs, portfolio_inputs=None):
330         window_length = self.s_dim[1]
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331         inputs = inputs[:, :, −window_length:, :]
332         if not self.use_previous:
333             return self.sess.run(self.target_scaled_out, feed_dict={
334                 self.target_inputs: inputs
335             })
336         else:
337             return self.sess.run(self.target_scaled_out, feed_dict={
338                 self.target_inputs: inputs,
339                 self.target_portfolio_inputs: portfolio_inputs
340             })
341
342
343 class StockCritic(CriticNetwork):
344     def __init__(self, sess, state_dim, action_dim, learning_rate, tau, num_acto

r_vars,
345                  predictor_type, use_batch_norm, use_previous=False, critic_auxi

liary_prediction=0):
346         self.predictor_type = predictor_type
347         self.use_batch_norm = use_batch_norm
348         self.use_previous = use_previous
349         self.critic_auxiliary_prediction = critic_auxiliary_prediction
350         CriticNetwork.__init__(self, sess, state_dim, action_dim, learning_rate,

 tau, num_actor_vars)
351
352     def create_critic_network(self, target):
353         inputs = tflearn.input_data(shape=[None] + self.s_dim + [1])
354         action = tflearn.input_data(shape=[None] + self.a_dim)
355
356         portfolio_inputs = None
357         portfolio_reshaped = None
358         if self.use_previous:
359             portfolio_inputs = tflearn.input_data(shape=[None] + self.a_dim, nam

e=’portfolio_input’)
360             portfolio_reshaped = tflearn.reshape(portfolio_inputs, new_shape=[−1

]+self.a_dim+[1, 1])
361
362         net, auxil = stock_predictor_critic(inputs, self.predictor_type, self.us

e_batch_norm, 
363                                             self.use_previous, portfolio_reshape

d, self.critic_auxiliary_prediction,
364                                             target)
365
366         loss = 0
367         future_y_inputs = None
368         if self.critic_auxiliary_prediction > 0:
369             future_y_inputs = tflearn.input_data(shape=[None] + self.a_dim, name

=’portfolio_input’)
370             loss = self.critic_auxiliary_prediction* \
371                 tf.reduce_mean(tf.reduce_sum(tf.square(auxil − future_y_inputs),

 axis=−1))
372
373         # Add the action tensor in the 2nd hidden layer
374         # Use two temp layers to get the corresponding weights and biases
375         t1 = tflearn.fully_connected(net, 64)
376         t2 = tflearn.fully_connected(action, 64)
377
378         net = tf.add(t1, t2)
379         if self.use_batch_norm:
380             net = tflearn.layers.normalization.batch_normalization(net)
381         net = tflearn.activations.relu(net)
382
383         # linear layer connected to 1 output representing Q(s,a)
384         # Weights are init to Uniform[−3e−3, 3e−3]
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385         w_init = tflearn.initializations.uniform(minval=−0.003, maxval=0.003)
386         out = tflearn.fully_connected(net, 1, weights_init=w_init)
387         return inputs, action, out, portfolio_inputs, loss, future_y_inputs
388
389     def train(self, inputs, action, predicted_q_value, portfolio_inputs=None, fu

ture_y_inputs=None):
390         window_length = self.s_dim[1]
391         inputs = inputs[:, :, −window_length:, :]
392         if not self.use_previous:
393             return self.sess.run([self.out, self.optimize], feed_dict={
394                 self.inputs: inputs,
395                 self.action: action,
396                 self.predicted_q_value: predicted_q_value
397             })
398         else:
399             if self.critic_auxiliary_prediction > 0:
400                 return self.sess.run([self.out, self.optimize], feed_dict={
401                     self.inputs: inputs,
402                     self.portfolio_inputs: portfolio_inputs,
403                     self.action: action,
404                     self.predicted_q_value: predicted_q_value,
405                     self.future_y_inputs: future_y_inputs
406                 })
407
408             else:       
409                 return self.sess.run([self.out, self.optimize], feed_dict={
410                     self.inputs: inputs,
411                     self.portfolio_inputs: portfolio_inputs,
412                     self.action: action,
413                     self.predicted_q_value: predicted_q_value
414                 })
415
416     def predict(self, inputs, action, portfolio_inputs=None):
417         window_length = self.s_dim[1]
418         inputs = inputs[:, :, −window_length:, :]
419         if not self.use_previous:
420             return self.sess.run(self.out, feed_dict={
421                 self.inputs: inputs,
422                 self.action: action
423             })
424         else:
425             return self.sess.run(self.out, feed_dict={
426                 self.inputs: inputs,
427                 self.portfolio_inputs: portfolio_inputs,
428                 self.action: action
429             })
430
431     def predict_target(self, inputs, action, portfolio_inputs=None):
432         window_length = self.s_dim[1]
433         inputs = inputs[:, :, −window_length:, :]
434         if not self.use_previous:
435             return self.sess.run(self.target_out, feed_dict={
436                 self.target_inputs: inputs,
437                 self.target_action: action
438             })
439         else:
440             return self.sess.run(self.target_out, feed_dict={
441                 self.target_inputs: inputs,
442                 self.target_portfolio_inputs: portfolio_inputs,
443                 self.target_action: action
444             })
445
446     def action_gradients(self, inputs, actions, portfolio_inputs=None):
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447         window_length = self.s_dim[1]
448         inputs = inputs[:, :, −window_length:, :]
449         if not self.use_previous:
450             return self.sess.run(self.action_grads, feed_dict={
451                 self.inputs: inputs,
452                 self.action: actions
453             })
454         else:
455             return self.sess.run(self.action_grads, feed_dict={
456                 self.inputs: inputs,
457                 self.portfolio_inputs: portfolio_inputs,
458                 self.action: actions
459             }) 
460
461
462 def obs_normalizer(observation):
463     """ Preprocess observation obtained by environment
464
465     Args:
466         observation: (nb_classes, window_length, num_features) or with info
467
468     Returns: normalized
469
470     """
471     if isinstance(observation, tuple):
472         observation = observation[0]
473     # directly use close/open ratio as feature
474     observation = observation[:, :, 3:4] / observation[:, :, 0:1]
475     observation = normalize(observation)
476     return observation
477
478
479 def test_model(env, model):
480     observation, info = env.reset()
481     done = False
482     while not done:
483         action = model.predict_single(observation)
484         observation, _, done, _ = env.step(action)
485     env.render()
486
487
488 def test_model_multiple(env, models):
489     observation, info = env.reset()
490     done = False
491     while not done:
492         observation, weights = observation[’obs’], observation[’weights’]
493         actions = []
494         for i, model in enumerate(models):
495             model_obs = {’obs’: observation, ’weights’: weights[i]}
496             actions.append(model.predict_single(model_obs))
497         actions = np.array(actions)
498         observation, _, done, info = env.step(actions)
499     # env.render()
500
501
502 if __name__ == ’__main__’:
503
504     parser = argparse.ArgumentParser(description=’Provide arguments for training different DD

