
THE COOPER UNION
ALBERT NERKEN SCHOOL OF ENGINEERING

A Partitioned Autoencoder
for Audio De-Noising

by
Ethan Lusterman

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Engineering

September 14, 2016

Professor Sam Keene, Advisor

THE COOPER UNION FOR THE
ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Can-
didate’s Thesis Advisor and has received approval. It was
submitted to the Dean of the School of Engineering and
the full Faculty, and was approved as partial fulfillment of
the requirements for the degree of Master of Engineering.

Dean, School of Engineering Date

Prof. Sam Keene, Thesis Advisor Date

Acknowledgments

This thesis would not be possible without the guidance and support from my
advisor, Dr. Sam Keene. He has mentored me since I was an undergraduate,
and I am grateful for him helping this project come to life. I also want to
thank Christopher Curro, my informal second advisor who helped me to think
outside the box and for whom the overall system architecture is named.
I would like to thank Kate Thorsen for pushing me past my potential and
encouraging me to stay positive despite the frustrations of research. Lastly, I
would like to thank my friends and family. This thesis would not have been
possible without all their support.

i

Abstract

In this thesis, we introduce a modified partitioned autoencoder for de-noising
audio without access to clean data for training. Traditional linear time-
invariant (LTI) systems such as the Wiener filter rely on power spectral density
(PSD) estimates of desired signals and noise signals, which require some knowl-
edge of the ground truth signals. One nonlinear approach in this area includes
the use of de-noising autoencoders, which are one form of artificial neural net-
works (ANN). The nonlinearity of neural networks allow for more complex
models to be made than LTI models. However, since de-noising autoencoders
also require access to clean data and knowledge of the noise corruption process,
we build on existing literature for a semi-supervised partitioned autoencoder
that can perform de-noising without the clean signals during training. We
compare existing semi-supervised de-noising systems as well as canonical su-
pervised de-noising autoencoders. We show that for moderate levels of noise,
our autoencoder outperforms existing schemes.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Machine Learning . 3

2.1.1 Regression . 4
2.2 Neural Networks . 4

2.2.1 Dense Layer . 6
2.2.2 De-noising Autoencoder 6
2.2.3 Network Training . 7
2.2.4 Choice of Activation Function 7
2.2.5 Minibatch Training . 9
2.2.6 Batch Normalization 9

2.3 Signals and Systems . 10
2.3.1 Signals . 10
2.3.2 Convolution . 11
2.3.3 Frequency Transforms 12
2.3.4 Windowing and Perfect Reconstruction 13
2.3.5 Window Size and Frequency v. Time Resolution Trade-off 14
2.3.6 Noise and Signal-to-Noise Ratio 14

3 Signal Model and Data 15
3.1 Network Input and Output 15
3.2 Signal and Noise Choices . 17
3.3 Other Network Parameters . 18

4 De-noising Architectures 19
4.1 Supervised Autoencoder . 19
4.2 Partitioned Autoencoder . 21

4.2.1 Phase Reconstruction 23
4.3 Curro Autoencoder . 24

iii

5 Results 27
5.1 Supervised Autoencoder . 29

5.1.1 Batch Normalized Input 29
5.1.2 Non-Batch Normalized Input 30

5.2 Partitioned Autoencoder . 31
5.3 Partitioned Curro Autoencoder 33
5.4 Comparison of Loss Convergence 35
5.5 Comparison of Mean Squared Error Convergence 36

6 Conclusions and Future Work 40
6.1 Conclusions . 40
6.2 Future Work . 41

6.2.1 Models . 41
6.2.2 Data . 42

A Simulation Code 46

iv

List of Figures

1 Example neural network . 5
2 Modified Rectified Linear Unit Activation 20
3 Example Partitioned Masking Matrix 22
4 Curro Autoencoder Block Diagram 24
5 Loss at various SNRs for Supervised Single-Layer Autoencoder

with Batch Normalization at the Input 29
6 MSE at various SNRs for Supervised Single-Layer Autoencoder

with Batch Normalization at the Input 30
7 Loss at various SNRs for Supervised Single-Layer Autoencoder

without Batch Normalization at the Input 31
8 MSE at various SNRs for Supervised Single-Layer Autoencoder

without Batch Normalization at the Input 32
9 Loss at various SNRs for Single-Layer Partitioned Autoencoder [1] 32
10 MSE at various SNRs for Single-Layer Partitioned Autoencoder

