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Abstract

This work describes an application of Latent Dirichlet Allocation (LDA) text
modeling to find clusters in various text corpora. Specific optimizations and
applications are made to model medical data consisting of patient observations.
The LDA topic model is first explored with a set of labeled (supervised) data to
evaluate performance and demonstrate the viability of an unsupervised system.
The supervised data is clustered and this reduced representation is used to
classify the documents. The class labels are then compared to the original
labels to evaluate the topic model. The performance on the unsupervised
set is evaluated through observation of the clusters and the most-likely topic
distributions, as well as the log-likelihood score of the topic model.
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1 Introduction

1.1 Topic Modeling

Text is a ubiquitous and important source of information. Finding a compact
representation of the contents of a document that is both human-readable
and informative remains an important task. The goal of topic modeling is to
create such representations by discovering latent topic structures in collections
of documents. These representations are useful for document classification and

retrieval tasks, making topic modeling an important machine learning problem.

Effectively using collections of text requires interacting with them in a more
structured way: finding documents similar to those of interest, and exploring

the collection through its underlying topics.

The central problem is that this structure—the index of ideas contained in
the articles, and which other articles are about the same kinds of ideas—is not
readily available in most modern collections. The size and growth rate of these
collections preclude one from building it by hand. To develop the necessary
tools for exploring and browsing modern digital libraries, automated methods

of organizing, managing, and delivering their contents are required.

Topic models are systems which seek to uncover the underlying semantic struc-
ture of a document collection. Topic models may be as simple as indexing
systems or hand-labeling. More sophisticated models incorporate word fre-
quency [1], singular-value decomposition [2], or probablistic modelling of the
word frequencies [3]. The system described here is based on a hierarchical
Bayesian analysis of the texts. Topic models have been applied to many kinds
of documents including email [4], scientific abstracts [5], and news articles [6].

By discovering patterns of word occurrences in and connecting documents



that exhibit similar patterns, topic models have emerged as a powerful new

technique for finding useful structure in an otherwise unstructured collection.

Probabilisic topic models are often used to analyze and extract semantic topics
from large text collections. Many of the existing topic models are based on the
assumption that each document is represented as a mixture of topics, where
each topic defines a probability distribution over words. The mixing propor-
tions of the topics are document specific, but the probability distribution over

words, defined by each topic, is the same across all documents.

The most common approach to topic modeling is to build a generative proba-
bilistic model of a bag-of-words in a document. These models treat documents
as a bag-of-words, a collection of terms or words, and discard their relative posi-
tioning. While this destroys any existing grammatical and semantic structure,
this simplifying assumption does not preclude the development of functional
models. They are deemed generative models since they generate observable
values from a conditional probability density given a set of hidden parameters

formed through Baye’s rule.

Directed graphical models, such as Latent Dirichlet Allocation (LDA) [7], have
been extensively used for this. Non-parametric extensions of these models have
also been quite successful [8]. Even though exact inference in these models is
hard, efficient inference schemes, including stochastic variational inference, on-
line inference, and collapsed Gibbs sampling have been developed that make

it feasible to train and use these methods.

These probabilistic models may be interpreted as graphical models (in plate
notation). Latent topic variables have directed connections to observed vari-

ables: the words in a given document. As mentioned above, exact inference,



Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

computer chemistry cortex orbit infection
methods  synthesis  stimulus dust immune
number  oxidation fig Jupiter AIDS
two reaction vision line infected
principle product neuron system viral
design organic  recordings solar cells
access conditions visual gas vaccine
processing  cluster stimuli ~ atmospheric antibodies
advantage molecule  recorded Mars HIV
important studies motor field parasite

Table 1: Five topics from a 50-topic LDA model fit to Science from 1980-2002.
Excerpted from [10].

in these models is intractable, so one has to variational inference methods to

compute the posterior distribution over topics.

Note that any mixture model cannot make predictions for words that are

“sharper” than the distributions predicted by any of the individual topics, since

distributions predicted by individual active features are multiplied together to

give the distributions predicted by many active features. This allows individual

features to be fairly general but their intersection to be much more precise.
» o«

For example, the topics “government”, “coverup”, and “moon” to combine to

give the very high probability to a word “NASA”.

With these statistical tools one can automate the categorizing of digital archives
to facilitate efficient browsing and exploring. For example, an analysis of
academic journals may reveal the internal structure of topics and their most

relevant articles. Analysis of email topics are useful for spam detection [9].

Table 1 demonstrates five topics—groups of highly probable words—that were
discovered automatically from this collection using the latent Dirichlet allo-
cation (LDA) topic model. This algorithm has no prior knowledge of the

existence of the illustracted themes, such as computer science or astrophysics.
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Figure 1: Example mixture distribution of three Gaussians and plate notation
for the model.

The topics are automatically discovered from analyzing the corpus. Note, that
while the algorithm clusters words into topics it cannot synthesize explantory

topic names.

1.2 Hierarchical Bayesian Models

Hierarchical Bayesian models make use of two important concepts in deriving
the posterior distribution in that they assume hyper-parameters which are

distributed according to their hyper-priors.

Directed graphical models are used to describe the independence assumptions
of the models. The graphical model provides a compact description of the fac-
torization of a joint distribution: nodes denote random variables; edges denote
possible dependence between random variables; and plates denote replication
of a substructure. The indexes of the variables within a plate is noted on the

bottom-right corner.

Graphical models can be used to describe latent variable models. Latent vari-
able modeling is a method of developing complicated structured distributions,
where the data interact with latent or unobserved random variables. In the
graphical model notation, observed random variables are shaded, and latent

random variables are unshaded.



For example, the distribution in Figure 1 is the mizture distribution formed
by combining three unit-variance Gaussian distributions with means p; =
—2.5, uy = 4, and pu3 = 8. A data point is drawn by first choosing a latent
variable Z € {1,2,3} from a multinomial, and then drawing the data point

from N (u.,1). This example is illustrated as a graphical model in Figure 1.

The central task of the latent variable modeling for data analysis is posterior
inference, where we determine the distribution of the latent variables condi-
tional on the observations. Loosely, posterior inference can be thought of as
a reversal of the generative process which the graphical model illustrates. For
example in the Gaussian mixture with fixed means, we would like to determine
the posterior distribution of the indicator Z given a data point z. If z = 1,

then the posterior p(Z | X =1, uq, p2, p3) is (0.16,0.83,0.01).

Traditionally, the structure of the graphical model informs the ease or difficulty
of posterior inference. In the models of the subsequent chapters, however,
inference is difficult despite a simple graph structure. Thus, we resort to

approximate posterior inference.

Typically, the parameters of the model are not observed—in this case the
means in the Gaussian mixture—and part of the posterior inference problem
is to compute their posterior distribution conditional on the data. One option
is to adopt the empirical Bayes perspective and find point estimates of the
parameters based on maximum likelihood. Such estimates can be found, for
example, with the expectation-maximization (EM) algorithm, or approximate

variant of it.

Alternatively, we may take a more fully Bayesian approach, placing a prior
distribution on the parameters and computing a proper posterior distribution.

This is called hierarchical Bayesian modeling because it necessitates the speci-



fication of a distribution of the parameters, which itself must have parameters

called hyperparameters.

In a hierarchical Bayesian model, we may still use the empirical Bayes method-
ology, and find point estimates of the hyperparameters by maximum like-
lihood. This is often sensible because it affords the advantages of exhibiting
uncertainty on the parameters, while avoiding the unplesant necessity of choos-

ing a fixed hyperparameter or further extending the hierarchy.
1.2.1 Exponential family distributions

All the random variables we will consider are distributed according to expo-

nential family distributions. Distributions in this family have the form:

p(z | m) = h(x)exp(n - t(x) — A(n)) (1)

n=(n,n...,ns5)" (2)

where 1 is the natural parameter, a vector of dimension s, t(z) is a vector-
valued function representing the sufficient statistics and A(n) is the log parti-
tion function:

Alm) = 1og. [ hla)exp(n - (a) d Q

The forms of the derivatives of A(n) are determined by the dimensions of t(z).

Consider the Gaussian (normal) distribution with unknown mean, p and vari-

ance o.

Nso) = s (5 20)

2mo? 202



It may be written in the canonical form from Equation 2 with parameters:

If z € R then the derivatives of the log partition function are:
A'(m) = Eq[t(X)]

A"(n) = Eq[t(X?)] — (E[6(X)])*

= Var(t(X))

If t(z) is a multidimensional, one-hot vector (i.e. all zeros with a single one)

then the corresponding exponential family distribution is multinomial as shown

in Equations 4-7. More information on the exponential family of distribution

can be found in [11].

k
n= (lnpl,lan,...,lnpk)T where Zpi =1

i=1

['(n)
h(z) = —————
) Hf:l ['(z)

k
= (21, 29,...,71)" where g ;=1
i=1

A(m) =0
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Figure 2: The plate notation of IID data Xj.x from p(x | 1), where n is
distributed by p(n | A) for a hyper-parameter A. Note that the observed
random variables are shaded, and latent random variables are unshaded.

