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Abstract

In a capitalist economy, it has long been observed that the GDP of a country
fluctuates about its longer-term trend. The nature and causes of this business
cycle are a subject of interest among economists and econometricians. If patterns
can be identified in economic indicators that are reported promptly and frequently,
a classification system could serve as an early indicator for peaks and troughs in
the business cycle. In recent years, the field of machine learning has provided new
techniques for classifying and modeling data. This thesis seeks to apply some of
these techniques to classify the current phase and predict the near-future phases
of the business cycle at different points in time, using contraction and expansion
periods hand-labeled by economists as ground truth. A novel classification method
using wavelet features and hidden Markov models is proposed, and the accuracies
and advantages of different methods are compared.
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Chapter 1
Introduction

Hundreds of years after the origin of classical economics, economists and econome-

tricians continue to debate the causes of fluctuations in capitalist economies, and

whether anything should be done to intervene. Meanwhile, a greater breadth and

depth of economic data are available than ever before. As the history of our finan-

cial bookkeeping grows longer and longer, the opportunities to find and identify

recurring patterns increase. At the same time, recent innovations in mathematics,

econometrics, and machine learning provide a new arsenal of techniques that may

be used to process and make inferences about these data sets. Still, macroeco-

nomic data is noisy and complicated, capturing a myriad of sudden, unpredictable

changes, yet displaying reliable trends in the long run. Somewhere between the

noise and the trend in frequency lies the business cycle.

The idea of a somewhat reliable, recurring business cycle is a relatively re-

cent idea. Economic crises in capitalist economies were long considered to be the

product of exogenous shocks, each unrelated to the others, in accordance with

equilibrium theory [2]. While the existence of business cycles is now generally

acknowledged, a debate continues on the extent to which they can be controlled

by intervention. As more evidence emerges to suggest these cycles are a natural

and inherent part of capitalism, more questions arise about whether they can or

should be mitigated by public policy [3][4]. Applying new techniques or analyzing

longer data series to demonstrate the existence of business cycles (or lack thereof),

is therefore of some practical interest to economists. Additionally, if patterns can

be found in the cyclical components of economic data, the phases of the business
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cycle could be classified automatically. This could provide an indicator of economic

turning points more quickly than the labels assigned by economists. These labels

are taken as ground truth, and rightfully so, since identifying peaks and troughs

with complete certainty requires the consideration of many factors and some degree

of hindsight [5]. However, the most recent National Bureau of Economic Research

turning point, which marked the end of the contraction associated with the finan-

cial crisis of 2008, was announced over a year after it occurred [6]. An automatic

classification system certainly wouldn’t replace this kind of expert analysis, but

it could provide a much faster estimation of turning points if it could operate on

quarterly data available with a low latency. Since business cycles often last years,

it would be beneficial and nontrivial to classify turning points between periods of

contraction and expansion as they occur, without mistaking high-frequency noise

for meaningful shifts [7]. A more difficult but arguably more useful task would be

to use current economic data series to predict future turning points in the business

cycle.

This thesis introduces a novel approach for classifying business cycle stages,

with the aforementioned motivations in mind. Chapter 2 presents background in-

formation on the relevant economic theories and econometric analysis techniques,

the machine learning algorithms applied to perform classification, and previous

approaches to cycle classification. Chapter 3 details the data series that were con-

sidered as classification features, as well as the actual feature spaces and classifiers

used, culminating in the combination of wavelet decomposition features and a hid-

den Markov model. Chapter 4 compares results of different classification systems

and discusses evaluation metrics. Finally, Chapter 5 describes conclusions and

future work.



Chapter 2
Background

2.1 The Business Cycle: Definitions, Theories,

and Models

In economics, the business cycle describes alternating periods of growth and con-

traction about a long term trend. The existence and causes of the business cycle

have been debated by economists for centuries. Many early economists believed

equilibrium would occur in the long run, and cited individual, unrelated events to

explain any fluctuation in the rate of economic growth [2]. As time passed and

industrial capitalism became more mature, the recurring periods of expansion and

contraction led economists to reconsider the classical idea of steady-state equi-

librium [4]. Business cycle theories fall into two main categories: exogenous and

endogenous. Exogenous business cycle theories posit that phases of the business

cycle are caused by external events, which may themselves be recurring or periodic.

Endogenous models, by contrast, claim fluctuations arise inherently from the nat-

ural course of economic activity and are caused by factors within the system. With

the increasing duration of macroeconomic data series, it has become increasingly

possible and interesting to examine the strength of these claims empirically.

2.1.1 The Business Cycle in Classical Economics

In the eyes of classical economists, capitalist economies unfettered by regulations

and external crises were bound to head towards equilibrium. J.B. Say, famed for
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his eponymous Say’s Law, stated in 1803 that “supply calls forth its own demand”

[4]. Say, along with James Mill and David Ricardo, argued that the very act of

production creates enough income and demand to absorb the produced supply.

Under such a system, reliably repeating decreases in economic activity should not

be possible in the absence of external shocks. They further reasoned that any

money not spent would be invested (and thus, would be spent elsewhere), since

investments would yield a positive return that savings would not. While it is

true that the level of production equals the level of income, there is nothing in

Say’s Law to suggest that that level must be fixed at full employment (maximum

production).

As capitalist economies began experiencing rapid growth in the early 19th

century, several economists and other observers began to note fluctuations in the

growth of the economy. One of the earliest was the Swiss writer Jean Charles

Lonard de Sismondi. While not a formal economist himself, Sismondi built upon

the theories presented in Adam Smith’s magnum opus, The Wealth of Nations. He

argued in Nouveaux Principes d’conomie politique that the unregulated activity

of banks and investors would tend to lead to periodic economic crises, rather

than the stable equilibrium imagined by Smith [8]. Though his writings were

mainly loquacious musings rather than mathematical or empirical theories, his

ideas provided one explanation for the Panic of 1825, an English stock market

crash with global consequences. Unlike previous economic depressions, this crisis

had not been caused by a war or any other obvious external force [9].

2.1.2 Karl Marx

Marx was one of the first and best-known economists to reject the idea that an

economy with a monetary system and credit would be headed toward equilibrium.

He argued that credit was speculative in nature, and could postpone a decline, but

at the expense of the production of a surplus of goods resulting in an intensified

recession [4]. He theorized that consumers would also use credit too liberally in an-

ticipation of future income, resulting in increased debt and financial vulnerability.

In this model, economic growth naturally leads to a period of decline and reces-

sion in which consumers cannot buy and producers cannot sell at the optimistic
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rates anticipated during the boom. At the trough of this cycle, the low demand

for capital would depress interest rates to the point where they would encourage

borrowing and an increase in economic activity, thus restarting the cycle [4].

