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Abstract

Mild Cognitive Impairment (MCI) is a condition that negatively effects some

older adults’ memory, use of language, and judgement. While there are cognitive

assessments to diagnose MCI, screening competes with the many other tasks which

clinicians have to perform, and is rarely done in a primary care setting. As a result,

MCI remains difficult to identify and tends to be underdiagnosed. The research in

this thesis was conducted in partnership with the Icahn School of Medicine at Mount

Sinai, where researchers assembled a dataset of 800 recordings of primary care visits,

paired with MCI diagnoses. Using this dataset, I present a deep learning pipeline for

detecting MCI from long form clinical audio recordings. This pipeline uses existing

neural network models alongside domain knowledge to correctly isolate the patient’s

speech in 98% of sampled recordings. Then, it uses short-time Fourier transforms

and the Mel scale to convert the resulting audio into a more suitable format for

neural network classification. The spectrograms are then split into overlapping regular

segments, with each segment inheriting the label of the parent audio. The resulting

dataset is used to train convolutional neural networks from scratch, as well as to

fine-tune models pretrained on larger labeled datasets. These models convincingly

exceed a baseline performance at the segment level, with an AUC ranging from 0.57

to 0.65 based on the model architecture and training regimen. A further exploration

of model outputs and patient-level performance is also provided.
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Chapter 1: Introduction

1.1 Problem Statement

A rapidly aging population in the United States is increasing the number of people

with mild cognitive impairment (MCI), a condition characterized by a loss in cognitive

function in elderly people that is often followed by dementia or even Alzheimer’s

disease. As screening and diagnostic tools have seen little advances in recent decades,

most remain undiagnosed. Moreover, clinicians, researchers, and health systems have

inefficient methods to identify cases. [1]

Emerging strategies following recent advances in machine learning (ML), particu-

larly deep learning (DL), have the potential to supplant current methods of identifying

MCI. A research team at Mount Sinai is exploring a novel multi-modal analysis of

patient’s electronic health records (EHR) and audio recorded during clinical visits

with their primary care physician in order to screen for or even diagnose MCI. They

have collected these recordings from about 800 patients, and are now pursuing four

tracks of analysis, that will eventually be merged to produce one ensemble model, see

figure 4.1.

The first track is the EHR, analysed by classical ML as well as more modern

natural language processing (NLP). The second track is to analyse transcriptions from

the recordings of patient-physician conversations with natural language processing.

1
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The third track is to analyse the audio itself, on one hand by extracting standard

feature sets and using classical ML methods, and on the other hand using modern

DL end-to-end for audio classification. The later is the focus of this paper: to build a

deep learning pipeline to detect MCI from within these unstructured long form audio

recordings of clinical visits.

1.2 Contribution

The contributions of this research are two-fold. Firstly, a preprocessing pipeline is

developed to identify and extract the audio corresponding to the speech of the patient,

and separate the result into regular segments to create a labeled dataset suitable for

DL. Secondly, a variety of neural networks are tested to identify cognitive impairment

from within these processed recordings. These include convolutional neural networks

trained from scratch using available data, as well as transfer learning using models

pretrained on larger audio datasets. Finally, the outputs of the models are analysed,

and methods for aggregating the results on a patient-level are tested.

1.3 Overview

The remainder of this paper is organized as follows. In chapter 2, background is pro-

vided on the subjects of MCI, audio processing, and deep learning. In chapter 3, prior

works are reviewed, firstly on clinical application of speech analysis, using both tradi-

tional feature-based approaches and DL, secondly on more modern examples of audio

classification models in non-clinical settings. In chapter 4, the methodology for the

research is described. First, an overview of the research project is provided, followed

by a description of the dataset. Next, the preprocessing is described in three steps:

the speaker diarization and patient identification, the Mel spectrogram generation,

and the stratified train-validation-test splits of the dataset. In chapter 5, the results
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are presented for both the models and the patient-level aggregation of the scores, and

are then discussed within the greater context of the research project. Lastly, chapter 6

concludes the thesis by summarizing the contributions and suggesting future avenues

to explore.



Chapter 2: Background

2.1 Mild Cognitive Impairment

Mild Cognitive Impairment (MCI) is a condition that negatively effects some older

adults’ memory, use of language, and judgement. While some cognitive decline is

expected as a result of aging, MCI is characterized as being more serious than normal

decline, while not yet being as severe as conditions like dementia [2].

2.1.1 Description and Prevalence of Disease

The brain, much like the rest of the body, changes with age [3]. However, people with

MCI experience an accelerated decline in cognitive functions. Symptoms typically

include forgetfulness, particularly with names or everyday objects, losing one’s train

of thought, and being unable to find certain words [3]. MCI may sometimes impair

judgement and decision making; it has also been found to be associated with depres-

sion, anxiety, and apathy in some patients [4]. Research by the National Institute on

Aging estimates that between 10% and 20% of people over the age of 65 with MCI

develop dementia over a one-year period [5].

MCI becomes more and more prevalent with age. A recent systematic review [2]

reports the prevalence by age group to be 7.6% for ages 55–59, 9.5% for 60–69, 14.6%

for 70–79, and 23.6% for 80 and above. The same paper describes how certain groups

4
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appear more likely to develop MCI, these include women, rural inhabitants, those

who live alone, and those who have lower levels of education [2].

While there are no known direct causes of MCI, several risk factors beyond just age

have been identified, including but not limited to: diabetes, smoking, high blood pres-

sure, high cholesterol, obesity, depression, and lack of physical and mental exercise.

Some genetic biomarkers have also been linked with MCI and eventually Alzheimer’s

disease (AD) [6].

While treatment options are varied and show very little success, if any [7], early

diagnosis and careful tracking of the disease’s prevention may help slow development,

as well as allow patients to adjust their lifestyle and learn to manage their condition

[5].

2.1.2 MoCA Test

The Montreal Cognitive Assessment (MoCA) is a brief 30-question test used by physi-

cians to screen patients for MCI. It is designed to test a range of cognitive functions

including short term memory, visual and spatial recognition, attention, and language.

In about ten minutes, the patient is asked to answer all 30 questions, with 26 points

or higher being considered normal. A score below 26 is indicative of MCI with a

reported sensitivity of 90% for MCI and 100% for mild AD. [8]

While the MoCA itself has proven successful in identifying MCI, screening com-

petes with the many other tasks which clinicians have to perform, and is rarely done in

a primary care setting [9, 10]. As a result, MCI remains difficult to identify and tends

to be be underdiagnosed [11, 12], leaving the door open for new screening techniques

that can be seamlessly integrated with primary care.
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2.2 Audio Processing

2.2.1 Digital Signals Processing

Digital Signals Processing (DSP) refers to any processing that is done on a digital

signal, including audio and speech signals. In many cases, a signal may not start off

as digital, in which case it must be sampled and quantized.

Digitization

If a signal is not already digital, it must be digitized. The process of transforming

a continuous-time signal into a discrete-time signal is called sampling. It can be

equated to taking measurements of a continuous-time or continuous-space signal at

certain intervals. For time-domain signals, as is the case with audio, that time interval

will typically be held constant. Thus we can define a sample rate, the number of

samples recorded in a period of one second, measured in Hertz (Hz).

Since continuous signals can take on an infinite range of values, the measurements

must be quantized, or mapped to a smaller, finite set of values. Most commonly,

these values are represented as words of a fixed length, such as 8-bit, 16-bit, or 24-bit,

which are able to represent 256, 65 536, and 16 777 216 discrete levels respectively.

The number of bits used for a single sample is also called the bit-depth.

When it comes to recording digital audio, there are a number of encoding formats,

but the most straightforward one, which corresponds to the sampling and quantization

schema presented above, is pulse-code modulation (PCM). Many lossless audio file

storing formats follow some version of PCM, including the .wav file type, which

supports a range of sample rates and bit depths, as well as a number of audio channels.

Typical high quality audio formats use a sample rate of 44.1 kHz or 48 kHz, and a

bit-depth of 16, 24, or 32 bits-per-sample [13].
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Figure 2.1: Example of a short time Fourier transform of an audio recording of
speech. In this spectrogram, frequency is represented linearly in kilohertz on the
vertical axis, time is represented in seconds on the horizontal axis, and amplitude or
volume is represented in decibels as colors ranging from dark purple to yellow. It is
not uncommon for spectrograms to use logarithmic scaling for frequency or amplitude.

Short Time Fourier Transforms and Spectrograms

The Fourier transform is a mathematical transform that decomposes time or spatial

domain functions into their constituent frequencies. While the spectrum of many

signals, obtained by Fourier transform, can help with analysing the signal, it is insuf-

ficient for signals like audio that lack stationarity. The short time Fourier transform

(STFT) was introduced as an alternative which includes both time and frequency

content in one representation. [14] It works by sliding a window across a signal and

performing a discrete Fourier transform at each windowed interval, appending the

results in a 2D representation where one axis represents frequency, and the other

represents time.
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The Short Time Fourier Transform:

X[r, k] =
N−1∑
m=0

x[rR + m] w[m] e−j 2π
N

kn (2.1)

The STFT is defined in equation 2.1, where x is a signal, w is a window function,

R is the hop size, and N is the length of the underlying discrete Fourier transform.

Hann and Gaussian windows centered at 0 are common choices for STFTs.

2.2.2 Speech Processing

Speech processing is a broad field of study that analyses human speech signals. Most

often, these signals will be represented digitally, and analysed using a variety of tech-

niques including digital signal processing, statistical methods, and of course machine

learning.

