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Abstract 

Electroencephalogram (EEG) is one of the widely used non-invasive brain signal 

acquisition techniques that measure voltage fluctuations from neuron activities of 

the brain. EEG is typically used to diagnose and monitor disorders such as 

epilepsy, sleep disorders, and brain death and also to help advancement of various 

fields of science such as cognitive science, and psychology. Unfortunately, EEG 

signals usually suffer from a variety of artifacts like eye movements, chewing, 

muscle movements, and electrode pops, which disrupts the diagnosis and hinders 

precise representation of brain activities. This thesis evaluates three deep 

learning methods, and an ensemble method to detect the presence of the artifacts 

and to classify the kind of the artifact to help clinicians resolve problems regarding 

artifacts immediately during the signal collection process. Models were optimized 

to map the 1-second segments of raw EEG signals to detect 4 different kinds of 

artifacts. Among all the models, the best model is the ensemble model, which 

achieved 5-class classification accuracy of 67.59%, and a true positive rate of 80% 

with 25.82% false alarm for binary artifact classification with time-l. The model 

is lightweight and can be easily deployed in portable machines. 
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 Introduction 

The study of the brain, neuroscience, to understand about ourselves better 

has been a great research area that combines scientists and engineers across 

various disciplines. Sometimes, the understanding of the basis of learning, 

perception, and consciousness is described as the “ultimate challenge” of biological 

sciences [1]. A lot of advancements in neuroscience come from analyzing 

recordings of the brain. However, due to the overwhelming amount of 

electrochemical activities in brains, the collection of reliable data is still one of the 

biggest challenges in neuroscience [2]. 

There are two main branches of brain signal acquisition methods: invasive 

methods, and non-invasive methods. Invasive methods involve placements of 

electrodes inside the brain, or insertion of needles through the subject’s head to 

collect precise and highly local data. On the other hand, non-invasive methods 

such as electroencephalogram (EEG), and magnetic resonance imaging (MRI) 

suffer from noise and various artifacts [2]. Due to high interests and potentials in 

this area of research, and relatively cheap and easy access to EEG machines [3], 

there is a large amount of data available for analysis. However, a lot of EEG data 

suffer from artifacts that are both physiological and technical, and the artifacts 

are usually not documented well [2]. If there is a model that can distinguish 

between artifacts, and cerebral data automatically, neuroscience can advance 
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further as reducing the effect of artifacts will increase the signal to noise ratio so 

that brain activity can be detected more precisely. 

To achieve this goal, Temple University has constructed a large dataset of 

EEG waves from various patients, specifically labeled for artifacts [4] to help 

engineers and scientists to build models that combat the lingering artifacts. 

Previously, Golmohammadi, and colleagues [5] developed a model that 

automatically analyzes EEG signals to help physicians diagnose brain-related 

illnesses such as seizures using hybrid deep learning architectures. This model 

integrates hidden Markov models (HMMS), deep learning models, and statistical 

language models to deliver a composite model that has a true positive rate of 90% 

while having a false alarm rate of below 5% on events of clinical interests: spike 

and sharp waves, periodic lateralized epileptiform discharges, and generalized 

periodic epileptiform discharges [5]. This model proves the viability of big data 

and deep learning methods in detecting events in EEG signals. More works in this 

area are documented in the next chapter. 

The work in [5] attempts to classify artifacts as well as the mentioned 

events of clinical interest, but the model developed was only able to distinguish 

14.04% of the artifacts correctly from the data. As the goal of that model was to 

detect seizures and epilepsy, no further analysis on artifacts was done, but it was 

noted that transient pulse-like artifacts such as eye movements, and muscle 
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movements can significantly degrade the performance [5]. In this thesis, a method 

that can quickly identify the presence of artifacts and the type of the artifacts 

during the collection process is proposed, so that a clinician can resolve the 

problem immediately and ensure the collected data is artifact-free. In order to 

achieve this goal, multiple deep learning models with varying model size, 

inference time, and accuracies were developed and optimized to compare and 

contrast between advantages and disadvantages of different approaches. The key 

feature of the models is all the inferences are done directly on the raw signals such 

that there is no need for preprocessing the data other than aggregating enough 

samples to be used for predictions by the model. The system aims to be memory 

efficient, and computationally light, while being fast enough to be implemented 

on portable systems such as Raspberry Pi and detect and classify artifacts in real-

time, potentially in a clinical setting. 

The rest of this thesis is organized as follows. In Chapter 2, previous works 

on automatic artifact detectors for EEG signals are presented. In Chapter 3, 

background information on machine learning, deep learning, and the human brain 

as well as electroencephalogram (EEG) is presented. In Chapter 4, details of the 

dataset that was used for the experiment, descriptions of how data were modified 

and shaped, and motivations regarding certain choices are presented and 

discussed as well as the experiment setup. In Chapter 5, the results of the 

experiments are presented and analyzed. Finally, in Chapter 6, the conclusion 
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regarding the experiment is presented to summarize the findings and suggest 

future works. In Chapter 7, a list of references is presented, and in Chapter A, 

appendix, code samples to support the thesis are presented. 
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 Previous Works 

There have been numerous efforts to combat the artifact problems in EEG 

signals. A lot of research has been done to reduce the effects of artifacts by utilizing 

prior knowledge such as how some artifacts behave in the signal. Artifact removal 

and detection tools of this nature tend to examine the statistical characteristics of 

the signals. 

Nolan, Whelan, and Reilly [6] proposed FASTER, Fully Automated 

Statistical Thresholding for EEG artifact Rejection, which uses independent 

component analysis (ICA) to separate EEG signals into neural activity and 

artifacts. ICA works by separating multivariate signals into additive 

subcomponents by assuming different subcomponents are statistically 

independent of each other. The advantage of using ICA is that it tries to reduce 

the statistical dependencies of different components of the signal, trying to 

orthogonalize the components [7]. After decomposition, the model uses a series of 

statistical comparison charts to check for statistical features such as correlation 

with signal components separated using ICA, mean, variance, spatial, and et 

cetera. This model was tested on simulated EEG and real EEG and had a true 

positive rate of over 90%. The main drawback of this model is the computational 

time as the ICA decomposition takes about 40 minutes. Nevertheless, the model 

not only detects the signal quite accurately but also can remove the signal, as the 
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artifact component of the signal can be extracted. This model can detect eye 

movement, EMG artifacts, linear trends, and white noise. 

Similarly, Singh and Wagatsuma [8] used Morphological Component 

Analysis (MCA), which uses a dictionary of multiple bases to guarantee 

reconstruction of signals. MCA is applied to the EEG signal to deconstruct into a 

combination of bases in the dictionary. Singh and Wagatsuma hypothesized that 

three dictionaries of bases are dominant, and they are undecimated wavelet 

transform (UDWT), discrete sine transform (DST), and DIRAC (standard unit 

vector basis) [8]. The decomposition was able to show that EEG signals and their 

artifacts are represented by different dictionaries of bases, indicating that given 

the decomposition result, these can be distinguished. They successfully 

categorized which dictionary corresponded well with the signal or the artifact. 

This research demonstrates that an ensemble of different signal processing could 

work for artifact classification. There are numerous other additional statistical 

approaches to separate the real EEG signal from the artifacts, such as canonical 

correlation analysis, which Clercq used to remove muscle artifacts from the EEG 

signals [9]. 

All of the statistical approaches of the problem requires a deconstruction of 

EEG signals into multiple components and analyzing each component to 

determine which components are responsible for artifacts and which are 
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responsible for the real signal. Though they are highly interpretive, the separation 

procedure takes a lot of computations, and prior knowledge, such as the number 

of artifacts, a set of orthogonal bases that work well with time-series data or 

general behavior of artifacts is required. Due to the complex nature of the EEG 

signals, deep learning with its ability to learn hidden features from the raw data 

has shown great promises [10]. 

According to the review paper by Roy et al [11],  among the 156 papers that 

the authors reviewed from January 2010 to July 2018 about applying deep 

learning to EEG signals, some applied data preprocessing techniques and artifact 

rejection techniques such as ICA mentioned above to combat the artifacts, while 

some just used the raw data. Given that the majority of the papers did not use any 

artifact removal schemes, Roy et al suggest that using deep learning on EEG data 

might avoid the artifact removal step without performance degradation. However, 

all the papers mentioned in Roy’s review paper specifically target certain 

applications such as epilepsy, sleep monitorings and brain-computer interfaces. 

None of the papers mentioned targets the detection of artifacts specifically. 

However, the paper guides this research in a certain way as 40% of the studies 

use convolutional neural networks (CNNs), and 14% use recurrent neural 

networks (RNNs) [11]. 
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Other works relating to deep learning and EEG signals or EEG like signals 

not mentioned in the review paper above include Krishnaveni et al’s work on 

ocular artifacts removal in EEG signals [12] and Hasasneh et al.’s work on 

automatic classification of ocular and cardiac artifacts in 

magnetoencephalography (MEG) [13]. Both of them include some data 

preprocessing like ICA for Hasasneh’s work, and the Joint Approximation 

Diagonalisation of Eigen matrices (JADE) algorithms for Krishnaveni’s work to 

separate the real signal from the artifact signal before using neural networks. The 

detection rates for test data for these works are 94.4%, and 92% respectively for 

Hasasneh’s work [13] and Krishnaveni’s work [12]. However, both of these works 

only address a single or two kinds of artifacts at the same time, while the model 

to be proposed will include 4 different artifacts to be classified separately with no 

preprocessing such that the model can be applied directly to the raw data.  

There have been many attempts and successful attempts in detecting 

artifacts and classifying them using statistical machine learning and inferences, 

but there are not many pieces of research being done doing the same using deep 

learning. Deep learning approaches are particularly adept at optimizing an 

arbitrary large model and recognizing complex patterns [10]. The previous 

methods require mathematical models for artifact events or seizure events to 

classify the signals accurately, hence the performance of the models depends 

highly on the accuracy of the proposed mathematical models. However, usage of 
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deep learning models can alleviate the incorrect modeling error as no accurate 

model is needed to classify different events. In addition, statistical analysis of 

large temporal data is computationally heavy and takes a long time. While 

training a deep learning model to optimize the parameters may take a long time, 

inference time for the completed models is relatively small compared to statistical 

methods. To use these advantages, many works have attempted to classify 

different aspects of the EEG signals for monitoring purposes for seizure or sleep 

using deep learning, but not a lot of work has been done in detecting and 

classifying artifacts using deep learning, especially classifying multiple artifacts 

instead of detecting a small number of artifacts. 
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 Background Information 

3.1 Machine Learning 

Machine learning (ML) is the study of algorithms and models that utilize 

computer systems to perform pattern recognition tasks without using explicitly 

writing down the true pattern behind the tasks. Pattern recognition tasks are 

problems of searching for hidden rules or regularities of data automatically using 

computer algorithms. Due to fundamentally similar natures, Bishop says in his 

book [14], “these activities can be viewed as two facets of the same field”.  Machine 

learning approach usually consists of using large amounts of data to improve the 

model’s performance in certain tasks. An ideal machine learning model 

generalizes the problem based on the available data such that the model will be 

able to predict accurately on unseen examples. As these models, given enough data, 

can perform really well in certain tasks such as a variety of image classification 

tasks, including handwriting recognition, and house number recognition [15], or 

playing games [16]. There are many types of machine learning algorithms as there 

are many tasks to be tackled, and not all the tasks can be solved using a single 

method. In the following subsection, supervised learning, which is the nature of 

the classifier that was built for this thesis. 
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3.1.1 Supervised Learning 

Supervised learning is a machine learning system that builds a model that 

learns the input-output relationship of a system of interest in which both input 

features and desired output labels are provided. The input and output data are 

prelabelled for classification and are available for the model at training so that 

this data can be used as the learning basis for the future unseen data. 

