
THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART
ALBERT NERKEN SCHOOL OF ENGINEERING

Automatic Artifact Annotator for
EEG Waves Using Recurrent and
Convolutional Neural Networks

By

DongKyu Kim

A thesis submitted in partial fulfillment of the requirements for the
degree of

Master of Engineering

April 28, 2019

Advisor

Sam Keene

THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART
ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate's Thesis

Advisor and has received approval. It was submitted to the Dean of the

School of Engineering and the full Faculty, and was approved as partial

fulfillment of the requirements for the degree of Master of Engineering.

Barry Shoop – Date

Dean, School of Engineering

Prof. Sam Keene – Date
Candidate’s Thesis Advisor

i

Acknowledgment

I would like to thank my advisor, Professor Sam Keene, for his support,

encouragement, and guidance that he has given me to go through the thesis

process. Without him, I would never have learned and developed an interest in

machine learning.

I would like to thank Professor Chris Curro, who taught me deep learning, and

Professor Ian Kremenic, who taught me the basics of medical signals, especially

background on the electroencephalogram.

I would also like to thank the electrical engineering faculty members at The

Cooper Union for giving me a good education and always challenging me. I would

like to give special thanks to Professor Fred Fontaine, who approved all of my

overloaded schedules for the past 3 years.

I would like to thank my family members who have provided me mental supports

when I needed them.

I would like to thank my friends, and classmates, especially Junbum Kim, and

Samuel Cheng, for supporting me throughout my four years at the Cooper Union.

ii

Abstract

Electroencephalogram (EEG) is one of the widely used non-invasive brain signal

acquisition techniques that measure voltage fluctuations from neuron activities of

the brain. EEG is typically used to diagnose and monitor disorders such as

epilepsy, sleep disorders, and brain death and also to help advancement of various

fields of science such as cognitive science, and psychology. Unfortunately, EEG

signals usually suffer from a variety of artifacts like eye movements, chewing,

muscle movements, and electrode pops, which disrupts the diagnosis and hinders

precise representation of brain activities. This thesis evaluates three deep

learning methods, and an ensemble method to detect the presence of the artifacts

and to classify the kind of the artifact to help clinicians resolve problems regarding

artifacts immediately during the signal collection process. Models were optimized

to map the 1-second segments of raw EEG signals to detect 4 different kinds of

artifacts. Among all the models, the best model is the ensemble model, which

achieved 5-class classification accuracy of 67.59%, and a true positive rate of 80%

with 25.82% false alarm for binary artifact classification with time-l. The model

is lightweight and can be easily deployed in portable machines.

iii

Table of Contents

Acknowledgment ... i

Abstract ... ii

Table of Contents ... iii

Table of Figures .. v

Table of Tables ... vi

 Introduction ... 1

 Previous Works .. 5

 Background Information ... 10

3.1 Machine Learning ... 10

3.1.1 Supervised Learning ... 11

3.2 Deep Learning ... 12

3.2.1 Artificial Neural Networks .. 12

3.2.2 Convolutional Neural Network ... 18

3.2.3. Recurrent Neural Network .. 21

3.3 The Human Brain ... 22

3.3.1 Neuron .. 23

3.3.2 Electroencephalogram (EEG) .. 24

 Experiment ... 27

4.1 Resources ... 27

4.2 Data Preprocessing ... 28

iv

4.3 Models .. 34

4.3.1 Preliminary Studies ... 34

4.3.2 Version 1: Recurrent Neural Network Approach ... 36

4.3.3 Version 2 Convolutional Neural Network Approach .. 38

4.3.4 Ensemble Method .. 40

 Results .. 44

 Conclusion .. 63

 References .. 65

A. Appendix .. 72

A.1 Code Samples .. 72

A.1.1 Data Preprocessing ... 72

A.1.2 Model ... 79

A.1.3 Runner .. 87

v

Table of Figures

Figure 1: Representation of an Artificial Neural Network [17] 13

Figure 2: Visualization of Convolutional Layer [20] ... 18

Figure 3: Representation of Max-Pooling Layer [21] .. 20

Figure 4: Diagram of a Neuron [25]... 23

Figure 5: Electrodes of the International 10-20 System for EEG recording [27] 25

Figure 6: Confusion Matrix of RNN Based Model with All the Labels 44

Figure 7: Confusion Matrix of RNN Based Model on Test Data 46

Figure 8: ROC Curve for RNN Based Model ... 49

Figure 9: Confusion Matrix of the Shallow CNN Model 50

Figure 10: Confusion Matrix of the Deep CNN Model .. 51

Figure 11: ROC curve for the Shallow CNN Model .. 52

Figure 12: ROC Curve for the Deep CNN Model .. 53

Figure 13: Confusion Matrix of the Ensemble Method ... 55

Figure 14: ROC Curves for All the Models .. 56

Figure 15: ROC Curves for All the Models with The Time-Lapse Method 57

Figure 16: Confusion Matrix of the Ensemble Method on Original Data 59

Figure 17: ROC Curves for All the Models on Original Data 60

Figure 18: ROC Curves for All the Models with The Time-Lapse Method on

Original Data .. 61

vi

Table of Tables

Table 1: List of Montages with Appropriate Computation 29

Table 2: Number and Percentage of Examples of Each Label 31

Table 3: Number and Percentage of Examples of Each Label After Reduction .. 32

Table 4: Occurrences and Percentage of Each Label in Subsampled Dataset 36

Table 5: Model Structure for the RNN Based Classifier 37

Table 6: Model Structure for the Shallow CNN Classifier 42

Table 7: Model Structure for the Deep CNN Classifier .. 43

Table 8: Time Elapsed, Accuracy, and Size of each Model 62

1

 Introduction

The study of the brain, neuroscience, to understand about ourselves better

has been a great research area that combines scientists and engineers across

various disciplines. Sometimes, the understanding of the basis of learning,

perception, and consciousness is described as the “ultimate challenge” of biological

sciences [1]. A lot of advancements in neuroscience come from analyzing

recordings of the brain. However, due to the overwhelming amount of

electrochemical activities in brains, the collection of reliable data is still one of the

biggest challenges in neuroscience [2].

There are two main branches of brain signal acquisition methods: invasive

methods, and non-invasive methods. Invasive methods involve placements of

electrodes inside the brain, or insertion of needles through the subject’s head to

collect precise and highly local data. On the other hand, non-invasive methods

such as electroencephalogram (EEG), and magnetic resonance imaging (MRI)

suffer from noise and various artifacts [2]. Due to high interests and potentials in

this area of research, and relatively cheap and easy access to EEG machines [3],

there is a large amount of data available for analysis. However, a lot of EEG data

suffer from artifacts that are both physiological and technical, and the artifacts

are usually not documented well [2]. If there is a model that can distinguish

between artifacts, and cerebral data automatically, neuroscience can advance

2

further as reducing the effect of artifacts will increase the signal to noise ratio so

that brain activity can be detected more precisely.

To achieve this goal, Temple University has constructed a large dataset of

EEG waves from various patients, specifically labeled for artifacts [4] to help

engineers and scientists to build models that combat the lingering artifacts.

Previously, Golmohammadi, and colleagues [5] developed a model that

automatically analyzes EEG signals to help physicians diagnose brain-related

illnesses such as seizures using hybrid deep learning architectures. This model

integrates hidden Markov models (HMMS), deep learning models, and statistical

language models to deliver a composite model that has a true positive rate of 90%

while having a false alarm rate of below 5% on events of clinical interests: spike

and sharp waves, periodic lateralized epileptiform discharges, and generalized

periodic epileptiform discharges [5]. This model proves the viability of big data

and deep learning methods in detecting events in EEG signals. More works in this

area are documented in the next chapter.

The work in [5] attempts to classify artifacts as well as the mentioned

events of clinical interest, but the model developed was only able to distinguish

14.04% of the artifacts correctly from the data. As the goal of that model was to

detect seizures and epilepsy, no further analysis on artifacts was done, but it was

noted that transient pulse-like artifacts such as eye movements, and muscle

3

movements can significantly degrade the performance [5]. In this thesis, a method

that can quickly identify the presence of artifacts and the type of the artifacts

during the collection process is proposed, so that a clinician can resolve the

problem immediately and ensure the collected data is artifact-free. In order to

achieve this goal, multiple deep learning models with varying model size,

inference time, and accuracies were developed and optimized to compare and

contrast between advantages and disadvantages of different approaches. The key

feature of the models is all the inferences are done directly on the raw signals such

that there is no need for preprocessing the data other than aggregating enough

samples to be used for predictions by the model. The system aims to be memory

efficient, and computationally light, while being fast enough to be implemented

on portable systems such as Raspberry Pi and detect and classify artifacts in real-

time, potentially in a clinical setting.

The rest of this thesis is organized as follows. In Chapter 2, previous works

on automatic artifact detectors for EEG signals are presented. In Chapter 3,

background information on machine learning, deep learning, and the human brain

as well as electroencephalogram (EEG) is presented. In Chapter 4, details of the

dataset that was used for the experiment, descriptions of how data were modified

and shaped, and motivations regarding certain choices are presented and

discussed as well as the experiment setup. In Chapter 5, the results of the

experiments are presented and analyzed. Finally, in Chapter 6, the conclusion

4

regarding the experiment is presented to summarize the findings and suggest

future works. In Chapter 7, a list of references is presented, and in Chapter A,

appendix, code samples to support the thesis are presented.

5

 Previous Works

There have been numerous efforts to combat the artifact problems in EEG

signals. A lot of research has been done to reduce the effects of artifacts by utilizing

prior knowledge such as how some artifacts behave in the signal. Artifact removal

and detection tools of this nature tend to examine the statistical characteristics of

the signals.

Nolan, Whelan, and Reilly [6] proposed FASTER, Fully Automated

Statistical Thresholding for EEG artifact Rejection, which uses independent

component analysis (ICA) to separate EEG signals into neural activity and

artifacts. ICA works by separating multivariate signals into additive

subcomponents by assuming different subcomponents are statistically

independent of each other. The advantage of using ICA is that it tries to reduce

the statistical dependencies of different components of the signal, trying to

orthogonalize the components [7]. After decomposition, the model uses a series of

statistical comparison charts to check for statistical features such as correlation

with signal components separated using ICA, mean, variance, spatial, and et

cetera. This model was tested on simulated EEG and real EEG and had a true

positive rate of over 90%. The main drawback of this model is the computational

time as the ICA decomposition takes about 40 minutes. Nevertheless, the model

not only detects the signal quite accurately but also can remove the signal, as the

6

artifact component of the signal can be extracted. This model can detect eye

movement, EMG artifacts, linear trends, and white noise.

Similarly, Singh and Wagatsuma [8] used Morphological Component

Analysis (MCA), which uses a dictionary of multiple bases to guarantee

reconstruction of signals. MCA is applied to the EEG signal to deconstruct into a

combination of bases in the dictionary. Singh and Wagatsuma hypothesized that

three dictionaries of bases are dominant, and they are undecimated wavelet

transform (UDWT), discrete sine transform (DST), and DIRAC (standard unit

vector basis) [8]. The decomposition was able to show that EEG signals and their

artifacts are represented by different dictionaries of bases, indicating that given

the decomposition result, these can be distinguished. They successfully

categorized which dictionary corresponded well with the signal or the artifact.

This research demonstrates that an ensemble of different signal processing could

work for artifact classification. There are numerous other additional statistical

approaches to separate the real EEG signal from the artifacts, such as canonical

correlation analysis, which Clercq used to remove muscle artifacts from the EEG

signals [9].

All of the statistical approaches of the problem requires a deconstruction of

EEG signals into multiple components and analyzing each component to

determine which components are responsible for artifacts and which are

7

responsible for the real signal. Though they are highly interpretive, the separation

procedure takes a lot of computations, and prior knowledge, such as the number

of artifacts, a set of orthogonal bases that work well with time-series data or

general behavior of artifacts is required. Due to the complex nature of the EEG

signals, deep learning with its ability to learn hidden features from the raw data

has shown great promises [10].