2.1.3 John Maynard Keynes

With the Great Depression as a backdrop in the 1930s, John Maynard Keynes

launched a formal and largely successful attack on the conventional wisdom at-

tached to Say’s Law. With unemployment rates at 25%, and an observable excess

of supply that could not be absorbed by the existing demand, the atmosphere was

ripe for this sort of challenge [4]. Rather than assuming that demand would rise

to meet supply, Keynes envisioned the supply falling gradually to meet the re-

duced demand, which would negatively affect the employment rate. Furthermore,

Keynes’ work presented a scenario in which money could temporarily drop out of

circulation, in direct opposition to the classical assumption of savings-investment

equality [10]. Keynes argued that interest rates would stop falling below a cer-

tain point, since prospective lenders would speculatively keep their savings out of

circulation in anticipation of higher interest rates [4]. The introduction of money

into an economy, according to Keynes, creates this potential discrepancy between

savings and investment due to speculation and hoarding. These kinds of activi-

ties both limit the fall of interest rates and the fall of prices during a period of

underconsumption [4].

Post-Keynesian economists, following Keynes’ lead, further developed the prob-

lems that could result from interest rate rigidity and investor speculation. In the

event of an excess aggregate supply, an unchecked decline in prices would decrease

the revenue resulting from the sales of goods, but this would also decrease the

aggregate income. The same can happen with labor supply; if labor costs and thus

wages fall dramatically, so does the capacity of workers’ consumption [4]. In this

Keynesian view of the economy, the supply-demand equilibrium cannot be reached

in a case of excess supply without a decrease in the aggregate income, causing a

recession.
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2.1.4 Wesley Mitchell and the National Bureau of Eco-

nomic Research

While the concept of periodic expansions and contractions of the economy were ob-

served in the early 19th century, the first concise mathematical theories wouldn’t be

developed until the middle of the 20th century. Wesley Mitchell, who founded the

National Bureau of Economic Research (NBER), created a quantitative method

for measuring the business cycle in the 1940s. [4]. In a collaboration with Arthur

Burns, Mitchell wrote that the business cycle is characterized by expansion in

economic activities followed by a period of contraction. He claimed they could

last from one year to as many as twelve years, and that they were not divisi-

ble into shorter cycles. Mitchell’s business cycle is “recurrent but not periodic”

[11], acknowledging that cycles occur routinely, but the duration of each will vary.

Mitchell dated troughs and peaks of the business cycle, and this work was continued

by NBER, resulting in the business cycle phase labels (expansion and contraction)

used later in this work. These cycle labels are perhaps the most widely used, but

certainly not flawless, as they do not differentiate between major depressions and

minor recessions [4], and they do not account for the relationship between prices

and output that is better described by the four phase cycle.

Although Mitchell only labeled two phases of the business cycle, he defines

other models that break the cycle into four and nine phases, respectively.

2.1.4.1 Two Phase Model

The two phase model of the business cycle was Mitchell’s simplest model and the

one that NBER currently provides dates for. This cycle model consists simply of

expansion, or economic growth, and contraction, or economic decline. This is the

easiest model to work with, as it contains the smallest number of phases and NBER

provides dates hand-labeled by experts dating from the 1800s to the present.

2.1.4.2 Four Phase Model

In his four phase model, Mitchell begins to address varying rates of expansion and

contraction. The four phases are [4]:
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• recovery, the rapid increase in economic activity, occurring after the cycle

reaches its trough

• prosperity, the slower period of expansion at a relatively high level, as the

cycle approaches its peak

• crisis, the fast downturn occurring after the cycle has reached its peak

• depression, the period of low economic activity and slow decline leading to

the trough of the cycle

The four phases that make up the business cycle in this model are clearly defined,

but still difficult to label without a significant amount of economic expertise.

2.1.4.3 Nine Phase Model

Mitchell’s nine phase model arises from a very detailed analysis, but the number

of phases is somewhat arbitrary [4]. The first phase is the trough of the cycle

and the fifth is the peak. The intermediate three phases describe the expansion

in more detail, and the remaining four phases describe the contraction and the

next trough [4]. This complicated model is perhaps more useful for qualitatively

describing the progression of the cycle than quantitatively classifying it, as no

analysis encountered in the course of this thesis has been able to find this many

statistically distinct states of the cycle. The phases from the four phase model can

also be described in terms of a sequence of phases from the nine phase model.

2.1.5 Richard M. Goodwin and Goodwin’s Model

Goodwin’s formulation of the business cycle is inspired by Marxian theories, with

wages and the employment rate at the center. [12]. Goodwin’s cycle model is

endogenous, and the solutions to the differential equations he lays out are the

same Lotka-Volterra equations used to describe predator-prey relationships [13].

2.2 Macroeconomic Data

The ability to draw conclusions or make predictions about the state of an economy

depends upon the routine, accurate reporting of macroeconomic variables. This
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is challenging for a number of reasons. First, any measurement has some amount

of error due to noise, and noise is exacerbated in data collection processes that

require human reporting and estimation. The unemployment rate is one particu-

larly problematic example of a biased statistic, since it fails to account for people

who have given up on looking for work, or those who would like a full-time job

but can only find part-time work [14]. Second, any change or improvement to a

measurement process creates a discontinuity that prohibits long-term analyses of

that particular variable. For example, the way states’ gross domestic products

were calculated changed in 1997 [15]. Nonetheless, many economic time series are

available, some dating as far back as the nineteenth century. This includes leading

and lagging indicators [8], meaning that variables are not necessarily synchronized

and may precede or react to economic shocks. The following are some of the key

economic indicators used in this and other analyses, along with a description of

transformation commonly applied to these series.

2.2.1 Gross Domestic Product

The Gross Domestic Product, or GDP, is an aggregate measurement of production

[16]. Loosely, it is a measure of the total output (goods and services) of a nation or

other entity, excluding imports. It is often computed per capita so that economies

can be compared among nations of dramatically different sizes.

2.2.2 Consumer Price Index

The consumer price index, or CPI, measures the changes in the prices of a fixed

reference set of common consumer goods over time [16].

2.2.3 Unemployment Rate

The unemployment rate is formally a measure of the percentage of the population

of potential workers who are seeking employment but are not employed [16]. Most

computations of the unemployment rate do not take into account underemployment

or partial employment (workers who would like full-time jobs but can only find

part-time work) [14].



9

2.2.4 Federal Surplus

The surplus (or deficit, if it is negative) is the difference between the total revenue

and expenditures of the federal government. It is one of the more contentious

economic indicators, as not all economists agree that it matters significantly to the

health of an economy [17].

2.2.5 Stock Market Composite Indicies

Stock market composite indices do not provide a measure of a specific economic

variable, but are often used as a barometer of economic health. Because the data

used to compute these indicies are available publicly and virtually instantaneously,

they can be much more useful for timely observations and predictions than vari-

ables that must be computed annually or quarterly by government agencies [18][6].

However, stock market data is also much noisier than other series, as it contains

many speculative upturns and downturns that are ultimately short-lived and not

representative of actual business cycle turning points [6]. The National Bureau of

Economic Research considers stock market composites to be leading business cycle

indicators [6], so if the signal can be separated from the noise, these indicies can

be very useful for cycle classification and prediction.

2.2.5.1 Dow Jones Industrial Average

The Dow Jones Industrial Average (DJIA) is a composite index which has been

reported continuously since 1896, although its composition has changed many times

since then. It was originally an average of 11 industrial companies’ stocks, and

has since evolved to include 30 modern companies [18]. The value of the index is

computed as a price-weighted average of the stocks of the 30 designated companies,

and normalized based on its value at some reference point.