PG models’)
505
506     parser.add_argument(’−−debug’, ’−d’, help=’print debug statement’, default=False, t

ype=bool)
507     parser.add_argument(’−−predictor_type’, ’−p’, help=’cnn or lstm predictor’, required=Tr
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ue)
508     parser.add_argument(’−−window_length’, ’−w’, help=’observation window length’, requir

ed=True, type=int)
509     parser.add_argument(’−−batch_norm’, ’−b’, help=’whether to use batch normalization’, req

uired=True, type=bool)
510     parser.add_argument(’−−learning_steps’, ’−l’, help=’number of learning steps for DDPG’, re

quired=True, type=int)
511     parser.add_argument(’−−auxil_commission’, ’−ac’, help=’whether to use auxiliary commission

’, default=0, type=float)
512     parser.add_argument(’−−actor_auxil_prediction’, ’−aap’, help=’whether to use actor auxiliary pr

ediction’, default=0, type=float)
513     parser.add_argument(’−−critic_auxil_prediction’, ’−ap’, help=’whether to use critic_auxiliary pr

ediction’, default=0, type=float)
514     parser.add_argument(’−−actor_tau’, ’−at’, help=’actor tau constant’, default=1e−3, typ

e=float)
515     parser.add_argument(’−−critic_tau’, ’−ct’, help=’critic tau constant’, default=1e−3, ty

pe=float)
516     parser.add_argument(’−−actor_learning_rate’, ’−al’, help=’actor learning rate’, default=1

e−4, type=float)
517     parser.add_argument(’−−critic_learning_rate’, ’−cl’, help=’critic learning rate’, default=1

e−3, type=float)
518     parser.add_argument(’−−batch_size’, ’−bs’, help=’batch size’, default=64, type=int)
519     parser.add_argument(’−−action_bound’, ’−ab’, help=’action bound’, default=1, type=

int)
520     parser.add_argument(’−−load_weights’, ’−lw’, help=’load previous weights’, default=Fa

lse, type=bool)
521     parser.add_argument(’−−gamma’, ’−g’, help=’gamma value’, default=0.5, type=flo

at)
522     parser.add_argument(’−−training_episodes’, ’−te’, help=’number of episodes to train on’, de

fault=600, type=int)
523     parser.add_argument(’−−max_rollout_steps’, ’−mre’, help=’number of steps to rollout in an epis

ode’, default=1000, type=int)
524     parser.add_argument(’−−buffer_size’, ’−bus’, help=’replay buffer size’, default=100000

, type=int)
525     parser.add_argument(’−−seed’, ’−s’, help=’seed value’, default=1337, type=int)
526
527     args = vars(parser.parse_args())
528
529     pprint.pprint(args)
530
531     DEBUG=args[’debug’]
532     predictor_type = args[’predictor_type’]
533     window_length = args[’window_length’]
534     use_batch_norm = args[’batch_norm’]
535     learning_steps = args[’learning_steps’]
536     auxil_commission = args[’auxil_commission’]
537     actor_auxil_prediction = args[’actor_auxil_prediction’]
538     critic_auxil_prediction = args[’critic_auxil_prediction’]
539     actor_tau = args[’actor_tau’]
540     critic_tau = args[’critic_tau’]
541     actor_learning_rate = args[’actor_learning_rate’]
542     critic_learning_rate = args[’critic_learning_rate’]
543     batch_size = args[’batch_size’]
544     action_bound = args[’action_bound’]
545     load_weights = args[’load_weights’]
546     gamma = args[’gamma’]
547     training_episodes = args[’training_episodes’]
548     max_rollout_steps = args[’max_rollout_steps’]
549     buffer_size = args[’buffer_size’]
550     seed = args[’seed’]
551
552     assert args[’predictor_type’] in [’cnn’, ’lstm’], ’Predictor must be either cnn or lstm’
553

Page 10/12stock_trading.py

stock_trading.py

Wednesday April 11, 2018



554 ##################################### NASDAQ ###################################
#######

555
556     history, abbreviation = read_stock_history(filepath=’utils/datasets/stocks_history_targe

t.h5’)
557     history = history[:, :, :4]
558     target_stocks = abbreviation
559     num_training_time = 1095
560
561     # get target history
562     target_history = np.empty(shape=(len(target_stocks), num_training_time, hist

ory.shape[2]))
563     for i, stock in enumerate(target_stocks):
564         target_history[i] = history[abbreviation.index(stock), :num_training_tim

e, :]
565     print("target:", target_history.shape)
566
567     testing_stocks = abbreviation
568     test_history = np.empty(shape=(len(testing_stocks), history.shape[1] − num_t

raining_time,
569                                    history.shape[2]))
570     for i, stock in enumerate(testing_stocks):
571         test_history[i] = history[abbreviation.index(stock), num_training_time:,

 :]
572     print("test:", test_history.shape)
573
574     train_env = PortfolioEnv(target_history, 
575                              target_stocks, 
576                              steps=min(max_rollout_steps, target_history.shape[1

]−window_length−learning_steps−1),
577                              window_length=window_length)
578     infer_train_env = PortfolioEnv(target_history, 
579                                    target_stocks, 
580                                    steps=target_history.shape[1]−window_length−l

earning_steps−1,
581                                    window_length=window_length)
582     infer_test_env = PortfolioEnv(test_history, 
583                                   testing_stocks, 
584                                   steps=test_history.shape[1]−window_length−lear

ning_steps−1, 
585                                   window_length=window_length)
586     infer_train_env.reset()
587     infer_test_env.reset()
588     nb_classes = len(target_stocks) + 1
589
590     action_dim = [nb_classes]
591     state_dim = [nb_classes, window_length]
592
593     actor_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(action_dim))
594     model_save_path = get_model_path(window_length, predictor_type, use_batch_no

rm, 
595                                      learning_steps, gamma, auxil_commission, ac

tor_auxil_prediction,
596                                      critic_auxil_prediction)
597     summary_path = get_result_path(window_length, predictor_type, use_batch_norm

,
598                                    learning_steps, gamma, auxil_commission, acto

r_auxil_prediction,
599                                    critic_auxil_prediction)
600     infer_path = get_infer_path(window_length, predictor_type, use_batch_norm,
601                                 learning_steps, gamma, auxil_commission, actor_a

uxil_prediction,
602                                 critic_auxil_prediction)
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603     variable_scope = get_variable_scope(window_length, predictor_type, use_batch
_norm,

604                                         learning_steps, gamma, auxil_commission,
 actor_auxil_prediction,

605                                         critic_auxil_prediction)
606
607     with tf.variable_scope(variable_scope):
608         sess = tf.Session()
609         actor = StockActor(sess=sess, state_dim=state_dim, action_dim=action_dim

, action_bound=action_bound, 
610                            learning_rate=1e−4, tau=actor_tau, batch_size=batch_s

ize,
611                            predictor_type=predictor_type, use_batch_norm=use_bat

ch_norm, use_previous=True,
612                            auxiliary_commission=auxil_commission, actor_auxiliar

y_prediction=actor_auxil_prediction)
613         critic = StockCritic(sess=sess, state_dim=state_dim, action_dim=action_d

im, tau=critic_tau,
614                              learning_rate=1e−3, num_actor_vars=actor.get_num_tr

ainable_vars(),
615                              predictor_type=predictor_type, use_batch_norm=use_b

atch_norm, use_previous=True,
616                              critic_auxiliary_prediction=critic_auxil_prediction