Mathematically supervised learning algorithms work as follows. Given a 

set of training data pairs {(�⃗�, 𝑦) | 𝑖 = 1,2 … , 𝑁} , where �⃗�  is the input feature 

vector of arbitrary but finite length, and 𝑦 is its corresponding label, the learning 

algorithms try to find a function or a system that maps 𝑋 → 𝑌, where 𝑋 is the input 

space, and 𝑌 is the output space. Let the system that maps the input to the output 

to be a function 𝑔, such that 𝑦పෝ =  𝑔(𝑥పሬሬሬ⃗ ), represent the estimator of 𝑦. The machine 

learning algorithms learn this function through minimizing a loss function 𝐿 that 

usually computes how close the estimated labels, 𝑦ො are to the true labels, 𝑦. 

 All of the machine learning models that are going to be discussed in this 

thesis utilizes the loss function to optimize the machine learning algorithms to 

best represent the unknown system. All the algorithms use gradient-based 

methods to optimize the parameters associated with the models.   
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3.2 Deep Learning 

 Deep learning is a powerful framework in machine learning with the ability 

to represent systems of extreme complexity [10] due to its own model complexity 

from multiple artificial neural network layers which will be discussed in the later 

sections. 

 

3.2.1 Artificial Neural Networks 

 Artificial neural networks, ANNs, are computing networks that are loosely 

inspired by the neural networks of animal brains. The idea behind the neural 

networks of animal brains is that multiple neurons are interconnected by 

synapses to perform a task together. Neurons are interconnected such that a piece 

of information propagates through each other to deliver certain information to 

certain parts of the body to perform each task. More details will be presented in 

the neuron section of this chapter. Inspired by the animal neurons, artificial 

neural networks have nodes that are interconnected with each other as in Figure 

1.  

 The input layer usually is reserved for the external system that presents 

the network with a feature vector. Depending on the length of the feature vector, 

the number of input nodes, or neurons, is adjusted. All the input nodes represent 
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an element in the feature vector, and in networks with fully connected hidden 

layers, each of the input nodes is connected to every node in the hidden layer  

 

Figure 1: Representation of an Artificial Neural Network [17] 

 

 just as in Figure 1. Although the figure only has one hidden layer, the number of 

the hidden layers can be arbitrarily large, and this number is usually referred to 

as the depth of the neural network. Again, in a fully connected layer, each node in 

a hidden layer is connected to every node in the next hidden layer. The output 

layer occurs at the end of the neural network, and each node of the output layer 
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is connected to every node in the hidden layer from the last step. The nodes in the 

output layer represent the label or the target vector, and for this thesis, the output 

layer will represent the confidence level of different artifacts, indicating how sure 

the model think each label exists in the give EEG signal. 

 The way each node is connected is through linear combination with an 

activation function. Each path from a node to another node has a certain weight 

and bias. Using the input layer and the hidden layer in Figure 1 as an example, 

each element in the input layer is denoted as {𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥}, and each element 

in the hidden layer which will be regarded as the output elements is denoted as 

{𝑦ଵ, 𝑦ଶ, 𝑦ଷ, … , 𝑦}. Then each output element is computed by the following equation: 

𝑦 = 𝑓 ൭(𝑥 ∗ ℎ − 𝑏)


ୀଵ

൱  𝑓𝑜𝑟 𝑖 𝑖𝑛 1,2, … 𝑚 

ℎ and 𝑏 represent the weight and the bias associated with the input node ii, and 

the function f represents an arbitrary activation function. The role of the 

activation function is to introduce non-linearity to the network as without the non-

linearity, all the linear combinations connecting the input nodes to the output 

nodes, regardless of how many hidden layers there are, can be summarized into a 

single multiplicative matrix, and a corresponding bias. In other words, without 

the activation function, adding many hidden layers does not change the network. 
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 There is a large number of activation functions that are capable of 

introducing non-linearity to the network. Nwankpa et al. have done thorough 

research on different kinds of activation functions [18]. Traditionally the sigmoid 

activation was used which is given by the following equation. 

𝑓(𝑥) =  
1

1 + 𝑒ି௫ 

This equation is named “sigmoid” as when the equation is plotted, the graph is S-

shaped. The main advantage of this activation function is that since it has a 

positive derivative everywhere with smoothness, it is a respectable measure for 

probability based outputs, as it maps the whole real axis into a finite interval 

between 0, and 1 [14]. This function is usually used in the outermost layer of the 

binary classification task to convert the logits into confidence levels. However, 

since the softmax function which will be introduced later, is a generalization of 

the sigmoid function, in this thesis sigmoid function is not used. The main 

drawbacks of this activation function are sharp gradients during backpropagation 

and slow convergence. 

 Another activation function is the rectified linear unit (ReLU) activation 

function. The ReLU function is defined as follows: 

𝑓(𝑥) = max (0, 𝑥) 
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The function “rectifies” values below 0 by forcing them to be 0. The main 

advantage of this activation function is that it is computationally light. When the 

input value is positive, the function just returns the value, and if the input value 

is negative, the function returns 0. In addition, its gradient is either 0 or 1, which 

is also easy to compute. The major drawback of this activation function is that 

since the gradient of the negative values is all 0, with some bad weight 

initializations, the model can never learn, and be stuck at the same state. There 

are additional derivates of this activation function such as the Leaky ReLU 

(LReLU), Parametric Rectified Linear Unit (PReLU), or Randomized Leaky ReLU 

(RReLU) [18]. However, for lighter computation, for this research, only ReLU was 

used. 

The last activation function that will be introduced is the softmax function. 

This activation function is used to make sense of the outer most layers of models 

of classification tasks. All the models that are developed in this thesis have a 

sigmoid activation function for the last fully connected layer to convert all the 

output logits as confidence levels that are comparable. The softmax function is 

computed using the following equation: 

𝑓(𝑥) =  
𝑒௫

∑ 𝑒௫
 

The characteristic of this function is that it converts a vector of real numbers into 

probabilities. This function is used in the outermost layer of all the models in this 
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thesis, to convert the logits into probabilities or confidence levels so that the 

classification task can be done. 

 With these activation functions, the fully connected layers in artificial 

neural networks can introduce non-linearities in the model to learn arbitrary 

complex mappings between the given inputs and outputs. Artificial neural 

networks learn by setting up a loss function or an evaluation function that 

examines the predicted output and backpropagate the gradient of the loss function 

to the input layer. Backpropagation updates all the weights in the neural 

networks such that in the next epoch, the model can predict better. 

 There is one additional layer that is used before fully connected layers in 

this thesis, the flatten layer. This layer reshapes the input feature vector by 

reducing the number of dimensions to one, regardless of the original number of 

dimensions. For example, if the input vector has a shape of (32,16,16,3), which 

means the vector has 4 dimensions with 32 elements in the first dimension, 16, 

16, 3 in the second, the third, and the fourth dimensions respectively. The role of 

the flatten layer is to convert this input vector into one long vector of shape 

(24576, ). This new vector contains all the information that was available in the 

original input vector but only has one dimension. This layer removes 

dimensionality in data frames to be used for fully connected layers. 
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3.2.2 Convolutional Neural Network 

Convolutional Neural Network (CNN) is a derivation of the standard ANN 

that is optimized for problems with localities. The motivation for this structure is 

from Hubel and Wiesel’s work on cat’s visual cortexes [19]. As the visual cortexes 

contain two basic types of cells that respond to certain shapes and are decent 

image processing system, a similar structure was implemented to create a 

convolutional layer. Convolutional Neural Networks consist of multiple of 

convolutional layers that work as shown in Figure 2. 

 

 

Figure 2: Visualization of Convolutional Layer [20] 
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 The convolutional layer consists of a collection of filters that convolves 

around the input image. Using the figure as an example, K is one of the filters 

defined in the layer, and it moves around the input image, I, such that the K never 

leaves the boundary of I, but covers the whole area of I. The filter acts as a mask, 

which does element-wise multiplication with a region selected in the input image. 

After the element-wise multiplication, all the resulting values in the box are added 

to produce an output value. There is a user definable variable named stride, which 

defines how long the filter travels before the next observation. For the case of the 

example, the stride is 1 because the filter shifts 1 unit in each direction. As there 

are many filters available in a single layer, the layer can “look” at the input image 

in many different ways, extracting useful features using different views. Hence, 

the goal of this layer is to view images or sequences of data better, so the 

coefficients of filters adapt to the task that the layer has been presented to. 

 However, the above example is on images, in which 2 dimensions are 

available for the input. The signals of interest of this research are time-series 

signals with multiple channels. Hence, only 1-dimensional convolutional layers 

are used. The only difference is the filters are 1-dimensional instead of 2-

dimensional, and the filter slides through different channels but not across the 

temporal axis. 
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 Additional deep learning layer of interest is max pooling layer. A visual 

representation of a Max-pooling layer is shown in Figure 3. The example shown is 

a 2 by 2 max-pooling layer. Max-pooling layer basically downsamples an image or 

an array by a specified factor. If an image is max-pooled with a stride of 2 as is the 

case in the figure, the image is divided into tiles of 2 by 2 blocks, and only the 

maximum value of the block is retained and saved to form a sampled version of 

the original image. Again the example given is 2-dimensional for visual aid, but 

the signals of interest are one dimensional in channels. Hence, for a 1-dimensional 

max-pooling layer, instead of reducing the size in two dimensions, only 1-

dimension will be reduced. 

 

 

Figure 3: Representation of Max-Pooling Layer [21] 

 

https://computersciencewiki.org/images/8/8a/MaxpoolSample2.png
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 The purpose of this layer is to retain important features while decreasing 

the size of the representation. For the purpose of the thesis, max-pooling layers 

are used as literal down-sampling systems as they were only used to reduce the 

temporal dimension. 

 

3.2.3. Recurrent Neural Network  

 Another form of neural network architecture that will be used is Recurrent 

Neural Network (RNN). Recurrent Neural Networks are like standard Artificial 

Neural Networks except, RNNs have access to the previous outputs as well as the 

current input. The existence of feedback loops makes RNNs excellent at 

processing temporal data such as speech recognition [22] or electroencephalogram 

(EEG) or functional MRI. One of the major drawbacks of this class of network is 

that since input includes the output from the previous iteration, the rope back to 

the past goes all the way back to the beginning of the sequence. This gives loss to 

have access to all the weights that were ever engaged with the network, such that 

when the backpropagation begins, the loss gets multiplied over and over by the 

countless weights from the past. This causes either the loss to be 0 when most of 

the weights’ magnitudes are below 1, or causes the loss gradient to be really large. 

This problem is common difficulty found in training deep learning models, and 

usually called “the vanishing gradient problem”, or “the exploding gradient 
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problem” depending on whether the gradient goes to 0 or some large number [23]. 

As a result, the model either does not learn anything or fluctuates too much to 

settle down and learn anything. 

 In order to combat the vanishing or exploding gradient problems [23], a 

Recurrent Neural Network architecture called Long short-term memory (LSTM) 

was proposed by Hochreiter and Schmidhuber in 1997 [24]. This architecture 

works as a memory cell that has an input gate, an output gate, and a forget gate. 

All of the gates have access to the current input and the previous output value, 

but each gate has its own criteria for choosing whether the information will pass 

through the gate or not. The gates modulate interactions between the memory cell 

and the environment. In essence, the LSTM layer keeps a cell that contains 

certain information, with three controllers named input, output, and forget gates 

change the information contained with respect to the outside input. This enables 

the LSTM layer cells to remember information for an arbitrary duration without 

chaining all the time steps between the present and the past. 

 

3.3 The Human Brain  

The brain is the organ located in the head that controls the body by sending 

electrochemical signals from neurons. It is responsible for most of the activities in 

the body, as well as processing the information human receives from sensory 
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organs. The functions of the brain mainly include motor control, sensory 

information processing, regulation of body conditions, as well as emotional 

controls. The brain is capable of doing all the tasks due to a large number of 

neurons and their interconnectivity. 

 

 

Figure 4: Diagram of a Neuron [25] 

 

3.3.1 Neuron 

 A neuron is a cell that communicates with other cells using synapses, which 

are special connections between cells. Usually, a neuron receives information from 
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other neurons through dendrite and transfers the information using axons. In 

order to transfer information, neurons have to generate an action potential which 

rapidly shoots along the axon, and activates synapses on the other side when the 

action potential reaches them.  