2.2.5.2 NASDAQ Composite Index

The NASDAQ composite is an index measuring the average levels of stocks listed

on the NASDAQ stock market. It only dates back to 1971, which makes it one of

the shorter time series considered for classification [19].
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2.2.5.3 S&P 500

As the name suggests, the Standard & Poor’s 500 is a composite index computed

from the stock prices of 500 large companies, both from the NASDAQ and the

NYSE [18].

2.2.6 Common Transformations for Macroeconomic Time

Series

While the series described in sections 2.2.1 through 2.2.5 contain useful informa-

tion about the state of the economy, some processing is often required to create

data that is well suited for examining specific properties. Using the raw values of

economic time series is undesirable when searching for cycles and other repeated

patterns, since these series all have a strong exponential trend due to inflation.

The following are a number of simple transformations that can produce more use-

ful series depending on the data and application.

2.2.6.1 Percent Change over Previous Period

Percent change is simply computed by taking the difference between two subse-

quent measurements and dividing by the earlier measurement. Since we expect an

exponential increase between linearly spaced points in time, the percent change

series should be stationary for a series with constant exponential growth, and thus

highlights fluctuations rather than the predictable trend.

2.2.6.2 Year-Over-Year Percent Change

Year-Over-Year (YOY) percent change is computed in the same way as the per-

cent change over the previous period, except the previous data point used as a

comparison is from one year in the past instead of one measurement period. For

example, monthly data points would be compared to the same month in the previ-

ous year. This adjusted percent change computation accounts for seasonality, such

as consumer spending increases every December.
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2.2.6.3 Seasonal Adjustment

Like YOY percent change, seasonal adjustment seeks to mitigate the effects of

predictable, fixed-period variations in time series. A variety of techniques exist for

performing this adjustment.

2.2.6.4 Natural Logarithm

Logarithms will remove any exponential trend, but can only be applied to data

that is guaranteed to be nonzero. Luckily, that includes any prices or relative

indices; it only excludes data such as federal deficit or series that have already

been reported in terms of percent change.

2.2.6.5 Real Chained Dollars

An attempt to account for inflation directly, translating a series into ”real dollars”

adjusts a series by selecting a fixed reference point and normalizing all other dollar

values in the series to their equivalent values at that point in time. Chained dollar

adjustments allow the reference list of items and prices to vary annually to reflect

changes in relative economic importance of goods and commodities, rather than

fixing the list of items as some lose relevance.

2.3 Analysis Techniques for Economic Data

2.3.1 Stationarity Tests

A stationary time series is one whose statistical properties or structural composi-

tion does not vary over time. In the context of econometrics, two types of station-

ary series are useful to identify: trend stationary and difference stationary [20]. A

trend stationary series can be represented as

xt = α + βt+ ut, (2.1)

where xt is stationary except for the deterministic trend βt, and ut is a stationary

stochastic process (its distribution is not time-varying). A difference stationary
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series is described by

xt = γ + xt−1 + ut, (2.2)

where γ is the drift parameter and ut is, once again, stationary. A difference

stationary series can also be described as a random walk with drift [20]. Often, if an

economic time series is not stationary, the difference will be tested for stationarity

and used in place of the original series.

The ADF-GLS test is a unit-root hypothesis test [21], used in this thesis to test

the stationarity of time series, once again to compare results to existing econo-

metric work. A unit root test checks whether any of the roots of a time series’

characteristic equation is close to 1, which means the series is nonstationary [22].

2.3.2 Hodrick-Prescott filter (HPF)

The Hodrick-Prescott filter is another common technique in econometrics used

to create a stationary time series when using analysis or regression methods that

require stationary data [23]. It is a filter that is commonly used to extract the long-

term trend from cyclical components in nonstationary data. However, the HPF can

actually introduce or exaggerate cyclical components when the input data is not

stationary [23][24]. As such, it is used in this thesis as a means of understanding

and comparing results with existing econometric research, but the resulting decom-

position is not considered the most accurate representation of cyclical components

in the data.

The Hodrick-Prescott filter models a time series as a trend with a cyclical

component and stationary noise, as described by equation 2.3.

yt = τt + ct + εt (2.3)

The cost expression to be minimized is given by equation 2.4, which is a balance

between the squared error and the jumps between adjacent points in the trend

component.

min

( T∑
t=1

(yt − τt)2 + λ

T−1∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2
)

(2.4)
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2.3.3 Vector Autoregression (VAR)

Vector autoregression is a technique from econometrics used to model linear inter-

dependencies in multivariate data [12]. It describes the evolution of each time series

in terms of the lags (previous discrete points in time) of the others. It can only

be applied to stationary series, so the data may be filtered or the differences may

be computed beforehand. See [12] for the application of VAR in an econometric

context.

2.3.4 Wavelet Decomposition

While the business cycle’s very name implies periodicity, a cursory examination

of the expansions and contractions in the twentieth century shows that duration

of cycles can vary dramatically. This is, in part, why the business cycle pioneers

defined their theorized cycle durations in relatively broad ranges. Unlike the sine

waves used in the conventional Fourier basis, wavelets are localized in both time

and frequency [1], so they are particularly useful for an application in which the

cycle “frequency” actually varies from cycle to cycle.

Figure 2.1. Diagram of single-level wavelet decomposition

2.3.4.1 The Discrete Wavelet Transform (DWT)

The wavelet transform decomposes a signal into components represented by a basis

of dilated and translated wavelets. The individual wavelet functions are referred

to as time-frequency atoms, or simply atoms [25]. A single level of the discrete

wavelet transform is shown diagrammatically in figure 2.1. Mathematically, the
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discrete wavelet transform of a signal x[n] is given by

y[n] = (x ∗ g)[n] (2.5)

In equation 2.5, g[n] is a specific wavelet function, usually corresponding to the

lowpass approximation coefficients. The output y[n] is the convolution of the input

signal x[n] and the wavelet filter g[n]. To achieve the decomposition shown in figure

2.1, two filtering and decimation operations must be applied to x[n].

yapprox[n] =
∞∑

k=−∞

x[k]h[2n− k] (2.6)

ydetail[n] =
∞∑

k=−∞

x[k]g[2n− k] (2.7)

Equations 2.5 through 2.7 are simply convolutions; the real point of interest when

using the DWT is the selection of the mother wavelet and the dictionary of basis

functions [25][26]. The mother wavelet is denoted ψ(t), and the discrete dictionary

of child wavelet functions is created by translating and dilating the mother wavelet

by powers of two. The child wavelet is given by

ψj,k[t] =
1√
2j
ψ

(
n− k2j

2j

)
(2.8)

where the dilation parameter j and translation parameter k are integers. For a

particular scaling j, the continuous time wavelet filter can be written as

h(t) =
1√
2j
ψ

(
−t
2j

)
(2.9)

There are many different choices of wavelets, with varying shapes, support

lengths, and vanishing moments that make them well-suited for different applica-

tions.
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2.4 Machine Learning Techniques

In classifying phases of the business cycle, the choices of data series and pre-

processing techniques are only half the challenge. The other half is choosing an

appropriate classifier to robustly identify meaningful patterns out of the noisy,

multidimensional data. The following are classifiers that were used in the systems

proposed in this thesis.