)
617         ddpg_model = DDPG(train_env, sess, actor, critic, actor_noise, obs_norma

lizer=obs_normalizer,
618                           gamma=gamma, training_episodes=training_episodes, max_

rollout_steps=max_rollout_steps,
619                           buffer_size=buffer_size, seed=seed, batch_size=batch_s

ize, model_save_path=model_save_path,
620                           summary_path=summary_path, infer_path=infer_path, infe

r_train_env=infer_train_env,
621                           infer_test_env=infer_test_env, learning_steps=learning

_steps)
622         ddpg_model.initialize(load_weights=load_weights, verbose=False)
623         ddpg_model.train()
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1 """
2 Modified from https://github.com/wassname/rl−portfolio−management/blob/master/src/environments/portfolio.py
3 Modified from https://github.com/vermouth1992/drl−portfolio−management/blob/master/src/environment/portfolio.py
4 """
5 from __future__ import print_function
6
7 from pprint import pprint
8
9 import matplotlib
10 matplotlib.use(’Agg’)
11 import numpy as np
12 import pandas as pd
13 import matplotlib.pyplot as plt
14
15 import gym
16 import gym.spaces
17
18 from utils.data import date_to_index, index_to_date, index_to_date_offset
19 from pgportfolio.tools.configprocess import load_config
20
21 eps = 1e−8
22
23
24 def random_shift(x, fraction):
25     """ Apply a random shift to a pandas series. """
26     min_x, max_x = np.min(x), np.max(x)
27     m = np.random.uniform(−fraction, fraction, size=x.shape) + 1
28     return np.clip(x * m, min_x, max_x)
29
30
31 def scale_to_start(x):
32     """ Scale pandas series so that it starts at one. """
33     x = (x + eps) / (x[0] + eps)
34     return x
35
36
37 def sharpe(returns, freq=30, rfr=0):
38     """ Given a set of returns, calculates naive (rfr=0) sharpe (eq 28). """
39     return (np.sqrt(freq) * np.mean(returns − rfr + eps)) / np.std(returns − rfr

 + eps)
40
41
42 def max_drawdown(returns):
43     """ Max drawdown. See https://www.investopedia.com/terms/m/maximum−drawdown−mdd.asp """
44     peak = returns.max()
45     trough = returns[returns.argmax():].min()
46     return (trough − peak) / (peak + eps)
47
48
49 class DataGenerator(object):
50     """Acts as data provider for each new episode."""
51
52     def __init__(self, history, abbreviation, steps=730, window_length=50, start

_idx=0, start_date=None):
53         """
54
55         Args:
56             history: (num_stocks, timestamp, 5) open, high, low, close, volume
57             abbreviation: a list of length num_stocks with assets name
58             steps: the total number of steps to simulate, default is 2 years
59             window_length: observation window, must be less than 50
60             start_date: the date to start. Default is None and random pick one.
61                         It should be a string e.g. ’2012−08−13’

Page 1/8portfolio.py

portfolio.py

1/8



62         """
63         assert history.shape[0] == len(abbreviation), ’Number of stock is not consistent’
64         import copy
65
66         self.steps = steps + 1
67         self.window_length = window_length
68         self.start_idx = start_idx
69         self.start_date = start_date
70
71         # make immutable class
72         self._data = history.copy()  # all data
73         self.asset_names = copy.copy(abbreviation)
74
75     def _step(self):
76         # get observation matrix from history, exclude volume, maybe volume is u

seful as it
77         # indicates how market total investment changes. Normalize could be crit

ical here
78         self.step += 1
79         obs = self.data[:, self.step:self.step + self.window_length, :].copy()
80         # normalize obs with open price
81
82         # used for compute optimal action and sanity check
83         ground_truth_obs = self.data[:, self.step + self.window_length:self.step

 + self.window_length + 1, :].copy()
84
85         done = self.step >= self.steps
86         return obs, done, ground_truth_obs
87
88     def reset(self):
89         self.step = 0
90
91         # get data for this episode, each episode might be different.
92         if self.start_date is None:
93             print("LOW:", self.window_length)
94             print("HIGH:", self._data.shape[1] − self.steps)
95             self.idx = np.random.randint(
96                 low=self.window_length, high=self._data.shape[1] − self.steps)
97         else:
98             # compute index corresponding to start_date for repeatable sequence
99             self.idx = date_to_index(self.start_date) − self.start_idx

100             assert self.idx >= self.window_length and self.idx <= self._data.sha
pe[1] − self.steps, \

101                 ’Invalid start date, must be window_length day after start date and simulation steps day before 
end date’

102         # print(’Start date: {}’.format(index_to_date(self.idx)))
103         data = self._data[:, self.idx − self.window_length:self.idx + self.steps

 + 1, :4]
104         # apply augmentation?
105         self.data = data
106         return self.data[:, self.step:self.step + self.window_length, :].copy(),

 \
107                self.data[:, self.step + self.window_length:self.step + self.wind

ow_length + 1, :].copy()
108
109
110 class PortfolioSim(object):
111     """
112     Portfolio management sim.
113     Params:
114     − cost e.g. 0.0025 is max in Poliniex
115     Based off [Jiang 2017](https://arxiv.org/abs/1706.10059)
116     """
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117
118     def __init__(self, asset_names=list(), steps=730, trading_cost=0.0025, time_

cost=0.0):
119         self.asset_names = asset_names
120         self.cost = trading_cost
121         self.time_cost = time_cost
122         self.steps = steps
123
124     def _step(self, w1, y1):
125         w0 = self.w0 #old_weights’
126         p0 = self.p0 #p’
127
128         c1 = self.cost * (np.abs(w0[1:] − w1[1:])).sum()
129         p1 = p0 * (1 − c1) * np.dot(y1, w1) # p_(t+1)’’
130
131         dw1 = (y1 * w1) / (np.dot(y1, w1) + eps)  # (eq7) weights evolve into
132
133         # can’t have negative holdings in this model (no shorts)
134         p1 = np.clip(p1, 0, np.inf)
135
136         rho1 = p1 / p0 − 1  # rate of returns
137         r1 = np.log((p1 + eps) / (p0 + eps))  # (eq10) log rate of return
138         # (eq22) immediate reward is log rate of return scaled by episode length
139         reward = r1 / self.steps * 1000
140
141         # remember for next step
142         self.w0 = dw1
143         self.p0 = p1
144
145         # if we run out of money, we’re done
146         done = bool(p1 == 0)
147
148         # should only return single values, not list
149         info = {
150             "reward": reward,
151             "log_return": r1,
152             "portfolio_value": p1,
153             "return": y1[1:].mean(),
154             "rate_of_return": rho1,
155             "weights_mean": w1.mean(),
156             "weights_std": w1.std(),
157             "cost": p0*c1,
158             "weights": w1,
159             "evolved_weights": dw1
160         }
161
162         self.infos.append(info)
163         return reward, info, done
164
165     def reset(self):
166         self.infos = []
167         self.p0 = 1.0
168         self.w0 = np.zeros(len(self.asset_names) + 1)
169         self.w0[0] = 1
170
171
172 class PortfolioEnv(gym.Env):
173     """
174     An environment for financial portfolio management.
175     Financial portfolio management is the process of constant redistribution of a fund into different
176     financial products.
177     Based on [Jiang 2017](https://arxiv.org/abs/1706.10059)
178     """
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179
180     metadata = {’render.modes’: [’human’, ’ansi’]}
181
182     def __init__(self,
183                  history,
184                  abbreviation,
185                  steps=730,  # 2 years
186                  trading_cost=0.0025,
187                  time_cost=0.00,
188                  window_length=50,
189                  start_idx=0,
190                  sample_start_date=None,
191                  seed=31415
192                  ):
193         """
194         An environment for financial portfolio management.
195         Params:
196             steps − steps in episode
197             scale − scale data and each episode (except return)
198             augment − fraction to randomly shift data by
199             trading_cost − cost of trade as a fraction
200             time_cost − cost of holding as a fraction
201             window_length − how many past observations to return
202             start_idx − The number of days from ’2012−08−13’ of the dataset
203             sample_start_date − The start date sampling from the history
204         """
205         plt.rcParams["figure.figsize"] = (15,8)
206         np.random.seed(seed)
207         self.window_length = window_length
208         self.num_stocks = history.shape[0]
209         self.start_idx = start_idx
210         self.steps = steps
211
212         self.src = DataGenerator(history, abbreviation, steps=steps, window_leng