According to the review paper by Roy et al [11], among the 156 papers that

the authors reviewed from January 2010 to July 2018 about applying deep

learning to EEG signals, some applied data preprocessing techniques and artifact

rejection techniques such as ICA mentioned above to combat the artifacts, while

some just used the raw data. Given that the majority of the papers did not use any

artifact removal schemes, Roy et al suggest that using deep learning on EEG data

might avoid the artifact removal step without performance degradation. However,

all the papers mentioned in Roy’s review paper specifically target certain

applications such as epilepsy, sleep monitorings and brain-computer interfaces.

None of the papers mentioned targets the detection of artifacts specifically.

However, the paper guides this research in a certain way as 40% of the studies

use convolutional neural networks (CNNs), and 14% use recurrent neural

networks (RNNs) [11].

8

Other works relating to deep learning and EEG signals or EEG like signals

not mentioned in the review paper above include Krishnaveni et al’s work on

ocular artifacts removal in EEG signals [12] and Hasasneh et al.’s work on

automatic classification of ocular and cardiac artifacts in

magnetoencephalography (MEG) [13]. Both of them include some data

preprocessing like ICA for Hasasneh’s work, and the Joint Approximation

Diagonalisation of Eigen matrices (JADE) algorithms for Krishnaveni’s work to

separate the real signal from the artifact signal before using neural networks. The

detection rates for test data for these works are 94.4%, and 92% respectively for

Hasasneh’s work [13] and Krishnaveni’s work [12]. However, both of these works

only address a single or two kinds of artifacts at the same time, while the model

to be proposed will include 4 different artifacts to be classified separately with no

preprocessing such that the model can be applied directly to the raw data.

There have been many attempts and successful attempts in detecting

artifacts and classifying them using statistical machine learning and inferences,

but there are not many pieces of research being done doing the same using deep

learning. Deep learning approaches are particularly adept at optimizing an

arbitrary large model and recognizing complex patterns [10]. The previous

methods require mathematical models for artifact events or seizure events to

classify the signals accurately, hence the performance of the models depends

highly on the accuracy of the proposed mathematical models. However, usage of

9

deep learning models can alleviate the incorrect modeling error as no accurate

model is needed to classify different events. In addition, statistical analysis of

large temporal data is computationally heavy and takes a long time. While

training a deep learning model to optimize the parameters may take a long time,

inference time for the completed models is relatively small compared to statistical

methods. To use these advantages, many works have attempted to classify

different aspects of the EEG signals for monitoring purposes for seizure or sleep

using deep learning, but not a lot of work has been done in detecting and

classifying artifacts using deep learning, especially classifying multiple artifacts

instead of detecting a small number of artifacts.

10

 Background Information

3.1 Machine Learning

Machine learning (ML) is the study of algorithms and models that utilize

computer systems to perform pattern recognition tasks without using explicitly

writing down the true pattern behind the tasks. Pattern recognition tasks are

problems of searching for hidden rules or regularities of data automatically using

computer algorithms. Due to fundamentally similar natures, Bishop says in his

book [14], “these activities can be viewed as two facets of the same field”. Machine

learning approach usually consists of using large amounts of data to improve the

model’s performance in certain tasks. An ideal machine learning model

generalizes the problem based on the available data such that the model will be

able to predict accurately on unseen examples. As these models, given enough data,

can perform really well in certain tasks such as a variety of image classification

tasks, including handwriting recognition, and house number recognition [15], or

playing games [16]. There are many types of machine learning algorithms as there

are many tasks to be tackled, and not all the tasks can be solved using a single

method. In the following subsection, supervised learning, which is the nature of

the classifier that was built for this thesis.

11

3.1.1 Supervised Learning

Supervised learning is a machine learning system that builds a model that

learns the input-output relationship of a system of interest in which both input

features and desired output labels are provided. The input and output data are

prelabelled for classification and are available for the model at training so that

this data can be used as the learning basis for the future unseen data.

Mathematically supervised learning algorithms work as follows. Given a

set of training data pairs {(�⃗�, 𝑦) | 𝑖 = 1,2 … , 𝑁} , where �⃗� is the input feature

vector of arbitrary but finite length, and 𝑦 is its corresponding label, the learning

algorithms try to find a function or a system that maps 𝑋 → 𝑌, where 𝑋 is the input

space, and 𝑌 is the output space. Let the system that maps the input to the output

to be a function 𝑔, such that 𝑦పෝ = 𝑔(𝑥పሬሬሬ⃗), represent the estimator of 𝑦. The machine

learning algorithms learn this function through minimizing a loss function 𝐿 that

usually computes how close the estimated labels, 𝑦ො are to the true labels, 𝑦.

 All of the machine learning models that are going to be discussed in this

thesis utilizes the loss function to optimize the machine learning algorithms to

best represent the unknown system. All the algorithms use gradient-based

methods to optimize the parameters associated with the models.

12

3.2 Deep Learning

 Deep learning is a powerful framework in machine learning with the ability

to represent systems of extreme complexity [10] due to its own model complexity

from multiple artificial neural network layers which will be discussed in the later

sections.

3.2.1 Artificial Neural Networks

 Artificial neural networks, ANNs, are computing networks that are loosely

inspired by the neural networks of animal brains. The idea behind the neural

networks of animal brains is that multiple neurons are interconnected by

synapses to perform a task together. Neurons are interconnected such that a piece

of information propagates through each other to deliver certain information to

certain parts of the body to perform each task. More details will be presented in

the neuron section of this chapter. Inspired by the animal neurons, artificial

neural networks have nodes that are interconnected with each other as in Figure

1.

 The input layer usually is reserved for the external system that presents

the network with a feature vector. Depending on the length of the feature vector,

the number of input nodes, or neurons, is adjusted. All the input nodes represent

13

an element in the feature vector, and in networks with fully connected hidden

layers, each of the input nodes is connected to every node in the hidden layer

Figure 1: Representation of an Artificial Neural Network [17]

 just as in Figure 1. Although the figure only has one hidden layer, the number of

the hidden layers can be arbitrarily large, and this number is usually referred to

as the depth of the neural network. Again, in a fully connected layer, each node in

a hidden layer is connected to every node in the next hidden layer. The output

layer occurs at the end of the neural network, and each node of the output layer

14

is connected to every node in the hidden layer from the last step. The nodes in the

output layer represent the label or the target vector, and for this thesis, the output

layer will represent the confidence level of different artifacts, indicating how sure

the model think each label exists in the give EEG signal.

 The way each node is connected is through linear combination with an

activation function. Each path from a node to another node has a certain weight

and bias. Using the input layer and the hidden layer in Figure 1 as an example,

each element in the input layer is denoted as {𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥}, and each element

in the hidden layer which will be regarded as the output elements is denoted as

{𝑦ଵ, 𝑦ଶ, 𝑦ଷ, … , 𝑦}. Then each output element is computed by the following equation:

𝑦 = 𝑓 ൭(𝑥 ∗ ℎ − 𝑏)

ୀଵ

൱ 𝑓𝑜𝑟 𝑖 𝑖𝑛 1,2, … 𝑚

ℎ and 𝑏 represent the weight and the bias associated with the input node ii, and

the function f represents an arbitrary activation function. The role of the

activation function is to introduce non-linearity to the network as without the non-

linearity, all the linear combinations connecting the input nodes to the output

nodes, regardless of how many hidden layers there are, can be summarized into a

single multiplicative matrix, and a corresponding bias. In other words, without

the activation function, adding many hidden layers does not change the network.

15

 There is a large number of activation functions that are capable of

introducing non-linearity to the network. Nwankpa et al. have done thorough

research on different kinds of activation functions [18]. Traditionally the sigmoid

activation was used which is given by the following equation.

𝑓(𝑥) =
1

1 + 𝑒ି௫

This equation is named “sigmoid” as when the equation is plotted, the graph is S-

shaped. The main advantage of this activation function is that since it has a

positive derivative everywhere with smoothness, it is a respectable measure for

probability based outputs, as it maps the whole real axis into a finite interval

between 0, and 1 [14]. This function is usually used in the outermost layer of the

binary classification task to convert the logits into confidence levels. However,

since the softmax function which will be introduced later, is a generalization of

the sigmoid function, in this thesis sigmoid function is not used. The main

drawbacks of this activation function are sharp gradients during backpropagation

and slow convergence.

 Another activation function is the rectified linear unit (ReLU) activation

function. The ReLU function is defined as follows:

𝑓(𝑥) = max (0, 𝑥)

16

The function “rectifies” values below 0 by forcing them to be 0. The main

advantage of this activation function is that it is computationally light. When the

input value is positive, the function just returns the value, and if the input value

is negative, the function returns 0. In addition, its gradient is either 0 or 1, which

is also easy to compute. The major drawback of this activation function is that

since the gradient of the negative values is all 0, with some bad weight

initializations, the model can never learn, and be stuck at the same state. There

are additional derivates of this activation function such as the Leaky ReLU

(LReLU), Parametric Rectified Linear Unit (PReLU), or Randomized Leaky ReLU

(RReLU) [18]. However, for lighter computation, for this research, only ReLU was

used.

The last activation function that will be introduced is the softmax function.

This activation function is used to make sense of the outer most layers of models

of classification tasks. All the models that are developed in this thesis have a

sigmoid activation function for the last fully connected layer to convert all the

output logits as confidence levels that are comparable. The softmax function is

computed using the following equation:

𝑓(𝑥) =
𝑒௫

∑ 𝑒௫

The characteristic of this function is that it converts a vector of real numbers into

probabilities. This function is used in the outermost layer of all the models in this

17

thesis, to convert the logits into probabilities or confidence levels so that the

classification task can be done.

 With these activation functions, the fully connected layers in artificial

neural networks can introduce non-linearities in the model to learn arbitrary

complex mappings between the given inputs and outputs. Artificial neural

networks learn by setting up a loss function or an evaluation function that

examines the predicted output and backpropagate the gradient of the loss function

to the input layer. Backpropagation updates all the weights in the neural

networks such that in the next epoch, the model can predict better.

 There is one additional layer that is used before fully connected layers in

this thesis, the flatten layer. This layer reshapes the input feature vector by

reducing the number of dimensions to one, regardless of the original number of

dimensions. For example, if the input vector has a shape of (32,16,16,3), which

means the vector has 4 dimensions with 32 elements in the first dimension, 16,

16, 3 in the second, the third, and the fourth dimensions respectively. The role of

the flatten layer is to convert this input vector into one long vector of shape

(24576,). This new vector contains all the information that was available in the

original input vector but only has one dimension. This layer removes

dimensionality in data frames to be used for fully connected layers.

18

3.2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is a derivation of the standard ANN

that is optimized for problems with localities. The motivation for this structure is

from Hubel and Wiesel’s work on cat’s visual cortexes [19]. As the visual cortexes

contain two basic types of cells that respond to certain shapes and are decent

image processing system, a similar structure was implemented to create a

convolutional layer. Convolutional Neural Networks consist of multiple of

convolutional layers that work as shown in Figure 2.

Figure 2: Visualization of Convolutional Layer [20]

19

 The convolutional layer consists of a collection of filters that convolves

around the input image. Using the figure as an example, K is one of the filters

defined in the layer, and it moves around the input image, I, such that the K never

leaves the boundary of I, but covers the whole area of I. The filter acts as a mask,

which does element-wise multiplication with a region selected in the input image.

After the element-wise multiplication, all the resulting values in the box are added

to produce an output value. There is a user definable variable named stride, which

defines how long the filter travels before the next observation. For the case of the

example, the stride is 1 because the filter shifts 1 unit in each direction. As there

are many filters available in a single layer, the layer can “look” at the input image

in many different ways, extracting useful features using different views. Hence,

the goal of this layer is to view images or sequences of data better, so the

coefficients of filters adapt to the task that the layer has been presented to.