The Mel Scale

The Mel scale is a logarithmic mapping of frequencies that is meant to replicate

human perception of pitches by matching the spacing between pitches as judged by

listeners. In particular, the scale is designed such that a pitch of 1000 on the Mel

scale is equivalent to 1000 Hz, and all other pitches are defined in relation to this

centerpoint. Because the scale is based on subjective perception of spacing between

pitches, there is no single Mel scale, and different researchers have found different

formulas for their scales. One popular example from O’Shaughnessy is shown in

equation 2.2. [15]

m = 1127 ln(1 + f

700) (2.2)

While their is no single universally accepted Mel scale, most follow a very similar

pattern, with a logarithmic relationship to the Hertz scale. The creation and use of
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the Mel scale is not without its critics. [16] Despite the mixed reception in the fields

of audiometry and psychoacoustics, the scale has empirically proven itself useful in

the domain of deep learning. [17]

The Mel scale can be used to produce Mel spectrograms. They can be computed

one of two ways. Either by first obtaining a regular spectrogram as described in

section 2.2.1, and then re scaling the frequency axis by multiplying a transformation

matrix. [18] Alternatively, they can be computed using Fourier transforms and filter

banks. [19]

Diarization

Speaker diarization, or just diarization, is the process of partitioning and labeling

segments of audio according to the identity of the speaker. A diarization algorithm

must perform two essential tasks, speech detection, and speaker recognition. [20]

Implementations of diarization will often start by identifying when changes in speaker

occur, and then cluster the speakers using a range of algorithms.

One of the more popular methods of speaker diarization used to be a combination

of Gaussian mixture models (GMM) to differentiate the speakers and hidden Markov

models (HMM) to segment them within the audio. [21] These methods typically

use lower-dimensional representations of the audio, such as Mel-frequency cepstral

coefficients (MFCC), derived from the Mel scale described in section 2.2.2. However,

with recent advances in deep learning, most methods today use deep neural networks.

Neural networks were first used to provide richer latent embeddings of the speech

signals using autoencoders, but eventually, full end-to-end neural diarization systems

began outperforming other methods. [22]

Because diarization allows you to segment and isolate a speaker, it can be useful

for tasks where a single person is targeted for analysis, but they are not the sole

speaker in the recording, as is the case in the problem described in this thesis.
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2.3 Deep Learning

Deep learning (DL) is a subset of machine learning which uses artificial neural net-

works (ANN) to perform a variety of tasks, notably in computer vision (CV), natural

language processing (NLP), and automatic speech recognition (ASR) [23]. ANNs are

named due to the inspiration they draw from their biological equivalent. They are

made up of a collection of nodes, each representing a neuron, which take in a collection

of inputs, perform calculations on them, and output the results. The computation

involved in each unit commonly begins with a weighted sum of the inputs with an

additional bias term, the result of which is then passed through some non-linear

function.

In recent years, deep learning based algorithms have overtaken many expert-based

and classical machine learning algorithms [23]. Examples can be seen in the fields

of computer vision, with such models as convolutional neural networks (CNNs) [24],

generative adversarial networks (GANs) [25], and vision transformers (ViTs) [26].

2.3.1 Artificial Neural Networks Overview

Neural networks are canonically represented as a series of layers. The model inputs

are considered to be the first layer, while the outputs are the last layer. The layers

in between come in many forms, and the operations that they perform are used to

categorize the type of neural network (e.g. feed forward, convolutional, recurrent,

etc...). Most operations are composed of two parts, a linear operation such as a

weighted sum or a convolution, followed by a non-linear operation called an activation

function. [27]

The performance of the model during training is evaluated using a loss function,

which compares model outputs to ground truth labels. The adjustment of the model

parameters (i.e. the training) is framed as an optimization problem, with the loss
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serving as the objective function. The parameters of the operations are trained by

gradient descent, which works by measuring a loss function at the output, representing

the model error, and propagating it back from the output layer to all of the hidden

layers and their parameters [28, 29].

Nodes, Weights, Activations

As described previously, nodes are the fundamental building blocks of neural net-

works. They can be thought of as containing single values, sometimes called activa-

tions for reasons which will soon become apparent. These nodes are typically orga-

nized in layers, which can be represented as matrices or higher-rank tensors. Two

consecutive layers of a neural network are related by some non-linear function, which

itself is usually a composite function built up of a linear and non-linear component.

A common example of a linear function would be a weighted sum, in which each

node from one layer contributes to the value of each node in the subsequent layer. The

result of that weighted sum would then pass through a non-linear function, called an

activation function. The result of this function is called the activation, and it becomes

the values of a node in the subsequent layer. A variety of activation functions are used

in deep learning, among the most popular are the sigmoid or logistic function, the

rectified linear unit (ReLU), and the softmax function [30]. Figure 2.2 schematizes

the propagation of values in a basic neural network layer, called a dense or fully

connected layer. If the layers can be represented as a single column vector as in figure

2.2, then the weighted sum can be represented as a matrix multiply.

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) is a class of deep learning architectures whose

fundamental operation is the convolution of an input or hidden layer by a kernel.

They were first introduced for two-dimensional classification tasks, such as with hand-



12

Figure 2.2: Forward propagation in a fully-connected layer of a feed-forward neural
network

written digit recognition [31], but have grown in application and popularity in recent

years as DL and CV continue to develop. One of the main strengths of the CNN

is that the convolution operation is invariant to translations, which serves to make

models more generalizable for pixel-based tasks.

Kernels and Convolution

The fundamental operation of a CNN is the convolution, in which one or more ma-

trices called kernels are convolved with an input image. The results from each convo-

lution are stored in a series of new matrices, to which an activation function can be
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applied point-wise. The kernel operates identically to a traditional linear filter, and

as such the names are often used interchangeably. However the values of the kernel

are not fixed like with a linear filter, but are parameters of the model, and they can

be trained by back propagation [32].Unlike a feed forward network which has unique

weights for each node in a layer, the weights of the kernels are shared by each pixel

in an image or intermediate layer.

The number of kernels in a convolutional layer determine the number of channels

in the subsequent layer. If for example a grayscale image (one channel) is passed

through a CNN layer with 16 filters, the output of the layer, called a feature map,

will have 16 channels. While the size of each channel will depend on parameters of

the CNN layer, this typically means the overall size of an input is increased by the

convolutional operation.

Input Convolutional Layer Pooling Layer Hidden Layer Output

Figure 2.3: Basic architecture of a Convolutional Neural Network (CNN). An input
image is passed through a convolutional layer, increasing its size channel-wise. This
is followed by a pooling layer which reduces the spatial size of the resulting feature
maps. For classification tasks, after a series of convolutional and pooling layers, the
resulting feature map is flattened and fed into a series of fully-connected layers, with
the number of nodes in the last layer matching the number of possible classes.
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Pooling

Pooling is used to counteract this growth by artificially reducing the spatial size of

the convolved feature map. Like a convolutional layer, a pooling layer also uses a

kernel or filter. However, the output is a reduction of the input, such as a maximum,

mean, or average. Max-pooling is often preferred, as it is thought to extract only the

most dominant features, while suppressing noise. [27]

As the image passes through more pairs of convolutional and pooling layers, the

number of channels in the feature maps is gradually increased, while the height and

width is decreased. In deeper layers, the feature maps are said to be more expres-

sive. A common analogy describes filters in earlier layers as detecting simple features

like hard edges, while filters in deeper layers detect much more complex shapes or

even objects. While the real representations of CNN are much more complicated [33],

the analogy illustrates how deeper layers of the model develop a richer representa-

tion of the input with respect to the output. An equivalent analogy for audio and

spectrogram classification is presented in figure 2.4.
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DogSiren Firework Output Layer
(Corresponding Class)

2nd Hidden Layer
(detects more complex patterns such 

as harmonics and sweeps)

1st Hidden Layer
(detects basic edges, corresponding 
to impulses and frequency bands)

Input Layer
(audio spectrogram, representing 
time on x-axis, frequency on the 

y-axis, and loudness as brightness )

Raw Audio
(waveform)

Neural Network

Figure 2.4: An Analogy for Feature Extraction in Convolutional Neural Networks.
The working principle of the convolutional neural network is that it develops a richer
understanding of the input with respect to the output as deeper layers of the model
are reached. While this principle is often described in terms of edges and shapes,
this figure illustrates how it can be intuitively understood when working on acoustic
inputs. Waveforms are converted into spectrograms. Then they are processed by
layers of increasingly complex filters, the first of which can be thought of as simply
detecting individual frequencies or impulses, while deeper layers will interpret more
sophisticated features like harmonics, echos, or frequency sweeps.



Chapter 3: Prior Works

3.1 Clinical Automated Speech Analysis

Studies on automated speech analysis have been made in a variety of clinical fields,

particularly on the subjects of cognitive health, speech pathology, and mental health.

While much of this work has been done using statistical analysis, or classical ML

(section 3.1.1), there is a noticeable trend demonstrating the increased prevalence

and success of DL methods (section 3.1.2). In addition to clinical research, a number

of other advances are being made in the domain of audio classification (section 3.2).

Sections 3.1.1 and 3.1.2 are derived from a review paper I co-authored on clinical

applications of algorithmic audio processing and the recent emergence of DL in the

field. [34] The paper remains in preprint at the time of writing.

3.1.1 Statistical and Feature-based Approaches

Statistical methods, such as hypothesis testing, have been used routinely to analyze

biomedical data [35]. Traditional ML methods, e.g., Support Vector Machine (SVM),

Random Forest (RF) and k-Nearest Neighbor (kNN), have also been widely applied

in biomedicine [36]. These methods are designed to sift through large amounts of

data without any particular guiding (biomedical) hypothesis, to discover potentially

actionable knowledge. A predictive model encapsulates a mathematical relationship

16
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between the data describing an entity of interest, say a patient, and an outcome or

label, say the disease status, of the entity. The purpose of this model is to make

predictions of this outcome or label that are not yet known for other entities.

Early applications of these methods aimed to understand which features of clinical

audio had explanatory or predictive power. A semi-automated approach assessed

speech differences between children with cerebral palsy and controls by analyzing data

from speech elicitation tasks [37]. Trained listeners transcribed speech recordings,

which were used to determine word counts and what proportion of the words uttered

matched the target elicitation (intelligibility). The study found that speech rate

(words uttered per minute) and intelligibility classified normally developing children

and those with cerebral palsy.