2.4.1 Linear Discriminant Analysis (LDA)

A discriminant function is any function that takes a feature vector x and assigns

it to one of K classes, Ck [1]. If the discriminant function is linear, then it can

be called a linear discriminant and its decision surface is a hyperplane. In the

simplest case of two classes, the relationship between the feature vector x and the

linear discriminant is

y(x) = wTx+ w0 (2.10)

where w is the vector of weights that define the discriminant. Since there are only

two classes, the decision threshold is at −w0, where w0 is the bias weight. If a

vector x generates a value of y ≥ 0, the input vector will be classified as class C1.

Otherwise, it will be placed in C2. The task of linear discriminant analysis is to

learn the values of the weight vector that optimize some desirable criterion.

2.4.1.1 Fisher’s Linear Discriminant

One way of selecting the weights for a linear discriminant is to maximize the

separation between the two classes. To do so, the distance between the centroid

of each class and a given decision line or plane w must be computed. If there are

N1 points in C1 and N2 points in C2, then the mean of each class is given by

µ1 =
1

N1

∑
n∈C1

xn, (2.11)

µ2 =
1

N2

∑
n∈C2

xn. (2.12)
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The distance between the means of the two classes is

m2−m1 = wT (µ2 − µ1) = wTµ2 −wTµ1. (2.13)

However, this quantity should not be maximized directly, since this would result in

making w arbitrarily large. Instead, the goal is to maximize the variance between

classes while minimizing the variances within each class. This promotes a large

separation between the classes while adding a penalty for a large variance within

each class. The intra-class variance for CK is

s2k =
∑
n∈Ck

(yn − µk)2. (2.14)

The Fisher Criterion, denoted J(w), is the inter-class variance divided by the sum

of the intra-class variances.

J(w) =
(m2−m1)2

s21 + s22
(2.15)

Using the preceding equations, the w that optimizes the Fisher Criterion is found

to be

w ∝ S−1W (µ2 − µ1), (2.16)

where SW is the within-class (intra-class) variance

SW =
∑
n∈C1

(xn − µ1)(xn − µ1)
T +

∑
n∈C2

(xn − µ2)(xn − µ2)
T . (2.17)

A full derivation of the weights that optimize J(w) is given in [1]. Once the weight

vector has been learned from a labeled set of training data, it can be used to classify

new, unlabeled feature vectors.

2.4.2 Hidden Markov Models (HMM)

Hidden Markov Models interpret a time series as a sequence of emissions generated

by some underlying sequence of unobservable latent states. The latent variables are

discrete, corresponding to some set of possible states. In a classification problem,
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the states are the possible classes, and the goal is to find sequence of states that is

most likely responsible for the observed emissions. The emissions at time t depend

on the latent state xt, which in turn depends on the previous state xt−1[1]. Figure

2.4.2 shows an HMM with three states and their respective transition probabilities

Aij.

Figure 2.2. Hidden Markov Model State Transitions

An HMM with three possible states. The black lines indicate the transition [1].

Let the parameters of the HMM be defined as follows:

• X: state space

• Y : observation space

• a: state transition probabilities

• A: transition matrix

• b: emission probabilities
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• B: emission matrix

Then, given a fully observed training data set that includes both x and y, the

transition matrix A and emission matrix B can be estimated. For future data (test

data) fed into the trained HMM, the Viterbi algorithm can be used to efficiently

compute the most likely values of the unknown state sequence x′, given a test

sequence of observations y′ [1].

2.4.2.1 Mathematical Model with Discrete Emissions

Using the parameters enumerated above, the following describes the way these

parameters interact in a hidden Markov model. The state variable, X, can take

on N discrete values, with a possible transition at every discrete time index t,

where t ∈ 1 : T . The transition matrix A is an NxN matrix, where the set of

transition probabilities from each state must sum to 1. The diagonal represents

the probability of remaining in each state at time t+ 1.

For each state x ∈ X, there is a different probability distribution governing the

value of the emission variable Y . If the emission values are discrete, then y ∈ Y
is a discrete random variable and the emission matrix B contains the probabilities

of each possible emission value given the current state (bij is the probability of

observing emission yi in state xj. Thus, if there are M discrete values which Y

can take on, B is an MxN matrix.

2.4.2.2 Multivariate Gaussian Emissions

If Y is a continuous random variable, the emission probabilities cannot directly be

described by a matrix, since there is an uncountably infinite number of possible

emission values. However, the parameters of a multivariate Gaussian may be used

in lieu of the discrete emissions matrix. Not only does this allow for continuous

emissions variables, but also a multivariate emission space. Instead of a single ob-

servation variable Y , there may be a vector of observations at each time t, denoted

Y = [Y1, Y2, ...YD] for a D-dimensional observation space. In this model, there are

D parameters describing the means of the multivariate Gaussian distributions for

each state, and a DxD covariance matrix. The means and covariance can be com-

puted directly for a particular state from the samples in the observation sequence
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y corresponding to that state.

2.4.2.3 The Viterbi Algorithm

Once the transition and emission probabilities of a hidden Markov model have

been learned, estimating the transition and emissions probabilities from a known

sequence of observations and latent states, that model can be used to compute the

most likely state sequence responsible for new observations [1].

2.5 Related Work

2.5.1 Business Cycle Analysis

Although there have been relatively few attempts at automatic classification of

business cycle phases and turning points, many economists have examined data

for quantitative evidence and characteristics of business cycles. In [12], Artur

Tarassow analyzes quarterly employment and wage data in search of evidence

of Goodwin’s endogenous business cycle. Using bivariate vector autoregression

(VAR) on cyclical components extracted both by the Hodrick-Prescott filter and

the Baxter-King bandpass filter, he finds that employment dynamics lead and

influence real wages, but there is not much evidence of the converse.

Recently, John Sarich conducted an empirical investigation of business cycles

of different durations in U.S. corporate profit data [27]. He used an unobserved

components method to extract trends and cycles from annual profit and equity

price series. Unlike most of the other research mentioned, he checks for cycles of

dramatically different lengths, including the 50-year Kondratieff long wave. He

is successful in identifying two cycles of this long wave in corporate profit data,

as well finding statistically significant structural time series model for the more

conventional shorter cycles.

The preceding papers are not the full scope of econometric business cycle re-

search, but they are two recent and successful attempts at extracting business cycle

information from economic data. While econometric analyses of the business cycle

do not necessarily provide features or models that are directly suitable for an auto-

matic classification task, they do provide evidence that business cycle information
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can be extracted from real data series, which lends credibility to the creation of

an automatic classification system.

2.5.2 Cycle Classification

The earliest attempt to classify phases of the US business cycle encountered in this

research used linear discriminant analysis (LDA) to distinguish among phases in

the US business cycle [28]. Using less than 30 years worth of economic data, Meyer

and Weinberg attempted to identify four phases of the business cycle using an en-

semble of indicator variables. They defined the four phases as recession, recovery,

demand-pull, and stagflation, and they correspond to Mitchell’s four phase model.

The authors hand-labeled ground truth for their four phase model in order to go be-

yond the two phase labels provided by the National Bureau of Economic Research.