 

3.3.2 Electroencephalogram (EEG) 

 An electroencephalogram (EEG) is a test done to usually diagnose or 

monitor problems in the brain by measuring electrical activities of the brain 

created by action potentials. First of all, EEG is a non-invasive technique that 

records the electrical activity by positioning electrodes over the scalp of the subject 

[26]. The number of electrodes can vary, but in this thesis, the configuration of 

interest is the international 10-20 system, which is portrayed in Figure 5. The 

international 10-20 system’s name means that the electrodes are placed on 

locations dividing perimeters into 10% and 20% intervals. 

  All the electrodes are referenced to nasion (front), inion (rear), and the 

vertex, which is where CZ is from the diagram. The 10%, and 20% are relative 

distances to different lengths depending on the electrode. The distance between 

A1 to T3 and A2 to T4 are each 10% of the length of the line connected A1, and A2 

and all the distances between electrodes on the line are 20% of the same length. 

The electrodes around the head, (FP1, FP2, F8, T4, T6, O2, O1, T5, T3, F7 on the 



 

25 
 

diagram) are placed such that the distance between neighboring electrodes is 10% 

of the circumference of the head. Other electrodes that are not on the line, or on 

the circle are placed appropriately such that the distance between neighboring 

electrodes is approximately the same. 21 electrodes are used to cover all the areas 

of the head in this configuration. There are other variations of this configuration 

for better resolution of recordings such as a configuration that uses 74 electrodes 

to cover every 10% location and a configuration that uses over 300 electrodes to 

cover every 5% location [27].  

 

Figure 5: Electrodes of the International 10-20 System for EEG recording [28] 
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 For the measurements that created the dataset of interest, referential 

montage was used, which means two electrodes were used to compute the 

electrical activity of a region in the brain. Corresponding montages and electrodes 

are listed in Table 1. 

EEG signals are very low amplitude signals such that 1-10 µV can be 

considered a decent signal, while it can get up to several hundred µV [29]. The 

signals usually consist of 4 different waves: delta, theta, alpha, and beta waves. 

Delta wave has a frequency of 3Hz or below, theta wave has a frequency of 3.5-7.5 

Hz, the alpha wave has a frequency of 7.5-13 Hz, and the beta wave has a 

frequency of more than 14 Hz [30]. Each of the waves has different amplitude 

characteristics and physiological meanings. For example, theta waves are 

perfectly normal to be present in children up to age 13, and adults while in sleep, 

but the presence in awake adults indicates health problems [30]. Unfortunately, 

EEG signals suffer from numerous artifacts, which can be patient-related such as 

movement, sweating, eye movements, but can also be non-patient related such as 

50/60Hz wall outlet artifact, cable movements, and electrodes popping out [2]. The 

goal of this thesis is to automatically detect these artifacts.  
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 Experiment 

4.1 Resources 

The dataset used in this thesis is the Temple University Hospital’s EEG 

Artifact Corpus. The dataset was developed to help to reduce the harmful effects 

of artifacts for EEG event classification algorithms such as seizure detection 

algorithms. The version of the dataset is v1.0.0, and the dataset is derived from 

the v1.1.0 of the TUH EEG Corpus [4]. There are 310 observations with 213 

patients with varying durations and sampling rates. The methods used to combat 

variations in the dataset are detailed in the upcoming sections. 

The version of the python that is used is 3.6.8. Additional libraries used are 

matplotlib v3.0.2, numpy v1.16.0, tqdm v4.31.1, pandas v0.24.0, pyedflib v0.1.14, 

scipy v1.2.0, tensorflow v1.12.0, and keras v2.2.4. The experiments were done 

using a machine equipped with 16GB memory, AMD FX(tm)-6300 Six-Core 

Processor 3.5GHz, and a GeForce GTX 1070 8GB graphics card. The data drive in 

which the corpus was located in was a standard hard drive with 7200RPM. Finally, 

the environment was a Windows 10 environment with a virtual environment with 

all the above libraries created using conda for the Anaconda Python distribution. 
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4.2 Data Preprocessing 

The dataset contains 3 different configurations of EEG: AR (averaged 

reference), LE (linked ears reference), and AR_A configuration that is a modified 

version of the AR configuration. All the data contain standard measurements that 

one could expect from the 10-20 International System. For AR, and LE 

configurations, 22 montages can be derived from the available channel 

information, and for AR_A configuration only 20 montages can be derived as EEG 

A1-REF and EEG A2-REF channels are missing. The computation necessary to 

derive the montages is tabulated in Table 1. 

There are only 7 occurrences of AR_A configuration with 4 patients, and as 

this configuration lacks similarity to other configurations, it was discarded for the 

experiments. Hence, there are 303 observations with 209 patients available. There 

are techniques to fill in the missing channels using adjacent channels as described 

in [6]. However, since missing A1, and A2 electrodes in AR_A configuration are 

located on the outermost boundary of the head, limiting the accuracy of any 

interpolated guesses, hence AR_A configuration observations were discarded. 
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Montage Number Computation 
1 FP1-F7 
2 F7-T3 
3 T3-T5 
4 T5-01 
5 FP2-F8 
6 F8-T4 
7 T4-T6 
8 T6-02 
9 A1-T3 

10 T3-C3 
11 C3-CZ 
12 CZ-C4 
13 C4-T4 
14 T4-A2 
15 FP1-F3 
16 F3-C3 
17 C3-P3 
18 P3-01 
19 FP2-F4 
20 F4-C4 
21 C4-P4 
22 P4-02 

Table 1: List of Montages with Appropriate Computation 
 

The original data are in The European Data Format (EDF), which is a 

standard file format designed for storage of medical time series data. All the EDF 

files provided have all the electrode information so that montages defined in the 

instruction that came along can be derived easily. In addition, corresponding label 

files, which have artifact class labels for the whole EEG session, and for each 
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montage. There are 7 possible labels in the Temple University’s original data 

corpus: eye movement (eyem), chewing (chew), shivering (shiv), electrode pop, 

electrode static, and lead artifacts (elpp), muscle artifacts (musc), background 

noise (bckg), and undefined annotation (null), which is the normal, unaffected 

signals. The label files provide the start time and stop time in seconds, and the 

label and the probability which is the confidence level of the label. All the labels 

in this dataset have a confidence level of 1. The background noise (bckg) label is 

not available for this dataset, hence this specific artifact dataset has 6 valid labels 

in total, of which 5 are artifacts and 1 is a normal case. 

The EEG sequences had varying sampling frequencies of 250Hz, 256Hz, 

480Hz, and 500Hz. As neural network models require input features to be of the 

same size and having different sampling rates for temporal data can harm the 

performance of the model, all the signals were resampled to 250Hz, which is the 

lowest sampling rate. Then the signals were chopped into 1-second segments in 

order to determine which segment of the signal is affected by artifacts. The 1-

second segment was chosen as the lowest frequency of the wave is around 3Hz, 

which allows the chunk to at least see 3 occurrences of the wave. In addition, all 

the observations end at a whole second, so that there is no overlap of information 

or loss of information when the time window for segments is 1 second. 
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Label eyem chew shiv elpp musc null total 
Occurrences 7471 2727 1338 2663 4892 327222 344975 

Percentage (%) 2.17 0.79 0.39 0.77 1.42 94.85 100 

Table 2: Number and Percentage of Examples of Each Label 

 

After this process on all 303 observations of varying lengths, a total of 

346313 examples were created. The breakdown of the number of examples for each 

label is given in Table 2. There is a high imbalance of data due to a large number 

of examples with label null. This is due to the nature of the signal as artifact 

content in the clinical EEG waves collected is low. There are only 1338 

observations of shivering (shiv) label, which consists of 0.39% of all the data 

available. Due to the relatively low frequency of occurrence, this label only caused 

problems in developing models as when the data set was split into train, test, and 

validation set, depending on the random state of the machine, often times 

shivering label was missing in one of the split data sets. The illustration of this 

problem is documented in the first section of the result section. Only one model, 

the RNN based model, was trained and tested on the data without shivering label 

removed, but the problem is still evident in the example. For the purposes of a 

more fair evaluation of models, label “shiv” was excluded from the experiments. 
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Label eyem chew elpp musc null total 
Occurrences 7471 2727 2663 4892 327222 346313 

Percentage (%) 2.16 0.78 0.77 1.41 94.49 100 

Table 3: Number and Percentage of Examples of Each Label After Reduction 

 

The dataset was divided into train set, validation set, and test set. The ratio 

among the three is 0.75:0.10:0.15. The data set division was done on the unique 

patient ID, in order to ensure that training and testing were not performed on the 

same patient as the goal of this model is to generalize to detect artifacts on new 

patients. Out of 209 patients, 157 patients were allocated to the training set, 21 

patients were allocated to the validation set and 31 patients were allocated to the 

test set. This translates to 224 observations in the train set, 23 observations in 

the validation set, and 56 observations in the test set. The order of the patient ID 

has been shuffled before dividing into 3 separate sets. 

In addition to the sampling rate, the dynamic range of signals varied. The 

neural network models prefer data that are around (-1,1) range so all the data 

were normalized to have 0-mean and standard deviation of 1. In order to retain 

the relative amplitude scale between each channel, and to account for the fact that 

statistics of the future data when implemented in a device, would not be available, 

the mean and the standard deviation of the whole training data was used for the 

normalization. The mean value of the training data of the sampled version of the 

dataset that was used for training was -1.5977595, and the standard deviation 
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was 219.39517. In order to normalize, mean was subtracted from all the data 

points, and the resulting values were all divided by the standard deviation. 

Another approach possible would be using the statistic of the 1-second window to 

normalize across all the channels. However, this approach can potentially lose 

valuable information such as any information about the absolute magnitude, 

which could be important in distinguishing between different muscle artifacts, 

which might cause a great amplitude change or not. 

In order to evaluate the models with an environment that is similar to the 

actual clinical setting, a data-set with the same pre-processing steps was created. 

The only difference is that this data set contains all the “null” artifact labels. This 

data set is only used to test the binary classification problem that detects artifacts 

that will be discussed in the following chapter. 

All the edf observations are in 16-bit floating point, however as the 

tensorflow library does not work on 16-bit precision floating points, all the data 

after the processing were all converted to 64-bit floating point. Converting all the 

data to 64-bit floating point and saving them as numpy array objects increased 

the size of the dataset from 5.39GB to 14.2GB. From experiments, it was evident 

that extra precision degraded the performance of the training process as the speed 

of hard drive reading could not keep up with the speed at which the model training 
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required them. In order to combat this problem, all the data was converted to 32-

bit floating point, and this decreased the size of the whole dataset to 7.1GB. 

As the interest of the research is to have a fast, on-line automatic annotator 

for artifacts, no further signal processing techniques or artifact removal 

techniques currently available were applied. All the data preprocessing steps are 

done in python, and the appropriate code samples are shown in Appendix A.1.1. 

 

4.3 Models 

In this section, final models will be presented as well as all the engineering 

decisions made on the way. All the failed attempts with explanations and 

conjectures of why they did not work are presented as well. 

 

4.3.1 Preliminary Studies 

In order to examine the data set to learn general characteristics and 

behavior, a computational graph with 2 fully connected layers was built. The input 

layer was flattened to reduce the dimension so that the fully connected layer can 

access all the data. Each fully connected layer had 1024 nodes and was activated 

by ReLu. Adam [31] optimizer was used, with the default setting, whose learning 
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rate is 0.001, beta 1 value is 0.9, beta 2 value is 0.999 with no decay. Adam 

optimizer was used for all the experiments as it is computationally efficient, with 

little memory requirement [31]. This fully connected model was trained using the 

training set for 10 epochs with the batch size of 32. The model was validated using 

the validation set created, but this model was never tested with the test set. The 

loss function that was used is “categorical_crossentropy”, which is defined as 

below: 

𝐿 = − ൫𝑦,𝑙𝑜𝑔(𝑦ො,)൯
ே

ୀଵ

 

i denotes the index of the observation, and n denotes the class label. y and 𝑦ො 

represent the true label and the estimated probability of the label respectively. 