th=window_length, start_idx=start_idx,
213                                  start_date=sample_start_date)
214
215         self.sim = PortfolioSim(
216             asset_names=abbreviation,
217             trading_cost=trading_cost,
218             time_cost=time_cost,
219             steps=steps)
220
221         # openai gym attributes
222         # action will be the portfolio weights from 0 to 1 for each asset
223         self.action_space = gym.spaces.Box(
224             0, 1, shape=len(self.src.asset_names) + 1)  # include cash
225
226         # get the observation space from the data min and max
227         self.observation_space = gym.spaces.Box(low=−np.inf, high=np.inf, shape=

(len(abbreviation) + 1, window_length,
228                                                                                 

 1))
229
230     def _step(self, action):
231         """
232         Step the env.
233         Actions should be portfolio [w0...]
234         − Where wn is a portfolio weight from 0 to 1. The first is cash_bias
235         − cn is the portfolio conversion weights see PortioSim._step for description
236         """
237         np.testing.assert_almost_equal(
238             action.shape,
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239             (len(self.sim.asset_names) + 1,)
240         )
241
242         # normalise just in case
243         action = np.clip(action, 0, 1)
244
245         weights = action  # np.array([cash_bias] + list(action))  # [w0, w1...]
246         weights /= (weights.sum() + eps)
247         weights[0] += np.clip(1 − weights.sum(), 0, 1)  # so if weights are all 

zeros we normalise to [1,0...]
248
249         assert ((action >= 0) * (action <= 1)).all(), ’all action values should be between 0

 and 1. Not %s’ % action
250         np.testing.assert_almost_equal(
251             np.sum(weights), 1.0, 3, err_msg=’weights should sum to 1. action="%s"’ % weig

hts)
252
253         observation, done1, ground_truth_obs = self.src._step()
254
255         # concatenate observation with ones
256         cash_observation = np.ones((1, self.window_length, observation.shape[2])

)
257         observation = np.concatenate((cash_observation, observation), axis=0)
258
259         cash_ground_truth = np.ones((1, 1, ground_truth_obs.shape[2]))
260         ground_truth_obs = np.concatenate((cash_ground_truth, ground_truth_obs),

 axis=0)
261
262         # relative price vector of last observation day (close/open)
263         close_price_vector = observation[:, −1, 3]
264         open_price_vector = observation[:, −1, 0]
265         #open_price_vector = observation[:, −2, 3]
266         y1 = close_price_vector / open_price_vector
267         reward, info, done2 = self.sim._step(weights, y1)
268
269         # calculate return for buy and hold a bit of each asset
270         info[’market_value’] = np.cumprod([inf["return"] for inf in self.infos + [in

fo]])[−1]
271         info[’open_prices’] = open_price_vector
272         # add dates
273         info[’date’] = index_to_date(self.start_idx + self.src.idx + self.src.ste

p)
274         info[’steps’] = self.src.step
275         info[’next_obs’] = ground_truth_obs
276         info[’next_y1’] = ground_truth_obs[:, −1, 3] / ground_truth_obs[:, −1, 0]
277
278         self.infos.append(info)
279
280         observation = {’obs’: observation, ’weights’:  self.sim.w0}
281
282         return observation, reward, done1 or done2, info
283
284     def _reset(self):
285         self.infos = []
286         self.sim.reset()
287         observation, ground_truth_obs = self.src.reset()
288         cash_observation = np.ones((1, self.window_length, observation.shape[2])

)
289         observation = np.concatenate((cash_observation, observation), axis=0)
290         cash_ground_truth = np.ones((1, 1, ground_truth_obs.shape[2]))
291         ground_truth_obs = np.concatenate((cash_ground_truth, ground_truth_obs),

 axis=0)
292         info = {}
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293         info[’next_obs’] = ground_truth_obs
294
295         observation = {’obs’: observation, ’weights’: self.sim.w0}
296         return observation, info
297
298     def _render(self, mode=’human’, close=False):
299         if close:
300             return
301         if mode == ’ansi’:
302             pprint(self.infos[−1])
303         elif mode == ’human’:
304             self.plot()
305
306     def plot(self):
307         #print("HERE")
308         # show a plot of portfolio vs mean market performance
309         fig, axes = plt.subplots(nrows=4, ncols=1)
310         df_info = pd.DataFrame(self.infos)
311         df_info.index = df_info["date"]
312         mdd = max_drawdown(df_info.rate_of_return + 1)
313         sharpe_ratio = sharpe(df_info.rate_of_return)
314         title = ’max_drawdown={: 2.2%} sharpe_ratio={: 2.4f}’.format(mdd, sharpe_ratio)
315         df_info[["portfolio_value", "market_value"]].plot(title=title, ax=axes[0], rot=

30)
316
317         prices = [info["open_prices"] for info in self.infos]
318         prices = np.array(prices)
319         axes[1].set_ylabel(’Prices’)
320         for ind in range(prices.shape[1]):
321             axes[1].plot(prices[:, ind])
322
323         allocations = [info["weights"] for info in self.infos]
324         allocations = np.array(allocations)
325         axes[2].set_ylabel(’Action’)
326         for ind in range(allocations.shape[1]):
327             axes[2].plot(allocations[:, ind])
328
329         costs = [info["cost"] for info in self.infos]
330         costs = np.cumsum(costs).flatten()
331         axes[3].set_ylabel(’Cost’)
332         axes[3].plot(costs)
333         plt.show()
334
335
336     def plot_costs(self):
337         costs = [info["cost"] for info in self.infos]
338         costs = np.array(costs)
339         plt.plot(costs)
340
341 class MultiActionPortfolioEnv(PortfolioEnv):
342     def __init__(self,
343                  history,
344                  abbreviation,
345                  model_names,
346                  steps=730,  # 2 years
347                  trading_cost=0.0025,
348                  time_cost=0.00,
349                  window_length=50,
350                  start_idx=0,
351                  sample_start_date=None,
352                  offset=1095
353                  ):
354         super(MultiActionPortfolioEnv, self).__init__(history, abbreviation, ste
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ps, trading_cost, time_cost, window_length,
355                               start_idx, sample_start_date)
356         self.model_names = model_names
357         self.offset = offset
358         # need to create each simulator for each model
359         self.sim = [PortfolioSim(
360             asset_names=abbreviation,
361             trading_cost=trading_cost,
362             time_cost=time_cost,
363             steps=steps) for _ in range(len(self.model_names))]
364
365     def _step(self, action):
366         """ Step the environment by a vector of actions
367
368         Args:
369             action: (num_models, num_stocks + 1)
370
371         Returns:
372
373         """
374         assert action.ndim == 2, ’Action must be a two dimensional array with shape (num_models, n