 However, the above example is on images, in which 2 dimensions are

available for the input. The signals of interest of this research are time-series

signals with multiple channels. Hence, only 1-dimensional convolutional layers

are used. The only difference is the filters are 1-dimensional instead of 2-

dimensional, and the filter slides through different channels but not across the

temporal axis.

20

 Additional deep learning layer of interest is max pooling layer. A visual

representation of a Max-pooling layer is shown in Figure 3. The example shown is

a 2 by 2 max-pooling layer. Max-pooling layer basically downsamples an image or

an array by a specified factor. If an image is max-pooled with a stride of 2 as is the

case in the figure, the image is divided into tiles of 2 by 2 blocks, and only the

maximum value of the block is retained and saved to form a sampled version of

the original image. Again the example given is 2-dimensional for visual aid, but

the signals of interest are one dimensional in channels. Hence, for a 1-dimensional

max-pooling layer, instead of reducing the size in two dimensions, only 1-

dimension will be reduced.

Figure 3: Representation of Max-Pooling Layer [21]

https://computersciencewiki.org/images/8/8a/MaxpoolSample2.png

21

 The purpose of this layer is to retain important features while decreasing

the size of the representation. For the purpose of the thesis, max-pooling layers

are used as literal down-sampling systems as they were only used to reduce the

temporal dimension.

3.2.3. Recurrent Neural Network

 Another form of neural network architecture that will be used is Recurrent

Neural Network (RNN). Recurrent Neural Networks are like standard Artificial

Neural Networks except, RNNs have access to the previous outputs as well as the

current input. The existence of feedback loops makes RNNs excellent at

processing temporal data such as speech recognition [22] or electroencephalogram

(EEG) or functional MRI. One of the major drawbacks of this class of network is

that since input includes the output from the previous iteration, the rope back to

the past goes all the way back to the beginning of the sequence. This gives loss to

have access to all the weights that were ever engaged with the network, such that

when the backpropagation begins, the loss gets multiplied over and over by the

countless weights from the past. This causes either the loss to be 0 when most of

the weights’ magnitudes are below 1, or causes the loss gradient to be really large.

This problem is common difficulty found in training deep learning models, and

usually called “the vanishing gradient problem”, or “the exploding gradient

22

problem” depending on whether the gradient goes to 0 or some large number [23].

As a result, the model either does not learn anything or fluctuates too much to

settle down and learn anything.

 In order to combat the vanishing or exploding gradient problems [23], a

Recurrent Neural Network architecture called Long short-term memory (LSTM)

was proposed by Hochreiter and Schmidhuber in 1997 [24]. This architecture

works as a memory cell that has an input gate, an output gate, and a forget gate.

All of the gates have access to the current input and the previous output value,

but each gate has its own criteria for choosing whether the information will pass

through the gate or not. The gates modulate interactions between the memory cell

and the environment. In essence, the LSTM layer keeps a cell that contains

certain information, with three controllers named input, output, and forget gates

change the information contained with respect to the outside input. This enables

the LSTM layer cells to remember information for an arbitrary duration without

chaining all the time steps between the present and the past.

3.3 The Human Brain

The brain is the organ located in the head that controls the body by sending

electrochemical signals from neurons. It is responsible for most of the activities in

the body, as well as processing the information human receives from sensory

23

organs. The functions of the brain mainly include motor control, sensory

information processing, regulation of body conditions, as well as emotional

controls. The brain is capable of doing all the tasks due to a large number of

neurons and their interconnectivity.

Figure 4: Diagram of a Neuron [25]

3.3.1 Neuron

 A neuron is a cell that communicates with other cells using synapses, which

are special connections between cells. Usually, a neuron receives information from

24

other neurons through dendrite and transfers the information using axons. In

order to transfer information, neurons have to generate an action potential which

rapidly shoots along the axon, and activates synapses on the other side when the

action potential reaches them.

3.3.2 Electroencephalogram (EEG)

 An electroencephalogram (EEG) is a test done to usually diagnose or

monitor problems in the brain by measuring electrical activities of the brain

created by action potentials. First of all, EEG is a non-invasive technique that

records the electrical activity by positioning electrodes over the scalp of the subject

[26]. The number of electrodes can vary, but in this thesis, the configuration of

interest is the international 10-20 system, which is portrayed in Figure 5. The

international 10-20 system’s name means that the electrodes are placed on

locations dividing perimeters into 10% and 20% intervals.

 All the electrodes are referenced to nasion (front), inion (rear), and the

vertex, which is where CZ is from the diagram. The 10%, and 20% are relative

distances to different lengths depending on the electrode. The distance between

A1 to T3 and A2 to T4 are each 10% of the length of the line connected A1, and A2

and all the distances between electrodes on the line are 20% of the same length.

The electrodes around the head, (FP1, FP2, F8, T4, T6, O2, O1, T5, T3, F7 on the

25

diagram) are placed such that the distance between neighboring electrodes is 10%

of the circumference of the head. Other electrodes that are not on the line, or on

the circle are placed appropriately such that the distance between neighboring

electrodes is approximately the same. 21 electrodes are used to cover all the areas

of the head in this configuration. There are other variations of this configuration

for better resolution of recordings such as a configuration that uses 74 electrodes

to cover every 10% location and a configuration that uses over 300 electrodes to

cover every 5% location [27].

Figure 5: Electrodes of the International 10-20 System for EEG recording [28]

26

 For the measurements that created the dataset of interest, referential

montage was used, which means two electrodes were used to compute the

electrical activity of a region in the brain. Corresponding montages and electrodes

are listed in Table 1.

EEG signals are very low amplitude signals such that 1-10 µV can be

considered a decent signal, while it can get up to several hundred µV [29]. The

signals usually consist of 4 different waves: delta, theta, alpha, and beta waves.

Delta wave has a frequency of 3Hz or below, theta wave has a frequency of 3.5-7.5

Hz, the alpha wave has a frequency of 7.5-13 Hz, and the beta wave has a

frequency of more than 14 Hz [30]. Each of the waves has different amplitude

characteristics and physiological meanings. For example, theta waves are

perfectly normal to be present in children up to age 13, and adults while in sleep,

but the presence in awake adults indicates health problems [30]. Unfortunately,

EEG signals suffer from numerous artifacts, which can be patient-related such as

movement, sweating, eye movements, but can also be non-patient related such as

50/60Hz wall outlet artifact, cable movements, and electrodes popping out [2]. The

goal of this thesis is to automatically detect these artifacts.

27

 Experiment

4.1 Resources

The dataset used in this thesis is the Temple University Hospital’s EEG

Artifact Corpus. The dataset was developed to help to reduce the harmful effects

of artifacts for EEG event classification algorithms such as seizure detection

algorithms. The version of the dataset is v1.0.0, and the dataset is derived from

the v1.1.0 of the TUH EEG Corpus [4]. There are 310 observations with 213

patients with varying durations and sampling rates. The methods used to combat

variations in the dataset are detailed in the upcoming sections.

The version of the python that is used is 3.6.8. Additional libraries used are

matplotlib v3.0.2, numpy v1.16.0, tqdm v4.31.1, pandas v0.24.0, pyedflib v0.1.14,

scipy v1.2.0, tensorflow v1.12.0, and keras v2.2.4. The experiments were done

using a machine equipped with 16GB memory, AMD FX(tm)-6300 Six-Core

Processor 3.5GHz, and a GeForce GTX 1070 8GB graphics card. The data drive in

which the corpus was located in was a standard hard drive with 7200RPM. Finally,

the environment was a Windows 10 environment with a virtual environment with

all the above libraries created using conda for the Anaconda Python distribution.

28

4.2 Data Preprocessing

The dataset contains 3 different configurations of EEG: AR (averaged

reference), LE (linked ears reference), and AR_A configuration that is a modified

version of the AR configuration. All the data contain standard measurements that

one could expect from the 10-20 International System. For AR, and LE

configurations, 22 montages can be derived from the available channel

information, and for AR_A configuration only 20 montages can be derived as EEG

A1-REF and EEG A2-REF channels are missing. The computation necessary to

derive the montages is tabulated in Table 1.

There are only 7 occurrences of AR_A configuration with 4 patients, and as

this configuration lacks similarity to other configurations, it was discarded for the

experiments. Hence, there are 303 observations with 209 patients available. There

are techniques to fill in the missing channels using adjacent channels as described

in [6]. However, since missing A1, and A2 electrodes in AR_A configuration are

located on the outermost boundary of the head, limiting the accuracy of any

interpolated guesses, hence AR_A configuration observations were discarded.

29

Montage Number Computation
1 FP1-F7
2 F7-T3
3 T3-T5
4 T5-01
5 FP2-F8
6 F8-T4
7 T4-T6
8 T6-02
9 A1-T3

10 T3-C3
11 C3-CZ
12 CZ-C4
13 C4-T4
14 T4-A2
15 FP1-F3
16 F3-C3
17 C3-P3
18 P3-01
19 FP2-F4
20 F4-C4
21 C4-P4
22 P4-02

Table 1: List of Montages with Appropriate Computation

The original data are in The European Data Format (EDF), which is a

standard file format designed for storage of medical time series data. All the EDF

files provided have all the electrode information so that montages defined in the

instruction that came along can be derived easily. In addition, corresponding label

files, which have artifact class labels for the whole EEG session, and for each

30

montage. There are 7 possible labels in the Temple University’s original data

corpus: eye movement (eyem), chewing (chew), shivering (shiv), electrode pop,

electrode static, and lead artifacts (elpp), muscle artifacts (musc), background

noise (bckg), and undefined annotation (null), which is the normal, unaffected

signals. The label files provide the start time and stop time in seconds, and the

label and the probability which is the confidence level of the label. All the labels

in this dataset have a confidence level of 1. The background noise (bckg) label is

not available for this dataset, hence this specific artifact dataset has 6 valid labels

in total, of which 5 are artifacts and 1 is a normal case.

The EEG sequences had varying sampling frequencies of 250Hz, 256Hz,

480Hz, and 500Hz. As neural network models require input features to be of the

same size and having different sampling rates for temporal data can harm the

performance of the model, all the signals were resampled to 250Hz, which is the

lowest sampling rate. Then the signals were chopped into 1-second segments in

order to determine which segment of the signal is affected by artifacts. The 1-

second segment was chosen as the lowest frequency of the wave is around 3Hz,

which allows the chunk to at least see 3 occurrences of the wave. In addition, all

the observations end at a whole second, so that there is no overlap of information

or loss of information when the time window for segments is 1 second.

31

Label eyem chew shiv elpp musc null total
Occurrences 7471 2727 1338 2663 4892 327222 344975

Percentage (%) 2.17 0.79 0.39 0.77 1.42 94.85 100

Table 2: Number and Percentage of Examples of Each Label

After this process on all 303 observations of varying lengths, a total of

346313 examples were created. The breakdown of the number of examples for each

label is given in Table 2. There is a high imbalance of data due to a large number

of examples with label null. This is due to the nature of the signal as artifact

content in the clinical EEG waves collected is low. There are only 1338

observations of shivering (shiv) label, which consists of 0.39% of all the data

available. Due to the relatively low frequency of occurrence, this label only caused

problems in developing models as when the data set was split into train, test, and

validation set, depending on the random state of the machine, often times

shivering label was missing in one of the split data sets. The illustration of this

problem is documented in the first section of the result section. Only one model,

the RNN based model, was trained and tested on the data without shivering label

removed, but the problem is still evident in the example. For the purposes of a

more fair evaluation of models, label “shiv” was excluded from the experiments.

32

Label eyem chew elpp musc null total
Occurrences 7471 2727 2663 4892 327222 346313

Percentage (%) 2.16 0.78 0.77 1.41 94.49 100

Table 3: Number and Percentage of Examples of Each Label After Reduction

The dataset was divided into train set, validation set, and test set. The ratio

among the three is 0.75:0.10:0.15. The data set division was done on the unique

patient ID, in order to ensure that training and testing were not performed on the

same patient as the goal of this model is to generalize to detect artifacts on new

patients. Out of 209 patients, 157 patients were allocated to the training set, 21

patients were allocated to the validation set and 31 patients were allocated to the

test set. This translates to 224 observations in the train set, 23 observations in

the validation set, and 56 observations in the test set. The order of the patient ID

has been shuffled before dividing into 3 separate sets.