N

1.2.2 Conjugate Priors

As previously stated, in a hierarchical Bayesian model, one must specify the
prior distribution of the parameters. This section describes a family of priors

which facilitate computations in such a model.

If X is a random variable distributed according to an exponential family with
natural parameter n and log partition function A(n), then a conjugate prior

of m, with natural parameter A, has the form:

p(n | A) = h(n)exp(Q — A(N)) (8)

Where @ is:
Q = A} + Xa(—A(n)) (9)

Where A; and Ay are decompositions of A such that A; is of dimension dim(n)
and )y is a scalar. The conjugate distribution is an important mathematical
trick, because the corresponding posterior will have the same form. Consider
the simple model illustrated in Figure 2 where X;. 5 are independent, identi-
cally distributed (IID) from the exponential family distribution p(z, | n) and

p(n | A) is the conjugate prior.



The posterior of 1 is:

p(n [ A z1.n) o< p(n [ A)p(wr. x| M)

o h(n) exp(q) [ [ exp(n - t(zn) — A(n))

= h(n) exp <)\1 + (A2 + N)(=A(n)) + Zt(zn) : 77>

n=1
which is of the same form as the prior, p(n | A), in Equation 8 with posterior

parameters A = (A1, A2) which become:

N

A=A+ t(x) (10)
n=1

Ao=Xo+ N (11)

Conditioned on any amount of data, the posterior can be fully defined by the
prior parameters, the sum of the sufficient statistics, and the data points. The
convenience of the conjugate prior also extends to computing the marginal

distribution:
pe | X) = [ bl [ mpn | X) dn (12
Using Equation 8 as the conjugate:
e | X) = h(a) | expln - t(a) — An)) - () exp(Q ~ A(X)dn)
= ha)exp(~AN) [ ) expl(h+ t(e) -7+ (e + 1(=AN) d
= h(z)exp(A(N\ +t(z), o+ 1) — AN))

If the log partition function A(-) is easy to compute, then the marginal distri-

bution will, by extension, also be simple.



2 Problem Statement and Related Works
2.1 Term Frequency, Inverse Document Frequency

Term Frequency, Inverse Document Frequency or (tf-idf) is a statistical method
to reduce a corpus of documents into a matrix of words (features). The metric
is proportional to the number of appearances of a word and inversely propor-
tional to the number of appearances across the entire corpus. This measure
was proposed early on, during the first attempts to analyze textual data by
machine [1]. While simple, the metric has proved effective and is still used in

modern analysis [12,13].
2.1.1 Term Frequency

There are various approaches to measuring term frequency used throughout

the literature:

Weighting Scheme Term Frequency Weight
Boolean {0,1}

Raw Frequency fw.d

Log Normalization 1 +log fuw.d

Augmented Normalization K + (1 — K )%

Table 2: Term Frequency weighting schemes

Where f,, 4 is the frequency of word w in document d.

count(w)

fw,d -
|d|

(13)

The simplest choice is simply to use the raw frequency of a word in a docu-
ment, the number of times that the term ¢ appears in a document d. Boolean
frequencies are 1 if the term appears at all or 0 if it is absent. Augmented

normalization prevents longer documents from biasing the frequency.

10



2.1.2 Inverse Document Frequency

The inverse document frequency is a measure of how much information a word
provides. This metric measures the occurrence of a word across all of the

documents in the corpus.

Weighting Scheme Inverse Document Frequency Weight
Unary 1

Inverse Frequency log %

Smooth Inverse Frequency log (1 + %)

Max Inverse Frequency log(1 + max(n,))

Probabilistic Inverse Frequency log %

Table 3: Inverse Document Frequency weights

Where N is the number of documents in the corpus and n,, is the inverse

document frequency and D is the corpus:

N

idf(w, D) =n,, =1
idf(w, D) = n 0g1+|d€D:w€d|

(14)

Where the denominator |d € D: w € dr|| represents the number of documents
which contain word w. Combining 13 and 14 and one of the proposed weighting

schemes results in the metric used throughout the following sections.

2.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an automatic indexing method for textual
information developed by Deerwester et. al. in [2]. The basic premise of this
method is to use the tf-idf representation of the corpus and perform a singular-
value decomposition (SVD). By selecting a small number of singular values for

each document a lower-dimensional representation of the corpus may be found.

Documents are represented as td-idf vectors and similarity is computed via the

cosine similarity in the latent space. Clustering in the latent space produces

11



the notion of “topics” or latent semantic meaning (hence the name of this

process).

The primary drawback of this method is that it has difficulty dealing with
synonymy and polysemy. Synonymy is the property of a language that allows
multiple words or symbols to refer to the same thing. Polysemy describes how
a single word or symbol may have multiple meanings. Moreover, the latent
space representation does not allow for mixtures of topics. The clustering

assumes that each document belongs only to one cluster of tf-idf terms.

2.3 Probabilistic Latent Semantic Indexing

Probablistic Latent Semantic Indexing pLSI is a statistical adaptation of LSI
developed first by Hofmann in [3]. Rather than using singular values to de-
compose the tf-idf vector space, pLSI considers a mixture of multinomial dis-

tributions:

P(d,w) = P(d)P(w | d)

Plw|d) =Y p(w] 2)p(z | d)

z€Z

Where d is a document and w is a word and z is a class label or topic. Since
|Z| < |D| < |W|, the set of topics strictly reduces the dimension of the corpus.
P(d,w) =Y P(z)P(d | z)P(w | 2) (15)

2€Z

Which is symmetric in topics, documents, and words.

This model is fit using expectation-maxmization (EM) in two steps. The E-

step first computes the posterior probabilities for the latent variables:

P(z)P(d | z)P(w | 2)
PP | 2)P(w | 2)

z'eZ

P(z|d,w) = (16)

12



POt cmdedmg
- sunplex

_________________________________________

spanned

Figure 3: Probability sub-simplex spanned by model embedded with tf-idf
space [3]

And the M-step updates the parameters:

Pw | z) wad (z | d,w)

deD

ochwd (z | d,w)
weW
Zwad (z | d,w)
deD weW

Where f(w,d) is the term-frequency defined in 13. The class-conditional multi-
nomial distribution P(- | z) over the vocabulary can be represented as point
on the M — 1 dimensional hyper-simplex. Where M is the size of vocabulary
and K is the number of topics. The convex hull or sub-simplex defined by the
set of K points. As stated earlier since K < M the sub-simplex is embedded

within the higher dimensional space.

2.4 Mixture of Unigrams

The mixture of unigrams model is closely related to the the latent Dirichlet
allocation. While it is not widely used in text modeling, understanding this
model makes the details of LDA simpler to comprehend. LDA is strictly supe-
rior to this model as it is better able to encompass polysemy: the ability for a

word or symbol to have multiple meanings—usually dependent on context. In

13



some interesting cases, words can have opposite meanings. For example “pe-
ruse” can mean to read closely “the lawyer perused the terms of the contract”

or to browse or glance “I perused the ice cream selection at the store”.

This model, as those described previously, also relies on tf-idf vectors. For
further details on the following explanation, the reader is referred to [14, 15].
Assume, for the purposes of explanation, that there are two topics—space
exploration and an account of Christian missions in the Americas—(K = 2),
twenty articles (N = 20) and each article consists of n; words drawn from a

vocabularly of eight words (V' = 8). The model makes three key assumptions:

1. Documents in a topic are likely to share a set of words
2. We assume as a prior, that each topic is equiprobable for any document

3. Similary, each word can appear in any document with equal probability

This can be described by the following relations:

2. v~ M(1,0) independent
9 ~ D(Ch: K)

¢1: K~ D(Bl: V)

Where M and D denote multinomial and Dirichlet distributions, respectively,
and w;; is the jth word of document 7. The topic of the i¢th document is
zi—either 1 or 2 in this example with two topics. The hyper-parameters
a1, g = (1,1)and 51.v = (1,1,1,1,1,1,1, 1) are the parameters for the Dirich-
let distributions expressing the priors described in the assumptions above.
Note that D(1,1) is equivalent to a Beta distribution with shape parameters
a=1,=1.