They generate two canonical functions to be used for classification, and tabulate

both the a-priori phase labels and the labels assigned by the LDA. 13 variables

were used in total, including real GNP, the consumer price index, unemployment

rate, and the NYSE composite index, among others. It was demonstrated that

the linear discriminant could assign, with roughly accurate placement, cycles with

three to four phases in post-war data.

More recently, Heilemann and Muench applied a similar technique to West

German data [29]. They used a similar four phase model as well as a linear

discriminant for classification. Their overall classification error rate was a very

respectable 13.7% using leave-one-out cross validation, but rose sharply to 43.8%

when an entire cycle was withheld during the training process.

Continuing the task of cycle phase classification with West German data, Ralf

Klinkenberg applied his novel concept drift algorithm to the same data used by

Heilemann and Muench [30]. They achieved a quarterly classification accuracy of

79.45% using a binary cycle phase model.

In the US, the task of automatic turning point classification was revisited in

2003 in an effort funded by the Federal Reserve Bank of Atlanta. [31]. Using

Markov-switching multifractals with GDP and employment data, they provide

automatic binary phase classifications and compare them to the NBER labels.

Rather than evaluating their system in terms of percent accuracy, they compute
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the mean and standard deviation of their distance from the ground-truth NBER

labels. The system was fairly successful at matching NBER’s turning point dates;

some of their results are tabulated for comparison in Chapter 4.

2.5.3 Wavelet Analysis of GDP Data

Motohiro Yogo’s 2003 research explored the use of wavelet domain filtering for

economic time series [32]. In particular, Yogo created a filter bank designed to

extract cyclical components from high-frequency noise and low-frequency trend.

This filter bank was applied to quarterly GDP and inflation time series. This

filter bank was proposed as an alternative to the conventional bandpass filter used

to extract cyclical components from economic time series [24] or the Hodrick-

Prescott filter [23]. Because each decomposition stage of the wavelet filter bank

results in an effective decimation by two, it was convenient to define the business

cycle components as any component with a frequency between four and thirty-

two quarters; higher-frequency components would be considered noise, and lower-

frequency components would be considered long-term trend (although the long-

wave Kondratief cycle would fall into this trend component as well) [4].



Chapter 3
Business Cycle Data and Models

3.1 Statement of Problem

The main goal of this thesis is to classify each quarter in quarterly economic time

series as one of two categories: expansion or contraction. The reasons for selecting

this binary classification problem rather than a more-complex four class model

such as the one used in [28] include the availability of ground-truth labels from

NBER, as well as research that suggests no more than two phases can be reliably

identified with statistical significance [30].

In order to perform this classification task, a meaningful feature space must be

derived from the raw data, through variable selection and potentially manipula-

tions to those variables, and a suitable classifier must be selected, trained, and

tuned. Econometric techniques will be employed in order to establish the rele-

vance and statistical characteristics of the data series considered for the feature

space. The feature vectors derived from economic time series will then be fed into

a classifier to obtain cycle phase classifications of individual points in time.

The resulting models will be evaluated based on their percent accuracy in the

classification of individual quarters, as well as their similarity to the NBER dates

in estimated cycle turning points (the peaks and troughs separating phases of the

cycle). The classifiers will also be evaluated to investigate whether it is possible

to predict future turning points using current economic data.
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3.2 Data Sources and Series

While different data series were more useful for different techniques, a common

set of features was used across many of these approaches. In most cases, percent

changes are computed from the raw levels of each indicator variable, since these

differences tend to be more stationary over longer periods of time. Table 3.1

contains data that were examined and considered for classification purposes and

brief descriptions of each.

Index Name Description
1 GNP Deflator % GNP price deflator percent change
2 Real GNP % Percent change over previous period
3 GNP % Percent change over previous period
4 GNP Gross national product
5 Real GNP billions of chained 2009 dollars
6 GNP Deflator GNP price deflator
7 CPI Percent change over previous period
8 Real CPI 2010 = 1
9 Surplus Millions of dollars
10 Surplus % Percent change over previous period
11 GCE Govt consumption & expenditures
12 GCEI Real consumption & expenditures
13 M2 US M2 supply
14 M2 US M2 supply, seasonally adjusted
15 M1 US M1 supply, seasonally adjusted
16 M1 % Percent change over previous period
17 Unemployment Unemployment rate
18 Unemployment % Percent change over previous period
19 NASDAQ % Percent change over previous period
20 DJIA % From Central Bank of Brazil Database

Table 3.1. Series used for cycle classification

3.3 Data Analysis and Feature Selection

In examining raw data series for inclusion in a classification system, there are two

main concerns: which raw series to select, and which transformations and pre-

processing techniques to use. These two considerations are not truly independent.

For example, a particularly noisy time series might be useless for classification
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as is, but a filtered version of the same series might contain an abundance of

useful information. Furthermore, two series which are individually useless might

contain valuable information when combined. Therefore, it would be a mistake

to choose economic variables using only the predictive power of a single raw time

series. However, due to the abundance of economic data available, examining the

class-separability of individual series can be a good way to start narrowing down

potential variables.

3.3.1 Kruskal-Wallis

While it’s not the last word in feature selection, the Kruskal-Wallis one-way analy-

sis of variance is useful for testing whether the value of a certain time series varies

across classes of interest. It tests whether samples originate from the same distri-

bution [33]. In this instance, the two samples tested were the values of a single

economic variable from periods of contraction and expansion.

Figure 3.1. Kruskal-Wallis analysis of NASDAQ composite

The null hypothesis is that both series (or all, in the case of more than two)

come from the same distribution. The test statistic is computed using the ordered

ranks of the data, rather than actual values. The p-value is the probability of

observing the provided data under the null hypothesis. The null hypothesis is

typically rejected for p-values less than 0.05. Figures 3.1 and 3.2 show the results of

the Kruskal-Wallis test performed on the NASDAQ composite and unemployment

rate, respectively. The red line is the median of the values from each series. The

blue box shows the 25th amd 75th percentiles, and the whiskers ecompass the
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Figure 3.2. Kruskal-Wallis analysis of unemployment rate

outermost values that are not considered outliers [33]. Indicator variables for

which the null hypothesis was rejected at at least the 5% level were retained for

future optimizations, while variables with poor separability based on this test were

mostly ignored.

Variable p-value
Real GNP 0.230
Real GNP % change 0.000
Unemployment Rate % change 0.000
DJIA % change 0.002
NASDAQ Composite % change 0.000
CPI % change 0.001
GCE 0.200
Surplus 0.059
Surplus % change 0.829

Table 3.2. p-values of select variables from Kruskal-Wallis test

3.4 Econometrics Analysis

While the Hodrick-Prescott filter was not expected to be the most useful technique

for pre-processing data for a classifier (see section 2.3.2), it is still useful to inves-

tigate which series are stationary after a moving-average filter has been applied,

since structural discontinuities would render the filtered series nonstationary even

with the trend component removed [12].
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3.4.1 ADF-GLS Test

The ADF-GLS test was used to test the stationarity of several time series. From

there, vector autoregression (VAR) could be applied if desired, as it requires that

time series are either stationary or the same order of integration. Results similar

to [12] were replicated.

Figure 3.3. Two time series before and after filtering
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3.4.2 Hodrick-Prescott filter (HPF)

the Hodrick-Prescott filter is a low pass filter (LPF) commonly used to remove

noise and reveal the trend in economic time series, as described in section 2.3.2.