In addition to the sampling rate, the dynamic range of signals varied. The

neural network models prefer data that are around (-1,1) range so all the data

were normalized to have 0-mean and standard deviation of 1. In order to retain

the relative amplitude scale between each channel, and to account for the fact that

statistics of the future data when implemented in a device, would not be available,

the mean and the standard deviation of the whole training data was used for the

normalization. The mean value of the training data of the sampled version of the

dataset that was used for training was -1.5977595, and the standard deviation

33

was 219.39517. In order to normalize, mean was subtracted from all the data

points, and the resulting values were all divided by the standard deviation.

Another approach possible would be using the statistic of the 1-second window to

normalize across all the channels. However, this approach can potentially lose

valuable information such as any information about the absolute magnitude,

which could be important in distinguishing between different muscle artifacts,

which might cause a great amplitude change or not.

In order to evaluate the models with an environment that is similar to the

actual clinical setting, a data-set with the same pre-processing steps was created.

The only difference is that this data set contains all the “null” artifact labels. This

data set is only used to test the binary classification problem that detects artifacts

that will be discussed in the following chapter.

All the edf observations are in 16-bit floating point, however as the

tensorflow library does not work on 16-bit precision floating points, all the data

after the processing were all converted to 64-bit floating point. Converting all the

data to 64-bit floating point and saving them as numpy array objects increased

the size of the dataset from 5.39GB to 14.2GB. From experiments, it was evident

that extra precision degraded the performance of the training process as the speed

of hard drive reading could not keep up with the speed at which the model training

34

required them. In order to combat this problem, all the data was converted to 32-

bit floating point, and this decreased the size of the whole dataset to 7.1GB.

As the interest of the research is to have a fast, on-line automatic annotator

for artifacts, no further signal processing techniques or artifact removal

techniques currently available were applied. All the data preprocessing steps are

done in python, and the appropriate code samples are shown in Appendix A.1.1.

4.3 Models

In this section, final models will be presented as well as all the engineering

decisions made on the way. All the failed attempts with explanations and

conjectures of why they did not work are presented as well.

4.3.1 Preliminary Studies

In order to examine the data set to learn general characteristics and

behavior, a computational graph with 2 fully connected layers was built. The input

layer was flattened to reduce the dimension so that the fully connected layer can

access all the data. Each fully connected layer had 1024 nodes and was activated

by ReLu. Adam [31] optimizer was used, with the default setting, whose learning

35

rate is 0.001, beta 1 value is 0.9, beta 2 value is 0.999 with no decay. Adam

optimizer was used for all the experiments as it is computationally efficient, with

little memory requirement [31]. This fully connected model was trained using the

training set for 10 epochs with the batch size of 32. The model was validated using

the validation set created, but this model was never tested with the test set. The

loss function that was used is “categorical_crossentropy”, which is defined as

below:

𝐿 = − ൫𝑦,𝑙𝑜𝑔(𝑦ො,)൯
ே

ୀଵ

i denotes the index of the observation, and n denotes the class label. y and 𝑦ො

represent the true label and the estimated probability of the label respectively.

This is categorical cross-entropy for N number of classes. The model minimizes

this loss function by maximizing the estimated probability of class when the true

label for the class is one. The model trains completely with an accuracy of 94.4%,

which is around the accuracy that one will get with a baseline classifier that

guesses all the signals as “null” that yields an accuracy of around 94.5%. The

relative frequencies of labels other than “null” were so insignificant, that the

model never attempted to optimize the parameters to account for artifact labels.

This was evident in the behavior of the test and validation losses and accuracies

which just fluctuated a bit over the 10 epochs.

36

 In order to combat the label-imbalance problem, another data set was

prepared. In this data set, the “null” labels sub-sampled such that every 30 “null”

observation is included to the dataset. This effectively reduces the number of “null”

observations to 10000, which makes this label still the most dominating in

numbers, but not overwhelming. After the subsampling, the breakdown of the

labels is shown in Table 4.

Label eyem chew shiv elpp musc null total
Occurrences 7471 2727 1338 2663 4892 10763 29854

Percentage (%) 25.03 9.13 4.48 8.92 16.39 36.05 100

Table 4: Occurrences and Percentage of Each Label in Subsampled Dataset

Using this newly created dataset, the model was retrained until 10 epochs,

and the validation accuracy increased until 33% in the first 2 epochs and

fluctuated around 33% for the rest of the epochs indicating that the model’s

complexity is not sufficient enough to do the task.

4.3.2 Version 1: Recurrent Neural Network Approach

Using the prior knowledge that EEG signals are temporal, and previous

works on detecting artifacts relied on statistical significances of various signal

37

features such as mean and standard deviation, the recurrent neural network

seems to be the logical choice for the replacement of a network of 2 fully connected

layers. After trying out different combinations of recurrent layers including

SimpleRNN, Gated Recurrent Unit, Long Short-Term Memory (LSTM) layer was

found out to be the most successful. As one can predict the behavior of the training

the model from just observing first few epochs in general, different models have

been compared by how much training loss was reduced in 3 epochs, and how much

validation loss was reduced as a result of those 3 epochs. For the cases in which

the loss function for this data set did not decrease significantly (by 0.1 or more),

the losses never decreased in a reasonable time, and the model tended to overfit

to the training data. The final model that was decided is organized in Table 5. The

total number of trainable parameters is 117549, and this translates to 225KB of

weights when weights are saved.

Layer (type) Output Shape Param #
Input_1 (InputLayer) (None, 22, 250) 0

Lstm_1 (LSTM) (None, 50) 60200
Dense_1 (Dense) (None, 1024) 52224
Dense_2 (Dense) (None, 5) 5125

Table 5: Model Structure for the RNN Based Classifier

The LSTM layer is to extract the temporal information embedded in the

signal. The final dense layers are to do the classification tasks. The parameters on

38

each layer were chosen such that the model is as light as possible without

sacrificing significant performance degradation. For the number of cells in the

LSTM layer, a varying number of cells was tried such as 100, 200, 250, and the

increasing the number of cells decreased the performance by overfitting. The

model was trained on the training data using categorical cross-entropy as the loss

function. The model was optimized using Adam optimizer with default learning

rate and beta values. The batch size was 32, and the model was trained for 100

epochs. Each epoch takes about 40 seconds, and the training roughly took about

half an hour. The result of this model will be given in the next chapter.

4.3.3 Version 2 Convolutional Neural Network Approach

Another approach chosen was using convolutional neural networks. As all

the montages are available and ordered such that the arrangement reflects the

actual spatial closeness of the electrodes, the conjecture was that there will be

certain localities across different channels. As EEG measures net neural activity,

if an area of the brain gets triggered, all the electrodes that are near that area will

be triggered, which makes montages that are close in the ordered list will have

similar activity. As convolutional neural networks are known to work well with

image data by using the fact that in images pixels that are related are close

together, it seems possible that convolutional layers will also work well with this

39

task. As there is only one-dimensional information available per time frame, 1-D

convolutional layers were used instead of 2-D convolutional layers.

While convolutional layers capture the spatial information, the max-

pooling layers capture the temporal information by grouping up time frames

together. Extracting spatial information, and temporal information are done

multiple times so that any hidden information can be extracted. Before max-

pooling layers, batch normalization layers are added so that the values of latent

space representation of the input signals are normalized and scaled. Parameter

changes in layers during the training cause the layers to yield different outputs

each iteration. This forces all the layers to readjust to the new distribution of the

outputs every iteration, which delays the training. Batch normalization layer

normalizes the activations to reduce these internal covariate shifts to make the

training process to be faster, and more stable, especially for deep and large neural

networks [32]. Finally, the model uses fully connected layers to do the

classification task. Two versions of deep convolutional neural network models

have been constructed. One version is deeper than the other one to see whether

adding more layers helped with the classification or not. The structures of both

versions are organized in Table 6 and Table 7.

Both versions were optimized using the Adam optimizer [31] with the

default setting. The batch size was 32, and the model was trained for 30, and 100

40

epochs respectively. The first CNN model was highly overfitting to the train set

at around epochs 40, as the validation loss went up by 10 times. The source of this

behavior could not be tracked, so the number of epochs that the shallow CNN

model was trained for was decreased to 30 epochs. The shallow CNN model took

about 20 seconds per epochs, and the deeper model took about 40 seconds per

epochs.

4.3.4 Ensemble Method

 In addition to all the methods with different approaches, the final method

that incorporates all the models was created. This model takes in the logit outputs

of each of the 3 models, and simply adds the logits to do the decision making.

Different combinations of models were tested, but the model that combines all

three models, the RNN, the shallow CNN, the deep CNN, had the highest accuracy.

For all the models, binary classification versions were constructed to

examine how well models detect artifacts. The binary classification task for this

problem is determining whether a 1-second segment contains an artifact or not,

which will be denoted as either “artifact” or “null”. The only deviation for these

new models from the original models is the last dense layer. Instead of returning

a label of length 5, the binary classification versions return the output label of

length 2, (artifact, null). This causes the parameter numbers to be multiplied by

2/5 on the last dense layer. The number of total trainable parameters for the

41

shallow CNN classifier is 4728269, and for the deeper CNN classifier is 11548141.

When weights are saved, the shallow CNN classifier requires 18.0MB while the

deep CNN classifier requires 44.1MB. The results for both versions are given in

the following chapter. All the construction of models and pipelines for input and

output for the EEG signals are done in python, and the appropriate code sample

is located in Appendix A.1.2.

42

Layer (type) Output Shape Param #
Input_1 (InputLayer) (None, 22, 250) 0
conv1d_1 (Conv1D) (None, 16, 250) 1072

batch_normalization_1 (None, 16, 250) 1000
max_pooling1d_1 (None, 16, 125) 0

conv1d_2 (Conv1D) (None, 32, 125) 1568
batch_normalization_2 (None, 32, 125) 500

max_pooling1d_2 (None, 32, 63) 0
conv1d_3 (Conv1D) (None, 64, 63) 6208

batch_normalization_3 (None, 64, 63) 252
max_pooling1d_3 (None, 64, 32) 0

conv1d_4 (Conv1D) (None, 128, 32) 24704
batch_normalization_4 (None, 128, 32) 128

max_pooling1d_4 (None, 128, 16) 0
conv1d_5 (Conv1D) (None, 256, 16) 98560

batch_normalization_5 (None, 256, 16) 64
max_pooling1d_5 (None, 256, 8) 0

conv1d_6 (Conv1D) (None, 512, 8) 393728
batch_normalization_6 (None, 512, 8) 32

flatten_1 (None, 4096) 0
dense_1(Dense) (None, 1024) 4195328
dense_2(Dense) (None, 5) 5125

Table 6: Model Structure for the Shallow CNN Classifier

43

Layer (type) Output Shape Param #
Input_1 (InputLayer) (None, 22, 250) 0
conv1d_1 (Conv1D) (None, 16, 250) 1072

batch_normalization_1 (None, 16, 250) 1000
max_pooling1d_1 (None, 16, 125) 0

conv1d_2 (Conv1D) (None, 32, 125) 1568
batch_normalization_2 (None, 32, 125) 500

max_pooling1d_2 (None, 32, 63) 0
conv1d_3 (Conv1D) (None, 64, 63) 6208

batch_normalization_3 (None, 64, 63) 252
max_pooling1d_3 (None, 64, 32) 0

conv1d_4 (Conv1D) (None, 128, 32) 24704
batch_normalization_4 (None, 128, 32) 128

max_pooling1d_4 (None, 128, 16) 0
conv1d_5 (Conv1D) (None, 256, 16) 98560

batch_normalization_5 (None, 256, 16) 64
max_pooling1d_5 (None, 256, 8) 0

conv1d_6 (Conv1D) (None, 512, 8) 393728
batch_normalization_6 (None, 512, 8) 32

max_pooling1d_6 (None, 512, 4) 0
conv1d_7 (Conv1D) (None, 1024, 4) 1573888

batch_normalization_7 (None, 1024, 4) 16
max_pooling1d_7 (None, 1024, 2) 0

conv1d_8 (Conv1D) (None, 1024, 2) 3146752
batch_normalization_8 (None, 1024, 2) 8

conv1d_9 (Conv1D) (None, 1024, 2) 3146752
batch_normalization_9 (None, 1024, 2) 8

flatten_1 (None, 2048) 0
dense_1(Dense) (None, 1024) 2098176
dense_2(Dense) (None, 1024) 1049600
dense_3(Dense) (None, 5) 5125

Table 7: Model Structure for the Deep CNN Classifier

44

 Results

After optimizing hyperparameters, and model structures using validation

set accuracy, each model was tested using the test set. For the first step of

developing the model, the recurrent neural network model was trained for 100

epochs, on the data with the shivering label included. The confusion matrix for

this model is shown in Figure 6.