14



The following is a summary of the definitions used in this model:

N the number of documents

V' the number of unique words (or vocabulary)

K the number of topics

w;; jth word of the ¢th document

2z; the topic of the ith document

n; the length of the ith document (in words)

« parameter of the document-topic distribution

[ parameter of the topic-word distribution

Assume that the vocabulary and word frequencies of the documents is as de-
scribed in Table 4 and that the initial document-topic vector is z = (2,. .., 2),

that is to say we initially assign all the documents, arbitrarily, to Topic 2.

# Topic space orbit launch mission god christian church faith
1 1 1 0 0 2 0 3 2 5
2 1 0 0 0 3 1 0 6 1
3 2 2 2 9 1 0 0 0 0
4 2 1 1 0 4 0 0 0 1
5 1 0 0 1 1 1 3 0 9

Table 4: The vocabulary matrix for the example text corpus. The first column
indicates the document; the second the topic label; the remaining columns are
the frequencies of the each word.

As we observe the words in each document, we update each of the distributions.
From Table 4, we see that “orbit” should be strongly associated with Topic 1,

space exploration, all documents in Topic 1 contain it and no documents in

15



Topic 2 do.

P(¢1: K \ 21 N,w) ocp(w \ O1: K21 N)P(¢1: K)
N n;

—HHan@xHDmmv

11]1

“fﬂldh fﬂiw“l

i=1 v=1 k=1v=1

~II v = [T

k=1v=1

-
[T o p(or. k | 1. 3, w)
=1 v=1

=

D¢ | b1+ exa,---,Bv +ewv

=

=
Il
—

Where f;, is the frequency of the vth word in ¢th document and ey, is the

frequency the vth word is assined to the kth topic.

Having associated a word with a topic, we now update the associations of topics
with documents. Using the previous example word “orbit” we will update the
third document—with three occurences of the word—to the first topic. This
would change the document-topic vector to z = (2,2, 1,...,2). This update is

computed as follows:

p(zi =k [ w, 1.k, 0) o< p(w | 2, ¢1. k)p(zi = K | 0)

x p(z =k |0) Hp(wij | zis 91: i)
j=1

—@HM“

p(zi | w7¢1: k79> = M('Zl ’ 178(1))

16



Where,

”
<91 [Ter 6T 60".- - 0x Hqsfl > (17)
v=1

Having done the above for each word in each document, we update the pro-
portions of each topic in the corpus. Our naive assumption of 100% Topic 2
will be updated to take into account any assignments we have made in the

previous step.

p(0 | z1:n) o< p(21: v | )p(6)

=

K

= H zi | 0) H (O | )
i=1 . k=1
edk Hea-l

edk-‘roc—l

Tj,’:]w I ’,:]w

’,:]x

p(9|21;N): <8k|061+d1,042+d2,...,04K+dK)

i
I

Where dj, is the number of documents assigned to Topic k. Computing these
updates over and over is an instance of Gibbs sampling and the document-
topic and word-topic distributions will converge to a representation reflecting

the articles” word frequencies.

2.5 Problem Statement

An electroencephalograph or EEG is a monitoring technique that records elec-
trical activity in the brain [16]. The procedure is typically used for the di-
agnosis of epilepsy, as wells as, sleep disorders, coma, and other diseases of
the brain. EEGs are performed in an attempt to link activity in the brain to

physiological conditions such as seizures or sleep disturbances [17].

17



Using the textual data outlined in Section 2.7, this work attempts to use topic
modeling to cluster patient observations into meaningful lower-dimensional
representations. Ideally, these groups would share similar medical profiles,
such as symptoms, medication, or diagnosis. This would allow for simpler
comparison of patient profiles and may aid in treatment or in diagnosis. The
clusters may also serve exploratory or instructional purposes allowing physi-

cians to draw new inferences from the dataset.

2.6 Supervised Test Data Sets

2.6.1 20-newsgroups

The 20-newsgroups dataset is a collection of approximately 20,000 newsgroup
documents (or forum posts) evenly distributed across twenty different news-
groups [18]. In use for over twenty years in machine learning literature for
text classification and clustering, this dataset has become a standard super-

vised test set.

Group Topics
graphics, ms-windows.misc, sys.ibm.pc.hardware,

comp sys.mac.hardware, windows.x

rec autos, motorcycles, sport.baseball, sport.hockey

sci crypt, electronics, med, space

talk politics.misc, politics.guns, politics.mideast, religion.misc
alt atheism

sOC religion.christian

misc forsale

Table 5: 20-newsgroups groups and topics. Each group may contain various
topics and sub-topics.

Testing the topic model on this large dataset is useful, as it demonstrates the
performance of the model on a very large corpus with a relatively sparse vo-
cabulary. Given that these are relatively short forum posts common words are

often repeated throughout the corpus. This provides an interesting challenge
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for the model as there are fewer informative words per document making topic
clustering more difficult. The results are more sensitive to the size of the initial
vocabulary as well as to the stemming and stop word policy used in preparing

the features.

2.6.2 NIPS Abstracts

Neural Information Processing Systems (NIPS) is one of the top machine learn-
ing conferences in the world [19]. This conference covers various topics in-
cluding deep learning, computer vision, cognitive science, and reinforcement
learning. This dataset contains the entire corpus of submissions for the 2015
NIPS Conference (over 400 total papers). The data is structured as a sin-
gle comma-separated-value (CSV) file and includes: the title of the paper,
abstract, poster/oral presentation flag, and the raw text converted from the

PDF submission.

Analysis of the raw text is hampered by the incomplete conversion of tables
as well as captions and special characters such as ligatures. The abstract
information was scraped from the NIPS website as raw text and does not

suffer from PDF conversion issues.

This corpus presents an analogue to the medical texts used in the unsupervised
portion of this analysis. Both are small corpora consisting of short documents
with highly technical vocabularies. The preliminary analysis on this super-
vised training set can be meaningfully extrapolated to the performance on the
medical data, absent the judgement of a trained medical professional. That is
to say the relative performance of the algorithm should be comparable across

both corpora.

19



2.7 Medical Data Set

The unsupervised medical data set is drawn from [20]. The corpus consists
of nearly 4,000 documents each corresponding to the notes of an attending
physician or nurse during the course of an EEG scan. The corpus was collected
by Temple University Hospital over the course of an 11-year period from 2002—
2013. While the dataset also contains over 20,000 EEG scans, the focus here
to infer patient clusters solely from the textual data provided. This represents
a subset of the patients in the original data; while several patients underwent
multiple EEG scans, not all had recored observations. Each document notes
the patient’s symptoms, medication (if applicable) and any notes from the

duration of the brain scan. The document is partitioned accordingly.
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Listing 1: Sample Patient Record

CLINICAL HISTORY: A 30-year-old woman, with epilepsy, 27 weeks

pregnant. The patient was admitted with a change in mental
status. She had a seizure on the 9th lasting 45 seconds and
then another event today, question encephalopathy, question
postictal, question behavior.

MEDICATIONS: Metoprolol, heparin, Keppra, Ativan.

INTRODUCTION: Digital video EEG was performed in the lab using

standard 10-20 system of electrode placement with one channel
of EKG. The patient had been sedated, had a recent seizure
and was quite somnolent.

DESCRIPTION OF THE RECORD: The initial sections of the EEG

demonstrate a low voltage slow pattern with slow delta. With
stimulation, a scant 8 Hz alpha rhythm was noted. The
technologist was able to awaken the patient for
hyperventilation which seems to produce some rhythmic,
sharply contoured slowing in the right hemisphere,
particularly in the right mid to anterior temporal region. As
the patient becomes drowsy bursts of high amplitude frontal
delta were noted.

Photic stimulation did not activate the record. Heart rate 78

BPM.

IMPRESSION: This is an abnormal EEG due to:

*
*
*

*

Abnormal background with a low voltage slow pattern.

Excess theta.

Rhythmic right delta particularly in the right mid temporal
region notable with hyperventilation.

FIRDA.

CLINICAL CORRELATION: This EEG demonstrates a diffuse

disturbance of cerebral function which may be due to a
postictal state or medications. In addition, there are focal
features with rhythmic, sharply contoured slowing in the
right temporal region. Based on these findings, EEG
monitoring was requested.
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3 System Description
3.1 Tokenization

Tokenization is the process of splitting a sequence of characters into individ-
ual words and symbols. This process is difficult to solve in general; this work
solves the problem for specific data sets with customized solutions. For ex-
ample the test data in the 20-news-groups contains untokenized forum input.
Since the data is not curated or filtered, it contains various special characters,
substitutions, colloquialisms, and misspellings. Moreover, the documents vary
in length from empty strings to over 60,000 characters.