A similar study analyzed speech from picture-describing and sentence-repeating

tasks to distinguish between patients with Alzheimer’s dementia (AD) and those

with mild cognitive impairment (MCI) [38]. The study found that the duration

of speech and the increased likelihood of inserting or deleting to words in prompted

sentences differentiated AD and MCI patients. Other studies used statistical tests like

Mann-Whitney U to evaluate the association of pitch features with neuropsychiatric

conditions [38, 39, 40].

Several studies have also used audio features alongside ML methods to classify

patients according to neuropsychiatric conditions [38, 41, 42, 43] . Most of these

studies use variations of the SVM algorithm, which finds an optimal boundary sepa-

rating two classes of data points. One study used multiple SVM models to identify

a motor speech disorder by determining the severity of unintelligible speech [42]. A

sentence-level SVM trained on energy features and a phoneme-level SVM trained on

pitch and time features yielded accuracies of 79.8% and 77.3% respectively. This

accuracy increased to 84.8% when the SVMs were combined, an approach known as

ensemble learning [36].
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Other studies have found success in similar tasks using other traditional ML al-

gorithms like RF and kNN [44, 45]. Several approaches also combined audio fea-

tures with linguistic characteristics derived from textual transcripts of the audio

[39, 43, 45, 46]. One study performed 3-way classification of levels of cognitive impair-

ment (control, mild, and early stage Alzhiemer’s disease) using an SVM trained on

acoustic features derived using Praat26 and an automatic speech recognition (ASR)

system. This classifier had an accuracy of 60%, which improved to 66.7% after com-

bining the acoustic features with a variety of linguistic ones [47].

3.1.2 Deep Learning Methods

More recently, deep learning (DL) techniques have been used to characterize clinical

conditions from patient audio [48, 49]. These techniques typically utilize much larger,

and often less structured, datasets than statistical and traditional ML techniques. DL

techniques generally utilize multi-layer neural networks to build implicit representa-

tions of datasets and enable various analysis tasks, including predictive modeling [50]

. Due to this architecture, DL techniques are capable of building predictive models di-

rectly from audio recordings, without the need for the same level of feature extraction

as in traditional ML.

Convolutional neural networks (figure 2.3) are among the most prevalent DL tech-

nique for audio due to their ability to represent contextual information in data, as

discussed in section 2.3. Another established architecture which is particularly suited

for time series modeling is the recurrent neural network (RNN) (figure 3.1), where

sequential inputs pass through functional transformations at consecutively connected

layers of the network [49]. Because information in RNNs tends to be lost as it prop-

agates through time, RNNs are not suitable for processing audio waveforms at the

sample level; instead intermediate representations of sound are used [51].

Most clinical audio processing that utilizes DL inputs pre-computed features into
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Figure 3.1: Recurrent Neural Network illustrated in two forms. The depiction on
the left demonstrates the recurrent nature of the network, in which the output of
the hidden layer is fed back as an input to itself in the next time step. The second
depiction, called an unrolled RNN, shows more clearly how a time series is input into
an RNN, with the output of the hidden layer propagating through time and serving
as an input for future time steps.

a CNN, which can then predict the presence or degree of a condition [52, 53]. One

investigation built a CNN model using GeMAPS [54] and other feature sets to classify

depression severity [55]. A related approach trained parallel CNN models for different

categories of audio features [I could add the table from the review paper] [55]. The

output layers of each CNN were then concatenated and used to predict depression

severity. Multiple investigations found that an ensemble of individual CNNs built

from different data modalities (e.g., audio, text, and video) can predict depression

severity even more accurately [52, 53, 56].

Other approaches have leveraged the sequential or temporal nature of audio. One

AD detection effort employed a Time-Delayed CNN [57]. Instead of the entire record-

ing, this approach applied the convolutional filter to utterances (segments of speech

separated by silence) over all preceding time frames (hence the “delay”). This allowed

them to extract local features from different temporal segments of the recording [57].

Another study used a Long-Short Term Memory architecture (LSTM, a sophisticated

implementation of an RNN) [50] to screen for depression [58]. Mel frequency coeffi-

cients, discussed in section 2.2.2, were extracted from different temporal segments of
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the audio and input to the LSTM. The outputs of the recurrent layers were then fed

to the fully connected layers of the network to predict depression scores [58].

DL methods have also been used in situations of insufficient audio data. One

study [58] employed transfer learning [50] to classify eight types of emotions from the

relatively small RAVDESS dataset [59]. This approach repurposed an RNN trained

on a data-rich task (depression score classification), and fine-tuned it with RAVDESS

for a related task (emotion recognition). The approach achieved a validation accuracy

of 76.3%, an increase of 8.7% from a baseline RNN trained solely on the RAVDESS

[58]. Another useful DL architecture for data augmentation is a Generative Adver-

sarial Network (GAN), which consists of two competing neural networks, a generator

and a discriminator, to generate new data samples [50]. In an approach to diagnose

childhood autism, the generator of a GAN was trained using GeMAPS and other fea-

ture sets extracted from the Child Pathological Speech Database, and a discriminator

was trained to help the model generate more realistic data points [60, 54, 41]. Learned

representations of the data were then extracted from the intermediate layers of the

discriminator, and used to train an SVM model to classify four levels of pathology

related to developmental disorders and autism [60].

Some approaches use x-vectors, which are DL-extracted representations trained

for speaker identification in a conversation. These x-vectors can then be used with

ML or DL methods to classify speakers with and without a pathology. Several studies

reported better performance of this approach for Alzheimer’s and Parkinson’s disease

diagnosis compared to feature-based methods.

Finally, recent DL methods learn which characteristics of a native audio signal

are useful for classification. Zhao and colleagues used a hierarchical attention trans-

fer network that reconstructed segments of patient speech using an autoencoder, and

integrated them with LSTM representations from a speech recognition model to screen

for depression. Another study compared using the raw audio signal, and its various
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filtered versions, with a CNN. Filtering the signal boosted the CNN’s ability to ac-

curately classify levels of depression from patient speech, illustrating the advantages

of effective pre-processing.

3.2 State-of-the-art Audio Classification

While clinical studies have pushed new applications of audio processing neural net-

works, a number of advances have been made with non-clinical application.

Driven by popular technologies like smart home assistants, a large amount of

audio DL research has been conducted on the subject of end-to-end automatic speech

recognition, also called speech-to-text. Because this is not directly relevant to the

research presented this dissertation, I will differ to a review on the subject by Kim et

al. [61].

The task that is most interesting for our purposes is that of audio classification.

Hershey et al. have tested a variety of common CNN architectures designed for CV

on multi-class audio classification tasks [62]. Among the models tested are variations

of AlexNet [63], VGG [64], Inception [65], and ResNet [66].

Other studies have compared CNNs to RNNs [67] for the task of emotion clas-

sification from recorded speech, finding more success with the CNNs. Li et al. also

developed specialized models for speech emotion recognition using asymmetric con-

volutional filters for frequency-based and time-based feature maps, as well as an

attention-based pooling layer [68].

More recently, the popular attention mechanisms [69] and vision transformers [26]

are making an appearance in the audio space, with the introduction of the Audio

Spectrogram Transformer [70]. This architecture shows a lot of promise, and pushes

the boundaries of state-of-the-art audio classification, but it requires a large amount

of data to train.



Chapter 4: Methodology

4.1 Overview

Figure 4.1: The research project aims to use different modalities to automatically
identify and diagnose MCI. The modalities include electronic health records, tran-
scriptions of primary care visits, and audio recordings of primary care visits, which
can be analyzed either by classical ML using standard feature sets or by deep learn-
ing using only the raw audio. My contribution to the project is with the audio-only
deep learning, for which I propose a pipeline to preprocess the audio, train neural
networks, and make predictions.

22
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4.2 Dataset

This research was conducted as part of an ongoing project at the Icahn School of

Medicine at Mount Sinai. The aim of the project is “to develop and validate state-

of-the-art machine learning (ML) algorithms to identify patients with mild cogni-

tive impairment (MCI) in primary care using structured and unstructured data from

the electronic health record (EHR) and automated speech analysis (ASA) of audio

recorded patient-physician encounter” [1].

To accomplish this goal, the researchers assembled a dataset of 800 patients rep-

resentative of the Mount Sinai patient population in the New York City area, who

consented to having one of their primary care visits recorded via one to two micro-

phones. The microphones were lavalier (clip-on) microphones connected to a digi-

tal audio recorder. Separately, they were screened for cognitive impairment via the

widely used Montreal Cognitive Assessment (MoCA), and the scores were thresholded

to provided a binary label for MCI. The result is a labeled dataset consisting of audio

recordings of one-on-one conversations between patients and their primary care physi-

cians, paired with a cognitive health outcome measured separately by the MoCA. An

important distinction is that the cognitive assessment was not conducted as part of

the primary care visit, and therefore was not recorded. The aim is to eventually use

only the primary care visit to asses cognitive health instead of the MoCA.

4.3 Preprocessing

4.3.1 Diarization and Patient Identification

Because each audio recordings is unstructured and contains speech from both the

patient and physician, in order to perform any analysis exclusively on the patient’s

speech, it is necessary to isolate it from the rest of the audio. This process of separat-
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ing audio signals based on the identity of the speakers is called speaker diarization,

or simply diarization [71]. In recent years, deep learning algorithms have become the

most successful and are gaining in prevalence [72]. The task can be divided into two

steps: speech detection and speaker recognition. In our case, it is also then necessary

to identify and isolate the patient.

Speaker Diarization

For diarization, I chose to use pyannote-audio, an open-source speaker diarization

toolkit built on the PyTorch framework [73]. Alongside the toolkit, pretrained models

are also made available for download. These models achieve a near state-of-the-art

diarization error rate (DER, see equation 4.1) ranging from 12.8% to 22.2% on a

range of standard diarization test sets.