Figure 6: Confusion Matrix of RNN Based Model with All the Labels

45

The model completely fails to classify the shivering label and predicts all

the shivering events to be either muscle movement event, electrode pop events, or

the null event. In fact, the model does not predict anything to be the shivering

event. The reason why the model failed to do so was there was no shivering label

available in the training set, which caused the model to never be exposed to the

label. As the number of shivering labels was so low as mentioned in the previous

section, this label has been discarded.

From here on, all the models were trained and tested on the modified

dataset that does not have the shivering label. The recurrent neural network

model that was trained for 100 epochs. At the end of the training, the train set

accuracy was 0.7168, and the validation accuracy was 0.4262. However

surprisingly, the test set accuracy was 0.5801, and the confusion matrix is shown

in Figure 7. The model does really well on predicting eye movement, and

predicting “null”. However, the model cannot predict electrode popping “elpp”, and

muscle movement “musc” that well. Unfortunately, this pattern persists in all the

results. My conjecture of the behavior of the model is that eye movement and

chewing labels have certain localities. Eye movement causes neurons in certain

specific regions in the brain to fire, and chewing causes neurons in other specific

regions in the brain to fire. This causes specific montages to be affected while

leaving other montages to be like “null”. As there is a distinguishing feature to be

extracted consistently across all the patients, the model does well on eye

46

movement and chewing labels. However, for the cases of electrode popping, and

general muscle movement, the region of the montages that will be affected is

ambiguous. Electrode popping causes similar noise pattern to occur when it occurs,

but this can be anywhere, and similar observation could be made regarding muscle

movement.

Figure 7: Confusion Matrix of RNN Based Model on Test Data

47

 As limitations of precisely predicting the label are evident in the confusion

matrix, at least, whether the model can act as an indicator for artifact presence

needed to be tested. Hence, the models were retrained to do binary classification

with the same number of epochs, and optimizer settings. The RNN based model

trained to the train set accuracy of 0.9885, with validation accuracy of 0.6254.

When tested on the test set, the highest accuracy was 0.7126.

However, this evaluation depends highly on the threshold that is set for

detection. For example, when there are many examples of “null”, or no artifacts,

high accuracy could be achieved by intentionally raising the threshold of detection

for artifacts high so that most of the examples are classified as “null”. Then the

system will have high accuracy while failing to act as a respectable classifier for

artifacts. In order to evaluate the performance of the detection systems receiver

operating characteristic (ROC) curves are used, which illustrate the ability of the

systems to diagnose with different thresholds. The ROC curve plots the

probability of detection versus the probability of false alarm [33]. The probability

of detection which is also known as the true positive rate (TPR), sensitivity, or

recall, denotes the proportion of actual positives that are correctly identified.

Using the problem of this thesis as an example, the true positive rate is the

proportion of segments that actually contain artifacts that are correctly classified

by the model among all the segments that contain artifacts. The probability of

false alarm, which is often referred to as the fall-out, the Type I error, or the false

48

positive rate (FPR), denotes the proportion of negatives that are misidentified as

positives. Using this task as an example again, the false positive rate would be

the proportion of segments that do not contain artifacts that are classified as

containing artifacts by the model. A perfect classifier has the true positive rate of

1.0 and the false positive rate of 0.0, which makes the ROC curve to pass the upper

left corner. Hence, a ROC curve that closely approaches the upper left corner

indicates a system that discriminates well [34]. To numerically compare the

performance of different ROC curves, the area under the curve (AUC) is computed

to indicate how close the ROC curve is to the upper left corner. For all the ROC

curves provided in this thesis, the area under the curve is also computed and

provided.

In Figure 8, the ROC curve for the RNN based model is shown to visualize

the performance of the system. The orange line is the ROC curve, and the dotted

blue line is the straight line connecting the (0,0), and (1,1) points. The straight

line indicates the worst possible detection system. At around the false positive

rate, which indicates that the model predicts that the artifact exists when it does

not, of 0.424, the true positive rate, which indicates that the model correctly

predicts the presence of the artifact is 0.800. This indicates that the model would

work in a system roughly, but would not be recommended in any device that

requires high accuracy. The area under the curve is 0.75.

49

Figure 8: ROC Curve for RNN Based Model

Similar evaluations were done on the shallow CNN model and the deeper

CNN model. The confusion matrices are shown in Figure 9, Figure 10, and ROC

curves are shown in Figure 11, Figure 12.

 The shallow CNN model was trained for 30 epochs, due to its tendency to

overfit when it was trained for more than 40 epochs. The model was trained until

the train accuracy of 0.7409, and the validation accuracy of 0.4203. The final test

accuracy was 0.6515. Given that both RNN based model and CNN based model

50

trained till the validation accuracy was around 0.42, the fact that CNN based

model did about 7% better in predicting the 5 class classification problem was

interesting. One possibility is that the difference in the complexities of both

models causes such difference. Comparing the number of trainable parameters,

the CNN based model is 4 times bigger, and this may have helped the model to

generalize better. However, as evident in Figure 9, this model does significantly

better in predicting eye movement and chewing than electrode pops, and muscle

movements.

Figure 9: Confusion Matrix of the Shallow CNN Model

51

Figure 10: Confusion Matrix of the Deep CNN Model

 The result for the deep CNN model is similar. The model was trained to the

100th epochs, and the train accuracy of 0.9472 was reached, and the validation

accuracy at this epoch was 0.4430. This validation accuracy is slightly higher than

the shallow CNN model. The final test accuracy is 0.6517, which is 0.0002 higher

than the shallow CNN model. The confusion matrix shown in Figure 10, indicates

similar behavior compared to other models. Hence, one can conclude that CNN

based models work better in multi-class models, but RNN based model is much

52

lighter, and also simply making CNN based models more complex does not

improve the performance of the model significantly.

Figure 11: ROC curve for the Shallow CNN Model

The more interesting findings are ROC curves. The same analytic method

was applied to both CNN based models just as in the RNN based model. The

shallow CNN model was retrained for 30 epochs, and the deeper CNN based model

53

was retrained for 100 epochs. The train set accuracies were 0.8108, and 0.9684,

the validation accuracies were 0.5227, 0.6008, and the test accuracies were 0.6958,

and 0.7499 for the shallow and the deep CNN models respectively. Although these

numbers might be misleading as the accuracy depends on the threshold of the

binary classifier, but for the binary classification problem, the more complex and

deeper model has a performance improvement of about 0.05. The receiver

operating characteristic curves of CNN based models are shown in Figure 11, and

Figure 12.

Figure 12: ROC Curve for the Deep CNN Model

54

These ROC curves, compared to that of the RNN based model, have a

significantly higher area under the curve, indicating that it performs better.

Numerically, the areas under the curve for the shallow CNN model and the deep

CNN model are 0.82 and 0.80, respectively, which are larger than that of the RNN

based model. At the true positive rate of 0.800, the false positive rates were 0.424,

0.295, and 0.339 for the RNN the shallow CNN, and the deep CNN models

respectively. This indicates that CNN based models can predict the presence of

artifact correctly, with much fewer false alarms compared to the RNN based model.

Lastly, the ensemble method was examined in the same procedure. The

method incorporates all the other methods. The ensemble method simply sums

the logits produced at the output layers of the other methods. The confusion

matrix is shown in Figure 13. The ensemble method’s accuracy measures are

higher compared to all the other methods, except for the “musc” label. The shallow

CNN model achieves the accuracy of 0.33 on the “musc” label, while the ensemble

method achieves 0.28. Regardless, the ensemble method achieves the overall

accuracy of 0.6759, which is the highest among all the methods. In addition to the

confusion matrix, the ROC curve for the binary classification version of the model

is produced. The ROC curve is shown in Figure 14, with all the ROC curves from

other models for better comparison.

55

Figure 13: Confusion Matrix of the Ensemble Method

Interestingly the ROC curve for the shallow CNN model has the similar

area under the curve as the ensemble method. The shallow CNN model has higher

true positive rates in certain regions compared to the ensemble method, and the

ensemble method performs superior to the shallow CNN model in the regions of

lower threholds.

56

Figure 14: ROC Curves for All the Models

Because for the binary classification problem, the main purpose is to

accurately point out the artifact events, the time-lapse system was proposed to

further enhance the performance. The idea comes from the fact that often artifacts

come in bursts, previous segment’s label correlates well with the new segment

that follows. This method does not change any of the models but rather works

directly on the logits produced by the models. A sliding window adds all the logits

in the window to produce a new logit that the classifier uses. Different methods of

57

producing the new logit were tried such as taking the maximum or doing weighted

sum of the logits, but simply adding all the logits worked the best. Different sizes

of sliding windows were tried, ranging from 1 to 10, but a 2-second window

produced the best result. The ROC curves for the highest performing window

setting are shown in Figure 15.

Figure 15: ROC Curves for All the Models with The Time-Lapse Method

58

The time-lapse method improves all the ROC curves, especially lifting the

regions in the lower false positive rates. At the true positive rate of 0.800, the new

time-lapse method yields the false positive rates of 0.310, 0.288, 0.268, 0.258 for

RNN, shallow CNN, deep CNN, and ensemble methods respectively. This is a

slight improvement from the false positive rate of 0.295 from the shallow CNN

model without the sliding window. The ensemble method does the best for this

method proposed.

In order to see the viability of the model in a real life settings, all the binary

classification models were tested on a test set that contains all the “null”

information without subsampling. The 5-class classification accuracies of the

models are 0.7234, 0.7612, 0.7534, and 0.7808, for the RNN model, the shallow

CNN model, the deep CNN model, and the ensemble model respectively. Only one

confusion matrix from the best result is shown in the thesis as all the confusion

matrices behave similarly. The resulting confusion matrix is shown in Figure 16.

The increase in the accuracy comes from the fact that there are more “null” labels

in the data set, hence the accuracy converges to the accuracy of predicting “null”

label which is around 0.78 for the ensemble method.

59

Figure 16: Confusion Matrix of the Ensemble Method on Original Data

The ROC curves for the binary classification problem using all the models

on the non-subsampled data are shown in Figure 17 and Figure 18. The area

under the curves are significantly higher than that of the subsampled data cases.

These curves indicate the viability of the models in a real clinical settings.

60

Figure 17: ROC Curves for All the Models on Original Data

61

Figure 18: ROC Curves for All the Models with The Time-Lapse Method on
Original Data

Lastly, average time elapsed in processing one example was computed for

each model, for each classification problem to see whether the model is feasible for

doing an online signal processing task of indicating whether the artifact exists or

not. For reference, there were 5797 observations in the test set. In addition, the

time elapsed loading the tensorflow module, and libraries as well as loading the

data were not accounted for. The results for accuracy with default thresholds,

62

which looks at the maximum confidence level of each label, average time elapsed,

and the size of each model are shown in Table 8. All the test results on this table

are from the subsampled test data.