Listing 2: Sample Forum Post

Archive-name: graphics/resources-list/partl

Last-modified: 1993/04/17

Computer Graphics Resource Listing : WEEKLY POSTING [ PART 1/3 ]

Last Change : 17 April 1993

Many FAQs, including this Listing, are available on the archive
site pit-manager.mit.edu (alias rtfm.mit.edu) [18.172.1.27]
in the directory pub/usenet/news.answers. The name under
which a FAQ is archived appears in the Archive-name line at
the top of the article. This FAQ is archived as graphics/

resources-list/part[1-3]
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There's a mail server on that machine. You send a e-mail message
to mail-server@pit-manager.mit.edu containing the keyword "
help" (without quotes!) in the message body.

You can see in many other places for this Listing. See the item:

0. Places to find the Resource Listing

[b]

The splitting of words is done with a custom regular expression that searches
for special characters, apostrophes, number, and punctuation.

Listing 3: Sample regular expression for tokenization

"(?1(@Imlt 11 lve)\W) | [.,\=_17:; ()0-9@=+"%"~#&| \t\n+

Applying this regular expression to the corpus generates a sequence of sepa-

rated words, or tokens.

3.1.1 Stop Words

The sequence of separated words is then parsed for any stop words. These are
words which are filtered out prior to any further processing. They consist of
common English words such as articles, prepositions, and conjunctions. This
work uses a custom set of words based on the list provided in the package [21].
While tf-idf features would typically filter out these common words, explicit
stop words allows for the use of a larger vocabulary without re-introducing

these words into the model.
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3.2 Stemming and Lemmatization

Stemming is a linguistic operation that removes the suffixes from individual
words [22]. Lemmatization is a closely related operation that reduces a word
to its linguistic root. These associative maps are useful when working with
bag-of-words models such as LDA as they reduce the number of related or
redundant entries in the vocabulary matrix. For example the words “fish”,
“fishing”, and “fisher” will all be stemmed to the root “fish”. Lemmatization
takes this process further: “is”, “was”, and “be” will all be mapped to the
morphological root “be”. Note how stemming only truncates prefixes and

suffixes, while lemmatizing is a custom map. The system described here uses

the Snowball stemmer [23].
3.2.1 Snowball Stemmer

Snowball is a string processing language and library incorporated into Python
[23]. The basic algorithm in Snowball is the Porter stemming algorithm [24,25].
As with nearly all stemmers, the Porter stemmer is based on the formal written
rather than the spoken language. This assumption may affect the parsing of

less formal corpora as well as slang expressions and other colloquialisms.
This stemmer contains both algorithms to remove specific types of suffixes as
well as a dictionary mapping conjunctions of verbs that change their forms.
The stemming algorithm recognizes various suffix forms including:

o a-suffizes, are attached, such as “loving” 4+ “-ly” = “lovingly”

o i-suffizes, are inflectional, such as “ fit” + “-ed” = “fitted” (doubled t)

or “love” 4+ “-ed” = “loved” (drop final e)

o d-suffizes, are derivational, “little” + “-ness” = “littleness”
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Suffixes may be combined or cascaded to form new words: i-suffizes can follow
or precede d-suffizes, but the latter is much rarer. For example: “love” + “-
ing” (d-suffix) + “-ly” (i-suffir) = “lovingly”; “devote” + “-ed” (i-suffix) +

“ness” (d-suffir) = “devotedness”.

Note that suffixes can serve multiple purposes. For example, “-ly” is a standard
way of turning an adjective into an adverb (“great” to “greatly”) but can also
turn a noun into an adjective (“love” to “lovely”). Since the order of the
suffixes and their usage is so varied, words are often conflated and mapped to
the same root. This is often desirable, as is reduces the size of the vocabulary,

but may also result in errors. Consider the pairs of words presented in Table 6.

Verb  Adjective Root
prove provable  prov-
probe probable  prob-?

Table 6: An example of over-stemming. Note that while the pairs of words
are morphologically identical, stemming “probable” and “probe” to the same
root would be an error.

To prevent these types of errors, most stemmers also incorporate a dictionary
of common words and roots or exceptions to specific suffix rules. Despite these
conflations and over-stemming issues, stemming remains a useful and effective
way to reduce vocabulary sizes and to associate words across their various

conjugations and forms.

3.3 Feature Selection

Beyond the applications of tokenization, stemming, and lemmatization, feature
selection for the tf-idf family of models consists selecting the vocabulary size.

Determining the vocabulary size was done via an exploratory iterative process
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optimizing for model log-likelihood and perplexity metrics. Beyond a certain
size, increasing the vocabulary size provides little added benefit as increasing

the number of tf-idf terms adds less and less informative words.

For each dataset, vocabulary size was chosen in proportion to the size of the
corpus. This was done to reduce overfitting as well as noise from less informa-
tive words in each document. The 20-newsgroups dataset provided a testing
ground to investigate the effect of vocabulary size on the generated topics. Vo-
cabularies of 10,000, 5,000, 1,000 and 100 words were used to train a 6-topic
model on a dataset to 4,000 documents. The actual number of topics in this
data was reduced to be six by removing fourteen of the original twenty topics.
The following topics were used here: “comp.graphics”, “rec.sport.baseball”,

bR A4 o«

“rec.autos”; “sci.med”, “sci.space”, “soc.religion.christian”.

Notice how the reduction of vocabulary size not only affects the topic location
in the latent space, but may cause the merging or splitting of clusters. For
example, in reducing the vocabulary from 10,000 to 5,000 words the cluster
(car, orbit, launch) becomes (car, game, good) indicating a separation of the
notion of “transport” and the merging of the cars topic with sports. While
the (space, nasa, center) is further refined into (space, launch, develop); this

is an improvement, since it is now separate from the cars/auto cluster.

Interestingly, the 1,000 word representation reintroduces the baseball/sports
topic as (game, team, hit) while maintaining an excellent separation between
cars/auto and space. However, the medicine forum is reduced to the rather
simplistic (time, problem, people) which does provide a description of medicine,

albeit a crude one.

Further reduction of the vocabulary (i.e. lower-dimensional representations) of

the document space, lead to cruder topics and more collisions. It is interesting
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Size Topic Vectors

car, orbit, launch
god, christian, people
game, good, team
image, file, graphic
food, doctor, pain
space, nasa, center
car, game, good

god, christian, jesus
people, thing, time
imag, file, program
food, pain, doctor
space, launch, develop
car, drive, engin

god, christian, people
game, team, hit
imag, file, graphic
time, problem, people
space, launch, orbit
car, time, problem
god, jesus, church
game, team, hit
imag, file, graphic
people, thing, question
space, launch, orbit
car, time, good

god, christian, people
point, game, day
imag, file, graphic
univers, center, object
space, launch, nasa

10,000

5,000

1,000

500

100

Table 7: Topic vectors for various vocabulary sizes
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to note however that certain topics remain cohesive and unchanged such as
(image, file, graphic) and (god, christian, people) suggesting that these par-
ticular clusters are very compact in the latent space. One would expect such

clusters to be “far” from the others and have a clearly defined boundary.

3.4 LDA Algorithm

3.4.1 Notation and Terminology

As in previous sections describing related methods, this section will use the
terminology of text collections referring to “words”, “documents” and “cor-
pora” as specific entities. The abstract notion of a “topic” is also introduced
as a latent variable of such a collection. Note that while the applications pre-
sented herein are concerned specifically with textual data and the clustering
of latent topics, there are numerous other applications of this technique not

limited to clustering or even to textual data [6,7].

The following definitions are used throughout the following section:

e A word is the basic unit of discrete data, a single item from the vocab-

ulary. Each word is a unit-basis vector of dimension V.

e The vocabulary is the unique set of all words across the entire corpus

represented as an M by V matrix.
o A document is a sequence of N words denoted by w = (wq, wa, ..., wy).

o A corpusis a collection of M documents denoted by C = (wq, Wa, ..., Wn).
3.4.2 Model Details

The latent Dirichlet allocation (LDA) is a generative probabilistic model of a

corpus. The model was developed and further developed in [7,10,26]. The
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model’s primary assumption is that documents may be represented as random
mixtures over latent topics. Each topic is itself a distribution over the corpus’

vocabulary.

The model assumes the following generative process for each document in the

corpus:

1. Choose an ancillary distribution for N ~ P(&)
2. Choose 8 ~ D(a)

3. For each of the N words w,,:

(a) Choose topic z, ~ M(0)
(b) Choose a word w,, from p(w, | z,, 3), multinomial conditioned on

the topic z,

Where P is a Poisson distribution, D is a Dirichlet distribution and M is a

multinomial distribution.