This is categorical cross-entropy for N number of classes. The model minimizes 

this loss function by maximizing the estimated probability of class when the true 

label for the class is one. The model trains completely with an accuracy of 94.4%, 

which is around the accuracy that one will get with a baseline classifier that 

guesses all the signals as “null” that yields an accuracy of around 94.5%. The 

relative frequencies of labels other than “null” were so insignificant, that the 

model never attempted to optimize the parameters to account for artifact labels. 

This was evident in the behavior of the test and validation losses and accuracies 

which just fluctuated a bit over the 10 epochs. 
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 In order to combat the label-imbalance problem, another data set was 

prepared. In this data set, the “null” labels sub-sampled such that every 30 “null” 

observation is included to the dataset. This effectively reduces the number of “null” 

observations to 10000, which makes this label still the most dominating in 

numbers, but not overwhelming. After the subsampling, the breakdown of the 

labels is shown in Table 4.  

 

Label eyem chew shiv elpp musc null total 
Occurrences 7471 2727 1338 2663 4892 10763 29854 

Percentage (%) 25.03 9.13 4.48 8.92 16.39 36.05 100 

Table 4: Occurrences and Percentage of Each Label in Subsampled Dataset 

 

Using this newly created dataset, the model was retrained until 10 epochs, 

and the validation accuracy increased until 33% in the first 2 epochs and 

fluctuated around 33% for the rest of the epochs indicating that the model’s 

complexity is not sufficient enough to do the task. 

 

4.3.2 Version 1: Recurrent Neural Network Approach 

Using the prior knowledge that EEG signals are temporal, and previous 

works on detecting artifacts relied on statistical significances of various signal 
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features such as mean and standard deviation, the recurrent neural network 

seems to be the logical choice for the replacement of a network of 2 fully connected 

layers. After trying out different combinations of recurrent layers including 

SimpleRNN, Gated Recurrent Unit, Long Short-Term Memory (LSTM) layer was 

found out to be the most successful.  As one can predict the behavior of the training 

the model from just observing first few epochs in general, different models have 

been compared by how much training loss was reduced in 3 epochs, and how much 

validation loss was reduced as a result of those 3 epochs. For the cases in which 

the loss function for this data set did not decrease significantly (by 0.1 or more), 

the losses never decreased in a reasonable time, and the model tended to overfit 

to the training data. The final model that was decided is organized in Table 5. The 

total number of trainable parameters is 117549, and this translates to 225KB of 

weights when weights are saved. 

Layer (type) Output Shape Param # 
Input_1 (InputLayer) (None, 22, 250) 0 

Lstm_1 (LSTM) (None, 50) 60200 
Dense_1 (Dense) (None, 1024) 52224 
Dense_2 (Dense) (None, 5) 5125 

Table 5: Model Structure for the RNN Based Classifier 

 

The LSTM layer is to extract the temporal information embedded in the 

signal. The final dense layers are to do the classification tasks. The parameters on 
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each layer were chosen such that the model is as light as possible without 

sacrificing significant performance degradation. For the number of cells in the 

LSTM layer, a varying number of cells was tried such as 100, 200, 250, and the 

increasing the number of cells decreased the performance by overfitting. The 

model was trained on the training data using categorical cross-entropy as the loss 

function. The model was optimized using Adam optimizer with default learning 

rate and beta values. The batch size was 32, and the model was trained for 100 

epochs. Each epoch takes about 40 seconds, and the training roughly took about 

half an hour. The result of this model will be given in the next chapter. 

 

4.3.3 Version 2 Convolutional Neural Network Approach 

Another approach chosen was using convolutional neural networks. As all 

the montages are available and ordered such that the arrangement reflects the 

actual spatial closeness of the electrodes, the conjecture was that there will be 

certain localities across different channels. As EEG measures net neural activity, 

if an area of the brain gets triggered, all the electrodes that are near that area will 

be triggered, which makes montages that are close in the ordered list will have 

similar activity. As convolutional neural networks are known to work well with 

image data by using the fact that in images pixels that are related are close 

together, it seems possible that convolutional layers will also work well with this 
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task. As there is only one-dimensional information available per time frame, 1-D 

convolutional layers were used instead of 2-D convolutional layers. 

While convolutional layers capture the spatial information, the max-

pooling layers capture the temporal information by grouping up time frames 

together. Extracting spatial information, and temporal information are done 

multiple times so that any hidden information can be extracted. Before max-

pooling layers, batch normalization layers are added so that the values of latent 

space representation of the input signals are normalized and scaled. Parameter 

changes in layers during the training cause the layers to yield different outputs 

each iteration. This forces all the layers to readjust to the new distribution of the 

outputs every iteration, which delays the training. Batch normalization layer 

normalizes the activations to reduce these internal covariate shifts to make the 

training process to be faster, and more stable, especially for deep and large neural 

networks [32]. Finally, the model uses fully connected layers to do the 

classification task. Two versions of deep convolutional neural network models 

have been constructed. One version is deeper than the other one to see whether 

adding more layers helped with the classification or not. The structures of both 

versions are organized in Table 6 and Table 7. 

Both versions were optimized using the Adam optimizer [31] with the 

default setting. The batch size was 32, and the model was trained for 30, and 100 
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epochs respectively. The first CNN model was highly overfitting to the train set 

at around epochs 40, as the validation loss went up by 10 times. The source of this 

behavior could not be tracked, so the number of epochs that the shallow CNN 

model was trained for was decreased to 30 epochs. The shallow CNN model took 

about 20 seconds per epochs, and the deeper model took about 40 seconds per 

epochs. 

4.3.4 Ensemble Method 

 In addition to all the methods with different approaches, the final method 

that incorporates all the models was created. This model takes in the logit outputs 

of each of the 3 models, and simply adds the logits to do the decision making. 

Different combinations of models were tested, but the model that combines all 

three models, the RNN, the shallow CNN, the deep CNN, had the highest accuracy. 

For all the models, binary classification versions were constructed to 

examine how well models detect artifacts. The binary classification task for this 

problem is determining whether a 1-second segment contains an artifact or not, 

which will be denoted as either “artifact” or “null”. The only deviation for these 

new models from the original models is the last dense layer. Instead of returning 

a label of length 5, the binary classification versions return the output label of 

length 2, (artifact, null). This causes the parameter numbers to be multiplied by 

2/5 on the last dense layer. The number of total trainable parameters for the 
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shallow CNN classifier is 4728269, and for the deeper CNN classifier is 11548141. 

When weights are saved, the shallow CNN classifier requires 18.0MB while the 

deep CNN classifier requires 44.1MB. The results for both versions are given in 

the following chapter. All the construction of models and pipelines for input and 

output for the EEG signals are done in python, and the appropriate code sample 

is located in Appendix A.1.2. 

  



 

42 
 

Layer (type) Output Shape Param # 
Input_1 (InputLayer) (None, 22, 250) 0 
conv1d_1 (Conv1D) (None, 16, 250) 1072 

batch_normalization_1 (None, 16, 250) 1000 
max_pooling1d_1 (None, 16, 125) 0 

conv1d_2 (Conv1D) (None, 32, 125) 1568 
batch_normalization_2 (None, 32, 125) 500 

max_pooling1d_2 (None, 32, 63) 0 
conv1d_3 (Conv1D) (None, 64, 63) 6208 

batch_normalization_3 (None, 64, 63) 252 
max_pooling1d_3 (None, 64, 32) 0 

conv1d_4 (Conv1D) (None, 128, 32) 24704 
batch_normalization_4 (None, 128, 32) 128 

max_pooling1d_4 (None, 128, 16) 0 
conv1d_5 (Conv1D) (None, 256, 16) 98560 

batch_normalization_5 (None, 256, 16) 64 
max_pooling1d_5 (None, 256, 8) 0 

conv1d_6 (Conv1D) (None, 512, 8) 393728 
batch_normalization_6 (None, 512, 8) 32 

flatten_1 (None, 4096) 0 
dense_1(Dense) (None, 1024) 4195328 
dense_2(Dense) (None, 5) 5125 

Table 6: Model Structure for the Shallow CNN Classifier 
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Layer (type) Output Shape Param # 
Input_1 (InputLayer) (None, 22, 250) 0 
conv1d_1 (Conv1D) (None, 16, 250) 1072 

batch_normalization_1 (None, 16, 250) 1000 
max_pooling1d_1 (None, 16, 125) 0 

conv1d_2 (Conv1D) (None, 32, 125) 1568 
batch_normalization_2 (None, 32, 125) 500 

max_pooling1d_2 (None, 32, 63) 0 
conv1d_3 (Conv1D) (None, 64, 63) 6208 

batch_normalization_3 (None, 64, 63) 252 
max_pooling1d_3 (None, 64, 32) 0 

conv1d_4 (Conv1D) (None, 128, 32) 24704 
batch_normalization_4 (None, 128, 32) 128 

max_pooling1d_4 (None, 128, 16) 0 
conv1d_5 (Conv1D) (None, 256, 16) 98560 

batch_normalization_5 (None, 256, 16) 64 
max_pooling1d_5 (None, 256, 8) 0 

conv1d_6 (Conv1D) (None, 512, 8) 393728 
batch_normalization_6 (None, 512, 8) 32 

max_pooling1d_6 (None, 512, 4) 0 
conv1d_7 (Conv1D) (None, 1024, 4) 1573888 

batch_normalization_7 (None, 1024, 4) 16 
max_pooling1d_7 (None, 1024, 2) 0 

conv1d_8 (Conv1D) (None, 1024, 2) 3146752 
batch_normalization_8 (None, 1024, 2) 8 

conv1d_9 (Conv1D) (None, 1024, 2) 3146752 
batch_normalization_9 (None, 1024, 2) 8 

flatten_1 (None, 2048) 0 
dense_1(Dense) (None, 1024) 2098176 
dense_2(Dense) (None, 1024) 1049600 
dense_3(Dense) (None, 5) 5125 

Table 7: Model Structure for the Deep CNN Classifier 
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 Results 

After optimizing hyperparameters, and model structures using validation 

set accuracy, each model was tested using the test set. For the first step of 

developing the model, the recurrent neural network model was trained for 100 

epochs, on the data with the shivering label included. The confusion matrix for 

this model is shown in Figure 6. 

 

Figure 6: Confusion Matrix of RNN Based Model with All the Labels 
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The model completely fails to classify the shivering label and predicts all 

the shivering events to be either muscle movement event, electrode pop events, or 

the null event. In fact, the model does not predict anything to be the shivering 

event. The reason why the model failed to do so was there was no shivering label 

available in the training set, which caused the model to never be exposed to the 

label. As the number of shivering labels was so low as mentioned in the previous 

section, this label has been discarded. 

From here on, all the models were trained and tested on the modified 

dataset that does not have the shivering label. The recurrent neural network 

model that was trained for 100 epochs. At the end of the training, the train set 

accuracy was 0.7168, and the validation accuracy was 0.4262. However 

surprisingly, the test set accuracy was 0.5801, and the confusion matrix is shown 

in Figure 7. The model does really well on predicting eye movement, and 

predicting “null”. However, the model cannot predict electrode popping “elpp”, and 

muscle movement “musc” that well.  Unfortunately, this pattern persists in all the 

results. My conjecture of the behavior of the model is that eye movement and 

chewing labels have certain localities. Eye movement causes neurons in certain 

specific regions in the brain to fire, and chewing causes neurons in other specific 

regions in the brain to fire. This causes specific montages to be affected while 

leaving other montages to be like “null”. As there is a distinguishing feature to be 

extracted consistently across all the patients, the model does well on eye 
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movement and chewing labels. However, for the cases of electrode popping, and 

general muscle movement, the region of the montages that will be affected is 

ambiguous. Electrode popping causes similar noise pattern to occur when it occurs, 

but this can be anywhere, and similar observation could be made regarding muscle 

movement. 