All the average time elapsed for inference for all the models is less than

1ms, for each of the 1 second time windows. This indicates that the model is able

to predict the presence and the kind of artifact quickly. In addition, the size of the

models is small enough to be implemented in a Raspberry Pi, which could make

this model highly portable. Since the original EEG signals were expressed in 16-

bit floating point values, the model can be further compressed if all the parameters

are converted to 16-bit floating points instead of 32-bit floating points. This

compression will approximately half the size of the model, further improving the

portability. All the evaluations were done in python, and the appropriate code

sample is available in Appendix, A.1.3.

Model Average Time Elapsed
(ms/sample)

Test Set
Accuracy (%)

Size of the
Model (KB)

RNN 0.707 58.01 476
RNN-binary 0.677 71.26 464

CNN 0.483 65.15 18526
CNN-binary 0.468 69.58 18514
DeepCNN 0.595 65.17 45189

DeepCNN-binary 0.568 74.99 45177
Ensemble N/A 67.59 64191

Table 8: Time Elapsed, Accuracy, and Size of each Model

63

 Conclusion

The research proposes three types of deep learning based machine learning

model that learns to distinguish artifacts from the real signal and classify artifacts.

Three models, RNN based model, and two CNN based models of different depth

have been constructed and compared. In addition, the ensemble model was created

that utilizes all the other methods. The ensemble model, which has the best

overall performance, achieves a 67.59% 5-class classification accuracy, and a true

positive rate of 80% at the false positive rate of 25.82% for the binary classification

problem. The models are light and fast enough to be implemented in a portable

device, such as Raspberry Pi, as the ensemble model, which contains all the other

models has 65MB worth of trainable parameters, and the slowest model, the RNN

based model, only takes about 0.7 ms to perform prediction on a 1-second

windowed EEG signal. The speed of the ensemble model has not been tested but

given that the slowest component in the model occupies less than 0.1% of the

segment implies there is no problem. As this model can successfully detect

whether artifacts are present in collected signals quickly, and can tell what type

of artifacts they are, physicians can use this device while collecting data to check

whether the data that are being collected is free of artifacts or not. If the data are

being affected by artifacts, physicians can quickly check which kind of artifact is

present, and act in response to that artifact.

64

Clinicians indicate that a sensitivity, which is the true positive rate, of 95%,

and specificity, the false positive rate, of below 5% to be the minimum requirement

for clinical acceptance [5]. As none of the models achieve that guideline yet, there

is much more investigation needed in optimizing the models. Hence for the future

works, an investigation into incorporating different features that can be extracted

quickly, and larger and more complex models to reach the recommended guideline

can be done. In addition, since the models were trained, validated, and tested on

the first version of the EEG artifact corpus which only consists of observations

from 310 patients, in the near future when there are more data available, the

model could be trained again to see whether the lack of data was part of the

inadequate performance. Also, since classification within the artifacts, excluding

the “null” label, seems to work at high accuracies evident from the confusion

matrix, and the binary classification of artifacts can have arbitrarily high true

positive rate, an investigation on two-step system seems to be another interesting

path to take on. This research envisioned to have a portable device that can be

used during data acquisition. Building a portable machine that runs these models

to predict the presence of artifacts, and to classify the artifacts should be the next

step. Finally, testing this machine in a real-life setting will be beneficial to see if

the machine works and to see if there are additional adjustments and

improvements to make.

65

 References

[1] M. J. Aminoff, "Principles of Neural Science. 4th edition," Muscle & Nerve,

vol. 24, no. 6, pp. 839-839, 2001.

[2] E. K. S. Louis, L. C. Frey, J. W. Britton, J. L. Hopp, P. Korb, M. Z.

Koubeissi, W. E. Lievens and E. M. Pestana-Knight,

Electroencephalography (EEG): An Introductory Text and Atlas of Normal

and Abnormal Findings in Adults, Children, and Infants, 2016.

[3] J. DellaBadia, W. L. Bell, J. W. Keyes, V. P. Mathews and S. S. Glazier,

"Assessment and cost comparison of sleep-deprived EEG, MRI and PET in

the prediction of surgical treatment for epilepsy," Seizure-european

Journal of Epilepsy, vol. 11, no. 5, pp. 303-309, 2002.

[4] I. Obeid and J. Picone, "The Temple University Hospital EEG Data

Corpus," Frontiers in Neuroscience, vol. 10, p. 196, 2016.

[5] M. Golmohammadi, A. H. H. N. Torbati, S. L. d. Diego, I. Obeid and J.

Picone, "Automatic Analysis of EEGs Using Big Data and Hybrid Deep

Learning Architectures," Frontiers in Human Neuroscience, vol. 13, 2019.

66

[6] H. Nolan, R. Whelan and R. B. Reilly, "FASTER: Fully Automated

Statistical Thresholding for EEG artifact Rejection," Journal of

Neuroscience Methods, vol. 192, no. 1, pp. 152-162, 2010.

[7] T.-W. Lee, M. A. Girolami and T. J. Sejnowski, "Independent component

analysis using an extended infomax algorithm for mixed subgaussian and

supergaussian sources," Neural Computation, vol. 11, no. 2, pp. 417-441,

1999.

[8] B. Singh and H. Wagatsuma, "A Removal of Eye Movement and Blink

Artifacts from EEG Data Using Morphological Component Analysis,"

Computational and Mathematical Methods in Medicine, vol. 2017, pp.

1861645-1861645, 2017.

[9] W. D. Clercq, A. Vergult, B. Vanrumste, W. V. Paesschen and S. V. Huffel,

"Canonical Correlation Analysis Applied to Remove Muscle Artifacts From

the Electroencephalogram," IEEE Transactions on Biomedical

Engineering, vol. 53, no. 12, pp. 2583-2587, 2006.

[10] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press,

2016.

67

[11] Y. Roy, H. J. Banville, I. Albuquerque, A. Gramfort, T. H. Falk and J.

Faubert, "Deep learning-based electroencephalography analysis: a

systematic review.," arXiv preprint arXiv:1901.05498, 2019.

[12] V. Krishnaveni, S. Jayaraman, A. Gunasekaran and K. Ramadoss,

"Automatic Removal of Ocular Artifacts using JADE Algorithm and

Neural Network," International Journal of Computer and Information

Engineering, vol. 2, no. 4, pp. 1330-1341, 2007.

[13] A. Hasasneh, N. Kampel, P. Sripad, N. J. Shah and J. Dammers, "Deep

Learning Approach for Automatic Classification of Ocular and Cardiac

Artifacts in MEG Data," The Journal of Engineering, vol. 2018, pp. 1-10,

2018.

[14] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics), Berlin, Heidelberg: Springer-Verlag, 2006.

[15] R. Benenson, "Classification datasets results," 22 2 2016. [Online].

Available:

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_re

sults.html. [Accessed 25 3 2019].

[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.

Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,

68

L. Sifre, G. van den Driessche, T. Graepel and D. Hassabis, "Mastering the

game of Go without human knowledge," Nature, vol. 550, pp. 354--,

October 2017.

[17] Glosser.ca, "File:Colored neural network.svg," Wikipedia, 28 February

2013. [Online]. Available:

https://en.wikipedia.org/wiki/File:Colored_neural_network.svg. [Accessed

7 April 2019].

[18] C. Nwankpa, W. Ijomah, A. Gachagan and S. Marshall, "Activation

Functions: Comparison of trends in Practice and Research for Deep

Learning.," arXiv preprint arXiv:1811.03378, 2018.

[19] D. H. Hubel and T. N. Wiesel, "Receptive fields and functional

architecture of monkey striate cortex," The Journal of Physiology, vol. 195,

no. 1, pp. 215-243, 1968.

[20] Theano Development Team, "Convolutioinal Neural Networks (LeNet),"

[Online]. Available: http://deeplearning.net/tutorial/lenet.html. [Accessed

8 April 2019].

[21] FirelordPhoenix, "File:MaxpoolSample2.png," computersciencewiki, 26

February 2018. [Online]. Available:

69

https://computersciencewiki.org/index.php/File:MaxpoolSample2.png.

[Accessed 8 April 2019].

[22] X. Li and X. Wu, "Constructing long short-term memory based deep

recurrent neural networks for large vocabulary speech recognition," in

2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2015.

[23] Y. Bengio, P. Y. Simard and P. Frasconi, "Learning long-term

dependencies with gradient descent is difficult," IEEE Transactions on

Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.

[24] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[25] BruceBlaus, "File:Blausen 0657 MultipolarNeuron.png," Wikipedia, 30

September 2013. [Online]. Available:

https://en.wikipedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png.

[Accessed 8 April 2019].

[26] A. F. Jackson and D. J. Bolger, "The neurophysiological bases of EEG and

EEG measurement: A review for the rest of us," Psychophysiology, vol. 51,

no. 11, pp. 1061-1071, 2014.

70

[27] R. Oostenveld and P. Praamstra, "The five percent electrode system for

high-resolution EEG and ERP measurements," Clinical Neurophysiology,

vol. 112, no. 4, pp. 713-719, 2001.

[28] トマトン 124, "File:21 electrodes of International 10-20 system for

EEG.svg," Wikimedia Commons, 30 May 2010. [Online]. Available:

https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_1

0-20_system_for_EEG.svg. [Accessed 2 March 2019].

[29] F. L. d. Silva and E. Niedermeyer, Electroencephalography: Basic

principles, clinical applications, and related fields, 1987.

[30] The McGill Physiology Virtual Lab, "Biomedical Signals Acquisition," The

McGill Physiology Virtual Laboratory, [Online]. Available:

https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm.

[Accessed 8 April 2019].

[31] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization,"

international conference on learning representations, 2015.

[32] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift," international conference

on machine learning, pp. 448-456, 2015.

71

[33] M. Richards, Fundamentals of Radar Signal Processing, 2005.

[34] M. H. Zweig and G. Campbell, "Receiver-operating characteristic (ROC)

plots: a fundamental evaluation tool in clinical medicine.," Clinical

Chemistry, vol. 39, no. 4, pp. 561-577, 1993.

72

A. Appendix

A.1 Code Samples

A.1.1 Data Preprocessing

1. import os

2. import pandas as pandas

3. import numpy as np

4. import pyedflib

5. import matplotlib.pyplot as plt

6. from scipy import signal

7. import random

8. from tqdm import tqdm

9.

10. DIR_DATA = "D:/Data/Master/edf"

11. DIR_SAVE = "D:/Data/Master_6/"

12. DIR_SAVE_TRAIN = DIR_SAVE + 'train/'

13. DIR_SAVE_TEST = DIR_SAVE + 'test/'

14. DIR_SAVE_VAL = DIR_SAVE + 'val/'

15.

16. null_ = np.zeros(6)

17. null_[5] = 1

18. null_.astype(np.float32)

19. np.random.seed(31415)

20. def file_import():

21. train_ratio = 0.75

22. test_ratio = 0.15

23. val_ratio = 0.10

73

24. edf_store = []

25. method_store = []

26. patient_store = []

27. for r, d, f in os.walk(DIR_DATA):

28. for file in f:

29. if ".edf" in file:

30. if "01_tcp_ar" in r:

31. edf_store.append(os.path.join(r,file))

32. patient_store.append(file[0:8])

33. method_store.append(1)

34. elif "02_tcp_le" in r:

35. edf_store.append(os.path.join(r,file))

36. patient_store.append(file[0:8])

37. method_store.append(2)

38. unique_ID = list(set(patient_store))

39. train_index = int(round(len(unique_ID)*train_ratio))

40. test_index = int(round(len(unique_ID)*test_ratio))

41. random.shuffle(unique_ID)

42. train_ID = unique_ID[0:train_index]

43. test_ID = unique_ID[train_index:train_index+test_index]

44. val_ID = unique_ID[train_index+test_index:]

45. train_edf = []

46. train_method = []

47. for i in train_ID:

48. for ii in range(len(edf_store)):

49. if i in edf_store[ii]:

50. train_edf.append(edf_store[ii])

51. train_method.append(method_store[ii])

52. test_edf = []

53. test_method = []

54. for i in test_ID:

74

55. for ii in range(len(edf_store)):

56. if i in edf_store[ii]:

57. test_edf.append(edf_store[ii])

58. test_method.append(method_store[ii])

59. val_edf = []

60. val_method = []

61. for i in val_ID:

62. for ii in range(len(edf_store)):

63. if i in edf_store[ii]:

64. val_edf.append(edf_store[ii])

65. val_method.append(method_store[ii])

66. return train_edf, train_method, test_edf, test_method, val_edf,

val_method

67.