Three simplifying assumptions were made above. First, the dimension of the
Dirichlet distribution, k, is assumed to be known and fixed. This also fixes the
dimension of the topic variable, z. Second, the word probabilities in the & x V'
matrix 3, where 3;; = p(w; = 1| z; = 1), is also assumed to be fixed quantity.
Lastly, the assumption of an ancillary Poisson distribution for the document
length distribution is not critical and was chosen here for simplicity. A more

realistic distribution may substituted as needed.

A k-dimensional Dirichlet random variable 6 can take values in the (k —
1) hyper-simplex and has the following probability density over this hyper-
simplex:

PS8, @) T pant
0|l a)=—"—""—- oom 18
MO = gy L "
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Figure 4: Plate notation for LDA algorithm. The outer plate represents the
document level. The inner plate represents the repeated selection of topics
and words for a document. Figure from [7]

Where the parameter e is a k-vector and its components a; > 0, and I'(+) is the
Gamma function. The Dirichlet is chosen here because it is well-behaved over
hyper-simplexes, is in the exponential family, has finite sufficient statistics,
and is the conjugate to the multinomial distribution. Each of the properties
makes the computation of the inference and parameter estimation algorithms

viable.

Given the parameters a, 3 the joint distribution for a topic mixture 8, a set

of N topics z, and a set of N words w is given by:
N
p(0,2,w | a,B)=p@O | )]z 0)p(w, | 2, B) (19)
n=1

Where p(z, | 0) is just 6; for the unique index i such that 2!, = 1. The

marginal distribution of a document is given by:

p(W|a,ﬂ)=/ 0]a) (Hzpznw (wn | 2n, )) (20)

n=1 zn

And the probability of a corpus is:

p(Cla,B) = H/ (04 | @) (Hszdn|0d )p(wan | zqn, /6’)) dd; (21)

n=1 z4n

The plate notation for this model is shown in Figure 4.
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The latent multinomial variables are deemed “topics”, but the author makes
no claim to their comprehensibility to a human researcher nor to their intelli-

gibility, beyond their probabilistic definition.

As in the multinomial mixture model, the LDA model also allows for each
document to become associated to more than one topic. This is due to the
sampling of the topic node repeatedly within the document, see Figure 4.
While documents may exhibit multiple topics, note that the hyper-simplex
restriction forces the sum of this topic-vector to be equal to one. This produces
a slightly negative correlation between topics and might lead to truncation

effects since all topic are effectively scaled to the largest component.

The plate notation in Figure 4 is common the in the Bayesian statistical mod-
eling world for more depth on this topic, the reader is referred to [14,15]. The

hyper-parameters «, 3 are estimated using an empirical Bayes approach.

3.4.3 Geometric interpretation

An interesting way of viewing the LDA model output is by observing the
geometry of the latent space. Figure 5 demonstrates the simple example of a
corpus with three unique words and four topics. This results in a surface of
multinomial distributions over a (V-1)-simplex (or two-dimensional triangle).
In this case, the topics represented are z; = (1,0,0), zo = (0.1,0.05,0.85), 23 =

(0.04,0.91,0.05), z4 = (0.4,0.35,0.25).

This same geometric analysis may be used to compare LDA to the previous
models discussed. Taking the perspective in Figure 5 and shifting to a top-
down projection, this analysis is seen in Figure 6. This projection allows for

the simultaneous comparison of mixture of unigrams, pLSI and LDA models:
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Figure 5: Example unigram density p(w | 8, 8) for three words and four topics.
This results in a surface over a 2-simplex (i.e. an equilateral triangle). Each
vertex is a deterministic distribution that assigns probability one to one of
the words. The four points marked on the surface are the locations of the
multinomial distributions p(w | z) for each of the four topics [7].

e The mixture of unigrams model assumes that, for each document, one
of the corners of the simplex is chosen and all the words of the document

are drawn from the corresponding distribution

e The pLSI model allows each word in the training documents to come
from a different topic. The topics are drawn from empirical distribu-
tions within the boundaries of the simplex. There is one distribution
per document and the training distribution defines the empirical dis-

tribution.

e The LDA model allows for both observed and unobserved documents
to have words generated from a randomly chosen topic. The topics are
drawn from a distribution with a randomly chosen parameter. This
parameter is sampled once per document from a smooth distribution

on the topic simplex.
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Figure 6: Example topic simplex for three words and three topics. As in Figure
5, each vertex corresponds to a distribution where each word has probability
one. The inner simplex illustrates the topics, which are different distributions
over words. The unigrams models places each document at a vertex of the
inner simplex; the pLSI model at one of the empirical distributions marked by

W,

an “x”; and the LDA model places each document within a smooth distribution
in the inner simplex illustrated by the contour lines [7].

By introducing the additional parameter @ on a per-document basis the LDA
model improves upon the previous topic models in that it allows for a smooth,

continuous distribution of topics in the latent space.
3.4.4 Inference and Parameter Estimation

The efficient inference scheme presented here was adapted from [27,28].

The key problem that needs to be solved in order to use LDA is computing the
posterior distribution of the hidden variables, given a document. Loosely, this
can be thought of the reversal of the generative process of creating a document
by drawing words out of the topic distributions mentioned previously. The

posterior is of the form:

0,z,w |« 3)

ol
p(6.z]wef) = p(w| e, B)

(22)
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Figure 7: Plate notation for approximate LDA posterior. The edges between
0, z, and w are severed and the free parameters -, ¢ are introduced [7]

However, due to the coupling between 0,3 the denominator of this expres-
sion is intractable. To compute it one would have to sum over all possible

configurations of the interdependent N topics assignment variables in z.

The solutions presented in [27,28], use convexity-base variational inference to
obtain a simpler distribution containing free variational parameters. These
parameters are then fit so that they closely approximate the true posterior.

Figure 7 shows this more tractable model.

This simplified graphical model is characterized by the following variational

distribution:
N

90,2 v, %) = a0 v) [ alzn | ¢n) (23)

n=1
Where 7, ¢ are the free variational parameters. Using this variational distribu-
tion, finding the values for v, ¢ is an optimization problem. This optimization
problem is solved with an iterative method shown in A. The Kullback-Leibler
(KL) divergence between the variational distribution and the true posterior
p(0,z | w,a, B). Note that this variational distribution is conditional on w.

[h]
3.4.5 Model Smoothing

The dimensions of the vocabulary matrix for large corpora creates a sparsity

problem. For example, the 20-new-groups corpus contains over 20,000 docu-
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Listing 4: Variational inference for LDA

theta = [[i/k for i in k] for n in N]
gamma = [alpha(i) + N/k for i in k]
while not converged:
for n in N:
for i in k:
thetal[n] [i] = betaln] [i])*exp(di_gamma(gamma[i]))
theta[n] = [thetal[n][i]/sum(theta[n]) for i in k]
gamma = alpha + sum(theta[n])
check(converged)

r'Q*HQB k

AN LY >‘
T

a 0 Z woN

M

Figure 8: Plate notation for smoothed LDA model. The hyper-parameters
a, 7 are used to decouple B from 0. Figure from [7]

ments and is analyzed with a vocabulary of 10,000 unique words. If a subset
of the documents is used for training, new documents introduced to the model
are likely to contain words not not observed in the training set. This is further
exacerbated if the 10,000 features are stripped of common words using a com-
bination of tf-idf and stop-words. This will leave only “informative” words in
each document. The most common approaches [29,30] smooths the maximum
likelihood estimates of the multinomial and assigns a positive, non-zero proba-
bility to all vocabulary items even if they are not observed in the training set.
The solution used here simply extends the graphical model by treating 3 as a
k x V random matrix where each each row is drawn independently drawn from

a Dirichlet with a single scalar parameter 7. Iterating over nodes in Figure 8
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This final model has only two hyper-parameters o, 7 and variational expectation-
maximization approach is used to find maximum likelihood estimates of these

parameters (see Appendix A).
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4 Results
4.1 Supervised Datasets

Both supervised datasets were processed in the same manner. The data files
were first loaded and decoded in the UTF-8 format to support special charac-
ters. Each document was then cleaned, stopped and stemmed. This involved
removing punctuation and special characters, as well as converting the entire
document to lower case. The aforementioned list of the stop words was used
in conjunction with the English Snowball stemmer. Finally, all words shorter

than three characters were removed from the vocabulary.