 

 

Figure 7: Confusion Matrix of RNN Based Model on Test Data 
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 As limitations of precisely predicting the label are evident in the confusion 

matrix, at least, whether the model can act as an indicator for artifact presence 

needed to be tested. Hence, the models were retrained to do binary classification 

with the same number of epochs, and optimizer settings. The RNN based model 

trained to the train set accuracy of 0.9885, with validation accuracy of 0.6254. 

When tested on the test set, the highest accuracy was 0.7126. 

However, this evaluation depends highly on the threshold that is set for 

detection. For example, when there are many examples of “null”, or no artifacts, 

high accuracy could be achieved by intentionally raising the threshold of detection 

for artifacts high so that most of the examples are classified as “null”. Then the 

system will have high accuracy while failing to act as a respectable classifier for 

artifacts. In order to evaluate the performance of the detection systems receiver 

operating characteristic (ROC) curves are used, which illustrate the ability of the 

systems to diagnose with different thresholds. The ROC curve plots the 

probability of detection versus the probability of false alarm [33]. The probability 

of detection which is also known as the true positive rate (TPR), sensitivity, or 

recall, denotes the proportion of actual positives that are correctly identified. 

Using the problem of this thesis as an example, the true positive rate is the 

proportion of segments that actually contain artifacts that are correctly classified 

by the model among all the segments that contain artifacts. The probability of 

false alarm, which is often referred to as the fall-out, the Type I error, or the false 
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positive rate (FPR), denotes the proportion of negatives that are misidentified as 

positives. Using this task as an example again, the false positive rate would be 

the proportion of segments that do not contain artifacts that are classified as 

containing artifacts by the model. A perfect classifier has the true positive rate of 

1.0 and the false positive rate of 0.0, which makes the ROC curve to pass the upper 

left corner. Hence, a ROC curve that closely approaches the upper left corner 

indicates a system that discriminates well [34]. To numerically compare the 

performance of different ROC curves, the area under the curve (AUC) is computed 

to indicate how close the ROC curve is to the upper left corner. For all the ROC 

curves provided in this thesis, the area under the curve is also computed and 

provided. 

In Figure 8, the ROC curve for the RNN based model is shown to visualize 

the performance of the system. The orange line is the ROC curve, and the dotted 

blue line is the straight line connecting the (0,0), and (1,1) points. The straight 

line indicates the worst possible detection system. At around the false positive 

rate, which indicates that the model predicts that the artifact exists when it does 

not, of 0.424, the true positive rate, which indicates that the model correctly 

predicts the presence of the artifact is 0.800. This indicates that the model would 

work in a system roughly, but would not be recommended in any device that 

requires high accuracy. The area under the curve is 0.75. 
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Figure 8: ROC Curve for RNN Based Model 

 

Similar evaluations were done on the shallow CNN model and the deeper 

CNN model. The confusion matrices are shown in Figure 9, Figure 10, and ROC 

curves are shown in Figure 11, Figure 12. 

 The shallow CNN model was trained for 30 epochs, due to its tendency to 

overfit when it was trained for more than 40 epochs. The model was trained until 

the train accuracy of 0.7409, and the validation accuracy of 0.4203. The final test 

accuracy was 0.6515.  Given that both RNN based model and CNN based model 
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trained till the validation accuracy was around 0.42, the fact that CNN based 

model did about 7% better in predicting the 5 class classification problem was 

interesting. One possibility is that the difference in the complexities of both 

models causes such difference. Comparing the number of trainable parameters, 

the CNN based model is 4 times bigger, and this may have helped the model to 

generalize better. However, as evident in Figure 9, this model does significantly 

better in predicting eye movement and chewing than electrode pops, and muscle 

movements. 

 

Figure 9: Confusion Matrix of the Shallow CNN Model 
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Figure 10: Confusion Matrix of the Deep CNN Model 

 

 The result for the deep CNN model is similar. The model was trained to the 

100th epochs, and the train accuracy of 0.9472 was reached, and the validation 

accuracy at this epoch was 0.4430. This validation accuracy is slightly higher than 

the shallow CNN model. The final test accuracy is 0.6517, which is 0.0002 higher 

than the shallow CNN model. The confusion matrix shown in Figure 10, indicates 

similar behavior compared to other models. Hence, one can conclude that CNN 

based models work better in multi-class models, but RNN based model is much 
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lighter, and also simply making CNN based models more complex does not 

improve the performance of the model significantly. 

 

 

Figure 11: ROC curve for the Shallow CNN Model 

 

The more interesting findings are ROC curves. The same analytic method 

was applied to both CNN based models just as in the RNN based model. The 

shallow CNN model was retrained for 30 epochs, and the deeper CNN based model 
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was retrained for 100 epochs. The train set accuracies were 0.8108, and 0.9684, 

the validation accuracies were 0.5227, 0.6008, and the test accuracies were 0.6958, 

and 0.7499 for the shallow and the deep CNN models respectively. Although these 

numbers might be misleading as the accuracy depends on the threshold of the 

binary classifier, but for the binary classification problem, the more complex and 

deeper model has a performance improvement of about 0.05. The receiver 

operating characteristic curves of CNN based models are shown in Figure 11, and 

Figure 12. 

 

Figure 12: ROC Curve for the Deep CNN Model 
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These ROC curves, compared to that of the RNN based model, have a 

significantly higher area under the curve, indicating that it performs better. 

Numerically, the areas under the curve for the shallow CNN model and the deep 

CNN model are 0.82 and 0.80, respectively, which are larger than that of the RNN 

based model. At the true positive rate of 0.800, the false positive rates were 0.424, 

0.295, and 0.339 for the RNN the shallow CNN, and the deep CNN models 

respectively. This indicates that CNN based models can predict the presence of 

artifact correctly, with much fewer false alarms compared to the RNN based model.  

Lastly, the ensemble method was examined in the same procedure. The 

method incorporates all the other methods. The ensemble method simply sums 

the logits produced at the output layers of the other methods. The confusion 

matrix is shown in Figure 13. The ensemble method’s accuracy measures are 

higher compared to all the other methods, except for the “musc” label. The shallow 

CNN model achieves the accuracy of 0.33 on the “musc” label, while the ensemble 

method achieves 0.28. Regardless, the ensemble method achieves the overall 

accuracy of  0.6759, which is the highest among all the methods. In addition to the 

confusion matrix, the ROC curve for the binary classification version of the model 

is produced. The ROC curve is shown in Figure 14, with all the ROC curves from 

other models for better comparison. 



 

55 
 

 

Figure 13: Confusion Matrix of the Ensemble Method 

Interestingly the ROC curve for the shallow CNN model has the similar 

area under the curve as the ensemble method. The shallow CNN model has higher 

true positive rates in certain regions compared to the ensemble method, and the 

ensemble method performs superior to the shallow CNN model in the regions of 

lower threholds. 
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Figure 14: ROC Curves for All the Models 

   

Because for the binary classification problem, the main purpose is to 

accurately point out the artifact events, the time-lapse system was proposed to 

further enhance the performance. The idea comes from the fact that often artifacts 

come in bursts, previous segment’s label correlates well with the new segment 

that follows. This method does not change any of the models but rather works 

directly on the logits produced by the models. A sliding window adds all the logits 

in the window to produce a new logit that the classifier uses. Different methods of 
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producing the new logit were tried such as taking the maximum or doing weighted 

sum of the logits, but simply adding all the logits worked the best. Different sizes 

of sliding windows were tried, ranging from 1 to 10, but a 2-second window 

produced the best result. The ROC curves for the highest performing window 

setting are shown in Figure 15. 

 

 

Figure 15: ROC Curves for All the Models with The Time-Lapse Method 
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The time-lapse method improves all the ROC curves, especially lifting the 

regions in the lower false positive rates. At the true positive rate of 0.800, the new 

time-lapse method yields the false positive rates of 0.310, 0.288, 0.268, 0.258 for 

RNN, shallow CNN, deep CNN, and ensemble methods respectively. This is a 

slight improvement from the false positive rate of 0.295 from the shallow CNN 

model without the sliding window. The ensemble method does the best for this 

method proposed. 

In order to see the viability of the model in a real life settings, all the binary 

classification models were tested on a test set that contains all the “null” 

information without subsampling. The 5-class classification accuracies of the 

models are 0.7234, 0.7612, 0.7534, and 0.7808, for the RNN model, the shallow 

CNN model, the deep CNN model, and the ensemble model respectively. Only one 

confusion matrix from the best result is shown in the thesis as all the confusion 

matrices behave similarly. The resulting confusion matrix is shown in Figure 16. 

The increase in the accuracy comes from the fact that there are more “null” labels 

in the data set, hence the accuracy converges to the accuracy of predicting “null” 

label which is around 0.78 for the ensemble method. 
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Figure 16: Confusion Matrix of the Ensemble Method on Original Data 

 

The ROC curves for the binary classification problem using all the models 

on the non-subsampled data are shown in Figure 17 and Figure 18. The area 

under the curves are significantly higher than that of the subsampled data cases. 

These curves indicate the viability of the models in a real clinical settings. 
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Figure 17: ROC Curves for All the Models on Original Data 
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Figure 18: ROC Curves for All the Models with The Time-Lapse Method on 
Original Data 

 

Lastly, average time elapsed in processing one example was computed for 

each model, for each classification problem to see whether the model is feasible for 

doing an online signal processing task of indicating whether the artifact exists or 

not. For reference, there were 5797 observations in the test set. In addition, the 

time elapsed loading the tensorflow module, and libraries as well as loading the 

data were not accounted for. The results for accuracy with default thresholds, 
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which looks at the maximum confidence level of each label, average time elapsed, 

and the size of each model are shown in Table 8. All the test results on this table 

are from the subsampled test data. 

All the average time elapsed for inference for all the models is less than 

1ms, for each of the 1 second time windows. This indicates that the model is able 

to predict the presence and the kind of artifact quickly. In addition, the size of the 

models is small enough to be implemented in a Raspberry Pi, which could make 

this model highly portable. Since the original EEG signals were expressed in 16-

bit floating point values, the model can be further compressed if all the parameters 

are converted to 16-bit floating points instead of 32-bit floating points. This 

compression will approximately half the size of the model, further improving the 

portability. All the evaluations were done in python, and the appropriate code 

sample is available in Appendix, A.1.3. 

 

Model Average Time Elapsed 
(ms/sample) 

Test Set 
Accuracy (%) 

Size of the 
Model (KB) 

RNN 0.707 58.01 476 
RNN-binary 0.677 71.26 464 

CNN 0.483 65.15 18526 
CNN-binary 0.468 69.58 18514 
DeepCNN 0.595 65.17 45189 

DeepCNN-binary 0.568 74.99 45177 
Ensemble N/A 67.59 64191 

Table 8: Time Elapsed, Accuracy, and Size of each Model 
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 Conclusion 

The research proposes three types of deep learning based machine learning 

model that learns to distinguish artifacts from the real signal and classify artifacts. 