um_stocks + 1)’
375         assert action.shape[1] == len(self.sim[0].asset_names) + 1
376         assert action.shape[0] == len(self.model_names)
377         # normalise just in case
378         action = np.clip(action, 0, 1)
379         weights = action  # np.array([cash_bias] + list(action))  # [w0, w1...]
380         weights /= (np.sum(weights, axis=1, keepdims=True) + eps)
381         # so if weights are all zeros we normalise to [1,0...]
382         weights[:, 0] += np.clip(1 − np.sum(weights, axis=1), 0, 1)
383         assert ((action >= 0) * (action <= 1)).all(), ’all action values should be between 0

 and 1. Not %s’ % action
384         np.testing.assert_almost_equal(np.sum(weights, axis=1), np.ones(shape=(w

eights.shape[0])), 3,
385                                        err_msg=’weights should sum to 1. action="%s"’ % we

ights)
386         observation, done1, ground_truth_obs = self.src._step()
387
388         # concatenate observation with ones
389         cash_observation = np.ones((1, self.window_length, observation.shape[2])

)
390         observation = np.concatenate((cash_observation, observation), axis=0)
391
392         cash_ground_truth = np.ones((1, 1, ground_truth_obs.shape[2]))
393         ground_truth_obs = np.concatenate((cash_ground_truth, ground_truth_obs),

 axis=0)
394
395         # relative price vector of last observation day (close/open)
396         close_price_vector = observation[:, −1, 3]
397         open_price_vector = observation[:, −1, 0]
398         y1 = close_price_vector / open_price_vector
399
400         rewards = np.empty(shape=(weights.shape[0]))
401         info = {}
402         rate_of_returns = {}
403         dones = np.empty(shape=(weights.shape[0]), dtype=bool)
404         for i in range(weights.shape[0]):
405             reward, current_info, done2 = self.sim[i]._step(weights[i], y1)
406             rewards[i] = reward
407             info[self.model_names[i]] = current_info[’portfolio_value’]
408             info[’return’] = current_info[’return’]
409             rate_of_returns[self.model_names[i]] = current_info[’rate_of_return’]
410             dones[i] = done2
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411
412         # calculate return for buy and hold a bit of each asset
413         info[’market_value’] = np.cumprod([inf["return"] for inf in self.infos + [in

fo]])[−1]
414         # add dates
415         info[’date’] = index_to_date_offset(self.start_idx + self.src.idx + self.

src.step, self.offset)
416         info[’steps’] = self.src.step
417         info[’next_obs’] = ground_truth_obs
418
419         self.infos.append(info)
420         self.rate_of_returns.append(rate_of_returns)
421
422         observation = {’obs’: observation, ’weights’: np.array([self.sim[i].w0 for

 i in range(weights.shape[0])])}
423         return observation, rewards, np.all(dones) or done1, info
424
425     def _reset(self):
426         self.infos = []
427         self.rate_of_returns = []
428         for sim in self.sim:
429             sim.reset()
430         observation, ground_truth_obs = self.src.reset()
431         cash_observation = np.ones((1, self.window_length, observation.shape[2])

)
432         observation = np.concatenate((cash_observation, observation), axis=0)
433         cash_ground_truth = np.ones((1, 1, ground_truth_obs.shape[2]))
434         ground_truth_obs = np.concatenate((cash_ground_truth, ground_truth_obs),

 axis=0)
435         info = {}
436         info[’next_obs’] = ground_truth_obs
437
438         observation = {’obs’: observation, ’weights’: np.array([sim.w0 for sim in 

self.sim])}
439         return observation, info
440
441     def make_df(self):
442         self.df_info = pd.DataFrame(self.infos)
443
444     def plot(self):
445         df_info = self.df_info
446         df_info.index = df_info["date"]
447         fig = plt.gcf()
448         title = ’Trading Performance of Various Models’
449         # for model_name in self.model_names:
450         #     df_info[[model_name]].plot(title=title, fig=fig, rot=30)
451         df_info[self.model_names + [’market_value’]].plot(title=title, fig=fig, ro

t=30)
452         plt.ylabel(’Cumulative Wealth’)
453         plt.grid()
454
455     def stats(self):
456         stats = {}
457         for model_name in self.model_names:
458             dic = {}
459             dic[’fAPV’] = self.infos[−1][model_name]
460             model_returns = [rate_of_return[model_name] for rate_of_return in se

lf.rate_of_returns]
461             dic[’sharpe’] = sharpe(np.array(model_returns))
462             dic[’mdd’] = max_drawdown(np.array(model_returns)+1)
463             stats[model_name] = dic
464         return stats

Page 8/8portfolio.py

portfolio.py

Wednesday April 11, 2018



1 """
2 Modified from https://github.com/vermouth1992/drl−portfolio−management/blob/master/src/model/ddpg/actor.py
3 """
4
5 import tensorflow as tf
6
7
8 # ===========================
9 #   Actor DNNs
10 # ===========================
11
12 class ActorNetwork(object):
13     def __init__(self, sess, state_dim, action_dim, action_bound, learning_rate,

 tau, batch_size):
14         """
15
16         Args:
17             sess: a tensorflow session
18             state_dim: a list specifies shape
19             action_dim: a list specified action shape
20             action_bound: whether to normalize action in the end
21             learning_rate: learning rate
22             tau: target network update parameter
23             batch_size: use for normalization
24         """
25         self.sess = sess
26         assert isinstance(state_dim, list), ’state_dim must be a list.’
27         self.s_dim = state_dim
28         assert isinstance(action_dim, list), ’action_dim must be a list.’
29         self.a_dim = action_dim
30         self.action_bound = action_bound
31         self.learning_rate = learning_rate
32         self.tau = tau
33         self.batch_size = batch_size
34
35         # Actor Network
36         self.inputs, self.out, self.scaled_out, self.portfolio_inputs, \
37             self.auxil_loss, self.future_y_inputs = self.create_actor_network(Fa

lse)
38
39         self.network_params = tf.trainable_variables()
40
41         # Target Network
42         self.target_inputs, self.target_out, self.target_scaled_out, \
43             self.target_portfolio_inputs, self.target_auxil_loss, self.target_fu

ture_y_inputs \
44             = self.create_actor_network(True)
45
46         self.target_network_params = tf.trainable_variables()[
47                                      len(self.network_params):]
48
49         # Op for periodically updating target network with online network
50         # weights
51         self.update_target_network_params = \
52             [self.target_network_params[i].assign(tf.multiply(self.network_param