68. def info_retrievel(flag):

69. if flag == 2: #LE

70. return ['EEG FP1-LE', 'EEG FP2-LE', 'EEG F3-LE', 'EEG F4-

LE', 'EEG C3-LE', 'EEG C4-LE', 'EEG P3-LE', 'EEG P4-LE', 'EEG O1-

LE', 'EEG O2-LE', 'EEG F7-LE', 'EEG F8-LE', 'EEG T3-LE', 'EEG T4-

LE', 'EEG T5-LE', 'EEG T6-LE', 'EEG CZ-LE','EEG A1-LE', 'EEG A2-LE']

71. return ['EEG FP1-REF', 'EEG FP2-REF', 'EEG F3-REF', 'EEG F4-

REF', 'EEG C3-REF', 'EEG C4-REF', 'EEG P3-REF', 'EEG P4-REF', 'EEG O1-

REF', 'EEG O2-REF', 'EEG F7-REF', 'EEG F8-REF', 'EEG T3-REF', 'EEG T4-

REF', 'EEG T5-REF', 'EEG T6-REF', 'EEG CZ-REF','EEG A1-REF','EEG A2-

REF']

72.

73. def montage_form(file,method):

74. label = file.getSignalLabels()

75. montage = []

76. needed = info_retrievel(method)

77. FP1 = file.readSignal(label.index(needed[0]))

75

78. FP2 = file.readSignal(label.index(needed[1]))

79. F3 = file.readSignal(label.index(needed[2]))

80. F4 = file.readSignal(label.index(needed[3]))

81. C3 = file.readSignal(label.index(needed[4]))

82. C4 = file.readSignal(label.index(needed[5]))

83. P3 = file.readSignal(label.index(needed[6]))

84. P4 = file.readSignal(label.index(needed[7]))

85. N01 = file.readSignal(label.index(needed[8]))

86. N02 = file.readSignal(label.index(needed[9]))

87. F7 = file.readSignal(label.index(needed[10]))

88. F8 = file.readSignal(label.index(needed[11]))

89. T3 = file.readSignal(label.index(needed[12]))

90. T4 = file.readSignal(label.index(needed[13]))

91. T5 = file.readSignal(label.index(needed[14]))

92. T6 = file.readSignal(label.index(needed[15]))

93. CZ = file.readSignal(label.index(needed[16]))

94. A1 = file.readSignal(label.index(needed[17]))

95. A2 = file.readSignal(label.index(needed[18]))

96. montage.append(FP1-F7)

97. montage.append(F7-T3)

98. montage.append(T3-T5)

99. montage.append(T5-N01)

100. montage.append(FP2-F8)

101. montage.append(F8-T4)

102. montage.append(T4-T6)

103. montage.append(T6-N02)

104. montage.append(A1-T3)

105. montage.append(T3-C3)

106. montage.append(C3-CZ)

107. montage.append(CZ-C4)

108. montage.append(C4-T4)

76

109. montage.append(T4-A2)

110. montage.append(FP1-F3)

111. montage.append(F3-C3)

112. montage.append(C3-P3)

113. montage.append(P3-N01)

114. montage.append(FP2-F4)

115. montage.append(F4-C4)

116. montage.append(C4-P4)

117. montage.append(P4-N02)

118. montage = np.asarray(montage,dtype = np.float32)

119. return montage

120.

121. def label_form(root):

122. labels = ['eyem','chew','shiv','elpp','musc','null']

123. directory = root.replace('.edf','.tse')

124. lines = open(directory,'r').readlines()[2:]

125. time = []

126. label = []

127. for l in lines:

128. temp = l.split()

129. temp2 = np.zeros(len(labels))

130. temp2[labels.index(temp[2])] = 1

131. temp2 == 1

132. label.append(temp2)

133. time.append(np.array([temp[0],temp[1]],dtype = np.float32))

134. time = np.array(time,dtype = np.float32)

135. label = np.array(label,dtype = np.float32)

136. return label,time

137.

138. def create_data(directory,method,subsample):

77

139. SAMPLING_RATE = 250

140. file = pyedflib.EdfReader(directory)

141. montage = montage_form(file,method)

142. label, time = label_form(directory)

143. montage = signal.resample(montage,int(time[-1][-

1]*SAMPLING_RATE),axis = 1)

144. file._close()

145. x = []

146. y = []

147. index = 0

148. counter = 0

149. for i in range(int(time[-1][-1])):

150. if subsample == 1 and np.all(label[np.sum(i >= time[:,0])-

1,:] == null_):

151. counter += 1

152. if counter == 30:

153. counter = 0

154. x.append(montage[:,i*SAMPLING_RATE:(i+1)*SAMPLING_RA

TE])

155. y.append(label[np.sum(i >= time[:,0])-1,:])

156. else:

157. x.append(montage[:,i*SAMPLING_RATE:(i+1)*SAMPLING_RATE])

158. y.append(label[np.sum(i >= time[:,0])-1,:])

159. x = np.array(x,dtype = np.float32)

160. y = np.array(y,dtype = np.float32)

161. return x, y

162.

163. def data_save(subsample = 1):

164. train_edf, train_method, test_edf, test_method, val_edf, val_met

hod = file_import()

78

165. for i in tqdm(range(len(train_edf))):

166. x,y = create_data(train_edf[i],train_method[i],subsample)

167. name = str(i).zfill(3)

168. np.save(DIR_SAVE_TRAIN+name,x)

169. np.save(DIR_SAVE_TRAIN+name+'l',y)

170.

171. for i in tqdm(range(len(test_edf))):

172. x,y = create_data(test_edf[i],test_method[i],subsample)

173. name = str(i).zfill(3)

174. np.save(DIR_SAVE_TEST+name,x)

175. np.save(DIR_SAVE_TEST+name+'l',y)

176.

177. for i in tqdm(range(len(val_edf))):

178. x,y = create_data(val_edf[i],val_method[i],subsample)

179. name = str(i).zfill(3)

180. np.save(DIR_SAVE_VAL+name,x)

181. np.save(DIR_SAVE_VAL+name+'l',y)

182.

183. if __name__ == '__main__':

184. data_save(0)

79

A.1.2 Model

1. # Libraries

2. import data_pre_processing as dpp

3. import tensorflow as tf

4. import numpy as np

5. import numpy.matlib

6. import keras

7. from tqdm import tqdm

8. from keras.utils import Sequence

9. from keras import optimizers

10. from keras.models import Model

11. from keras.layers import Conv1D, Dense, Activation, MaxPooling1D, Fl

atten, Reshape, BatchNormalization, LeakyReLU, Lambda, Input, Dropout,

LSTM, Conv2D, MaxPooling2D

12. from sklearn import preprocessing

13. from sklearn.preprocessing import normalize

14. import time

15.

16. # Locations to use for save, and load

17. DIR_SAVE = "D:/Data/Master_4/"

18. # DIR_SAVE = "D:/Data/Master_6/"

19. DIR_SAVE_TRAIN = DIR_SAVE + 'train/'

20. DIR_SAVE_VAL = DIR_SAVE + 'val/'

21. DIR_SAVE_TEST = DIR_SAVE + 'test/'

22. NUM_OBSERVATION = [224, 23, 56] # Number of Observations for train,

val, test

23. mu = -0.8698222

24. std = 196.00111

25.

26. def data_load(dir,i):

80

27. root = dir + str(i).zfill(3)

28. x = np.load(root+'.npy')

29. y = np.load(root+'l.npy')

30. return x,y

31.

32. def artifact_check(y):

33. if y.shape[1] == 2:

34. max = [0,0]

35. min = [9999,9998]

36. else:

37. max = [0,0,0,0,0]

38. min = [9999,9999,9999,9999,9999]

39.

40. for i in range(y.shape[0]):

41. if i ==0:

42. prev = y[i]

43. counter = 1

44. else:

45. if np.array_equal(prev, y[i]):

46. counter+=1

47. else:

48. index = np.where(prev == 1)

49. index = int(index[0])

50. if (min[index] > counter):

51. min[index] = counter

52.

53. if (max[index] < counter):

54. max[index] = counter

55. counter = 1

56. prev = y[i]

57. print(max)

81

58. print(min)

59.

60. def load_all(directory, infos, b, time_lapse = 0):

61. x,y = data_load(directory,0)

62. k = []

63. k.append(y.shape[0])

64. for i in infos:

65. if i == 0:

66. continue

67. else:

68. temp1, temp2 = data_load(directory, i)

69. x = np.concatenate((x,temp1),axis = 0)

70. y = np.concatenate((y,temp2),axis = 0)

71. k.append(temp2.shape[0])

72. y = np.concatenate((y[:,0:2],y[:,3:6]),axis = 1)

73. mask = np.sum(y,axis=1)

74. y = y[mask != 0]

75. x = x[mask != 0]

76. if b == 1:

77. y = np.concatenate((np.abs(y[:,4:5]-1),y[:,4:5]),axis = 1)

78. # artifact_check(y)

79. if time_lapse == 1:

80. return x, y, k

81. return x, y

82.

83. class DataGenerator(Sequence):

84. def __init__(self,x,y,batch_size):

85. self.num_ = y.shape[0]

86. self.batch_size = batch_size

87. self.x = x

88. self.y = y

82

89. def __len__(self):

90. return int(np.ceil(self.num_/self.batch_size))

91.

92. def __getitem__(self,index):

93. if (index+1)*self.batch_size > self.num_:

94. in_ = self.x[self.num_-self.batch_size:]

95. out = self.y[self.num_-self.batch_size:]

96. else:

97. in_ = self.x[index*self.batch_size:(index+1)*self.batch_

size]

98. out = self.y[index*self.batch_size:(index+1)*self.batch_

size]

99. return in_, out

100.

101. def on_epoch_end(self):

102. rng_state = np.random.get_state()

103. np.random.shuffle(self.x)

104. np.random.set_state(rng_state)

105. np.random.shuffle(self.y)

106.

107. def convconv(filters,size,strides,input):

108. x = Conv1D(filters,size,strides = strides,padding='same',data_fo

rmat='channels_first')(input)

109. x = BatchNormalization()(x)

110. return x

111.

112. def convblock1(filters,size,strides,input):

113. x = convconv(filters,size,strides,input)

114. x = MaxPooling1D(pool_size=2,padding='same',data_format='channel

s_first')(x)

115. return x

83

116.

117. def Build_Model1(b):

118. inputlayer = Input(shape = (22,250),dtype = np.float32)

119. X = LSTM(50, return_sequences = False)(inputlayer)

120. X = Dense(1024,activation='relu')(X)

121. if b == 1:

122. Y = Dense(2,activation='softmax')(X)

123. else:

124. Y = Dense(5,activation='softmax')(X)

125. model = Model(inputs = inputlayer, outputs = Y)

126. optimizer = optimizers.Adam()

127. if b == 1:

128. model.compile(optimizer,'binary_crossentropy',['accuracy'])

129. else:

130. model.compile(optimizer,'categorical_crossentropy',['accurac

y'])

131. return model

132.