DER = false alarm + missed detection + speaker confusion

total duration of time
) (4.1)

The pyannote-audio diarization models perform the task in five steps, as pictured

in figure 4.2. First, the audio is resampled, and standardized features are extracted

for regular overlapping windows of the waveform. These features are then used to

first perform speech activity detection, and further to detect changes in speakers.

Each segment between a speaker change is then represented in a lower dimensional

space as a speaker embedding. Finally, the speaker embeddings are clustered, and the

clusters are used to label the various speech segments. Unfortunately, the algorithm

as provided does not allow the user to input a known number of clusters. This will

prove to be an issue in some cases when the algorithm separates a single speaker into

multiple clusters and therefore labels.
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Figure 4.2: pyannote-audio is an open-source speaker diarization toolkit written in
Python. Based on PyTorch machine learning framework, it provides a set of trainable
end-to-end neural building blocks that can be combined and jointly optimized to build
speaker diarization pipelines. The algorithm consists of a series of steps which serve to
detect speakers, extract embeddings, and cluster them resulting in a labeled timeline.
This image is taken from the pyannote-audio documentation, and reused with explicit
permission from the original authors [73].

To process the patient-physician conversations with pyannote-audio, a script was

used to loop over the audio files, convert them to the appropriate sample rate and

bit depth, and input them through the pyannote-audio pretrained diarization model.

While this algorithm can run nearly at real time on available hardware, with 691 audio

files averaging 30 minutes each, I determined that processing all of the audio files one
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at a time would take just over fourteen days to compute. Using cloud computing

resources and the joblib library to facilitate the parallelization of python code [74],

this time was reduced to under 12 hours. The results were saved as json files to avoid

having to recompute any of this in the future. The first few segments of a sample

output are listed below. Each segment contains a pair of start and end times, a unique

track identifier, and a label corresponding to the speaker.

Listing 4.1: Example diarized segments using pyannote-audio

{’segment’: {’ start ’ : 0.01015625, ’end’: 0.85390625}, ’track’ : ’A’, ’ label ’ : ’A’}

{’segment’: {’ start ’ : 1.3517187499999999, ’end’: 2.12121875}, ’track’ : ’B’, ’ label ’ : ’A’}

{’segment’: {’ start ’ : 2.51946875, ’end’: 3.72603125}, ’track’ : ’C’, ’ label ’ : ’A’}

{’segment’: {’ start ’ : 3.99265625, ’end’: 4.051718750000001}, ’track’: ’D’, ’ label ’ : ’A’}

{’segment’: {’ start ’ : 5.23634375, ’end’: 6.19146875}, ’track’ : ’E’, ’ label ’ : ’A’}

These labeled sequences resulting from the diarization can be visualized on a color-

coded timeline. Figure 4.3 shows three examples of labeled sequences corresponding to

three different audio recordings. The first two show examples of successful diarization,

where two speakers, the patient and clinician, were identified and their speech isolated.

While there are a few segments labeled as a non-present third speaker, speaker C,

they represent very little of the overall labeled speech. For contrast, the third example

shows a recording for which multiple speakers were identified. Certain factors like

speakers moving around the room or significantly changing intonation are identified

as additional speakers instead of one, leading to a high error rate.

Patient Identification

Diarization alone can only tell us who is speaking using generic labels, but in order to

analyze the patient’s voice, we must be able to identify and isolate it. To accomplish

this, I utilize special characteristics that I know a priori about the recordings. In

particular, the patient identification will rely on the assumptions that there are only
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Figure 4.3: Three examples of labeled timelines for diarized recording: two typical
good examples with both speakers correctly identified and minimal misclassification
of speech attributed to a third speaker, and one fairly poor example where a larger
portion of speech is misclassified as a number of other speakers.

two speakers present in the conversation, and that the patient is always the louder

speaker, due to the lavalier microphone being placed directly on the patient.

There are three strategies that were considered for isolating the patient’s speech.

The first was to remove all non-patient speech, preserving any unlabeled white space.

A second strategy was to consider only the two most prominent speakers, assuming

they are the patient and physician, and keep only the loudest one. The final strategy

is to keep only the audio from the loudest speaker, regardless of length or prominence.

In each case, the average sum of squares, or average power of the signal, is used as a

metric for loudness.

The first strategy strategy was quickly discarded, as most of the recordings contain

a large amount of silence, when neither the patient nor the physician speak for a long

period of time. In particular, there is usually a significant length of time at the end of

the recording where the primary care visit has ended, but the microphone has not yet
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Strategy 2 Strategy 3
Accuracy 76.9% 98.3%
Mean Duration 4:45 5:14

Table 4.1: Accuracy and mean duration of resulting audio when applying two different
patient identification strategies. In Strategy 2, only the two most prominent speakers
are considered, and the loudest of the two is identified as the patient. In Strategy 3,
the loudest speaker is identified as the speaker regardless of prominence. Accuracy is
measured simply as the percentage of files in which the patient was correctly isolated,
and was calculated based on a sample of 60 audio files out of 691.

been turned off by a technician. This is undesirable because it leads to a significant

increase in noise in the data.

The second and third strategy should yield the same results if the patient is

indeed the loudest and most prominent speaker, but in cases were the diarization has

identified too many speaker, like the third example of figure 4.3, they could differ.

These strategies were difficult to compare. Ideally, a metric similar to DER would

be used, but hand labeling the input data and diarized results would be too time

consuming. Instead I opted for a binary approach; a diarization would be considered

successful if the majority of the captured speech corresponds to the patient’s, other-

wise it would be considered unsuccessful. After running two scripts to execute each

of the patient identification strategies, 60 audio recordings were randomly sampled,

and I manually labeled the outcome of the patient identification on each one. The

results are summarized in table 4.1.

Within the random samples, the second strategy of choosing the louder of the

two most prominent speakers had an accuracy of 76.9% while the third strategy of

choosing the loudest speaker regardless of prominence had an accuracy of 98.3% .

The average duration of the resulting audio is also longer for strategy 3, which means

we are capturing more training data overall.

Note that in cases were the diarization has mistakenly identified multiple speakers

instead of just two, it is possible that the patient’s speech has been given multiple
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labels. Our strategy however only isolates one. This means our resulting files may

not capture the entirety of the patient’s speech. Nevertheless, it is most important

for our purposes that the patient be properly isolated, even if some of their speech

is not captured. While the average length of a recording using strategy 3 is longer

than that using strategy 2, there were some examples (8) where strategy 3 produced

shorter results. Both strategies reach the exact same result in 62% of cases.

Results

After applying the pyannote-audio diarization algorithm to each patient recording in

the dataset, and applying strategy 3 to isolate the patients’ speech, a new dataset

of audio files was assembled. Because the diarization removes not only non-patient

speech, but also lengthy silences, the average file was now less than one fifth as long,

meaning a significant amount of noise was suppressed. This removes problems caused

by outlier files that were too long, especially if the microphone was mistakenly left

on. For example, the maximum audio length was now fifteen minutes instead of over

two hours.

Strategy 3 outperforming Strategy 2 suggests that there are a number of cases in

which neither of the most prominent speakers were the patient (e.g. if the clinician’s

speech was mistakenly classified as two different speakers). The remaining errors in

Strategy 3 occur if another speaker appears louder, possibly due to non-speech noises

like doors slamming or the patient coughing.

Summary statistics of the original audio files and their resulting diarized patient

files are presented in table 4.2. While outlier files on the lengthier side are now

condensed into shorter files, never exceeding 15 minutes and 8 seconds, there are still

some outliers on the shorter end. The minimum file length being only a second long

suggests a breakdown of the fundamental assumption that there are only two speakers

in the room and the patient is the loudest. However, I note that only 5 files out of
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Duration Statistics (h:m:s)
Raw Audio After Diarization

Mean 30:04 5:16
Median 28:23 5:59
St. Dev. 13:36 2:04
Min. 00:04 0:01
Max. 2:13:02 15:08

Table 4.2: Comparison of duration summary statistics between the initial raw audio
and the final diarized and patient-isolated audio. The diarization has the effect of
greatly reducing the size of the dataset, while eliminating noise.

691 are shorter than a minute, suggesting that this is a rare problem,

4.3.2 Mel Spectrograms

Audio as a waveform is fairly sparse with information, and the format is difficult for

typical deep learning models to process. Instead, it is common practice to use spec-

trograms of the audio instead. As discussed in 2.2.1, short time Fourier transforms

using the Mel scale can be used to produce Mel spectrograms. In addition to con-

densing the information, this also lets us use common neural network architectures

like CNNs, originally intended for images.

Furthermore, because the majority of neural network architectures do not support

variable-sized inputs, particularly when it comes to convolutional networks, the spec-

trograms have to be separated into regular segments. It is also good practice to have

some overlap between adjacent segments to prevent the model from overfitting to

the arbitrary boundaries. In addition to providing fixed sized inputs, these segments

prevent model inputs from being too large. A typical audio processing CNN will have

an input corresponding to a few seconds of audio at most, but not several minutes.

There are a number of parameters that can be tuned to produce adequate Mel

spectrogram segments. These parameters, summarized in table 4.3, fall under three

categories, the STFT parameters, Mel parameters, and segment parameters. Most of

these parameters affect either the resolution or the length in the frequency and time
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Parameter Name Example Value

STFT Parameters

Sample Rate 16000 Hertz
# of FFT bins 2048 samples
Window Length † 2048 samples
Window Type Hann (Raised Cosine)
Hop Length † 512 samples

Mel Parameters

# of Mel Bins † 128 mel bins
Mel Scale Type Slaney
Min. Mel Frequency 0 Hertz
Max. Mel Frequency † 8000 Hertz

Segment Parameters Segment Length † 256 frames
Segment Overlap † 128 frames

Table 4.3: List of parameters that can be tuned for producing a dataset of mel spec-
trogram segments. Most of these parameters affect either the resolution or the length
in the frequency and time directions. Parameters marked with a † are parameters
that I would like to rigorously test in the future, as I believe they might have an effect
on model performance.

directions. For example using a shorter FFT window length and hop length would

increase the resolution of the spectrogram, but also make it lengthier. This trade

off is significant with regards to deep learning because a higher resolution preserves

more of the original signal, but the larger inputs are more difficult to get models to

converge with during training.