Next, TF-IDF features were generated for each corpus. The 20-newsgroups
dataset was processed with 10,000 features and the NIPS abstracts were pro-
cessed with 5,000 features. The number of topics was varied in both datasets
to observe the differences in the topic clusters—especially as the number of
topics began to exceed the ground truth. The subsequent merging and split-
ting of these clusters suggests a latent topic hierarchy is present within both

corpora.
4.1.1 20-newgroups

The 20-newsgroups data was run with a testing subset of six topics. These
topics were chosen for their subjective conceptual proximity and divergence.
To see if this subjective semantic distance was well captured by the model the
number of topics was varied and the consequent topic agglomeration or fission

was observed.

A clear hierarchy in the topics is evident by the way that topics tend to merge

as the number of clusters is reduced from ground truth. First, the “auto”
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Topic Vectors

Topic Vectors

—_

time, god, space

space, imag, car
god, peopl, christian

space, imag, program
god, peopl, christian
car good time

space, car, launch
god, christian, peopl
game, good, time
imag, file, program

car, time, orbit

god, peopl, christian
game, team, hit
imag, file, graphic
doctor, pain, day
space, nasa, launch
food, msg, eat

space, car, launch
god, christian, peopl
game, good, team
imag, file, program
medic, food, health

space, launch, orbit
god, peopl, christian
game, good, team
imag, file, graphic
pain, doctor, day
space, post, health
food, msg, eat

car, drive, engin

car, orbit, launch
god, christian, peopl
game, good, team
imag, file, graphic
food, doctor, pain
space, nasa, center

space, launch, orbit
god, christian, peopl
game, team, hit
imag, file, graphic
pain, doctor, day
space, health, medic
food, msg, eat
water, request, send
car, time, good

Table 8: Topic vectors for various number of LDA topics (#). The ground
truth number of topics is six. Note how the topics merge or split as the number
of topics is decreased or increased, respectively.
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topic merges with “space travel”, next “medicine” vanishes, then scientific and
religious topics merge, until finally we are left with an interesting, if somewhat
existential topic: “time, god, space”. The topic model clearly attempts to

merge similar topics first.

Similarly, when increasing the number of topics discordant clusters are spun off
first. First, a “diet” topic (food, msg, eat) is spun out of medicine—which be-
comes (pain, doctor, day)—then, “auto” becomes more defined and a strange
“throwaway?” topic is created (space, post, health). Perhaps this topic rep-
resents some kind of spatial interpretation of health care? Further increasing
the number of clusters generates a “water management” topic (water, request,
send) and refines the previous throwaway topic to (space, health, medic) which

is now a clear subdivision of the medicine topic.

The existence of these topic hierarchies is interesting and is highly suggestive
of the quality of the underlying latent representation. Further, this structure

presents an opportunity for further refinement and modeling in future work.

To test the accuracy of this clustering method, a simple logistic-regression
classifier was trained with the document-topic matrix (the latent space topic
affinities of each document). The latent representation proved highly useful
and achieved a 70% accuracy rate over the corpus. A more complex classifica-
tion algorithm may improve this result. But, for the purposes of this paper the
result demonstrates the validity of the latent representation and is remarkable!
Consider that the feature space was reduced from a 10,000 word vocabulary

to a six-topic vector.

Visualizing the latent space defined by the topics is challenging. Since this
space is already a highly reduced vector-space, further reducing the number

of dimensions for easy visualization would be detrimental to the discovered
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Figure 9: Confusion matrix for topic classifier. Note that the primary mode of
confusion is between the autos and space topic. The semantic interpretation
suggests that as both as vehicle related topics the confusion is not entirely
without reason.

clusters. At the same time, visualizing higher-dimensional spaces is difficult
and non-intuitive. To overcome this limitation, a manifold embedding into a
two-dimensional space was used to attempt to preserve the distances in the
higher-dimensional latent space. The TSNE (t-distributed stochastic neighbor
embedding) was used to reduce the six-dimensional space. This embedding was
then clustered with the HDBSCAN (hierarchical density-based spatial cluster-
ing of applications with noise) algorithm [31,32]. This clustering algorithm is
commonly used in scientific literature and operates in an agglomerative fash-
ion, marking points belonging to a neighborhood (or cluster) as well as those
that are outliers in the space. Results of both the embedding as well as the

clustering are shown in Figures 10 and 11.

4.1.2 NIPS Abstracts

The NIPS dataset provided a second method to test the clustering of the
model. Unlike the previous dataset, no target labels are provided, although

the class of the document can be reasonably inferred from the abstract and
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Figure 10: TSNE manifold embedding for 20-newsgroups document-topic ma-
trix. The TSNE manifold embedded in a two-dimensional space. Each point
represents a document and is colored by its ground truth topic.

Clusters found by HDBSCAN
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Figure 11: HDBSCAN clustering for the 20-newsgroups. This hierarchical
clustering model attempts to agglomerate the document-topic matrix in two
dimensions.
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Figure 12: Distribution of most likely topic for ten topics. The distribution
peaks at the second topic with over 99% of the values.

the indexing terms of the full-text. This provides a semi-supervised training

set to observe clustering.

As a first pass the number of topics was naively selected to be ten clusters.
While ten topics were produced by the model, the relative proportions of each
topic per document was very unevenly distributed. Across nearly every docu-
ment one topic was heavily favored. Reducing the number of topics to five had
no effect on the distribution. For comparison the most and least likely topics
across all documents were plotted. Both suggested that the true number of
topics lay below the naive assumption. A two-topic model provided the better
balance between the topics in the distribution. Of course, the model is only
useful if more than one topic is present. This test draws an interesting conclu-
sion: there is a fundamental limit to the resolution of this model. Beyond a
certain point, documents may become too similar to differentiate in the latent

space.

After reducing the number of expected clusters, the NIPS abstracts partition
incredibly cleanly. Not only is the partition readily apparent in the TSNE
embedding in Figure 16 the predicted class labels fall into a natural clus-

ter as do the HDBSCAN agglomerative labels. The agreement of the three
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Figure 13: Distribution of most likely topic for five topics. Reducing the num-
ber to five topics has not helped as one topic still dominates the distribution.
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Figure 14: Distribution of least likely topic for five topics.
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Figure 15: Distribution of least likely topic for two topics. Finally, a reasonable
partition of the latent space.
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Figure 16: TSNE clustering of NIPS topics. Color indicates the most likely
topic. Note that both the latent space and the color clustering are well sepa-
rated.

Clusters found by HDBSCAN

Figure 17: HDBSCAN clustering of NIPS topics. Color indicates agglomer-
ative clustering class. Note the strong separation and similarity to Figure
16
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separate methods is supported by the semantic construction of the topics.
Topic #1 is (model, network, learn, train, imag, predict, neural, problem,
algorithm, state)—a neural network image recognition topic—and Topic #2
is (algorithm, problem, propos, method, distribut, optim, learn, model, data,
estim)—a Bayesian statistics and modeling topic. Interestingly, the model
understood the semantic difference between the words “model” and “learn”

within these two different contexts.

4.2 Medical Dataset

Having established the viability of this particular topic model in two super-
vised scenarios, the model is now applied to the aforementioned medical data
set. Starting again with the naive assumption of ten topics, the LDA algo-
rithm is run for 500 iterations. The log-likelihood is computed at the end of
each iteration and convergence is usually obtained by iteration 100. The log-
likelihood of each topic model serves as a rough estimate of how “good a fit”
the number of topics is for the data. In Table 9 the minimum log-likelihood

occurs when two topics are present in the model.

Plotting the most likely topic distribution supports the results in Table 9, the
distribution is bi-modal with two sharp peaks and very small in all other topics
(see Figures 18 and 19). For completeness, cluster graphs are shown for the

case of two and three topics.

Even with the agreement between two separate metrics, a non-expert would
have a difficult time justifying the choice in the number of topics. The following
figures present a geometric argument by embedding the clusters in a two-

dimensional space, but an expert opinion would be far more compelling.

45



Number of Topics Log-likelihood

10 -2442210
6 -2435820
3 -2414470
2 -2388243
1 -2400736

Table 9: Log-likelihood for various numbers of topics on the medical data.
Note how the function reaches a minimum a two topics. This suggests the
true number of topics in the data set is two.
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Figure 18: Distribution of most likely topic for ten topics. Note the two
prominent peaks in the distribution.
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Figure 19: Distribution of most likely topic for six topics. Note that two
prominent peaks in the distribution are still present, but reshuffled, due to the
random initialization of the topics.

# Topic Vectors
9 seizur slow sleep stimul photic activ abnorm left discharg wake
activ slow background left seizur pattern wave burst record correl
photic stimul alpha sleep hyperventil rhythm wake drowsi featur channel
3 activ background pattern slow burst left delta demonstr bedsid correl
seizur slow activ left abnorm record discharg tempor sleep wave

Table 10: Clusters produced by two and 3-topic models.
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Figure 20: Distribution of most likely topic for three topics. Note that two
prominent peaks in the distribution are still present, but are now less promi-
nent.
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Figure 21: Distribution of most likely topic for two topics. Note that the third
topic was merged into the larger of the two topics.