133. def Build_Model2(b):

134. inputlayer = Input(shape=(22, 250),dtype = np.float32)

135. X = convblock1(16,3,1,inputlayer)

136. X = convblock1(32,3,1,X)

137. X = convblock1(64,3,1,X)

138. X = convblock1(128,3,1,X)

139. X = convblock1(256,3,1,X)

140. X = convconv(512,3,1,X)

141. X = Flatten()(X)

142. X = Dense(1024, activation = 'relu')(X)

143. if b == 1:

144. Y = Dense(2,activation='softmax')(X)

84

145. else:

146. Y = Dense(5,activation='softmax')(X)

147. model = Model(inputs = inputlayer, outputs = Y)

148. optimizer = optimizers.Adam()

149. if b == 1:

150. model.compile(optimizer,'binary_crossentropy',['accuracy'])

151. else:

152. model.compile(optimizer,'categorical_crossentropy',['accurac

y'])

153. return model

154.

155. def Build_Model3(b):

156. inputlayer = Input(shape=(22, 250),dtype = np.float32)

157. X = convblock1(16,3,1,inputlayer)

158. X = convblock1(32,3,1,X)

159. X = convblock1(64,3,1,X)

160. X = convblock1(128,3,1,X)

161. X = convblock1(256,3,1,X)

162. X = convblock1(512,3,1,X)

163. X = convblock1(1024,3,1,X)

164. X = convconv(1024,3,1,X)

165. X = convconv(1024,3,1,X)

166. X = Flatten()(X)

167. X = Dense(1024, activation = 'relu')(X)

168. X = Dense(1024, activation = 'relu')(X)

169. if b == 1:

170. Y = Dense(2,activation='softmax')(X)

171. else:

172. Y = Dense(5,activation='softmax')(X)

173. model = Model(inputs = inputlayer, outputs = Y)

85

174. optimizer = optimizers.Adam()

175. if b == 1:

176. model.compile(optimizer,'binary_crossentropy',['accuracy'])

177. else:

178. model.compile(optimizer,'categorical_crossentropy',['accurac

y'])

179. return model

180.

181. def train(model,epoch,batch_size,b,name):

182. infos_train = np.arange(NUM_OBSERVATION[0])

183. infos_val = np.arange(NUM_OBSERVATION[1])

184. train_x, train_y = load_all(DIR_SAVE_TRAIN, infos_train,b)

185. val_x, val_y = load_all(DIR_SAVE_VAL, infos_val,b)

186. # mu = np.mean(train_x)

187. # std = np.std(train_x)

188. # print(mu) # -0.8698222

189. # print(std) # 196.00111

190. train_x = (train_x-mu)/std

191. val_x = (val_x-mu)/std

192. train_batch = DataGenerator(train_x, train_y,batch_size)

193. val_batch = DataGenerator(val_x, val_y ,batch_size)

194. model.fit_generator(

195. generator = train_batch,

196. steps_per_epoch = len(train_batch),

197. epochs = epoch,

198. validation_data = val_batch,

199. validation_steps = len(val_batch)

200.)

201. model.save_weights(name)

202. return 0

86

203.

204. def test(model,b,name, time_lapse = 0):

205. infos_test = np.arange(NUM_OBSERVATION[2])

206. model.load_weights(name)

207. if time_lapse == 0:

208. test_x,test_y = load_all(DIR_SAVE_TEST,infos_test, b)

209. else:

210. test_x, test_y, k = load_all(DIR_SAVE_TEST,infos_test,b,time

_lapse)

211. test_x = (test_x-mu)/std

212. start = time.time()

213. y_hat = model.predict(test_x)

214. end = time.time()

215. print(test_x.shape[0])

216. print((end - start)/test_x.shape[0])

217. accuracy = model.evaluate(test_x,test_y,verbose=2)

218. print(accuracy)

219. if time_lapse == 1:

220. return test_y, y_hat, k

221. return test_y, y_hat

87

A.1.3 Runner

1. import model as ml

2. import os

3. import numpy as np

4. from matplotlib import pyplot as plt

5. from sklearn.metrics import confusion_matrix

6. from sklearn.metrics import roc_curve, auc

7. from itertools import accumulate

8. batch_size = 32

9.

10. def baseline():

11. a = np.zeros(6)

12. for r,d,f in os.walk(ml.DIR_SAVE):

13. for file in f:

14. if "l.npy" in file:

15. y = np.load(os.path.join(r,file))

16. a+=np.sum(y,axis = 0)

17. return a

18.

19. def deep_learning(model,name, b, epoch = 100):

20. np.random.seed(31415)

21. model.summary()

22. ml.train(model,epoch,batch_size,b,name)

23.

24. def ROC_single(y, y_hat):

25. labels = ['artifact','null']

26. tpr = dict()

27. fpr = dict()

28. roc_auc = dict()

29. fpr[0], tpr[0], _ = roc_curve(y[:, 0], y_hat[:, 0])

88

30. roc_auc[0] = auc(fpr[0], tpr[0])

31. plt.figure()

32. lw = 2

33. plt.plot(fpr[0], tpr[0], color='darkorange', lw=lw,label='AUC =

%0.2f' % roc_auc[0])

34. plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')

35. plt.xlim([0.0, 1.0])

36. plt.ylim([0.0, 1.05])

37. plt.xlabel('False Positive Rate')

38. plt.ylabel('True Positive Rate')

39. plt.legend(loc="lower right")

40. plt.show()

41.

42. def evaluate(model, b, name):

43. model.summary()

44. y, y_hat = ml.test(model,b, name)

45. if b == 0:

46. cm = confusion_matrix(y.argmax(axis=1),y_hat.argmax(axis=1))

47. labels = ['eyem','chew','elpp','musc','null']

48. cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

49. fmt = '.2f'

50. fig, ax = plt.subplots()

51. im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blue

s)

52. ax.figure.colorbar(im, ax=ax)

53. ax.set(xticks=np.arange(cm.shape[1]),

54. yticks=np.arange(cm.shape[0]),

55. xticklabels=labels, yticklabels=labels,

56. ylabel='True label',

57. xlabel='Predicted label')

89

58. plt.setp(ax.get_xticklabels(), rotation=45, ha="right",

59. rotation_mode="anchor")

60. thresh = cm.max() / 2.

61. for i in range(cm.shape[0]):

62. for j in range(cm.shape[1]):

63. ax.text(j, i, format(cm[i, j], fmt),

64. ha="center", va="center",

65. color="white" if cm[i, j] > thresh else "black")

66. fig.tight_layout()

67. plt.show()

68.

69. if b == 1:

70. ROC_single(y,y_hat)

71.

72. def evaluate_multiple(model1, model2, model3, name1, name2, name3, f

lag = 0, ensemble = 0):

73. if flag == 0:

74. y1, y_hat1 = ml.test(model1,1,name1)

75. y2, y_hat2 = ml.test(model2,1,name2)

76. y3, y_hat3 = ml.test(model3,1,name3)

77. else:

78. y1 = model1

79. y_hat1 = model2

80. y2 = model3

81. y_hat2 = name1

82. y3 = name2

83. y_hat3 = name3

84. labels = ['artifact','null']

85. plt.figure()

86. Y_hat = [y_hat1,y_hat2,y_hat3]

90

87. Y = [y1,y2,y3]

88. if ensemble == 1:

89. y4 = (y1+y2+y3)/3

90. y_hat4 = (y_hat1+y_hat2+y_hat3)/3

91. Y_hat = [y_hat1,y_hat2,y_hat3,y_hat4]

92. Y = [y1,y2,y3,y4]

93.

94. for ii in range(len(Y)):

95. y_hat = Y_hat[ii]

96. yy = Y[ii]

97. if ii == 0:

98. label2 = 'RNN '

99. elif ii == 1:

100. label2 = 'CNN '

101. elif ii == 2:

102. label2 = 'Deep CNN '

103. else:

104. label2 = 'Ensemble '

105.

106. fpr = dict()

107. tpr = dict()

108. roc_auc = dict()

109. for i in range(2):

110. fpr[i], tpr[i], _ = roc_curve(yy[:, i], y_hat[:, i])

111. roc_auc[i] = auc(fpr[i], tpr[i])

112. lw = 2

113. plt.plot(fpr[0], tpr[0],lw=lw, label = label2+'AUC = %0.2f'

% roc_auc[0])

114. plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')

115. plt.xlim([0.0, 1.0])

116. plt.ylim([0.0, 1.05])

91

117. plt.xlabel('False Positive Rate')

118. plt.ylabel('True Positive Rate')

119. plt.legend(loc='lower right')

120. plt.show()

121.

122. def evaluate_time_lapse(model, name, window, show = 1):

123. b = 1

124. y, y_hat, k = ml.test(model, b , name , time_lapse = 1)

125. k = list(accumulate(k))

126. start = 0

127. y_new = []

128. y_hat_new = []

129. for i in range(len(k)):

130. temp_y = y[start:k[i]]

131. temp_y_hat = y_hat[start:k[i]]

132. start = k[i]

133. for ii in range(temp_y.shape[0]-window+1):

134. temp = np.sum(temp_y[ii:ii+window],axis=0)

135. temp = temp[0]>0

136. if temp:

137. y_new.append(np.array([1,0]))

138. else:

139. y_new.append(np.array([0,1]))

140. y_hat_new.append(np.sum(temp_y_hat[ii:ii+window],axis=0)

)

141.

142. y_new = np.array(y_new)

143. y_hat_new = np.array(y_hat_new)

144. if show == 1:

145. ROC_single(y_new,y_hat_new)

146. return y_new,y_hat_new

92

147.

148. if __name__ == '__main__':

149. print(baseline()) # Checks baseline statistics

150. epoch = 100

151.

152. ######### Multi Class Classification #############

153. b = 0

154. model1 = ml.Build_Model1(b)

155. name1 = 'RNN_100.h5'

156.

157. model2 = ml.Build_Model2(b)

158. name2 = 'CNN_100.h5'

159. epoch = 30

160.

161. model3 = ml.Build_Model3(b)

162. name3 = 'DCNN_100.h5'

163.

164. ######## Binary Classification ###########

165. b = 1

166. model1 = ml.Build_Model1(b)

167. name1 = 'RNN_100_b.h5'

168.

169. model2 = ml.Build_Model2(b)

170. name2 = 'CNN_100_b.h5'

171. epoch = 30

172.

173. model3 = ml.Build_Model3(b)

174. name3 = 'DCNN_100_b.h5'

175.

176. ################## Evaluations ############

177.

93

178. deep_learning(model,name,b, epoch)

179.

180. evaluate(model1,b,name2)

181. evaluate(model2,b,name2)

182. evaluate(model3,b,name3)

183.

184. evaluate_multiple(model1,model2,model3,name1,name2,name3,ensembl

e = 1)

185.

186. y1, y_1 = evaluate_time_lapse(model1,name1,2,show=0)

187. y2, y_2 = evaluate_time_lapse(model2,name2,2,show=0)

188. y3, y_3 = evaluate_time_lapse(model3,name3,2,show=0)

189.

190. evaluate_multiple(y1,y_1,y2,y_2,y3,y_3,flag=1, ensemble = 0)

	Acknowledgment
	Abstract
	Table of Contents
	Table of Figures
	Table of Tables
	1. Introduction
	2. Previous Works
	3. Background Information
	3.1 Machine Learning
	3.1.1 Supervised Learning

	3.2 Deep Learning
	3.2.1 Artificial Neural Networks
	3.2.2 Convolutional Neural Network
	3.2.3. Recurrent Neural Network

	3.3 The Human Brain
	3.3.1 Neuron
	3.3.2 Electroencephalogram (EEG)

	4. Experiment
	4.1 Resources
	4.2 Data Preprocessing
	4.3 Models
	4.3.1 Preliminary Studies
	4.3.2 Version 1: Recurrent Neural Network Approach
	4.3.3 Version 2 Convolutional Neural Network Approach
	4.3.4 Ensemble Method

	5. Results
	6. Conclusion
	7. References
	A. Appendix
	A.1 Code Samples
	A.1.1 Data Preprocessing
	A.1.2 Model
	A.1.3 Runner