Three models, RNN based model, and two CNN based models of different depth 

have been constructed and compared. In addition, the ensemble model was created 

that utilizes all the other methods. The ensemble model, which has the best 

overall performance, achieves a 67.59% 5-class classification accuracy, and a true 

positive rate of 80% at the false positive rate of 25.82% for the binary classification 

problem. The models are light and fast enough to be implemented in a portable 

device, such as Raspberry Pi, as the ensemble model, which contains all the other 

models has 65MB worth of trainable parameters, and the slowest model, the RNN 

based model, only takes about 0.7 ms to perform prediction on a 1-second 

windowed EEG signal. The speed of the ensemble model has not been tested but 

given that the slowest component in the model occupies less than 0.1% of the 

segment implies there is no problem. As this model can successfully detect 

whether artifacts are present in collected signals quickly, and can tell what type 

of artifacts they are, physicians can use this device while collecting data to check 

whether the data that are being collected is free of artifacts or not. If the data are 

being affected by artifacts, physicians can quickly check which kind of artifact is 

present, and act in response to that artifact. 
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Clinicians indicate that a sensitivity, which is the true positive rate, of 95%, 

and specificity, the false positive rate, of below 5% to be the minimum requirement 

for clinical acceptance [5]. As none of the models achieve that guideline yet, there 

is much more investigation needed in optimizing the models. Hence for the future 

works, an investigation into incorporating different features that can be extracted 

quickly, and larger and more complex models to reach the recommended guideline 

can be done. In addition, since the models were trained, validated, and tested on 

the first version of the EEG artifact corpus which only consists of observations 

from 310 patients, in the near future when there are more data available, the 

model could be trained again to see whether the lack of data was part of the 

inadequate performance. Also, since classification within the artifacts, excluding 

the “null” label, seems to work at high accuracies evident from the confusion 

matrix, and the binary classification of artifacts can have arbitrarily high true 

positive rate, an investigation on two-step system seems to be another interesting 

path to take on. This research envisioned to have a portable device that can be 

used during data acquisition. Building a portable machine that runs these models 

to predict the presence of artifacts, and to classify the artifacts should be the next 

step. Finally, testing this machine in a real-life setting will be beneficial to see if 

the machine works and to see if there are additional adjustments and 

improvements to make. 

  



 

65 
 

 References 
 

[1]  M. J. Aminoff, "Principles of Neural Science. 4th edition," Muscle & Nerve, 

vol. 24, no. 6, pp. 839-839, 2001.  

[2]  E. K. S. Louis, L. C. Frey, J. W. Britton, J. L. Hopp, P. Korb, M. Z. 

Koubeissi, W. E. Lievens and E. M. Pestana-Knight, 

Electroencephalography (EEG): An Introductory Text and Atlas of Normal 

and Abnormal Findings in Adults, Children, and Infants, 2016.  

[3]  J. DellaBadia, W. L. Bell, J. W. Keyes, V. P. Mathews and S. S. Glazier, 

"Assessment and cost comparison of sleep-deprived EEG, MRI and PET in 

the prediction of surgical treatment for epilepsy," Seizure-european 

Journal of Epilepsy, vol. 11, no. 5, pp. 303-309, 2002.  

[4]  I. Obeid and J. Picone, "The Temple University Hospital EEG Data 

Corpus," Frontiers in Neuroscience, vol. 10, p. 196, 2016.  

[5]  M. Golmohammadi, A. H. H. N. Torbati, S. L. d. Diego, I. Obeid and J. 

Picone, "Automatic Analysis of EEGs Using Big Data and Hybrid Deep 

Learning Architectures," Frontiers in Human Neuroscience, vol. 13, 2019.  



 

66 
 

[6]  H. Nolan, R. Whelan and R. B. Reilly, "FASTER: Fully Automated 

Statistical Thresholding for EEG artifact Rejection," Journal of 

Neuroscience Methods, vol. 192, no. 1, pp. 152-162, 2010.  

[7]  T.-W. Lee, M. A. Girolami and T. J. Sejnowski, "Independent component 

analysis using an extended infomax algorithm for mixed subgaussian and 

supergaussian sources," Neural Computation, vol. 11, no. 2, pp. 417-441, 

1999.  

[8]  B. Singh and H. Wagatsuma, "A Removal of Eye Movement and Blink 

Artifacts from EEG Data Using Morphological Component Analysis," 

Computational and Mathematical Methods in Medicine, vol. 2017, pp. 

1861645-1861645, 2017.  

[9]  W. D. Clercq, A. Vergult, B. Vanrumste, W. V. Paesschen and S. V. Huffel, 

"Canonical Correlation Analysis Applied to Remove Muscle Artifacts From 

the Electroencephalogram," IEEE Transactions on Biomedical 

Engineering, vol. 53, no. 12, pp. 2583-2587, 2006.  

[10]  I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 

2016.  



 

67 
 

[11]  Y. Roy, H. J. Banville, I. Albuquerque, A. Gramfort, T. H. Falk and J. 

Faubert, "Deep learning-based electroencephalography analysis: a 

systematic review.," arXiv preprint arXiv:1901.05498, 2019.  

[12]  V. Krishnaveni, S. Jayaraman, A. Gunasekaran and K. Ramadoss, 

"Automatic Removal of Ocular Artifacts using JADE Algorithm and 

Neural Network," International Journal of Computer and Information 

Engineering, vol. 2, no. 4, pp. 1330-1341, 2007.  

[13]  A. Hasasneh, N. Kampel, P. Sripad, N. J. Shah and J. Dammers, "Deep 

Learning Approach for Automatic Classification of Ocular and Cardiac 

Artifacts in MEG Data," The Journal of Engineering, vol. 2018, pp. 1-10, 

2018.  

[14]  C. M. Bishop, Pattern Recognition and Machine Learning (Information 

Science and Statistics), Berlin, Heidelberg: Springer-Verlag, 2006.  

[15]  R. Benenson, "Classification datasets results," 22 2 2016. [Online]. 

Available: 

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_re

sults.html. [Accessed 25 3 2019]. 

[16]  D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. 

Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, 



 

68 
 

L. Sifre, G. van den Driessche, T. Graepel and D. Hassabis, "Mastering the 

game of Go without human knowledge," Nature, vol. 550, pp. 354--, 

October 2017.  

[17]  Glosser.ca, "File:Colored neural network.svg," Wikipedia, 28 February 

2013. [Online]. Available: 

https://en.wikipedia.org/wiki/File:Colored_neural_network.svg. [Accessed 

7 April 2019]. 

[18]  C. Nwankpa, W. Ijomah, A. Gachagan and S. Marshall, "Activation 

Functions: Comparison of trends in Practice and Research for Deep 

Learning.," arXiv preprint arXiv:1811.03378, 2018.  

[19]  D. H. Hubel and T. N. Wiesel, "Receptive fields and functional 

architecture of monkey striate cortex," The Journal of Physiology, vol. 195, 

no. 1, pp. 215-243, 1968.  

[20]  Theano Development Team, "Convolutioinal Neural Networks (LeNet)," 

[Online]. Available: http://deeplearning.net/tutorial/lenet.html. [Accessed 

8 April 2019]. 

[21]  FirelordPhoenix, "File:MaxpoolSample2.png," computersciencewiki, 26 

February 2018. [Online]. Available: 



 

69 
 

https://computersciencewiki.org/index.php/File:MaxpoolSample2.png. 

[Accessed 8 April 2019]. 

[22]  X. Li and X. Wu, "Constructing long short-term memory based deep 

recurrent neural networks for large vocabulary speech recognition," in 

2015 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), 2015.  

[23]  Y. Bengio, P. Y. Simard and P. Frasconi, "Learning long-term 

dependencies with gradient descent is difficult," IEEE Transactions on 

Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.  

[24]  S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural 

Computation, vol. 9, no. 8, pp. 1735-1780, 1997.  

[25]  BruceBlaus, "File:Blausen 0657 MultipolarNeuron.png," Wikipedia, 30 

September 2013. [Online]. Available: 

https://en.wikipedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png. 

[Accessed 8 April 2019]. 

[26]  A. F. Jackson and D. J. Bolger, "The neurophysiological bases of EEG and 

EEG measurement: A review for the rest of us," Psychophysiology, vol. 51, 

no. 11, pp. 1061-1071, 2014.  



 

70 
 

[27]  R. Oostenveld and P. Praamstra, "The five percent electrode system for 

high-resolution EEG and ERP measurements," Clinical Neurophysiology, 

vol. 112, no. 4, pp. 713-719, 2001.  

[28]  トマトン 124, "File:21 electrodes of International 10-20 system for 

EEG.svg," Wikimedia Commons, 30 May 2010. [Online]. Available: 

https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_1

0-20_system_for_EEG.svg. [Accessed 2 March 2019]. 

[29]  F. L. d. Silva and E. Niedermeyer, Electroencephalography: Basic 

principles, clinical applications, and related fields, 1987.  

[30]  The McGill Physiology Virtual Lab, "Biomedical Signals Acquisition," The 

McGill Physiology Virtual Laboratory, [Online]. Available: 

https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm. 

[Accessed 8 April 2019]. 

[31]  D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization," 

international conference on learning representations, 2015.  

[32]  S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift," international conference 

on machine learning, pp. 448-456, 2015.  



 

71 
 

[33]  M. Richards, Fundamentals of Radar Signal Processing, 2005.  

[34]  M. H. Zweig and G. Campbell, "Receiver-operating characteristic (ROC) 

plots: a fundamental evaluation tool in clinical medicine.," Clinical 

Chemistry, vol. 39, no. 4, pp. 561-577, 1993.  

 

  



 

72 
 

A. Appendix 

A.1 Code Samples 

A.1.1 Data Preprocessing 

1. import os   

2. import pandas as pandas   

3. import numpy as np   

4. import pyedflib   

5. import matplotlib.pyplot as plt   

6. from scipy import signal   

7. import random   

8. from tqdm import tqdm   

9.    

10. DIR_DATA = "D:/Data/Master/edf"   

11. DIR_SAVE = "D:/Data/Master_6/"   

12. DIR_SAVE_TRAIN = DIR_SAVE + 'train/'   

13. DIR_SAVE_TEST = DIR_SAVE + 'test/'   

14. DIR_SAVE_VAL = DIR_SAVE + 'val/'   

15.    

16. null_ = np.zeros(6)   

17. null_[5] = 1   

18. null_.astype(np.float32)   

19. np.random.seed(31415)   

20. def file_import():   

21.     train_ratio = 0.75   

22.     test_ratio =  0.15   

23.     val_ratio =   0.10   
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24.     edf_store = []   

25.     method_store = []   

26.     patient_store = []   

27.     for r, d, f in os.walk(DIR_DATA):   

28.         for file in f:   

29.             if ".edf" in file:   

30.                 if "01_tcp_ar" in r:   

31.                     edf_store.append(os.path.join(r,file))   

32.                     patient_store.append(file[0:8])   

33.                     method_store.append(1)   

34.                 elif "02_tcp_le" in r:   

35.                     edf_store.append(os.path.join(r,file))   

36.                     patient_store.append(file[0:8])   

37.                     method_store.append(2)   

38.     unique_ID = list(set(patient_store))   

39.     train_index = int(round(len(unique_ID)*train_ratio))   

40.     test_index = int(round(len(unique_ID)*test_ratio))   

41.     random.shuffle(unique_ID)   

42.     train_ID = unique_ID[0:train_index]   

43.     test_ID = unique_ID[train_index:train_index+test_index]   

44.     val_ID = unique_ID[train_index+test_index:]   

45.     train_edf = []   

46.     train_method = []   

47.     for i in train_ID:   

48.         for ii in range(len(edf_store)):   

49.             if i in edf_store[ii]:   

50.                 train_edf.append(edf_store[ii])   

51.                 train_method.append(method_store[ii])   

52.     test_edf = []   

53.     test_method = []   

54.     for i in test_ID:   
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55.         for ii in range(len(edf_store)):   

56.             if i in edf_store[ii]:   

57.                 test_edf.append(edf_store[ii])   

58.                 test_method.append(method_store[ii])   

59.     val_edf = []   

60.     val_method = []   

61.     for i in val_ID:   

62.         for ii in range(len(edf_store)):   

63.             if i in edf_store[ii]:   

64.                 val_edf.append(edf_store[ii])   

65.                 val_method.append(method_store[ii])   

66.     return train_edf, train_method, test_edf, test_method, val_edf, 

val_method   

67.    