[1] . 33
11 Loss at various SNRs for Single-Layer Curro Autoencoder . . 34
12 MSE at various SNRs for Single-Layer Curro Autoencoder . . 35
13 Loss Comparison of Various Networks at -6 dB 36
14 Loss Comparison of Various Networks at -3 dB 36
15 Loss Comparison of Various Networks at 0 dB 37
16 Loss Comparison of Various Networks at 3 dB 37
17 Loss Comparison of Various Networks at 6 dB 38
18 MSE Comparison of Networks at -6 dB 38
19 MSE Comparison of Networks at -3 dB 39
20 MSE Comparison of Networks at 0 dB 39
21 MSE Comparison of Networks at 3 dB 40
22 MSE Comparison of Networks at 6 dB 40

v

Introduction

Advances in smartphone technology have led to smaller devices with more pow-

erful audio hardware, allowing for common consumers to make higher quality

recordings. However, recorded speech and music are subject to noisy condi-

tions, often hampering intelligibility and listenability. The goal of de-noising

audio recordings is to improve intelligibility and perceived quality. A variety

of applications of audio de-noising exist, including listening to a recording of a

band or an artist’s live performance in a noisy crowd, or listening to a recorded

conversation or speech under noisy conditions.

A common technique for de-noising involves the use of autoencoder neural

networks. [2] Advances in parallel graphics processing units (GPU) and in

machine learning algorithms have allowed for training deeper networks faster,

utilizing more hidden layers with more neurons.

Prior work in de-noising audio has involved the use of noise-free training data.

Since common consumers do not often have access to clean audio, we seek

to de-noise without the use of clean audio. Other work has touched on such

a semi-supervised scenario but was used more as a preprocessing step to a

classification algorithm than as time-domain de-noising. [1]

In this thesis, we compare several neural network architectures and problem

scenarios, ranging from data input types, level of noise, depth of network,

training objectives, and more. In Chapter 2, we present background informa-

tion on machine learning, neural networks, and signal processing as well as

prior work in audio de-noising. In Chapter 3, we detail the problem formally

as well as introduce our signal model and sourced data. In Chapter 4, we

detail all considered network architectures. In Chapter 5, we compare results

1

from different data inputs, levels of noise, network architectures, and training

objectives and discuss methods of evaluation. Finally, we make conclusions

and recommendations for future work in Chapter 6.

2

Background

Machine Learning

Machine learning involves the use of computer algorithms to make decisions

based on training data. Generally, this falls into categorizing input data (clas-

sification) or determining a mathematical function to determine a continuous

output given an input (regression). Popular classification examples include

recognizing handwritten digits as well as determining whether an image con-

tains a cat or a dog. An example of a regression problem is determining the

temperature given a set of input features (humidity, latitude, longitude, date,

etc.).

Problems where training data contain input data vectors as well as the correct

output vectors (targets) are known as supervised learning problems. Train-

ing a model to de-noise audio where noise was introduced to the clean audio

would be a supervised learning problem. On the other hand, training a model

to de-noise audio where the underlying clean signal is not known is an un-

supervised learning problem. Different loss (objective) functions and neural

network architectures can be exploited to accomplish de-noising without the

clean data.

For the purposes of this thesis, we use machine learning to determine an un-

derlying nonlinear function that removes noise from time slices of audio (i.e.

regression). These slices can then be pieced back together through overlap-add

resynthesis. To clarify, this is a general linear model that maps an input noisy

audio vector y[n] = x[n]+N [n] to x̃[n], a target de-noised audio vector, where

x[n] is the underlying clean signal and N [n] is the additive background noise.

3

Regression

A classical regression technique is linear regression, where one or more in-

dependent variables xi are used to determine a scalar dependent variable y.

The case of a single independent variable x is known as simple linear regres-

sion. More formally, for k independent variables, we would like to determine

a weight vector w and bias vector b:

yi = w1xi1 + · · ·+ wkxik + bi, i = 1, . . . , n (1)

y = xTw + b (2)

where the rows of xT are the example input observations and y and b are

column vectors.

By extension, the case of linearly estimating a vector output giving a vector

input is known as a generalized linear model. A canonical example would

be estimating a sine wave x[n] over some number of N samples given noisy

samples y[n] = x[n] +N [n].

Neural Networks

In this thesis, we deal only with feed-forward neural networks, which are es-

sentially directed acyclic graphs (DAG) for computation. In other words,

information only moves through the network in one direction. An example

neural network is shown in Figure 1.