The librosa library for python [18] was used to read audio files and generate Mel

spectrograms. The same parameters as stated in table 4.3 were used, leading to

spectrogram segments 8.22 seconds in length, with a 4.11 second overlap between

adjacent segments.

In addition to generating the spectrograms, the power of the signal was converted

to the decibel scale. Because the majority of frequencies are not present at the major-

ity of times, the Mel spectrogram on its own is extremely skewed towards near-zero

values. For example, 95 percent of pixels have a value less than 1, but the maximum

is over 8000. Due to the logarithmic transformation, converting to the decibel scale

leads to a smoother distribution, as portrayed in figure 4.4. The maximum volume

of the signal is used as the reference in the decibel conversion, meaning this unit
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Figure 4.4: Three examples of labeled timelines for diarized recording: two typical
good examples with both speakers correctly identified and minimal misclassification
of speech attributed to a third speaker, and one fairly poor example where a larger
portion of speech is misclassified as a number of other speakers.

conversion also serves as a form of normalization.

Once all the Mel spectrograms are generated and converted to a decibel scale,

they are separated into regular overlapping segments and stored in a new directory.

An example of such a segment is presented in figure 4.5

The joblib package was once again used to parallelize this task and speed up com-

putation. As this is being done, a dataframe is being populated with the spectrogram

filename, patient code, and the MoCA outcome label. This dataframe will serve as

the labeled dataset, matching log-Mel spectrogram inputs to the MCI status outputs.

4.3.3 Train-Validate-Test Split

As is common practice in ML, the dataset was split into a training, a validation, and

a test set. The distribution for each set was 80%, 10%, and 10% respectively. These

sets are used to accurately asses the performance of the model at various stages of

training using only data which it has not yet seen. In particular, the training data
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Figure 4.5: Example Mel spectrogram in the decibel scale. The reference for the dB
conversion is the loudest sample in entire recording, so most spectrogram segments
have a maximum value slightly below 0 dB.

will be used to train the deep learning models, which will be validated using the

validation set. Models will be selected based on best performance on the validation

set. Then, the methods of segment aggregation will be tuned using the validation

test, and tested using the final test set. Because this audio classification model is

meant to be a part of a larger multi-modal ensemble, a final external test set is also

set aside to evaluate the performance of the finished product on completely new data.

I was deliberately not given access to this data.

As an additional step, the train-validate-test splits were stratified, meaning that

the distribution of the class labels was kept as constant as possible across the different

sets. This ensures that each set consists of samples whose distribution closely resem-

bles that of the represented population. The prevalence of the outcome was about

21.5% in each of the three sets.
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4.4 Models

To learn to predict the MoCA outcome of a patient using the spectrogram segments,

convolutional neural networks were trained. While not all the parameters stated in

table 4.3 could be tested, one of the primary interests was to the different lengths

of time at the input. This was due in part to members of the research group in-

tuiting that most indicators of CI would happen over time rather than be captured

by frequency. Two convolutional networks were tested for different input lengths

corresponding to 4 seconds and 8 seconds. The results were then compared against

available pretrained models, notably VGGish which is trained on AudioSet, a large

audio dataset and ontology.

4.4.1 Convolutional Networks

The first set of models that were tested were CNNs which use single spectrogram

segments as inputs to predict the outcome.

Model Architectures

The model architecture was inspired by simple CNNs such as LeNet [75] or AlexNet

[63] which consist exclusively of convolutional layers, pooling layers, and fully con-

nected layers. The convolutional and pooling layers gradually reduce the width and

height of the input while increasing the depth of the so-called feature maps. Once

the feature maps get sufficiently small, they are flattened, and the resulting vectors

are fed through fully connected layers, which are essentially identical to a multi-layer

perceptron. The final output is passed through a sigmoid activation to produce a

probability of the outcome being positive.
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Figure 4.6: CNN model architectures for 4 second (128x128) and 8 second (128x256)
inputs. The first convolutional layer has a 5x5 filter and all subsequent convolutions
have 3x3 filters. All convolutions use a stride of 1x1 and are followed by a Max-
Pool layer of filter size 2x2. The fully connected layers at the end of the model have
32, 16, and one node for the final output. All layers use ReLU activation, except
for the output which uses sigmoid. The models have 78501 and 94885 parameters
respectively.

Class Weights

In order to deal with the class imbalance, neural networks use what are called class

weights. They allow models to account for the distribution of classes during training.

They are implemented by modifying the loss function depending on the class, such

that the loss is increased for less common classes. This will lead to more significant
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gradient updates when classifying the rare outcome, thereby incentivizes predictions.

In Tensorflow, Keras has a built-in implementation of class weights, which can

be fed in as a dictionary matching class keys to weight values. However, when using

the dataset object tf.data.Dataset which improves the efficiency of input pipelines,

the built-in class weights are not supported. Instead, I had to manually create a

function wrapper for the Keras binary cross-entropy function which scales the loss by

the appropriate weights. This function is available in the Appendix.

Additional Parameters

In addition to the architecture and class weights, deep neural networks contain a

variety of hyperparameters that can selected and tuned. The adaptive moment es-

timation optimizer ADAM was chosen, with a default learning rate of 0.001. The

models were trained for 100 epochs, but the best models based on validation perfor-

mance were selected. Fully connected layers featured a dropout rate of 30% during

training. Finally, a batch size of 64 was selected based on available GPU memory.

4.4.2 Transfer Learning with VGGish

Transfer learning is the practice of taking ML models that have already been trained

on one task, and reusing them to solve a similar problem with different data. It is

particularly useful for tasks like NLP or CV for which there exist very large training

sets. For example image classification algorithms can be built on top of models pre-

trained on ImageNet, a labeled collection of over 14 Million images. Transfer learning

allows smaller scale research projects to leverage information gained from much larger

datasets using greater computational resources.

When using a pretrained neural network on a task for which it hasn’t been trained,

the majority of the layers are ”frozen” meaning their weights are no longer updated by

gradient descent and back-propagation. The last layer, or sometimes last few layers
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Figure 4.7: Transfer learning is the practice of using models trained on one task,
and applying them to a different but similar task. In deep learning, this is typically
implemented by reusing a pretrained neural network, but training an alternative
classifier at the last few layers to match the desired number of classes. The process
can be accomplished in three steps: selecting a source model that has been trained
on an appropriate dataset, modifying the model architecture to match desired task,
and finally tune the model with available data.

of the model, are removed, and replaced by layers in accordance with the desired task,

as demonstrated in figure 4.7. For example, if the goal is classification, the last layer

is replaced by one whose length matches the desired number of classes. The model is

then trained again using the new dataset, a process commonly called fine tuning.
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AudioSet

The chosen dataset for implementing transfer learning into this project is AudioSet

[76]. It is a collection of just over 2 Million sound clips, each ten seconds long, hand-

labeled into a hierarchical ontology of 527 classes. The audio is taken from YouTube

videos, and covers a wide range of sounds including human speech, but also music,

animals, ambient sounds, and a variety of miscellaneous noises. A partial list showing

the class distribution is provided in figure 4.8.

Figure 4.8: AudioSet is a labeled dataset containing 5.8 thousand hours of audio
clips. Each 10 second audio file is hand labeled into one of 527 classes. This figure
shows the distribution of certain classes, including speech which is the second most
prominent class.

VGGish

VGGish [77] is a convolutional neural network for audio classification based on the

VGG ”very deep” convolutional image classification network [64]. The model was
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developed alongside the AudioSet ontology to study the performance of 2D convolu-

tional networks for large scale audio classification, and pretrained models are readily

available via Tensorflow and Google APIs.

Similar to the input pipeline I used, it first converts audio to 16 kHz mono, then

computes a STFT with a Hann window of size of 25ms and a hop length of 10ms. The

spectrogram is then converted to the mel scale using 64 mel bins between 125 and

7500 Hz. Rather than convert to dB, it simply computes the logarithm of the Mel

spectrogram using a small offset to avoid taking the log of 0. Finally, the resulting log

Mel spectrograms are framed into non-overlapping segments 0.96 seconds in length.

Much like my own models described above, VGGish itself consists of a series of

convolutional and pooling layers followed by a flattening of the feature maps, and a

series of fully connected layers. The last layer of the model trained on AudioSet has

527 nodes to produce outputs according to the AudioSet classes, but an alternative

”feature extraction” model is available which uses PCA to output audio embedding

vectors of length 128.

Fine Tuning

Because VGGish is trained using 0.96 second segments, the dataset had to be regen-

erated to match the expected input format. With some help from one of the authors

of the paper that introduced VGGish, it was confirmed that the pretrained architec-

ture could not be modified without losing the benefits of pretraining. Once this was

completed, to use VGGish with our output labels, the last few layers of the model

were removed, all other layers were frozen, and four new fully-connected layers were

added to reduce the feature vector from its 128 dimensional space to a single output

class. These last layers of the model were trained over 50 epochs using the same

hyperparameters as the CNNs described in section 4.4.1.