It is frequently used on business cycle data to remove cyclical components and

examine long-term trends. Here, the standard value of λ = 1600 was used. Figure

3.3 shows two time series before and after HPF filtering.

3.5 Feature Space

The previous econometric analysis and Kruskal-Wallis tests served primarily to

gain an understanding of the data set described in section 3.2 and to motivate

the feature selection for a classifier down the line. The class-separability of indi-

vidual features does not necessarily translate to the optimal features for a given

classifier, but it does provide some insight into which features contain the most use-

ful information for distinguishing between phases of the business cycle. The most

promising series appeared to be the Real GDP, CPI, unemployment rate, and stock

market composites. It should be noted that since most of these series are either

lagging or leading indicators of the same economic trends, they are all somewhat

correlated and should certainly not be considered independent. However, they are

not necessarily totally redundant, either.

3.5.1 Wavelet Decomposition

In order to isolate cyclical frequency components of interest, a wavelet decom-

position was performed using an multiresolution wavelet filter bank. The filter

structure suggested in [32] was used, since the wavelet type and support length

were specially tailored to quarterly economic time series, and the removal of noise

and trend components is easily achieved. The effect is similar to a conventional

bandpass filter, but with much better temporal localization. Figure 3.4 shows the

decomposition filter bank that was used, and figures 3.5 and 3.6 show the results

of this four-level decomposition for the quarterly GNP time series. Contraction

periods are highlighted on the background of the plots for reference.
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Figure 3.4. Wavelet decomposition subband tree

Figure 3.5. Wavelet decomposition of quarterly GNP data

3.6 Binary Business Cycle Phase Classification

3.6.1 Phase Classification with Fisher’s Linear Discrimi-

nant

Linear discriminant analysis was performed using a similar approach to [28], but

with many of the less helpful variables excluded. The Pattern Recognition toolbox
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Figure 3.6. Cyclical components of quarterly GNP data

was used to learn the weights which define the discriminant function, and to classify

test data [34].

3.6.2 Phase Classification with Hidden Markov Models

As discussed in section 2.4.2, hidden Markov models describe the relationship

between a set of latent states and a sequence of observations. This model can be

used for different purposes, but the classification task is the application of interest

to this thesis.

Classification was performed using HMMs on the same time series used in the

preceding linear discriminant analysis.

Two approaches were used in creating HMMs for this application. Initially, the

continuous levels of the time series were binned into a small number of discrete

intervals, allowing for discrete emission probabilities. This model only operated

on a one-dimensional time series, so if multiple series were to be used, separate

HMMs would have to be trained.

Next, HMMs were trained using multivariate Gaussians, which obviated the

need for the binning and allowed multiple time series to be considered by the same

model.
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3.6.3 Combining HMMs and Wavelet Features

Since multiple variables can be used to train a hidden Markov model and predict

state sequences, there is a good amount of flexibility in selecting a set of features

to use for classification inside the HMM framework. In addition to multiple eco-

nomic time series, decompositions or transformations of each of those time series

may be used. It is worth considering, however, that the model complexity of the

multivariate Gaussian HMM increases quadratically with the dimensionality of the

feature space, since the size of the covariance matrix is D2 for a D-dimensional

feature [1].

Figure 3.7. HMM classification scheme with wavelet-based features

Once the transition and emission probabilities of an HMM have been estimated

from training data, the Viterbi algorithm can be applied to the lattice of all possible

state transitions to determine the most likely state sequence that resulted in the

sequence of test features. This most probable state sequence is the set of class

predictions that would be obtained from any other classifier. Figure 3.8 shows the

lattice for a sequence of 4 observations in an HMM with 3 latent states.

3.6.4 Predicting the Future

While classifying the current phase of the business cycle based on quarterly data

could still provide a more timely indicator of turning points than waiting for the

release of NBER labels, it would be even more useful to predict what will happen

next quarter, or even next year. Figure 3.9 shows the slightly modified classification

system, in which data is shifted relative to the labels prior to training.
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Figure 3.8. HMM trellis formed by all possible latent state sequences [1]

Figure 3.9. HMM classification with delayed wavelet features



Chapter 4
Results

4.1 Classifier Accuracy

The percentage of test data points classified correctly is one key metric used to

evaluate a classification system. In this section, the success rates achieved by

systems with different features and classifiers are compared. Table 3.1 briefly

describes all of the economic time series considered for classification. All data are

quarterly series from the Federal Reserve Economic Data (FRED) unless otherwise

noted. Table 4.1 lists the classification success rates for each system. There are

some caveats to note in comparing these numbers directly. First, depending on the

variables used, the range of dates available for training and testing may vary, as

some series were introduced earlier than others. To control for this, all variables

used in the final tests range from 1949 to 2014, even if older or more recent data was

available for some variables. Additionally, there are some fundamental differences

in the way the HMM classifiers were trained and tested compared to the other

classifiers.

4.1.1 Cross Validation

A common way to evaluate classifiers with a limited amount of data is k-fold cross

validation. This entails dividing the available data into k sets of approximately

equal sizes. Then, k iterations of classification and testing are performed, each time

with a different subset held out for testing and all the others used for training. This
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way, a classifier can be tested on all available data. When data is in short supply,

leave-one-out cross validation is ideal (k = N , where N is the total number of

observations), since it maximizes the amount of training data in each iteration.

However, this may not be a valid approach in business cycle classification. The

underlying causes and properties of separate recessions and expansions are hotly

debated in the field of economics; it should certainly not be assumed that one cycle

is representative of others. For a business cycle classifier to be robust enough to

be useful, it would need to be able to identify changes in the cycle without training

data from that cycle. For this reason, cross validation was performed using a leave-

one-cycle-out procedure, as suggested in [29], rather than withholding individual

quarterly samples for testing. This way, in every iteration of testing, the points

being classified were from a cycle that was not used to train the classifier.

4.1.2 HMM Training and Testing

Due to the temporal continuity inherent in HMMs, the leave-one-cycle-out tech-

nique used for other classifiers does not translate easily. Removing a cycle from

the middle of the data set for testing would leave the HMM with two disjoint

training sets. To keep things simple, the HMM classifiers were trained once on

approximately the first two thirds of the data, and tested on the final third. This

is probably a reasonable model for how such a classifier would actually be used; it

would likely be trained on all available data up to the recent past and then applied

to the most recent data points. The best sets of features were selected from the

full list of 20 economic indicators based on the p-values of the Kruskal-Wallis tests,

and their performance when tested in pairs with the linear discriminant classifier.

The best performing features were consistently variations of Real GDP, unem-

ployment rate, and the stock market indices. The classification accuracy of select

combinations of classifiers and feature sets is shown in 4.1.

Variables Feature Type Classifier Percent Correct
5,17,18,20 levels LDA 79%
5,17,18,20 wavelet cycle components LDA 86%

5,18 levels HMM 90%
5,18 wavelet cycle components HMM 92%

Table 4.1. Classification accuracy of different features and classifiers
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Because we care mainly about identifying turning points in the cycle, it is

somewhat more useful to compare the dates of the predicted and actual turning

points directly. Table 4.2 compares the turning points predicted by an HMM with

wavelet features. The HMM was trained using data from 1949 through 1990 and

evaluated on the two business cycles from 1991 to the present. The HMM perfectly

classified the contraction period in 2001, and was only off by a few quarters in the

turning points for the 2008 contraction. However, the HMM also falsely identified

a period of contraction in 1992 which did not exist, according to NBER.