68. def info_retrievel(flag):   

69.     if flag == 2: #LE   

70.         return ['EEG FP1-LE', 'EEG FP2-LE', 'EEG F3-LE', 'EEG F4-

LE', 'EEG C3-LE', 'EEG C4-LE', 'EEG P3-LE', 'EEG P4-LE', 'EEG O1-

LE', 'EEG O2-LE', 'EEG F7-LE', 'EEG F8-LE', 'EEG T3-LE', 'EEG T4-

LE', 'EEG T5-LE', 'EEG T6-LE', 'EEG CZ-LE','EEG A1-LE', 'EEG A2-LE']   

71.     return ['EEG FP1-REF', 'EEG FP2-REF', 'EEG F3-REF', 'EEG F4-

REF', 'EEG C3-REF', 'EEG C4-REF', 'EEG P3-REF', 'EEG P4-REF', 'EEG O1-

REF', 'EEG O2-REF', 'EEG F7-REF', 'EEG F8-REF', 'EEG T3-REF', 'EEG T4-

REF', 'EEG T5-REF', 'EEG T6-REF', 'EEG CZ-REF','EEG A1-REF','EEG A2-

REF']   

72.    

73. def montage_form(file,method):   

74.     label = file.getSignalLabels()   

75.     montage = []   

76.     needed = info_retrievel(method)   

77.     FP1 = file.readSignal(label.index(needed[0]))   
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78.     FP2 = file.readSignal(label.index(needed[1]))   

79.     F3 = file.readSignal(label.index(needed[2]))   

80.     F4 = file.readSignal(label.index(needed[3]))   

81.     C3 = file.readSignal(label.index(needed[4]))   

82.     C4 = file.readSignal(label.index(needed[5]))   

83.     P3 = file.readSignal(label.index(needed[6]))   

84.     P4 = file.readSignal(label.index(needed[7]))   

85.     N01 = file.readSignal(label.index(needed[8]))   

86.     N02 = file.readSignal(label.index(needed[9]))   

87.     F7 = file.readSignal(label.index(needed[10]))   

88.     F8 = file.readSignal(label.index(needed[11]))   

89.     T3 = file.readSignal(label.index(needed[12]))   

90.     T4 = file.readSignal(label.index(needed[13]))   

91.     T5 = file.readSignal(label.index(needed[14]))   

92.     T6 = file.readSignal(label.index(needed[15]))   

93.     CZ = file.readSignal(label.index(needed[16]))   

94.     A1 = file.readSignal(label.index(needed[17]))   

95.     A2 = file.readSignal(label.index(needed[18]))   

96.     montage.append(FP1-F7)   

97.     montage.append(F7-T3)   

98.     montage.append(T3-T5)   

99.     montage.append(T5-N01)   

100.     montage.append(FP2-F8)   

101.     montage.append(F8-T4)   

102.     montage.append(T4-T6)   

103.     montage.append(T6-N02)   

104.     montage.append(A1-T3)   

105.     montage.append(T3-C3)   

106.     montage.append(C3-CZ)   

107.     montage.append(CZ-C4)   

108.     montage.append(C4-T4)   
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109.     montage.append(T4-A2)   

110.     montage.append(FP1-F3)   

111.     montage.append(F3-C3)   

112.     montage.append(C3-P3)   

113.     montage.append(P3-N01)   

114.     montage.append(FP2-F4)   

115.     montage.append(F4-C4)   

116.     montage.append(C4-P4)   

117.     montage.append(P4-N02)   

118.     montage = np.asarray(montage,dtype = np.float32)   

119.     return montage   

120.    

121. def label_form(root):   

122.     labels = ['eyem','chew','shiv','elpp','musc','null']   

123.     directory = root.replace('.edf','.tse')   

124.     lines = open(directory,'r').readlines()[2:]   

125.     time = []   

126.     label = []   

127.     for l in lines:   

128.         temp = l.split()   

129.         temp2 = np.zeros(len(labels))   

130.         temp2[labels.index(temp[2])] = 1   

131.         temp2 == 1   

132.         label.append(temp2)   

133.         time.append(np.array([temp[0],temp[1]],dtype = np.float32)) 

  

134.     time = np.array(time,dtype = np.float32)   

135.     label = np.array(label,dtype = np.float32)   

136.     return label,time   

137.    

138. def create_data(directory,method,subsample):   
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139.     SAMPLING_RATE = 250   

140.     file = pyedflib.EdfReader(directory)   

141.     montage = montage_form(file,method)   

142.     label, time = label_form(directory)   

143.     montage = signal.resample(montage,int(time[-1][-

1]*SAMPLING_RATE),axis = 1)   

144.     file._close()   

145.     x = []   

146.     y = []   

147.     index = 0   

148.     counter = 0   

149.     for i in range(int(time[-1][-1])):   

150.         if subsample == 1 and np.all(label[np.sum(i >= time[:,0])-

1,:] == null_):   

151.             counter += 1   

152.             if counter == 30:   

153.                 counter = 0   

154.                 x.append(montage[:,i*SAMPLING_RATE:(i+1)*SAMPLING_RA

TE])   

155.                 y.append(label[np.sum(i >= time[:,0])-1,:])   

156.         else:   

157.             x.append(montage[:,i*SAMPLING_RATE:(i+1)*SAMPLING_RATE])

   

158.             y.append(label[np.sum(i >= time[:,0])-1,:])   

159.     x = np.array(x,dtype = np.float32)   

160.     y = np.array(y,dtype = np.float32)   

161.     return x, y   

162.    

163. def data_save(subsample = 1):   

164.     train_edf, train_method, test_edf, test_method, val_edf, val_met

hod = file_import()   
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165.     for i in tqdm(range(len(train_edf))):   

166.         x,y = create_data(train_edf[i],train_method[i],subsample)   

167.         name = str(i).zfill(3)   

168.         np.save(DIR_SAVE_TRAIN+name,x)   

169.         np.save(DIR_SAVE_TRAIN+name+'l',y)   

170.    

171.     for i in tqdm(range(len(test_edf))):   

172.         x,y = create_data(test_edf[i],test_method[i],subsample)   

173.         name = str(i).zfill(3)   

174.         np.save(DIR_SAVE_TEST+name,x)   

175.         np.save(DIR_SAVE_TEST+name+'l',y)   

176.    

177.     for i in tqdm(range(len(val_edf))):   

178.         x,y = create_data(val_edf[i],val_method[i],subsample)   

179.         name = str(i).zfill(3)   

180.         np.save(DIR_SAVE_VAL+name,x)   

181.         np.save(DIR_SAVE_VAL+name+'l',y)   

182.    

183. if __name__ == '__main__':   

184.     data_save(0)   
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A.1.2 Model 

1. # Libraries   

2. import data_pre_processing as dpp   

3. import tensorflow as tf   

4. import numpy as np   

5. import numpy.matlib   

6. import keras   

7. from tqdm import tqdm   

8. from keras.utils import Sequence   

9. from keras import optimizers   

10. from keras.models import Model   

11. from keras.layers import Conv1D, Dense, Activation, MaxPooling1D, Fl

atten, Reshape, BatchNormalization, LeakyReLU, Lambda, Input, Dropout, 

LSTM, Conv2D, MaxPooling2D   

12. from sklearn import preprocessing   

13. from sklearn.preprocessing import normalize   

14. import time   

15.    

16. # Locations to use for save, and load   

17. DIR_SAVE = "D:/Data/Master_4/"   

18. # DIR_SAVE = "D:/Data/Master_6/"   

19. DIR_SAVE_TRAIN = DIR_SAVE + 'train/'   

20. DIR_SAVE_VAL = DIR_SAVE + 'val/'   

21. DIR_SAVE_TEST = DIR_SAVE + 'test/'   

22. NUM_OBSERVATION = [224, 23, 56] # Number of Observations for train, 

val, test   

23. mu = -0.8698222   

24. std = 196.00111   

25.    

26. def data_load(dir,i):   
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27.     root = dir + str(i).zfill(3)   

28.     x = np.load(root+'.npy')   

29.     y = np.load(root+'l.npy')   

30.     return x,y   

31.    

32. def artifact_check(y):   

33.     if y.shape[1] == 2:   

34.         max = [0,0]   

35.         min = [9999,9998]   

36.     else:   

37.         max = [0,0,0,0,0]   

38.         min = [9999,9999,9999,9999,9999]   

39.    

40.     for i in range(y.shape[0]):   

41.         if i ==0:   

42.             prev = y[i]   

43.             counter = 1   

44.         else:   

45.             if np.array_equal(prev, y[i]):   

46.                 counter+=1   

47.             else:   

48.                 index = np.where(prev == 1)   

49.                 index = int(index[0])   

50.                 if (min[index] > counter):   

51.                     min[index] = counter   

52.    

53.                 if (max[index] < counter):   

54.                     max[index] = counter   

55.                 counter = 1   

56.             prev = y[i]   

57.     print(max)   
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58.     print(min)   

59.    

60. def load_all(directory, infos, b, time_lapse = 0):   

61.     x,y = data_load(directory,0)   

62.     k = []   

63.     k.append(y.shape[0])   

64.     for i in infos:   

65.         if i == 0:   

66.             continue   

67.         else:   

68.             temp1, temp2 = data_load(directory, i)   

69.             x = np.concatenate((x,temp1),axis = 0)   

70.             y = np.concatenate((y,temp2),axis = 0)   

71.             k.append(temp2.shape[0])   

72.     y = np.concatenate((y[:,0:2],y[:,3:6]),axis = 1)   

73.     mask = np.sum(y,axis=1)   

74.     y = y[mask != 0]   

75.     x = x[mask != 0]   

76.     if b == 1:   

77.         y = np.concatenate((np.abs(y[:,4:5]-1),y[:,4:5]),axis = 1)   

78.     # artifact_check(y)   

79.     if time_lapse == 1:   

80.         return x, y, k   

81.     return x, y   

82.    

83. class DataGenerator(Sequence):   

84.     def __init__(self,x,y,batch_size):   

85.         self.num_ = y.shape[0]   

86.         self.batch_size = batch_size   

87.         self.x = x   

88.         self.y = y   
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89.     def __len__(self):   

90.         return int(np.ceil(self.num_/self.batch_size))   

91.    

92.     def __getitem__(self,index):   

93.         if (index+1)*self.batch_size > self.num_:   

94.             in_ = self.x[self.num_-self.batch_size:]   

95.             out = self.y[self.num_-self.batch_size:]   

96.         else:   

97.             in_ = self.x[index*self.batch_size:(index+1)*self.batch_

size]   

98.             out = self.y[index*self.batch_size:(index+1)*self.batch_

size]   

99.         return in_, out   

100.    

101.     def on_epoch_end(self):   

102.         rng_state = np.random.get_state()   

103.         np.random.shuffle(self.x)   

104.         np.random.set_state(rng_state)   

105.         np.random.shuffle(self.y)   

106.    

107. def convconv(filters,size,strides,input):   

108.     x = Conv1D(filters,size,strides = strides,padding='same',data_fo

rmat='channels_first')(input)   

109.     x = BatchNormalization()(x)   

110.     return x   

111.    

112. def convblock1(filters,size,strides,input):   

113.     x = convconv(filters,size,strides,input)   

114.     x = MaxPooling1D(pool_size=2,padding='same',data_format='channel

s_first')(x)   

115.     return x   
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116.    

117. def Build_Model1(b):   

118.     inputlayer = Input(shape = (22,250),dtype = np.float32)   

119.     X = LSTM(50, return_sequences = False)(inputlayer)   

120.     X = Dense(1024,activation='relu')(X)   

121.     if b == 1:   

122.         Y = Dense(2,activation='softmax')(X)   

123.     else:   

124.         Y = Dense(5,activation='softmax')(X)   

125.     model = Model(inputs = inputlayer, outputs = Y)   

126.     optimizer = optimizers.Adam()   

127.     if b == 1:   

128.         model.compile(optimizer,'binary_crossentropy',['accuracy']) 

  

129.     else:   

130.         model.compile(optimizer,'categorical_crossentropy',['accurac

y'])   

131.     return model   

132.    