47



L1}
15 o
%%é%;% o ".- +
3 o o @0 l .
10 . ® & f cg_&*
g0 = w‘ﬁf L l-
d 2 RS Fadt s TN
5 2 = .':;" £ —
Ly -" S%'W\‘{"" ‘4
0 %\v& éﬂd"?ﬁ‘m ig ’1’_-"' H -~
& Q;bcg'%’\% -\'J ’..‘I *
R w\;"’: U f%%@ﬁ@,;
5 .
v 5 “-“ 5}@ oo | ¢ ;
YL ® Yoo T e, i
-10 AT U o
- v, 83 e ) - 1
-~ g e
15 w i

-20 -15 -10 -5 0 5 10 15 20

Figure 22: TSNE clustering of medical data 3-topic latent space. Color indi-
cates most likely LDA topic label. Note the strong separation of Topics #1
and #2 but the interspersion of Topic #3. The third topic may or may not
belong to the others.

The third topic that is merged when moving to the 2-topic model appears to
deal with a sleep disorder given the keywords: alpha, sleep, rhythm, wake,
and drowsy. The argument could be made that, despite the log-likelihood and
cluster metrics, this is a legitimate medical topic. The other two topics appear
to deal with different types of seizures, one is: (slow, sleep, seizure); the other
is: (active, seizure, wave, burst). At the semantic level they appear to describe

two different types of psychophysiological disturbances.

Again, the results shown in Figures 22 and 23 are very compelling, but not
medically conclusive. Further clustering via HDBSCAN proved fruitless. Due
to the high density of the overall embedding, clustering produced nonsensical

agglomerations throughout the xy-plane.
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Figure 23: TSNE clustering of medical data 2-topic latent space. Color in-
dicates most likely LDA topic label. Note the strong separation between the
clusters at the bottom of the figure.

Clusters found by HDBSCAN
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Figure 24: HDBSCAN clustering of medical data 2-topic latent space. Color
indicates discovered agglomerative clusters. Due to the density of the data and
lack of separation, clusters are mostly nonsense. Note, however, the discovery
of a similar cluster at the bottom of the figure similar to Figure 23.

49



5 Future Improvements

Future improvements to this simple topic model center primarily around the
feature space provided to the clustering algorithm. As demonstrated in Sec-
tion 3.3 after the number the topics, the primary sensitivity of the model is

the input features.

5.1 Lemmatization

Future improvements in lemmatization focus on the use and development of
custom dictionaries for specific technical terms and vocabularies. Much like
the Snowball stemmer’s use of stem-to-word dictionaries and language-specific
rules, custom logic can be developed for medical terminology and literature.
Specifically the stemming of common drugs, symptoms and conditions as well
as the parsing of various medical abbreviations could improve performance.
To implement such a system, however, expert knowledge would be required.
Such a system is not novel, a BioLemmatizer already exists for the field of
molecular biology and drug-development [33]. Another improvement could
detect and merge common misspellings these were especially prevalent in the

20-newsgroups data, since it was unedited.

5.2 N-grams

The addition of n-grams to the feature set would improve this model by adding
context sensitivity. At the moment, the LDA topic model is a continuous bag
of words; that is to say, each document is modeled as a vector of interchange-
able features. However, written English is highly context specific, assuming
that words are interchangeable is very simplistic! Consider the simple case

of negation: “take the red pill not the blue pill” the order and positioning of
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each word is very important to the meaning of the sentence. Reducing such a

construction removes a great deal of information in the process.

5.3 Feature Selection

More granular feature representation beyond bag of words may also help in
the clustering process. If the documents could be standardized to a consistent
form useful numerical data could be extracted. For example, the number of
previous seizures or the number of days a patient has taken a specific med-
ication. The standardization of this data pushes the feature engineering to
the health care professionals making observations. While free-form input can
still be accommodated by LDA additional structured data could be easier to

classify and interpret.

5.4 Supervision

Lastly the addition of supervised data points would be of great use to in train-
ing the clustering system. Knowing the patients’ ultimate diagnosis or out-
come could greatly help in refining the modeling process. This would provide
a reasonable way to measure the system’s accuracy beyond simple subjective
measures or exploratory clustering. The addition of these labels would in-
cur significant cost however, a trained professional would have to label each

individual case.

6 Conclusion

In summary, this work has introduced a viable application and specialization
of the LDA topic model to an unsupervised clustering task. Specifically, the

viability of the processing pipeline present was determined through a series of
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test data sets. Each test set was used to analyze the sensitivity of the topic
model to its parameters: the number of topics, and the size of the vocabulary.
A fast implementation of this algorithm was used to sample and tune the
hyper-parameters of the models as shown in Appendix A. Both qualitative
analysis of the semantics of the clusters, as well as quantitative measures were

used to analyze the topics generated by the model.

In order to test the unsupervised dataset, the same proven pipeline was used.
While the analysis and justifications for the parameter settings for this dataset
were looser and more qualitative, the end goal of this work is not to produce
a patient classifier or diagnostic, but to provide a fast, reliable, and alterna-
tive method to explore patient data. In this respect, it is the opinion of the
author that the model may be used to provide useful insights into the patient
dataset. An end user with a greater degree of medical knowledge, in addition
to personal knowledge of the patients would have a better capacity to judge
the output of this particular model. Nevertheless, some confidence is due here
given the promising results on the other test data sets, and the clustering of
two seizure phenomenon and well as a sleep disturbance. As stated in [16,17]
EEG are administered precisely to diagnose seizures in epileptic patients as
well as tracking sleep disturbances through phase tracking. The clustering of
seizure topics and separation of the sleep analysis by the model shows great

promise.
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A Appendix
A.1 Variational Inference

Using the following variational distribution as a substitute for the posterior

distribution p(0,z, w | a, B):
N
90,2 |7, ¢) = q(0,1 %) [ ] a(zn | ©n) (24)
n=1

The hyper-parameters a,n are set via the process described [27]. First the

log-likelihood is bound using Jensen’s inequality.

logp(w | a, 5) = log/sumzp(G,z,W | o, 5) dO

p(0,z,w ] a, 3)q(8,z)
log/z 2 d6
> /Zq(@,z) logp(0,z,w | a, 3) df — /Zq(@,z) logq(0,z) do

L(v.p,,8) =Eqllogp(8,z,w | a, 8)] — Eqllog q(6, z)]

Where L provides a lower bound on the log-likelihood for the distribution

q(0,z | v, ).

A.2 Parameter Estimation

This appendix demonstrates a solution to the problem of obtaining empirical
Bayes estimates of the model parameters o, 5. This problem is solved by using
the variational lower bound as a substitute for the intractable log likelihood.
The variational parameters =, ¢ are fixed to the values found by variational
inference. The approximate Bayes estimates are found by maximizing the

lower bound with respect to the model parameters.
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Assuming the log likelihood over the corpus C is the sum of the individual
log likelihoods for individual documents, then the overall lower bound is the
sum of the individual lower bounds. The overall approach is based on a varia-
tional expectation-maximization procedure. In the expectation step, the total
variational bound is maxmized with respect to the parameters v, ¢. In the
maximization step, the bound is maximized with respect to the model param-

eters a, 3.

To maximize with respect to 3,

M Nig k V
£=3 35S e vt + 30 (L)
d=1 n=1 i=1 j=1
Setting the derivative equal to zero,
M Ny '
Bij Z Z PdniWy,
d=1 n=1

Similarly for «,

L, = {logF (Z 04]> — ZlogF(ai) + Z

i=1

(@i = 1)(¥(7a) (ZW )]}

Where ¥(-) is the digamma function, the derivative of I'(-). Again taking the

derivative,
or k M
da; Y <; Oéj> . " ; ) (Z e >]

Note that the same procedure can be used to find an estimate for bmn.