s[i], self.tau) +
53                                                   tf.multiply(self.target_networ

k_params[i], 1. − self.tau))
54              for i in range(len(self.target_network_params))]
55
56         # This gradient will be provided by the critic network
57         self.action_gradient = tf.placeholder(tf.float32, [None] + self.a_dim)
58
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59         optimizer = tf.train.AdamOptimizer(self.learning_rate)
60
61         actor_grad_params = [v for v in self.network_params if "actor_auxiliary_predict

ionFalse" not in v.name]
62         # Combine the gradients here
63         self.unnormalized_actor_gradients = tf.gradients(
64             self.scaled_out, actor_grad_params, −self.action_gradient)
65
66         self.actor_gradients = list(map(lambda x: tf.div(x, self.batch_size), se

lf.unnormalized_actor_gradients))
67
68         # Optimization Op
69         self.optimize = optimizer.apply_gradients(zip(self.actor_gradients, acto

r_grad_params))
70         if self.actor_auxiliary_prediction:
71             self.optimize_prediction = optimizer.minimize(loss=self.auxil_loss,
72                                                           var_list=self.network_

params)
73         commission_loss = self.auxiliary_commission* \
74             tf.reduce_mean(tf.reduce_sum(tf.square(self.scaled_out − self.portfo

lio_inputs), axis=−1))
75         self.optimize_comm = optimizer.minimize(loss=commission_loss,
76                                                 var_list=self.network_params)
77
78         self.num_trainable_vars = len(self.network_params) + len(self.target_net

work_params)
79
80     def create_actor_network(self):
81         raise NotImplementedError(’Create actor should return (inputs, out, scaled_out)’)
82
83     def train(self, inputs, a_gradient):
84         self.sess.run(self.optimize, feed_dict={
85             self.inputs: inputs,
86             self.action_gradient: a_gradient
87         })
88
89     def predict(self, inputs):
90         return self.sess.run(self.scaled_out, feed_dict={
91             self.inputs: inputs
92         })
93
94     def predict_target(self, inputs):
95         return self.sess.run(self.target_scaled_out, feed_dict={
96             self.target_inputs: inputs
97         })
98
99     def update_target_network(self):

100         self.sess.run(self.update_target_network_params)
101
102     def get_num_trainable_vars(self):
103         return self.num_trainable_vars
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1 """
2 Modified from https://github.com/vermouth1992/drl−portfolio−management/blob/master/src/model/ddpg/critic.py
3 """
4
5 import tensorflow as tf
6 import tflearn
7
8
9 class CriticNetwork(object):
10     """
11     Input to the network is the state and action, output is Q(s,a).
12     The action must be obtained from the output of the Actor network.
13     """
14
15     def __init__(self, sess, state_dim, action_dim, learning_rate, tau, num_acto

r_vars):
16         self.sess = sess
17         assert isinstance(state_dim, list), ’state_dim must be a list.’
18         self.s_dim = state_dim
19         assert isinstance(action_dim, list), ’action_dim must be a list.’
20         self.a_dim = action_dim
21         self.learning_rate = learning_rate
22         self.tau = tau
23
24         # Create the critic network
25         self.inputs, self.action, self.out, self.portfolio_inputs, self.auxil_lo

ss, self.future_y_inputs \
26              = self.create_critic_network(False)
27
28         self.network_params = tf.trainable_variables()[num_actor_vars:]
29
30         # Target Network
31         self.target_inputs, self.target_action, self.target_out, self.target_por

tfolio_inputs, \
32             self.target_auxil_loss, self.target_future_y_inputs = self.create_cr

itic_network(True)
33
34         self.target_network_params = tf.trainable_variables()[(len(self.network_

params) + num_actor_vars):]
35
36         # Op for periodically updating target network with online network
37         # weights with regularization
38         self.update_target_network_params = \
39             [self.target_network_params[i].assign(tf.multiply(self.network_param

s[i], self.tau) \
40                                                   + tf.multiply(self.target_netw

ork_params[i], 1. − self.tau))
41              for i in range(len(self.target_network_params))]
42
43         # Network target (y_i)
44         self.predicted_q_value = tf.placeholder(tf.float32, [None, 1])
45
46         # Define loss and optimization Op
47         self.loss = tflearn.mean_square(self.predicted_q_value, self.out)
48         self.loss += self.auxil_loss
49         self.optimize = tf.train.AdamOptimizer(
50             self.learning_rate).minimize(self.loss)
51
52         # Get the gradient of the net w.r.t. the action.
53         # For each action in the minibatch (i.e., for each x in xs),
54         # this will sum up the gradients of each critic output in the minibatch
55         # w.r.t. that action. Each output is independent of all
56         # actions except for one.
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57         self.action_grads = tf.gradients(self.out, self.action)
58
59     def create_critic_network(self):
60         raise NotImplementedError(’Create critic should return (inputs, action, out)’)
61
62     def train(self, inputs, action, predicted_q_value, future_y_inputs):
63         return self.sess.run([self.out, self.optimize], feed_dict={
64             self.inputs: inputs,
65             self.action: action,
66             self.predicted_q_value: predicted_q_value,
67             self.future_y_inputs: future_y_inputs
68         })
69
70     def predict(self, inputs, action):
71         return self.sess.run(self.out, feed_dict={
72             self.inputs: inputs,
73             self.action: action
74         })
75
76     def predict_target(self, inputs, action):
77         return self.sess.run(self.target_out, feed_dict={
78             self.target_inputs: inputs,
79             self.target_action: action
80         })
81
82     def action_gradients(self, inputs, actions):
83         return self.sess.run(self.action_grads, feed_dict={
84             self.inputs: inputs,
85             self.action: actions
86         })
87
88     def update_target_network(self):
89         self.sess.run(self.update_target_network_params)
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1 """
2 Modified from https://github.com/vermouth1992/drl−portfolio−management/blob/master/src/model/ddpg/ddpg.py
3 """
4 from __future__ import print_function
5
6 import matplotlib
7 matplotlib.use(’Agg’)
8
9 import os
10 import traceback
11 import json
12 import matplotlib.pyplot as plt
13 import numpy as np
14 import tensorflow as tf
15
16 from collections import deque
17 from copy import copy
18 from .replay_buffer import ReplayBuffer, ReplayBufferMultiple, ReplayBufferRollo

ut
19 from ..base_model import BaseModel
20
21
22 def build_summaries():
23     episode_reward = tf.Variable(0.)
24     tf.summary.scalar("Reward", episode_reward)
25     episode_ave_max_q = tf.Variable(0.)
26     tf.summary.scalar("Qmax_Value", episode_ave_max_q)
27
28     summary_vars = [episode_reward, episode_ave_max_q]
29     summary_ops = tf.summary.merge_all()
30
31     return summary_ops, summary_vars
32
33
34 class DDPG(BaseModel):
35     def __init__(self, env, sess, actor, critic, actor_noise, obs_normalizer=Non

e, action_processor=None,
36                  gamma=0.5, training_episodes=600, max_rollout_steps=1000, buffe

r_size=100000, seed=1337, batch_size=64,
37                  model_save_path=’weights/ddpg/ddpg.ckpt’, summary_path=’results/ddpg/’, i