133. def Build_Model2(b):   

134.     inputlayer = Input(shape=(22, 250),dtype = np.float32)   

135.     X = convblock1(16,3,1,inputlayer)   

136.     X = convblock1(32,3,1,X)   

137.     X = convblock1(64,3,1,X)   

138.     X = convblock1(128,3,1,X)   

139.     X = convblock1(256,3,1,X)   

140.     X = convconv(512,3,1,X)   

141.     X = Flatten()(X)   

142.     X = Dense(1024, activation = 'relu')(X)   

143.     if b == 1:   

144.         Y = Dense(2,activation='softmax')(X)   
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145.     else:   

146.         Y = Dense(5,activation='softmax')(X)   

147.     model = Model(inputs = inputlayer, outputs = Y)   

148.     optimizer = optimizers.Adam()   

149.     if b == 1:   

150.         model.compile(optimizer,'binary_crossentropy',['accuracy']) 

  

151.     else:   

152.         model.compile(optimizer,'categorical_crossentropy',['accurac

y'])   

153.     return model   

154.    

155. def Build_Model3(b):   

156.     inputlayer = Input(shape=(22, 250),dtype = np.float32)   

157.     X = convblock1(16,3,1,inputlayer)   

158.     X = convblock1(32,3,1,X)   

159.     X = convblock1(64,3,1,X)   

160.     X = convblock1(128,3,1,X)   

161.     X = convblock1(256,3,1,X)   

162.     X = convblock1(512,3,1,X)   

163.     X = convblock1(1024,3,1,X)   

164.     X = convconv(1024,3,1,X)   

165.     X = convconv(1024,3,1,X)   

166.     X = Flatten()(X)   

167.     X = Dense(1024, activation = 'relu')(X)   

168.     X = Dense(1024, activation = 'relu')(X)   

169.     if b == 1:   

170.         Y = Dense(2,activation='softmax')(X)   

171.     else:   

172.         Y = Dense(5,activation='softmax')(X)   

173.     model = Model(inputs = inputlayer, outputs = Y)   
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174.     optimizer = optimizers.Adam()   

175.     if b == 1:   

176.         model.compile(optimizer,'binary_crossentropy',['accuracy']) 

  

177.     else:   

178.         model.compile(optimizer,'categorical_crossentropy',['accurac

y'])   

179.     return model   

180.    

181. def train(model,epoch,batch_size,b,name):   

182.     infos_train = np.arange(NUM_OBSERVATION[0])   

183.     infos_val = np.arange(NUM_OBSERVATION[1])   

184.     train_x, train_y = load_all(DIR_SAVE_TRAIN, infos_train,b)   

185.     val_x, val_y = load_all(DIR_SAVE_VAL, infos_val,b)   

186.     # mu = np.mean(train_x)   

187.     # std = np.std(train_x)   

188.     # print(mu) # -0.8698222   

189.     # print(std) # 196.00111   

190.     train_x = (train_x-mu)/std   

191.     val_x = (val_x-mu)/std   

192.     train_batch = DataGenerator(train_x, train_y,batch_size)   

193.     val_batch = DataGenerator(val_x, val_y ,batch_size)   

194.     model.fit_generator(   

195.         generator = train_batch,   

196.         steps_per_epoch = len(train_batch),   

197.         epochs = epoch,   

198.         validation_data = val_batch,   

199.         validation_steps = len(val_batch)   

200.     )   

201.     model.save_weights(name)   

202.     return 0   
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203.    

204. def test(model,b,name, time_lapse = 0):   

205.     infos_test = np.arange(NUM_OBSERVATION[2])   

206.     model.load_weights(name)   

207.     if time_lapse == 0:   

208.         test_x,test_y = load_all(DIR_SAVE_TEST,infos_test, b)   

209.     else:   

210.         test_x, test_y, k = load_all(DIR_SAVE_TEST,infos_test,b,time

_lapse)   

211.     test_x = (test_x-mu)/std   

212.     start = time.time()   

213.     y_hat = model.predict(test_x)   

214.     end = time.time()   

215.     print(test_x.shape[0])   

216.     print((end - start)/test_x.shape[0])   

217.     accuracy = model.evaluate(test_x,test_y,verbose=2)   

218.     print(accuracy)   

219.     if time_lapse == 1:   

220.         return test_y, y_hat, k   

221.     return test_y, y_hat   
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A.1.3 Runner 

1. import model as ml   

2. import os   

3. import numpy as np   

4. from matplotlib import pyplot as plt   

5. from sklearn.metrics import confusion_matrix   

6. from sklearn.metrics import roc_curve, auc   

7. from itertools import accumulate   

8. batch_size = 32   

9.    

10. def baseline():   

11.     a = np.zeros(6)   

12.     for r,d,f in os.walk(ml.DIR_SAVE):   

13.         for file in f:   

14.             if "l.npy" in file:   

15.                 y = np.load(os.path.join(r,file))   

16.                 a+=np.sum(y,axis = 0)   

17.     return a   

18.    

19. def deep_learning(model,name, b, epoch = 100):   

20.     np.random.seed(31415)   

21.     model.summary()   

22.     ml.train(model,epoch,batch_size,b,name)   

23.    

24. def ROC_single(y, y_hat):   

25.     labels = ['artifact','null']   

26.     tpr = dict()   

27.     fpr = dict()   

28.     roc_auc = dict()   

29.     fpr[0], tpr[0], _ = roc_curve(y[:, 0], y_hat[:, 0])   
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30.     roc_auc[0] = auc(fpr[0], tpr[0])   

31.     plt.figure()   

32.     lw = 2   

33.     plt.plot(fpr[0], tpr[0], color='darkorange', lw=lw,label='AUC = 

%0.2f' % roc_auc[0])   

34.     plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')   

35.     plt.xlim([0.0, 1.0])   

36.     plt.ylim([0.0, 1.05])   

37.     plt.xlabel('False Positive Rate')   

38.     plt.ylabel('True Positive Rate')   

39.     plt.legend(loc="lower right")   

40.     plt.show()   

41.    

42. def evaluate(model, b, name):   

43.     model.summary()   

44.     y, y_hat = ml.test(model,b, name)   

45.     if b == 0:   

46.         cm = confusion_matrix(y.argmax(axis=1),y_hat.argmax(axis=1))

   

47.         labels = ['eyem','chew','elpp','musc','null']   

48.         cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]   

49.         fmt = '.2f'   

50.         fig, ax = plt.subplots()   

51.         im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blue

s)   

52.         ax.figure.colorbar(im, ax=ax)   

53.         ax.set(xticks=np.arange(cm.shape[1]),   

54.             yticks=np.arange(cm.shape[0]),   

55.             xticklabels=labels, yticklabels=labels,   

56.             ylabel='True label',   

57.             xlabel='Predicted label')   
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58.         plt.setp(ax.get_xticklabels(), rotation=45, ha="right",   

59.                  rotation_mode="anchor")   

60.         thresh = cm.max() / 2.   

61.         for i in range(cm.shape[0]):   

62.             for j in range(cm.shape[1]):   

63.                 ax.text(j, i, format(cm[i, j], fmt),   

64.                     ha="center", va="center",   

65.                     color="white" if cm[i, j] > thresh else "black")

   

66.         fig.tight_layout()   

67.         plt.show()   

68.    

69.     if b == 1:   

70.         ROC_single(y,y_hat)   

71.    

72. def evaluate_multiple(model1, model2, model3, name1, name2, name3, f

lag = 0, ensemble = 0):   

73.     if flag == 0:   

74.         y1, y_hat1 = ml.test(model1,1,name1)   

75.         y2, y_hat2 = ml.test(model2,1,name2)   

76.         y3, y_hat3 = ml.test(model3,1,name3)   

77.     else:   

78.         y1 = model1   

79.         y_hat1 = model2   

80.         y2 = model3   

81.         y_hat2 = name1   

82.         y3 = name2   

83.         y_hat3 = name3   

84.     labels = ['artifact','null']   

85.     plt.figure()   

86.     Y_hat = [y_hat1,y_hat2,y_hat3]   
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87.     Y = [y1,y2,y3]   

88.     if ensemble == 1:   

89.         y4 = (y1+y2+y3)/3   

90.         y_hat4 = (y_hat1+y_hat2+y_hat3)/3   

91.         Y_hat = [y_hat1,y_hat2,y_hat3,y_hat4]   

92.         Y = [y1,y2,y3,y4]   

93.    

94.     for ii in range(len(Y)):   

95.         y_hat = Y_hat[ii]   

96.         yy = Y[ii]   

97.         if ii == 0:   

98.             label2 = 'RNN '   

99.         elif ii == 1:   

100.             label2 = 'CNN '   

101.         elif ii == 2:   

102.             label2 = 'Deep CNN '   

103.         else:   

104.             label2 = 'Ensemble '   

105.    

106.         fpr = dict()   

107.         tpr = dict()   

108.         roc_auc = dict()   

109.         for i in range(2):   

110.             fpr[i], tpr[i], _ = roc_curve(yy[:, i], y_hat[:, i])   

111.             roc_auc[i] = auc(fpr[i], tpr[i])   

112.         lw = 2   

113.         plt.plot(fpr[0], tpr[0],lw=lw, label = label2+'AUC = %0.2f' 

% roc_auc[0])   

114.     plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')   

115.     plt.xlim([0.0, 1.0])   

116.     plt.ylim([0.0, 1.05])   
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117.     plt.xlabel('False Positive Rate')   

118.     plt.ylabel('True Positive Rate')   

119.     plt.legend(loc='lower right')   

120.     plt.show()   

121.    

122. def evaluate_time_lapse(model, name, window, show = 1):   

123.     b = 1   

124.     y, y_hat, k = ml.test(model, b , name , time_lapse = 1)   

125.     k = list(accumulate(k))   

126.     start = 0   

127.     y_new = []   

128.     y_hat_new = []   

129.     for i in range(len(k)):   

130.         temp_y = y[start:k[i]]   

131.         temp_y_hat = y_hat[start:k[i]]   

132.         start = k[i]   

133.         for ii in range(temp_y.shape[0]-window+1):   

134.             temp = np.sum(temp_y[ii:ii+window],axis=0)   

135.             temp = temp[0]>0   

136.             if temp:   

137.                 y_new.append(np.array([1,0]))   

138.             else:   

139.                 y_new.append(np.array([0,1]))   

140.             y_hat_new.append(np.sum(temp_y_hat[ii:ii+window],axis=0)

)   

141.    

142.     y_new = np.array(y_new)   

143.     y_hat_new = np.array(y_hat_new)   

144.     if show == 1:   

145.         ROC_single(y_new,y_hat_new)   

146.     return y_new,y_hat_new   
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147.    

148. if __name__ == '__main__':   

149.     print(baseline()) # Checks baseline statistics   

150.     epoch = 100   

151.    

152.     ######### Multi Class Classification #############   

153.     b = 0   

154.     model1 = ml.Build_Model1(b)   

155.     name1 = 'RNN_100.h5'   

156.    

157.     model2 = ml.Build_Model2(b)   

158.     name2 = 'CNN_100.h5'   

159.     epoch = 30   

160.    

161.     model3 = ml.Build_Model3(b)   

162.     name3 = 'DCNN_100.h5'   

163.    

164.     ######## Binary Classification ###########   

165.     b = 1   

166.     model1 = ml.Build_Model1(b)   

167.     name1 = 'RNN_100_b.h5'   

168.    

169.     model2 = ml.Build_Model2(b)   

170.     name2 = 'CNN_100_b.h5'   

171.     epoch = 30   

172.    

173.     model3 = ml.Build_Model3(b)   

174.     name3 = 'DCNN_100_b.h5'   

175.    

176.     ################## Evaluations ############   

177.    



 

93 
 

178.     deep_learning(model,name,b, epoch)   

179.    

180.     evaluate(model1,b,name2)   

181.     evaluate(model2,b,name2)   

182.     evaluate(model3,b,name3)   

183.    

184.     evaluate_multiple(model1,model2,model3,name1,name2,name3,ensembl

e = 1)   

185.    

186.     y1, y_1 = evaluate_time_lapse(model1,name1,2,show=0)   

187.     y2, y_2 = evaluate_time_lapse(model2,name2,2,show=0)   

188.     y3, y_3 = evaluate_time_lapse(model3,name3,2,show=0)   

189.    

190.     evaluate_multiple(y1,y_1,y2,y_2,y3,y_3,flag=1, ensemble = 0)   
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