Chapter 5: Results and Discussion

5.1 Model Results

Once the models were trained using the training set, a prediction was made for each

segment in the validation set. Because the last layer of each model was a single node

with sigmoid activation, the output of the model is always between 0 and 1, and

can be interpreted as the probability of a segment corresponding to a patient with

MCI. Table 5.1 shows a few rows from a dataframe containing the validation data

and predictions using the VGGish-based model pretrained on AudioSet.

patient code audio index embedding label predictions
patient 1 469 469 1 0.28602687
patient 1 470 470 1 0.28150588
patient 1 471 471 1 0.2954426
patient 2 0 472 0 0.073486425
patient 2 1 473 0 0.1042492
patient 2 2 474 0 0.16976058

Table 5.1: Sample outputs of VGGish based model on validation data from two
patients with different MoCA outcomes. The audio index is used to keep track of
which 0.96 second segment the row corresponds to. The embedding number is used
to find the matching embedding in the matrix containing all of the validation data.
While the only identifying information in the patient code is the patient’s initials,
they were omitted from this table.
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5.1.1 Receiver Operating Characteristics

Due to the imbalance in the class distributions, simple metrics like accuracy aren’t

particularly useful. A classifier could easily predict all cases as negative, and be

correct about 78.5% of the time. Instead, we are interested in how it performs when

identifying the less common positive cases. Two of the main metrics for this are the

true positive rates (TPR) (also called sensitivity, recall, or detection probability) and

false positive rates (FPR).

The receiver operating characteristic (ROC) curve is a graph that captures both

of these metrics, and illustrates the diagnostic ability of a binary classifier. It tests

a range of thresholds on the continuous predictions of the classifier, and plots the

resulting TPR as a function of the FPR. For very low threshold, nearly all predictions

will be classified as positive, so the TPR and FPR will both be near 1, tracing out the

top-right portion of the curve. As the threshold increases, positive cases will become

less common, and both the TPR and FPR will decrease, eventually tracing out the

bottom-left of the curve.

Figure 5.1: Visual representation of how to calculate the True Positive Rate (TPR)
and False Positive Rate (FPR) using a confusion matrix. These metrics are used to
plot the Receiver Operating Characteristic (ROC) curve and obtain the Area Under
the Curve (AUC) metric.

The area under the curve (AUC) is a useful metric for comparing model perfor-

mances. A baseline model’s ROC curve will be a straight line on the diagonal from

(0,0) to (1,1), and will therefore have an AUC of 0.5. If a model is making predic-
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tions more accurately than random guessing, the ROC curve will be pushed above

the diagonal, and the AUC will increase. A perfect classifier would have an AUC of

1.

Figure 5.2: ROC curves and AUC metrics for three different models. Two models
correspond to the convolutional networks described in section 4.4.1 and the remaining
model corresponds to the network using VGGish embeddings with 0.96 second inputs.
The dashed red line corresponds to a baseline model with an AUC of 0.5.

ROC curves along with their AUC are plotted for each of the three models de-

scribed in section 4.4 in figure 5.2. They show a performance significantly above

baseline for each of the three models. Additionally, it appears that longer receptive

fields at the input lead to an increase in model performance. However, it is important

to note that the models being compared are not perfectly equivalent apart from the
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sizes of their inputs. The VGGish based model has only a 0.96 second receptive field,

but it is significantly larger (in terms of number of layers and parameters) and is also

pretrained using a larger dataset.

While there is room for improvement, these results clearly show the trained models

outperform a baseline, and demonstrate evidence of the models extracting meaningful

features and signal from the audio data.

5.1.2 Output Distributions

One way of analysing how the model is discriminating between the two classes is to

treat the outputs based on the validation set as distributions. In figure 5.3, histograms

of the outputs of two different models, with and without class weights, are shown for

each of the two output classes. The frequency of the outputs is shown as well as

the density. While it is clear from these graphs that the two classes are not easily

discriminated by the models, the densities show that the distributions of the outputs

are different based on the ground-truth label of each input.

Figure 5.3 demonstrates how the inclusion of class weights incentivizes the model

to make more positive predictions. The figure also shows the skewness for each class.

Whether the models were trained with or without class weights, the skewness is

significantly higher for the outputs that should be positive, meaning that, while the

classes are no fully separable, there is a clear difference between the classes being

detected.

The fact that the outputs for ground-truth positive and negative CI status seg-

ments are different can be further supported by a Kolmogorov-Smirnov (KS) test.

The KS test is a non-parametric statistical test that compares the cumulative dis-

tributions of two different samples in order to determine their likeness [78]. It can

be used to test the null hypothesis: that two samples are drawn from the same pop-

ulation. Running this test on the outputs displayed in figure 5.3 yields p values of
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Figure 5.3: Distributions of model outputs for VGGish-based models with and with-
out class weights, separated by CI status. The distributions show that the model
weights are effective in incentivizing the model to make more positive predictions.
While there is significant overlap in the outputs, showing that the two classes are not
being discriminated effectively, there is a clear difference in the shapes of the distri-
butions, particularly in the skewness. In both cases, the distributions of the positive
CI statuses are significantly more positive skewed than their negative counterparts.

1.4−99 and 3.9−57 respectively, meaning that the probability that the positive and

negative samples as represented by the model are drawn from the same distribution

is extremely low. The null hypothesis is rejected.
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5.2 Aggregation

Figure 5.4: This graph plots patient-level diagnostic accuracy as a function of the
threshold used to aggregate the segment-level scores. Despite the models being rea-
sonably discriminatory at the segment level, this graph shows that they hardly out-
perform a baseline accuracy when combining the segment-level predictions.

While the models may be able to output statistically significant results on the

segment level, it may be interesting to investigate whether these models on their

own could provide useful predictions at the patient-level. To do this, the predictions

must be aggregated somehow. It is important to note that this aggregation is not

necessary in order for the model to perform within the ensemble described in figure

4.1. By design, the aggregation destroys much of the information that is contained

within the sequences of individual predictions, information that may be useful to

generate predictions when combined with features from other modalities (i.e. audio

features, transcriptions, and EHR). Nevertheless, it is insightful to investigate how
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these models would perform as the sole predictors of MCI.

One basic technique to test is a simple threshold. It can be implemented one of

two ways. The first is by thresholding all the predictions for a single patient and using

the resulting binary predictions to vote on the outcome. The second is to average all

of the predictions for one patient and find a suitable threshold on the average for the

final binary prediction. Both cases end up performing very similarly in practice.

In either case, a range of thresholds have to be tested to find which produces the

best outcome. Because the models is biased towards the training data, its perfor-

mance would not be representative of actual use. This is why we use the validation

data, which at this point has only been used to validate the model’s performance,

to determine which thresholds would perform best. All results in the section are

therefore measured using the test set.

As displayed in figure 5.4 despite the models being reasonably discriminatory at

the segment level, testing a range of aggregation thresholds shows that the model is

unable to reliably predict CI status at a patient level. There exists only a very small

range of threshold values for which the model outperforms a baseline all-negative pre-

diction, and the confidence in such predictions is very low, bordering on insignificant.

5.3 Discussion

Overview

To bring this back into context, let us consider each step in the pipeline described in

figure 4.1. The contribution of this project represents just one of the modalities in a

multi-modal analysis of a complex and highly unstructured dataset. Furthermore, the

CI status of the patients being predicted by the models was determined by a MoCA

test which was administered completely separately from the clinical visit which is

recorded as the input audio. The pipeline consists of processing the data to isolate
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the patient’s speech and make the audio more suitable for deep neural networks,

training and testing a range of models to make predictions based on segments of

inputs, and attempting to aggregate segment scores to see if models based on audio

alone can make reasonable predictions at the patient-level.

Diarization

The first step was the diarization and patient speech isolation. The pyannote-audio

toolbox and pretrained model was tested along with a few different algorithms for

determining which speaker was the patient. Selecting the loudest speaker regardless

of prominence was successful in isolating the patient in 98.3% of sampled recordings,

and reduced the average file length from 30 minutes to 5 minutes. However, it must

be noted that a rigorous analysis of the diarization using a metric like DER was not

performed due to the tedious and time consuming nature of hand-labeling audio. I

know for a fact that some of the patients’ speech is omitted from the final audio file,

but I do not know how much. Nevertheless, this strategy intentionally prioritizes

correctly identifying the patient over capturing all of their speech because the CI

status label only corresponds to them, and not other speakers that might leak through.

Segmentation and Labeling

Once the patients’ speech was isolated, the audio files were converted into Mel spec-

trograms which were then framed into regular overlapping segments. Each segment,

regardless of length, inherited the same label as the overall file. This naive strategy

of passing the labels from the overall file to each segment is problematic for a few

reasons.

Take for example a patient who has tested positive for MCI according to the

MoCA test. The initial label applied to the entire recording indicates that there

should be evidence of MCI somewhere in the patient’s speech. If we divide the audio
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into 4 second segments and label each of them with a 1, we are essentially telling our

models that there is evidence of MCI in every single segment. In practice, however,

this is very unlikely to be true; most segments might capture the patient speaking

indistinguishably from someone without MCI. In other words, we are training the

model based on a lot of false positives labels, making the two output classes very

difficult to separate.

We see some evidence of this in the output distributions of figure 5.3. The distri-

butions for ground-truth positive and negative outcomes overlap substantially, and it

is only the strongest outliers that differentiate themselves from the center cluster. The

difference in skewness offers some evidence that the models are able to discriminate

between the classes to some degree, but the distributions remain mostly inseparable

overall. It may be the case that these models can not improve significantly unless this

naive labeling of the segments is revisited. This is discussed further in the conclusion.

Model Performance and Aggregation

The performance of the models on a segment level based on ROC and AUC has

shown that the neural networks are capable of extracting meaningful signal from the

processed audio. Figure 5.2 appears to show a correlation between input length (in

seconds) and model performance. However it is important to note that these models

are not identical apart from the input length. The first and most obvious difference

is that the VGGish-based model is pretrained on AudioSet, giving it access to a lot

more training data, even if most of it is unrelated to this clinical field of study. The

fact that it performs nearly as well as a CNN trained only on our dataset, but with

an input over 4 times as long suggests there are very strong benefits to pretraining.

This motivates future exploration of pretraining custom architectures more tailored

to our long form audio.