NBER Peak Predicted Peak NBER Trough Predicted Trough
2001 Q1 2001 Q1 2001 Q4 2001 Q4
2007 Q4 2008 Q2 2009 Q2 2009 Q1

Table 4.2. NBER turning points compared to HMM classifications

Compared to the linear discriminant analysis approach, the HMM provided

fewer false positives (one extraneous contraction period instead of three short ones

that showed up in the LDA classifications), and the predicted turning points were

more closely aligned with the NBER turning points.

4.1.3 Classification Results with Lookahead

The ability to classify business cycle turning points using current economic data

would provide turning point estimates much more promptly than the official NBER

classifications. However, it would be even more useful to be able to predict what

will happen next quarter, or maybe even several quarters in the future. Of course,

this is only possible if the state that directly leads to peaks and troughs is already

present in the data one or more quarters before the actual turning point occurs.

Figure 4.1 shows the quarterly classification accuracy as a function of how far in

the future predictions are being made. Since this is a binary classification task, 0.5

is the lower bounds for how poorly a classifier can perform if it guesses at random.

By about one year into the future, both the LDA and HMM classifiers have dropped

off in accuracy to the point where they essentially provide no information. For

the results shown, the same features were used as in the classification accuracy

comparison from table 4.1, which are the wavelet components derived from real

GNP and unemployment percent change. For classification of future quarters, it
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Figure 4.1. Classifier accuracy as a function of lookahead time

might be more expedient to use series representing leading indicators, such as the

stock market composites.



Chapter 5
Conclusions and Future Work

5.1 Conclusions

While more analysis is needed, feeding cyclical components from a wavelet de-

composition into a hidden Markov model appears to be a promising scheme for

automatically identifying turning points in economic activity.

5.2 Future Work

5.2.1 Other business cycle models

If successful and reliable, a four phase classification model would provide more

information than the two phase model which has been the focus of this thesis.

However, since these labels are not published by any agency, they would have to

be hand-labeled and would rely on the economic expertise of the labeler.

5.2.2 Validate Model on Additional Data

One of the major disadvantages of working with a small data set is the inability

to reserve a validation data set to be tested on only after a model has been tuned

and optimized. Testing the models used in this thesis on similar data series from

other capitalist countries could yield interesting insights into the robustness of the

model, as well as the similarities and differences between patterns of economic
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activity in different countries. West Germany would be a good potential candidate

over the time range utlized in [29].



Appendix A
Code

The code used to generate the results from section 4.1.3 is included in this ap-

pendix. A git repository containing the complete code used in this thesis is also

available at http://github.com/jastrauckas/thesis.

A.1 HMM prediction with wavelet features

1 clc, clear all, close all

2 RELOAD = true;

3

4 %% INITIALIZE

5 addpath(’C:\Users\j_ast_000\Documents\MATLAB\pmtk3-master’);

6 initPmtk3

7 cd ’C:\cygwin\home\j_ast_000\Thesis\Code’

8

9 %% LOAD DATA and select features

10 % define what’s happening in this csv

11 nLabels = 1; % how many columns at the end are class labels?

12 startDate = 1947.0;

13

14 if RELOAD

15 rawData = csvread(’../Data/masterData.csv’, 2, 1);

16 featureCount = size(rawData, 2)-1;
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17 observationCount = size(rawData, 1);

18 featureNames = textread(’../Data/masterData.csv’, ’%s’, ’delimiter’, ’,’);

19 featureNames = featureNames(2:featureCount + 1);

20 classLabels = rawData(:,featureCount + 1);

21 end

22

23 endDate = startDate + (observationCount-1)*0.25;

24 dates = linspace(startDate, endDate, observationCount);

25

26 %% WAVELET DECOMPOSITION

27 % goal is to separate long term trend, cyclical component(s), and high

28 % frequency noise using multiresolution wavelet analysis

29 % Baxter and King define the following:

30 % Long-term trend -- periodicity > 32 quarters

31 % Business cycle -- periodicity 4-32 quarters

32 % High frequency noise -- periodicity > 32 quarters

33

34 % reproduce wavelet filter bank on real GNP

35 gnp = rawData(:,5);

36 [y1, y2, i1, i2] = getValidDateRange(gnp, dates);

37 gnpDates = dates(i1:i2);

38 gnp = gnp(i1:i2);

39 gnpLabels = classLabels(i1:i2) - 1;

40 [conStarts, conEnds] = getContractionDates(gnpLabels);

41

42 % Perform subsequent single-level wavelet decompositions

43 % Yogo suggest 17/11 filter -> coiflet with N=2

44 wname = ’coif2’;

45 [a0, d0] = dwt(gnp, wname);

46 [a1, d1] = dwt(a0, wname);

47 [a2, d2] = dwt(a1, wname);

48 [a3, d3] = dwt(a2, wname);

49
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50 % since these filtered components are all critically sampled, interpolate

51 % to restore the correct magnitude and number of points

52 originalLength = size(gnp, 1);

53 cycle_4_8 = upcoef(’d’, d1, wname, 2, originalLength);

54 cycle_8_16 = upcoef(’d’, d2, wname, 3, originalLength);

55 cycle_16_32 = upcoef(’d’, d3, wname, 4, originalLength);

56 trend = upcoef(’a’, a3, wname, 4, originalLength);

57

58 figure

59 plot(gnpDates, gnp, ’k’, ’linewidth’, 1)

60 hold on

61 plot(gnpDates, trend, ’b’)

62 plot(gnpDates, cycle_4_8, ’g’)

63 plot(gnpDates, cycle_8_16, ’m’)

64 plot(gnpDates, cycle_16_32, ’r’)

65

66 legend(’GNP’, ’trend’, ’4-8 quarter cycle’, ’8-16 quarter cycle’, ’16-32 quarter cycle’)

67 xlabel(’Year’)

68 ylabel(’Billions of Chained 2009 Dollars’)

69

70 ymin = -1000;

71 ymax = 18000;

72 axis([1946 2015 ymin ymax])

73 ymid = ((ymax-ymin)/2) + ymin;

74 yheight = (ymax-ymin);

75 for ind = 1:size(conStarts, 2)

76 first = gnpDates(conStarts(ind));

77 last = gnpDates(conEnds(ind));

78 duration = last-first;

79 center = (duration/2) + first;

80 %rectangle(’Position’, [center, ymin, duration, yheight])

81 p = patch([first last last first], [ymin ymin ymax ymax], ’c’);

82 set(p,’FaceAlpha’,0.2);
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83 set(p,’EdgeAlpha’,0.2);

84 set(p, ’EdgeColor’, ’c’);

85 end

86 hold off

87

88 %% WAVELET CLASSIFICATION (LEAVE ONE CYCLE OUT)

89 % use the time-aligned output levels of the wavelet decomposition

90 % components to classify expansion/contraction

91 rowCount = size(gnpLabels,1);

92 cycleData = [cycle_4_8 cycle_8_16 cycle_16_32];

93 cycleStarts = getCycleStarts(gnpLabels);

94 weightedPctCorrect = 0;

95 for ind = 1:length(cycleStarts)

96 if ind == length(cycleStarts)

97 testInds = cycleStarts(ind):rowCount;

98 trainingInds = 1:(cycleStarts(ind)-1);

99 else

100 testInds = cycleStarts(ind):(cycleStarts(ind+1)-1);

101 trainingInds = [1:(cycleStarts(ind)-1) (cycleStarts(ind+1)):rowCount];

102 end

103 trainDS = prtDataSetClass(cycleData(trainingInds,:), ...