nfer_path=’infer/’,
38                  infer_train_env=None, infer_test_env=None, learning_steps=1):
39         np.random.seed(seed)
40         if env:
41             env.seed(seed)
42         self.model_save_path = model_save_path
43         self.summary_path = summary_path
44         self.infer_path = infer_path
45         self.sess = sess
46         # if env is None, then DDPG just predicts
47         self.env = env
48         self.actor = actor
49         self.critic = critic
50         self.actor_noise = actor_noise
51         self.obs_normalizer = obs_normalizer
52         self.action_processor = action_processor
53         self.gamma = gamma
54         self.training_episodes = training_episodes
55         self.max_rollout_steps = max_rollout_steps
56         self.buffer_size = buffer_size
57         self.seed = seed
58         self.batch_size = batch_size
59         self.infer_train_env = infer_train_env
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60         self.infer_test_env = infer_test_env
61         self.learning_steps = learning_steps
62         self.start_episode = 0
63         self.summary_ops, self.summary_vars = build_summaries()
64
65     def clear_path(self, folder):
66         for file in os.listdir(folder):
67             file_path = os.path.join(folder, file)
68             try:
69                 if os.path.isfile(file_path):
70                     os.unlink(file_path)
71                 #elif os.path.isdir(file_path): shutil.rmtree(file_path)
72             except Exception as e:
73                 print(e)
74
75     def initialize(self, load_weights=True, verbose=True):
76         """ Load training history from path. To be add feature to just load weights, not training states
77
78         """
79
80         if (self.model_save_path is not None) and (not os.path.exists(self.model

_save_path)):
81             os.makedirs(self.model_save_path, exist_ok=True)
82         if (self.summary_path is not None) and (not os.path.exists(self.summary_

path)):
83             os.makedirs(self.summary_path, exist_ok=True)
84         if (self.infer_path is not None) and (not os.path.exists(os.path.join(se

lf.infer_path, ’test/’))):
85             os.makedirs(os.path.join(self.infer_path, ’test/’), exist_ok=True)
86         if (self.infer_path is not None) and (not os.path.exists(os.path.join(se

lf.infer_path, ’train/’))):
87             os.makedirs(os.path.join(self.infer_path, ’train/’), exist_ok=True)
88
89         if load_weights:
90             try:
91                 variables = tf.global_variables()
92                 param_dict = {}
93                 saver = tf.train.Saver()
94                 latest_checkpoint = tf.train.latest_checkpoint(self.model_save_p

ath)
95                 print("LOADING FROM:", self.model_save_path)
96                 self.start_episode = int(latest_checkpoint.split(’−’)[1]) + 1
97                 saver.restore(self.sess, latest_checkpoint)
98                 for var in variables:
99                     var_name = var.name[:−2]

100                     if verbose:
101                         print(’Loading {} from checkpoint. Name: {}’.format(var.name, var

_name))
102                     param_dict[var_name] = var
103             except:
104                 traceback.print_exc()
105                 print(’Build model from scratch’)
106                 self.sess.run(tf.global_variables_initializer())
107         else:
108             print(’Build model from scratch’)
109             self.clear_path(self.model_save_path)
110             self.clear_path(self.summary_path)
111             self.clear_path(os.path.join(self.infer_path, ’test’))
112             self.clear_path(os.path.join(self.infer_path, ’train’))
113             self.sess.run(tf.global_variables_initializer())
114
115     def train(self, save_every_episode=1, verbose=True, debug=False):
116         """ Must already call intialize
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117
118         Args:
119             save_every_episode:
120             print_every_step:
121             verbose:
122             debug:
123
124         Returns:
125
126         """
127         writer = tf.summary.FileWriter(self.summary_path, self.sess.graph)
128
129         self.actor.update_target_network()
130         self.critic.update_target_network()
131
132         np.random.seed(self.seed)
133         num_episode = self.training_episodes
134         batch_size = self.batch_size
135         gamma = self.gamma
136         self.buffer = ReplayBufferRollout(self.buffer_size)
137
138         # main training loop
139         for i in range(self.start_episode, num_episode):
140             if verbose and debug:
141                 print("Episode: " + str(i) + " Replay Buffer " + str(self.buffer.count(

)))
142
143             episode_rollout = deque()
144
145             observation_1 = self.env.reset()
146             observation_1, weights_1 = observation_1[0][’obs’], observation_1[0]

[’weights’]
147
148             if self.obs_normalizer:
149                 observation_1 = self.obs_normalizer(observation_1)
150
151             episode_rollout.append([observation_1, weights_1])
152
153             for rollout_step in range(self.learning_steps − 1):
154                 obs, ws = episode_rollout[−1]
155                 action = self.actor.predict(inputs=np.expand_dims(obs, axis=0),
156                                             portfolio_inputs=np.expand_dims(ws, 

axis=0)).squeeze(
157                                             axis=0) + self.actor_noise()
158                 action = np.clip(action, 0, 1)
159                 if action.sum() == 0:
160                     action = np.ones(obs.shape[0])/obs.shape[0]
161                 action /= action.sum()
162                 new_obs, reward, done, info = self.env.step(action)
163                 new_obs, new_ws = new_obs[’obs’], new_obs[’weights’]
164
165                 if self.obs_normalizer:
166                     new_obs = self.obs_normalizer(new_obs)
167                 episode_rollout.append(action)
168                 episode_rollout.append(reward)
169                 episode_rollout.append(done)
170                 episode_rollout.append(info[’next_y1’])
171                 episode_rollout.append([new_obs, new_ws])
172
173             ep_reward = 0
174             ep_ave_max_q = 0
175             ep_ave_min_q = 0
176             # keeps sampling until done

Page 3/7ddpg.py

ddpg.py

3/7



177             for j in range(self.max_rollout_steps):
178                 #print(j)
179                 action = self.actor.predict(inputs=np.expand_dims(episode_rollou

t[−1][0], axis=0),
180                                             portfolio_inputs=np.expand_dims(epis

ode_rollout[−1][1], axis=0)).squeeze(
181                     axis=0) + self.actor_noise()
182
183                 if self.action_processor:
184                     action = self.action_processor(action)
185                 else:
186                     action = action
187
188                 action = np.clip(action, 0, 1)
189                 if action.sum() == 0:
190                     action = np.ones(episode_rollout[−1][0].shape[0])/episode_ro

llout[−1][0].shape[0]
191                 action /= action.sum()
192
193                 obs, reward, done, info = self.env.step(action)
194                 obs, ws = obs[’obs’], obs[’weights’]
195
196                 if self.obs_normalizer:
197                     obs = self.obs_normalizer(obs)
198
199                 episode_rollout.append(action)
200                 episode_rollout.append(reward)
201                 episode_rollout.append(done)
202                 episode_rollout.append(info[’next_y1’])
203                 episode_rollout.append([obs, ws])
204
205                 # add to buffer
206                 self.buffer.add(copy(episode_rollout))
207
208                 if self.buffer.size() >= batch_size:
209                     # batch update
210
211                     s1_batch, s1w_batch, a1_batch, s1y_batch, rs_batch, \
212                         t_batch, sf_batch, sfw_batch = self.buffer.sample_batch(

batch_size)
213
214                     # Calculate targets
215                     target_q = self.critic.predict_target(inputs=sf_batch, 
216                                                           action=self.actor.pred

ict_target(inputs=sf_batch,
217                                                                                 

           portfolio_inputs=sfw_batch),
218                                                           portfolio_inputs=sfw_b

atch)
219
220                     y_i = []
221                     for k in range(batch_size):
222                         total_r = 0
223                         for r_batch in reversed(rs_batch):
224                             total_r *= gamma
225                             total_r += r_batch[k]
226                         if t_batch[k]:
227                             y_i.append(total_r)
228                         else:
229                             y_i.append(total_r + (gamma**len(rs_batch))*target_q