B Appendix

This appendix contains the code listings for analysis of both the supervised and

unsupervised data. The same processing pipeline is used for all datasets with
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minor adjustments for the number of topics and the size of the vocabulary.
Adjustments to the stemming algorithm, stop words, and tokenizer also vary
between datasets. For example the tokenizer for the 20-newsgroups dataset is
much more aggressive: removing a greater number of special characters and

other symbols

B.1 LDA Algorithm Pipeline

Listing 5: Algorithm Pipeline
Jmatplotlib inline
import matplotlib.pyplot as plt, matplotlib.cm as cm
import codecs, re, pandas as pd, numpy as np, json

from time import time

# Data

from sklearn.datasets import fetch_20newsgroups

# NLP-Tools

from nltk.stem.snowball import SnowballStemmer

from nltk.stem.lancaster import LancasterStemmer

from nltk.stem.regexp import RegexpStemmer

from sklearn.feature_extraction.text import TfidfVectorizer,
CountVectorizer

from sklearn.decomposition import NMF, LatentDirichletAllocation

# Classification
from sklearn.linear_model import LogisticRegression,

SGDClassifier
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from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix,

classification_report

# Input data

stopword_file = '/afs/ee.cooper.edu/user/g/i/gitzel/masters/
lda_repos/lda-textmine/python/stoplist.txt'

stemming = True

minlength = 3

categories = ['comp.graphics', 'rec.sport.baseball', 'rec.autos'

, 'sci.med', 'sci.space', 'soc.religion.christian']

# Model parameters
n_features = 500

n_topics = len(categories)
n_top_words = 10

n_topics = 6

n_lda_iter = 10

class Document (object):
def __init__(self, raw, target):
self. raw_text = raw
self. _target = target
self. clean_text = "'
self. features = []

self. topic = []
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@property

def raw_text(self):
return self. raw_text

@raw_text.setter

def raw_text(self, value):
self. raw = value

Oproperty

def clean_text(self):
return self. clean text

Oclean_text.setter

def clean_text(self, value):

self. clean_text = value
Oproperty
def features(self):
return self. features
@features.setter
def features(self, value):
self. features = value
@property
def topic(self):
return self. topic
Q@topic.setter
def topic(self, value):
self. topic = value
@property

def target(self):
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return self._target
Qtarget.setter
def target(self, value):

self._target = value

class DocumentEncoder (json.JSONEncoder) :
def default(self, obj):
if isinstance(obj, Document):
return obj.__dict__

return super (DocumentEncoder, self).default(obj)

# Helper Functions
def print_top_words(model, feature_names, n_top_words):
for topic_idx, topic in enumerate(model.components ) :
print ("Topic #%d:" % topic_idx)
print(",".join([feature_names[i] for i in topic.argsort()

[:-n_top_words - 1:-1]1))

def top_words(model, feature_names, n_top_words):
return [tuple([feature_names[i] for i in topic.argsort()[:-

n_top_words - 1:-1]]) for topic in model.components_]

def load_stopwords(stopword_filename):
stopwords = set()
with codecs.open(stopword filename, 'r', 'utf-8') as sf:
for line in sf:

if len(line.split()) != 1:
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print ('ignoring ,line_ with more than one stopword:\
n"{0}"'.format(line))
continue
stopwords.add(1line.strip())

return stopwords

def stem(document, stemmer, stopwords, exp, minlength):
clean = '
for token in re.split(exp, document.raw_text.lower()):
if not token or token in stopwords:
continue
if len(token) < minlength:
continue
token = stemmer.stem(token)
clean += ',' + token

document.clean text = clean

# Load the 20 newsgroups dataset and vectorize it. We use a few
heuristics

# to filter out useless terms early on: the posts are stripped
of headers,

# footers and quoted replies, and common English words, words
occurring in

# only one document or in at least 95/ of the documents are

removed.

print("Loading dataset...")
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t0 = time()
dataset = fetch_20newsgroups(categories=categories, shuffle=True
, random_state=1,
remove=('headers', 'footers', 'quotes'
)
documents = [Document(datum, dataset.target names[target]) for
datum, target in zip(dataset.data, dataset.target)]

print ("done in %0.3fs." % (time() - t0))

# Stopwords and Stemming

print ("Cleaning dataset...")

t0 = time()

stopwords = load_stopwords(stopword file)

stemmer = SnowballStemmer('english', ignore_stopwords=True)
stemmer.stopwords = stopwords

exp = "'(?'(dlm|t|11|ved)\W) | [.,\-_17:; (O00-90=+"%"~#$%&| ,\t\n

(SN AN VANAVR S I LS

for document in documents:
clean_sample = ''
for token in re.split(exp, document.raw_text.lower()):
if not token or token in stopwords:
continue
if stemming:
token = stemmer.stem(token)

if len(token) < minlength:

continue
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clean_sample = clean_sample + ',' + token
document.clean_text = clean_sample

print("done in %0.3fs." % (time() - t0))

# tf (raw term count)
print ("Extracting tf features...")
tf _vectorizer = CountVectorizer(
max_df=0.95, stop_words='english', max_features=n_features)

t0

time ()

tf

tf vectorizer.fit transform([doc.clean text for doc in
documents])

print("done_in %0.3fs." % (time() - t0))

# Print TF Features
# Print the features of the first document to check parsing
output.
feature map = {feature: word for word, feature in tf_vectorizer.
vocabulary_.iteritems()}
doc_index = 0
print 'Document: {}'.format(documents[doc_index].raw_text)
tf_array = tf.toarray()
for i, feature in enumerate(tf_array[doc_index]):
if feature > O:
print 'Feature #{}\t{:.4f}\t{}'.format(i, feature,

feature _mapl[il])

for i, doc in enumerate(documents):
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doc.features = 1list(tf_array[i])
# print '{} total features'.format(len(tf_vectorizer.

vocabulary_))

print ("Fitting LDA model with %d tf features and /d topics..." %
(n_features, n_topics))
lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=
n_lda_iter,
learning method='online',
learning_offset=20.,

random_state=0)

t0 = time()

lda.fit (tf)

topic_word = lda.components_
doc_topic = lda.transform(tf)
print("done in %0.3fs." % (time() - t0))

print("log-likelihood:,%0.2f" % lda.score(tf))

print ("\nTopics,in ,LDA model:")
tf_feature_names = tf_vectorizer.get_feature_names()
print_top_words(lda, tf_feature_names, n_top_words)

lda_topics = top_words(lda, tf_feature_names, 3)

for i, document in enumerate(documents):

topic_vector = doc_topic[i]
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document.topic = list(topic_vector / topic_vector.sum()) #

normalize distribution

# Join target and predicted topic matrices
target_names = dataset.target_names
target = pd.DataFrame(dataset.target, columns=['target topic'])

# target matriz

df _y_hat = pd.DataFrame(doc_topic, columns=lda_topics) #
document-topic matriz

joined = target.join(df_y_hat) # join target values

joined.groupby('target topic') .mean() # group by target walue,

averaging the topic weightings

# Predict generated topic
1lr = LogisticRegression()
lr.fit(joined[1lda_topics], joined['target,topic'])

prediction = lr.predict(joined[lda_topics])

score = accuracy_score(joined['target topic'], prediction) *
100.

matrix = confusion matrix(joined['target topic'], prediction)

fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(111)
cax = ax.matshow(matrix)

plt.title('{:.1f}/ Accuracy'.format(score))
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fig.colorbar(cax)
ax.set_xticklabels([''] + target_names)
ax.set_yticklabels([''] + target_names)
plt.xlabel('Predicted')
plt.ylabel('Truth')

plt.show()

# print raw matriz

pd.DataFrame(matrix, columns=target_names, index=target_names)

# TSNE Feature Reduction (for scatter-plot)

from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=0)

X_tsne = tsne.fit_transform(doc_topic)

plt.figure(l, figsize=(10,10), dpi=100)
plt.scatter(X_tsnel[:,0], X_tsnel[:,1], c=dataset.target)
# fig.c

plt.legend()

plt.show()

# HDBSCAN clustering
import seaborn as sns

import sklearn.cluster as cluster

sns.set_context('poster')
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sns.set_color_codes()

plot_kwds = {'alpha' : 0.25, 's' : 80, 'linewidths':0}

def plot_clusters(data, algorithm, args, kwds):
start_time = time()
labels = algorithm(*args, **kwds).fit_predict(data)
end_time = time()
palette = sns.color_palette('deep', np.unique(labels) .max()
+ 1)
colors = [palette[x] if x >= 0 else (0.0, 0.0, 0.0) for x in
labels]
plt.scatter(data.T[0], data.T[1], c=colors, *xplot_kwds)
frame = plt.gca()
frame.axes.get_xaxis().set_visible(False)
frame.axes.get_yaxis() .set_visible(False)
plt.title('Clusters found by, {}'.format(str(algorithm.
__name__)), fontsize=24)
# plt.text(-0.5, 0.7, 'Clustering took {:.2f} s'.format(
end_time - start_time), fontsize=14)

plt.legend()

import hdbscan

plot_clusters(X_tsne, hdbscan.HDBSCAN, (), {'min_cluster_size'

:25})
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