104 gnpLabels(trainingInds));

105 testDS = prtDataSetClass(cycleData(testInds,:), ...

106 gnpLabels(testInds));

107 classifier = prtClassFld + prtDecisionMap;

108 classifier = classifier.train(trainDS);

109 classified = run(classifier, testDS);

110 pct = prtScorePercentCorrect(classified);

111 weightedPctCorrect = weightedPctCorrect + length(testInds)*pct;

112 end

113 waveletPctCorrect = weightedPctCorrect / rowCount; % GNP ONLY

114

115 % Try using multiple time series that worked well before



42

116 % LEAVE ONE CYCLE OUT

117 % which features to use?

118 %selections = 1:19;

119 %selections = [2,7,18,19]; % NASDAQ

120 %selections = [2,7,18,20]; % DJIA

121 selections = [5,17,18,20]; % KEEP

122 %selections = [5,18,20];

123

124 selectedNames = featureNames(selections);

125 data = [];

126 for i=selections

127 % figure

128 % plot(dates, rawData(:,i));

129 % title(featureNames{i});

130 data = [data rawData(:,i)];

131 end

132

133 % see what range of dates we can use for this set of data

134 [d1, d2, i1, i2] = getValidDateRange(data, dates);

135 validData = data(i1:i2,:);

136 waveletData = [];

137 featureCount = size(validData,2);

138 for col=1:featureCount

139 wd = getCycleComponents(validData(:,col), wname, 0);

140 waveletData = [waveletData wd];

141 end

142 % ONLY FOR CONTROL COMPARISON:

143 %waveletData = validData;

144

145 validLabels = classLabels(i1:i2);

146 validDates = dates(i1:i2);

147 validLabels(validLabels==1) = 0;

148 validLabels(validLabels==2) = 1;
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149 rowCount = size(validData,1);

150

151 iterations = 1:10;

152 pcts = zeros(1, size(iterations,2));

153 hmmPcts = pcts;

154 for ii = iterations

155 labels = validLabels(ii:rowCount);

156 data = waveletData(1:rowCount-(ii-1), :);

157 rows = rowCount - (ii-1);

158 cycleStarts = getCycleStarts(labels);

159 weightedPctCorrect = 0;

160 for ind = 1:length(cycleStarts)

161 if ind == length(cycleStarts)

162 testInds = cycleStarts(ind):rows;

163 trainingInds = 1:(cycleStarts(ind)-1);

164 else

165 testInds = cycleStarts(ind):(cycleStarts(ind+1)-1);

166 trainingInds = [1:(cycleStarts(ind)-1) (cycleStarts(ind+1)):rows];

167 end

168 trainDS = prtDataSetClass(data(trainingInds,:), ...

169 labels(trainingInds));

170 testDS = prtDataSetClass(data(testInds,:), ...

171 labels(testInds));

172

173 % normalize

174 zmuv = prtPreProcZmuv;

175 zmuv = zmuv.train(trainDS);

176 trainDS = zmuv.run(trainDS);

177 zmuv = prtPreProcZmuv;

178 zmuv = zmuv.train(testDS);

179 testDS = zmuv.run(testDS);

180

181 % create classifier
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182 %classifier = prtClassFld + prtDecisionMap; % FISHER’S

183 classifier = prtClassFld + prtDecisionBinaryMinPe;

184 %classifier = prtClassLibSvm + prtDecisionMap;

185 %classifier = prtClassKnn + prtDecisionMap;

186 classifier = classifier.train(trainDS);

187 classified = run(classifier, testDS);

188 pct = prtScorePercentCorrect(classified);

189 weightedPctCorrect = weightedPctCorrect + length(testInds)*pct;

190 end

191 pctCorrect = weightedPctCorrect / rows;

192 pcts(ii) = pctCorrect;

193

194

195 %% PMTK HMMs - can use multivariate Gaussians

196 d = size(data, 2);

197 nstates = 2;

198

199 % now, without incest!

200 targetIndex = 2 * round(size(labels, 1) / 3);

201 while labels(targetIndex) ~= labels(1)

202 targetIndex = targetIndex + 1;

203 end

204 split = targetIndex;

205

206 Z = {labels(1:targetIndex)’ + 1};

207 Y = {data(1:targetIndex,:)’};

208 X = data(targetIndex+1:end,:)’;

209 model3 = hmmFitFullyObs(Z, Y, ’gauss’);

210

211 % use Viterbi to predict state sequence

212 path = hmmMap(model3, X) - 1;

213 pctError_MVN_HMM = sum(path ~= labels(split+1:end)’) / ...

214 size(labels(141:end),1);
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215 hmmPcts(ii) = 1 - pctError_MVN_HMM;

216 end

217

218 %% Plot results

219 figure

220 years = 1:size(pcts,2);

221 years = years/4;

222 plot(years, pcts, ’bx-’)

223 title(’Classification of future cycle phases’)

224 ylabel(’Binary phase classification accuracy’)

225 xlabel(’Prediction lookahead (years)’)

226 hold on

227 plot(years, hmmPcts, ’ro-’);

228 hold off

229 legend(’LDA’,’HMM’)



Appendix B
Data

CSV files containing the full set of data used in this thesis can be obtained at

http://github.com/jastrauckas/thesis. The data series that were used or

considered for classification are listed below, along with their respective sources.

Refer to the more verbose series names and descriptions provided in table 3.1.
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Index Name Source URL
1 GNP Deflator % FRED alfred.stlouisfed.org
2 Real GNP % FRED alfred.stlouisfed.org
3 GNP % FRED alfred.stlouisfed.org
4 GNP FRED alfred.stlouisfed.org
5 Real GNP FRED alfred.stlouisfed.org
6 GNP Deflator FRED alfred.stlouisfed.org
7 CPI FRED alfred.stlouisfed.org
8 Real CPI FRED alfred.stlouisfed.org
9 Surplus FRED alfred.stlouisfed.org
10 Surplus % FRED alfred.stlouisfed.org
11 GCE FRED alfred.stlouisfed.org
12 GCEI FRED alfred.stlouisfed.org
13 M2 US FRED alfred.stlouisfed.org
14 M2 US FRED alfred.stlouisfed.org
15 M1 US FRED alfred.stlouisfed.org
16 M1 % FRED alfred.stlouisfed.org
17 Unemployment FRED alfred.stlouisfed.org
18 Unemployment % FRED alfred.stlouisfed.org
19 NASDAQ % FRED alfred.stlouisfed.org
20 DJIA % BCB quandl.com/data/BCB/

Table B.1. Sources used for cycle classification
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