While the models show significant improvements on baseline performances at a
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segment level, the attempts at aggregation have demonstrated that these models alone

cannot serve as adequate discriminators for MCI at a patient level. However, the goal

was not for these models to perform the entire task on their own. Eventually, they

will be combined with other models based on extracted audio features, transcriptions,

and EHR. The models as presented could serve as feature extractors for an ensemble

model which incorporates the other modalities. Furthermore, the other modalities

can add a layer of self-supervision to the pure audio models, and help improve the

aforementioned naive segment labeling strategy. This is discussed further in the future

work section.



Chapter 6: Conclusion

6.1 Summary

In this thesis, I presented a deep learning pipeline for detecting MCI from long form

clinical audio. First, I introduced a processing methodology for recordings of conver-

sations between patients and physicians during a primary care visit. This pipeline

uses existing neural network models alongside domain knowledge to correctly isolates

the patient’s speech in 98% of sampled recordings, reducing noise in the data by

suppressing extended silences and speech from other speakers. Then, to convert the

result into a more suitable format for audio classification neural networks, the audio

is further processed into decibel-scaled Mel spectrograms and split into overlapping

regular segments, with each segment inheriting the label of the parent audio. The re-

sulting dataset is used to train convolutional neural networks from scratch, as well as

to fine-tune models pretrained on larger labeled datasets. These models convincingly

exceed a baseline performance at the segment level, with an AUC ranging from 0.57

to 0.65 based on the model architecture and training regimen. There is an apparent

correlation between models having a larger input window and better performance,

but this remains to be further explored. While the models perform reasonably well at

the segment level, aggregating the scores to obtain a single prediction at the patient

level remains a challenge. Nevertheless, this research demonstrates an ability to pro-

50
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cess the unstructured recordings and extract a signal with some predictive power, and

which can be informative within the context of the greater ensemble being developed.

6.2 Future Work

There remains a substantial amount of work before the entire multi-modal research

project is fully realized, but for this discussion on future work, I would like to focus

on the audio-only deep learning methods.

Diarization

While the speaker diarization ultimately proved successful in isolating and identifying

the patient, there is evidence that not all of their speech was captured. Without a

rigorous and time consuming labeling of the speakers, which would require annotating

the speakers in the audio second by second, it is impossible to know the exact error

rate. Such annotations would allow us not only to measure in more detail the accuracy

of the diarization, but also to fine tune the performance of the neural diarization model

provided by pyannote-audio, and obtain a more accurate diarization.

Spectrogram and Model Hyperparameters

As with most deep learning project, there are always many hyperparameters left to

test and tune.

Among the ones I am most interested in exploring are the spectrogram parameters

noted in table 4.3. These parameters determine the resolution of the model inputs in

both the frequency and time dimensions, as well as overall size of the input. There

is a trade-off between using too large inputs that become hard to converge a model

with, and spectrograms that have been condensed beyond recognition, and I suspect

that by performing a grid-search through these input parameters, an optimal set can
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be found.

Furthermore, the model architectures and training regimen can still be optimized.

Using models pretrained on AudioSet proved to be useful, but we are then limited

by available models and their constraints. For example the VGGish model used in

section 4.4.2 only considers inputs 960 ms in length, and would fail to notice any

temporal dependencies outside of that range. It may prove useful to pretrain models

with larger receptive fields like my own on datasets like AudioSet.

Self-Supervision

While the overall ensemble classifier doesn’t necessitate that each sub-model output

patient-level predictions (i.e. the final ensemble may benefit from using extracted

feature vectors or embeddings), improving patient-level predictions to a level similar

to those at a segment-level would likely be greatly beneficial to the model. Part of this

problem may stem from the labeling of the data. Not only are the original labels fairly

weak, since they were obtained by a test which was conducted independently of the

audio recording, but they are further diluted by the segmentation of the spectrograms.

By naively assigning each segment the label of parent audio, we are conditioning

the models to find evidence of CI where there may be none. This leads to sub-

optimal training, but also to difficulty in validating the segment-level performance.

One potential solution is to treat this more like a self-supervised learning problem than

an outright supervised learning one. Finding some way to increase the granularity of

the labels could greatly improve model performance both on a segment level and on

a patient level.
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Code

Listing A.1: diarization from json.py
import os
import json
import numpy as np
import librosa

from scipy.io.wavfile import write

from joblib import Parallel, delayed

SAMPLE_RATE = 16000

def crop_from_json(json_filename):
json_directory = "/home/opc/files/diarization_jsons"
patient_code = json_filename[:-5]

with open(os.path.join(json_directory,json_filename)) as json_file:
label_dict = json.load(json_file)

labels_list = []
for segment in label_dict[’content’]:

label = segment[’label’]
if label not in labels_list:

labels_list.append(label)

template_dict = {}
for label in labels_list:

template_dict[label] = []

recording_path = "/home/opc/files/patient_files/" + patient_code + ".wav"

### load downsampled audio into memory, retrieve length of file
waveform, _ = librosa.load(recording_path, sr=SAMPLE_RATE)
num_samples = waveform.shape[0]

### save the start and stop times into a list for each of 2 speakers
(WARNING, THIS ASSUMES 2 SPEAKERS)

seg_times_dict = template_dict
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for obj in label_dict[’content’]:
arr = (np.array([obj[’segment’][’start’],

obj[’segment’][’end’]])*SAMPLE_RATE).astype(’uint’)
label = obj[’label’]
seg_times_dict[label].append(arr)

# good up to here

### calculate number of samples attributed to each speaker
num_samples_dict = {}

for label in labels_list:
num_samps = 0
for time in seg_times_dict[label]:

num_samps += int(time[1]-time[0])
num_samples_dict[label] = num_samps

#print(’num_samples_dict \n’,num_samples_dict)

### calculate the average power of each speaker, using above
average_dict = {}

for label in labels_list:
sum = 0
for time in seg_times_dict[label]:

sum += np.sum(waveform[time[0]:time[1]]**2)
average = sum/num_samples_dict[label]
average_dict[label] = average

#print(’average dict \n’, average_dict)

cur_max = 0
for label in average_dict:

average = average_dict[label]
if average > cur_max:

max_label = label
cur_max = average

#print(max_label, cur_max)

### create array to become audio file
new_audio = np.zeros(num_samples_dict[max_label])

# indexes to use as reference to the audio that gets copied
last_in_new = int(0)

for time in seg_times_dict[max_label]:
n_samples = int(time[1]-time[0])
new_audio[int(last_in_new):int(last_in_new+n_samples)] =

waveform[int(time[0]):int(time[1])]
last_in_new += n_samples

output_directory = "/home/opc/files/diarized_patient_files"
output_filename = "Diarized " + patient_code + ".wav"

write(os.path.join(output_directory,output_filename) , SAMPLE_RATE,
new_audio)
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print(’finished file:’,patient_code,’found label:’, max_label, ’with
\#samps:’,num_samples_dict[max_label])

return

directory = "/home/opc/files/diarization_jsons"

json_file_list = []

for filename in os.listdir(directory):
if filename.endswith(".json"):

json_file_list.append(filename)

print(json_file_list)

Parallel(n_jobs=32)(delayed(crop_from_json)(json_file) for json_file in
json_file_list)
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Listing A.2: create spectrogram.py
import os
import random
import numpy as np
import pandas as pd

import librosa
import librosa.display

from joblib import Parallel, delayed

SAMPLE_RATE = 16000
NUM_MELS = 224

df_train = pd.read_csv(’/home/opc/files/trainset/train_labels.csv’)
df_val = pd.read_csv(’/home/opc/files/trainset/val_labels.csv’)

def min_max_norm(arr):
min = arr.min()
max = arr.max()
return (arr-min)/(max-min)

def proc_audio(wav,sr=SAMPLE_RATE,n_mels=224):
S = librosa.feature.melspectrogram(wav,sr=sr,n_mels=n_mels)
S_dB = librosa.power_to_db(S, ref=np.max)
S_dB = min_max_norm(S_dB)
return S_dB

# Create list of audio filenames for train and val set
train_list = []
val_list = []

for ind, row in df_train.iterrows():
s = row[’Image’]
s = s.split(’_’)[0]
s = ’Diarized Patient ’ + s + ’.wav’
pair = (s,row[’Label’])
if pair not in train_list:

train_list.append(pair)

for ind, row in df_val.iterrows():
s = row[’Image’]
s = s.split(’_’)[0]
s = ’Diarized Patient ’ + s + ’.wav’
pair = (s, row[’Label’])
if pair not in val_list:

val_list.append(pair)

audio_dir = ’/home/opc/files/diarized_patient_files’
spectrogram_dir = ’/home/opc/files/trainset/simple_spectrograms’

# Prepare for dataframe: patient_code, spect_index, filename, label
GLOBAL_ROWS_LIST = []

def para_cut(filename, label):
patient_code = filename[17:-4]
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wav, sr = librosa.load(os.path.join(audio_dir,filename), sr = 16000)
spect = proc_audio(wav)
num_specs = spect.shape[1]//(NUM_MELS/2) - 1
num_specs = int(num_specs)
print(’Generating’,num_specs,’spectrograms from shape’,spect.shape)

for i in range(num_specs):
new_filename = patient_code + ’_’ + str(i) + ’.npy’
start = 112*i
end = start + 224
segment = spect[:,start:end]

np.save(os.path.join(spectrogram_dir,new_filename),segment)

row_dict = {’patient_code’: patient_code,\
’spect_index’: i,\
’filename’: new_filename,\
’label’: label}

GLOBAL_ROWS_LIST.append(row_dict)

return

Parallel(n_jobs=32,require=’sharedmem’) \
(delayed(para_cut)(filename,label) for filename, label in train_list)

df = pd.DataFrame(GLOBAL_ROWS_LIST)
df.to_csv(os.path.join(spectrogram_dir,’trainset.csv’))
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Listing A.3: train cnn.py
import os
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import backend as K

print(tf.__version__)