[k])
230
231                     # Update the critic given the targets
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232                     predicted_q_value, _ = self.critic.train(inputs=s1_batch, 
233                                                              action=a1_batch, 
234                                                              predicted_q_value=n

p.reshape(y_i, (batch_size, 1)),
235                                                              portfolio_inputs=s1

w_batch,
236                                                              future_y_inputs=s1y

_batch)
237
238                     ep_ave_max_q += np.amax(predicted_q_value)
239                     ep_ave_min_q += np.amin(predicted_q_value)
240
241                     # Update the actor policy using the sampled gradient
242                     a_outs = self.actor.predict(inputs=s1_batch,
243                                                 portfolio_inputs=s1w_batch)
244                     grads = self.critic.action_gradients(inputs=s1_batch, 
245                                                          actions=a_outs,
246                                                          portfolio_inputs=s1w_ba

tch)
247                     self.actor.train(inputs=s1_batch, 
248                                      a_gradient=grads[0],
249                                      portfolio_inputs=s1w_batch,
250                                      future_y_inputs=s1y_batch)
251
252                     # Update target networks
253                     self.actor.update_target_network()
254                     self.critic.update_target_network()
255
256                 ep_reward += reward
257                 [episode_rollout.popleft() for _ in range(5)]
258
259                 if done or j == self.max_rollout_steps − 1:
260                     summary_str = self.sess.run(self.summary_ops, feed_dict={
261                         self.summary_vars[0]: ep_reward,
262                         self.summary_vars[1]: ep_ave_max_q / float(j)
263                     })
264
265                     writer.add_summary(summary_str, i)
266                     writer.flush()
267
268                     if (i % 10) == 0:
269                         print("INFERRING")
270                         self.infer(i, True)
271                         self.infer(i, False)
272
273                     if ((i+1) % 50) == 0:
274                         print("SAVING")
275                         self.save_model(i, 7, verbose=True)
276
277                     print(’Episode: {:d}, Reward: {:.2f}, Qmax: {:.4f}, Qmin{:.4f}’.format(i, 
278                         ep_reward, (ep_ave_max_q / float(j)), (ep_ave_min_q / fl

oat(j))))
279                     break
280
281         self.save_model(i, 7, verbose=True)
282         print(’Finish.’)
283
284     def predict(self, observation):
285         """ predict the next action using actor model, only used in deploy.
286             Can be used in multiple environments.
287
288         Args:
289             observation: (batch_size, num_stocks + 1, window_length)
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290
291         Returns: action array with shape (batch_size, num_stocks + 1)
292
293         """
294         if self.obs_normalizer:
295             observation = self.obs_normalizer(observation)
296         action = self.actor.predict(observation)
297         if self.action_processor:
298             action = self.action_processor(action)
299         return action
300
301     def predict_single(self, observation):
302         """ Predict the action of a single observation
303
304         Args:
305             observation: (num_stocks + 1, window_length)
306
307         Returns: a single action array with shape (num_stocks + 1,)
308
309         """
310         observation, weights = observation[’obs’], observation[’weights’]
311
312         if self.obs_normalizer:
313             observation = self.obs_normalizer(observation)
314         action = self.actor.predict(inputs=np.expand_dims(observation, axis=0),
315                                     portfolio_inputs=np.expand_dims(weights, axi

s=0)).squeeze(axis=0)
316         if self.action_processor:
317             action = self.action_processor(action)
318         return action
319
320     def save_model(self, episode, max_to_keep=5, verbose=False):
321         if not os.path.exists(self.model_save_path):
322             os.makedirs(self.model_save_path, exist_ok=True)
323
324         saver = tf.train.Saver(max_to_keep=max_to_keep)
325         model_path = saver.save(self.sess, os.path.join(self.model_save_path, "c

heckpoint.ckpt"), 
326                                 global_step=episode)
327         print("Model saved in %s" % model_path)
328
329     def infer(self, episode, train):
330         """ Must already call intialize
331         """
332         if not train:
333             env = self.infer_test_env
334         else:
335             env = self.infer_train_env
336
337         episode_rollout = deque()
338
339         observation_1 = env.reset()
340         observation_1, weights_1 = observation_1[0][’obs’], observation_1[0][’wei

ghts’]
341
342         if self.obs_normalizer:
343             observation_1 = self.obs_normalizer(observation_1)
344
345         episode_rollout.append([observation_1, weights_1])
346
347         for rollout_step in range(self.learning_steps − 1):
348             obs, ws = episode_rollout[−1]
349             action = self.actor.predict(inputs=np.expand_dims(obs, axis=0),
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350                                         portfolio_inputs=np.expand_dims(ws, axis
=0)).squeeze(

351                                         axis=0)
352             action = np.clip(action, 0, 1)
353             if action.sum() == 0:
354                 action = np.ones(obs.shape[0])/obs.shape[0]
355             action /= action.sum()
356             new_obs, reward, done, _ = env.step(action)
357             new_obs, new_ws = new_obs[’obs’], new_obs[’weights’]
358
359             if self.obs_normalizer:
360                 new_obs = self.obs_normalizer(new_obs)
361             episode_rollout.append(action)
362             episode_rollout.append(reward)
363             episode_rollout.append(done)
364             episode_rollout.append([new_obs, new_ws])
365
366         for j in range(env.steps−self.learning_steps):
367             action = self.actor.predict(inputs=np.expand_dims(episode_rollout[−1

][0], axis=0),
368                                         portfolio_inputs=np.expand_dims(episode_

rollout[−1][1], axis=0)).squeeze(
369                                         axis=0)
370
371             if self.action_processor:
372                 action = self.action_processor(action)
373             else:
374                 action = action
375
376             action = np.clip(action, 0, 1)
377             if action.sum() == 0:
378                 action = np.ones(episode_rollout[−1][0].shape[0])/episode_rollou

t[−1][0].shape[0]
379             action /= action.sum()
380
381             obs, reward, done, _ = env.step(action)
382             obs, ws = obs[’obs’], obs[’weights’]
383
384             if self.obs_normalizer:
385                 obs = self.obs_normalizer(obs)
386
387             episode_rollout.append(action)
388             episode_rollout.append(reward)
389             episode_rollout.append(done)
390             episode_rollout.append([obs, ws])
391
392             [episode_rollout.popleft() for _ in range(4)]
393
394             if done or j == env.steps−self.learning_steps−1:
395                 label = ’train’ if train else ’test’
396                 env.render()
397                 plt.savefig(os.path.join(self.infer_path, label + ’/’, str(episo

de)+".png"))
398                 plt.close()
399                 break
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