#tf.config.list_physical_devices(’GPU’)

df_train = pd.read_csv("/home/opc/files/trainset/train_labels.csv")
df_val = pd.read_csv("/home/opc/files/trainset/val_labels.csv")

train_samples = list()
val_samples = list()

dir_path = "/home/opc/files/trainset/short_spectrograms"

for index, row in df_train.iterrows():
image_file = os.path.join(dir_path, row[’Image’])
target = str(row[’Label’])
train_samples.append((image_file, target))

for index, row in df_val.iterrows():
image_file = os.path.join(dir_path, row[’Image’])
target = str(row[’Label’])
val_samples.append((image_file, target))

# load numpy arrays from filenames
def read_sample(data_path: str) -> tuple:

path = data_path.numpy()
image_path, target = path[0].decode(’utf-8’), path[1]

img = np.load(image_path)
img = np.expand_dims(img,axis=2)
tgt = int(target)

# can add processing here if desired

return (img, tgt)

# wrap read_sample into tensorflow function and set shape
@tf.function
def tf_read_sample(data_path: str) -> dict:

print("INSIDE TF_READ_SAMPLE")
# wrap custom dataloader in tensorflow
[image, target] = tf.py_function(read_sample,

[data_path],
[tf.float32, tf.uint8] )

image.set_shape((128,256,1))
print(image.shape)
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return {’image’: image, ’target’: target}

# convert arrays to tensors with appropriate data types
@tf.function
def load_sample(sample: dict) -> tuple:

# convert to tf image
image = sample[’image’]
tgt = sample[’target’]

# cast to proper data types
image = tf.cast(image, tf.float32)
tgt = tf.cast(tgt, tf.uint8)

return image, tgt

# create tf training dataset from file links
ds_train = tf.data.Dataset.from_tensor_slices(train_samples)
# read in image/target pairs
ds_train = ds_train.map(tf_read_sample,

num_parallel_calls=tf.data.experimental.AUTOTUNE)
# read in as tensors
ds_train = ds_train.map(load_sample,

num_parallel_calls=tf.data.experimental.AUTOTUNE)

# repeat for validation set
ds_val = tf.data.Dataset.from_tensor_slices(val_samples)
ds_val = ds_val.map(tf_read_sample,

num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_val = ds_val.map(load_sample,

num_parallel_calls=tf.data.experimental.AUTOTUNE)

# test if it works!
for image, target in ds_train.take(5):

print("Image of type: ", type(image), "and shape", image.shape,
tf.math.reduce_mean(image),
tf.math.reduce_min(image),tf.math.reduce_max(image))

print("Target of type: ", type(target), "and value", target)

# CREATE MODEL
inputs = layers.Input((128,256,1))
norm = layers.BatchNormalization()(inputs)
c1 = layers.Conv2D(16, (3,3) , activation=’relu’)(norm)
s1 = layers.MaxPooling2D()(c1)
c2 = layers.Conv2D(32, (3,3), activation=’relu’)(s1)
s2 = layers.MaxPooling2D()(c2)
c3 = layers.Conv2D(32, (3,3), activation=’relu’)(s2)
s3 = layers.MaxPooling2D()(c3)
c4 = layers.Conv2D(64, (3,3), activation=’relu’)(s3)
s4 = layers.MaxPooling2D()(c4)
c5 = layers.Conv2D(64, (3,3), activation=’relu’)(s4)
s5 = layers.MaxPooling2D()(c5)
fl = layers.Flatten()(s5)
d1 = layers.Dense(32, activation=’relu’)(fl)
d2 = layers.Dense(16, activation=’relu’)(d1)
out = layers.Dense(1, activation=’sigmoid’)(d2)
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model = keras.Model(inputs=[inputs],outputs=[out])

print(model.summary())

def weightedLoss(originalLossFunc, weightsList):

def lossFunc(true, pred):

axis = -1 #if channels last
#axis= 1 #if channels first

classSelectors = True
classSelectors = tf.cast(classSelectors, tf.int32)
classSelectors = [K.equal(i, classSelectors) for i in

range(len(weightsList))]
classSelectors = [K.cast(x, K.floatx()) for x in classSelectors]

#for each of the selections above, multiply their respective weight
weights = [sel * w for sel,w in zip(classSelectors, weightsList)]

#sums all the selections
weightMultiplier = weights[0]
for i in range(1, len(weights)):

weightMultiplier = weightMultiplier + weights[i]

#make sure your originalLossFunc only collapses the class axis
#you need the other axes intact to multiply the weights tensor
loss = originalLossFunc(true,pred)
loss = loss * weightMultiplier

return loss
return lossFunc

optimizer = keras.optimizers.Adam()
list_metrics = [ ’acc’, keras.metrics.Recall(), keras.metrics.AUC() ]

save_path = "/home/opc/files/models/baseline_cnn/log.csv"
history_logger=tf.keras.callbacks.CSVLogger(save_path, separator=",",

append=True)

model.compile(optimizer=optimizer,
loss=weightedLoss(keras.losses.BinaryCrossentropy(from_logits=False),{0:1,1:4}),metrics=list_metrics,
run_eagerly=True)

results = model.fit(x=ds_train.batch(64), batch_size=64, epochs=100,
callbacks=[history_logger], validation_data=ds_val.batch(64))

model.save("/home/opc/files/models/baseline_cnn/model")
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Listing A.4: embeds from vggish.py
from vggish_smoke_test import *

import vggish_slim
import vggish_params
import vggish_input

import os
import json
import numpy as np
import librosa
import pandas as pd
from tqdm import tqdm

def CreateVGGishNetwork(hop_size=0.96): # Hop size is in seconds.
"""Define VGGish model, load the checkpoint, and return a dictionary

that points
to the different tensors defined by the model.
"""
vggish_slim.define_vggish_slim()
checkpoint_path = ’vggish_model.ckpt’
vggish_params.EXAMPLE_HOP_SECONDS = hop_size
vggish_slim.load_vggish_slim_checkpoint(sess, checkpoint_path)
features_tensor = sess.graph.get_tensor_by_name(

vggish_params.INPUT_TENSOR_NAME)
embedding_tensor = sess.graph.get_tensor_by_name(

vggish_params.OUTPUT_TENSOR_NAME)
layers = {’conv1’: ’vggish/conv1/Relu’,

’pool1’: ’vggish/pool1/MaxPool’,
’conv2’: ’vggish/conv2/Relu’,
’pool2’: ’vggish/pool2/MaxPool’,
’conv3’: ’vggish/conv3/conv3_2/Relu’,
’pool3’: ’vggish/pool3/MaxPool’,
’conv4’: ’vggish/conv4/conv4_2/Relu’,
’pool4’: ’vggish/pool4/MaxPool’,
’fc1’: ’vggish/fc1/fc1_2/Relu’,
#’fc2’: ’vggish/fc2/Relu’,
’embedding’: ’vggish/embedding’,
’features’: ’vggish/input_features’,

}
g = tf.get_default_graph()
for k in layers:

layers[k] = g.get_tensor_by_name( layers[k] + ’:0’)
return {’features’: features_tensor,

’embedding’: embedding_tensor,
’layers’: layers,

}

def ProcessWithVGGish(vgg, x, sr):
’’’Run the VGGish model, starting with a sound (x) at sample rate
(sr). Return a whitened version of the embeddings. Sound must be scaled

to be
floats between -1 and +1.’’’
# Produce a batch of log mel spectrogram examples.
input_batch = vggish_input.waveform_to_examples(x, sr)
# print(’Log Mel Spectrogram example: ’, input_batch[0])
[embedding_batch] = sess.run([vgg[’embedding’]],
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feed_dict={vgg[’features’]: input_batch})
# Postprocess the results to produce whitened quantized embeddings.
pca_params_path = ’vggish_pca_params.npz’
pproc = vggish_postprocess.Postprocessor(pca_params_path)
postprocessed_batch = pproc.postprocess(embedding_batch)
# print(’Postprocessed VGGish embedding: ’, postprocessed_batch[0])
return postprocessed_batch[0]

import tensorflow.compat.v1 as tf

tf.compat.v1.disable_eager_execution()
tf.reset_default_graph()
sess = tf.Session()

vgg = CreateVGGishNetwork()

def EmbeddingsFromVGGish(vgg, x, sr):
’’’Run the VGGish model, starting with a sound (x) at sample rate
(sr). Return a dictionary of embeddings from the different layers
of the model.’’’
# Produce a batch of log mel spectrogram examples.
input_batch = vggish_input.waveform_to_examples(x, sr)
# print(’Log Mel Spectrogram example: ’, input_batch[0])
layer_names = vgg[’layers’].keys()
tensors = [vgg[’layers’][k] for k in layer_names]
results = sess.run(tensors,

feed_dict={vgg[’features’]: input_batch})
resdict = {}
for i, k in enumerate(layer_names):

resdict[k] = results[i]
return resdict

def MinMaxNormalize(array):
min = array.min()
max = array.max()
return 2*(array-min)/(max-min) - 1

def embedding_from_file(filename, offset):
num_samples = 16000
SAMPLE_RATE = 16000
audio_dir = ’/home/opc/files/diarized_patient_files_v2’

wave, _ = librosa.load(os.path.join(audio_dir,filename), sr=SAMPLE_RATE)
wave = MinMaxNormalize(wave)
segment = wave[offset*num_samples:(offset+1)*num_samples]
#print(’segment is from:’,offset*num_samples,’to’,(offset+1)*num_samples)

return EmbeddingsFromVGGish(vgg,segment,num_samples)[’embedding’]

df = pd.read_csv(’/home/opc/files/trainset/val_segments.csv’)

big_array = np.zeros([len(df),128])

for ind, row in tqdm(df.iterrows()):
filename = ’Diarized Patient ’ + row[’patient_code’] + ’.wav’
embedding = embedding_from_file(filename,row[’audio_index’])
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df.loc[ind,’embedding’] = ind
big_array[ind] = embedding

df.to_csv(’/home/opc/files/trainset/val_segments.csv’)
print(’Shape of embed matrix: ’, big_array.shape)
np.save(’/home/opc/files/trainset/val_embeddings.npy’,big_array)