The connections in a neural network can be represented by linear combinations

of the input variables with learned weights w. [3] Unlike standard linear models

however, neural networks apply a nonlinear activation f(·) at the output of

each neuron. The circle nodes in a neural network diagram can be thought

4

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 1: An example neural network. There are 4 input vari-
ables, 1 hidden layer with 5 neurons, and 1 output variable. Source:
http://www.texample.net/tikz/examples/neural-network/

of as the sum of the linear combinations of the connection edges and the

application of the bias and activation function. Therefore, a hidden neuron

zj in a network with N input variable nodes, M hidden nodes, and K output

nodes takes on the value

zj = f(aj) (3)

where the activiation aj is given by

aj =
N∑
i=1

w
(1)
ji xi + w

(1)
j0 (4)

The connection values wji are referred to as weights, and the scalars wj0 are

referred to as biases. Note that the superscripted numbers refer to the Then,

the output yk is given by

yk = g(ak) (5)

5

where the output activation ak is given by

ak =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 (6)

We are free to choose activation functions, which we will discuss later. How-

ever, note that at the output, the function g(·) is often an identity for regression

problems and a sigmoid σ(·) for classification problems.

Often, the weights and biases are grouped into a weight vector w. In other

words, similar to the linear models described earlier, a neural network is a

nonlinear function of input variables {xi} to output variables {yk} where the

parameters of the function are learned via training techniques.

Dense Layer

Described in the previous section, we refer to a dense layer as a fully connected

neural network, in which no interconnections between neurons are missing at

each layer. Dense layers can be prone to overfitting. However, as we mention

later, overfitting is not an immediate concern for the purposes of this thesis.

De-noising Autoencoder

An autoencoder is normally an abstraction of neural networks in which an

encode function Z = f(X) and a decode function X̂ = g(Z) are learned to

learn a lower-dimensional representation of some input X. [1] A de-noising

autoencoder is a supervised process whereby the clean input is first corrupted

by some stochastic process Y = u(X). In other words, the neural network

input would be a noisy input Y , and the network would try to learn weights

such that the network output X̂ approximates the clean input X. Another

6

way to frame it is that your network is learning the inverse function of the

noise process u(x).

Network Training

In order to train a neural network, we must update the weights such that we

minimize a loss function, often some kind of sum-of-square error function. [3]

Often, a stochastic gradient descent (SGD) approach is taken to determine the

weights that minimize the loss function.

Choice of Activation Function

The most common activation functions used are the logistic sigmoid function

and the hyperbolic tangent. [2] The logistic sigmoid function is given by

g(x) =
1

1 + exp (−x)
(7)

Note that the sigmoid function has an output on the range (0, 1). The hyper-

bolic tangent function (tanh) is given by

g(x) =
sinh x

coshx
(8)

=
exp (x)− exp (−x)

exp (x) + exp (−x)
(9)

=
1− exp (−2x)

1 + exp (−2x)
(10)

Note that the hyperbolic tangent function has an output on the range (−1, 1).

Generally, our choice of nonlinearity should be chosen such that the expected

range of desired output matches the nonlinearity’s. In the case of audio de-

noising, different activations can be chosen depending on the input format. For

7

example, time-domain audio frames are often processed with a digital floating

point representation on the range of [−1, 1]. In such a case, the hyperbolic

tangent might be appropriate. On the other hand, if we were working with

magnitude spectra of an audio signal, we would use a linearity with an output

range of [0,∞].

Recently, a more popular activation function which has in use is the rectified

linear unit (ReLU). [4] The ReLU is defined by the following:

g(x) =

0 if x < 0

x if x ≥ 0

(11)

In other words, g(x) = max (0, x). This function satisfies the range of output

we expect for magnitude spectra. In terms of gradient calculations, the zero

derivative for negative input values of x can cause nodes to not be activated,

potentially leading to gaps in information at the output and slower training

time. To combat this, variations of the ReLU are used which have small,

non-zero gradients for negative input values. For example, leaky ReLU’s are

defined by

g(x) =

0.01x if x < 0

x if x ≥ 0

(12)

Advantages of ReLU’s include better gradient propagation as well as fast

computation and sparse representation. Some disadvantages include non-

differentiability at x = 0. Also, depending on use case, sparse representation

might not be desired.

8

Minibatch Training

Historically, neural networks were trained one example at a time (online) or

in a batch (all examples at once). [5] For the online approach, the network

weights are updated after gradients are calculated and backpropagated for

each training example. On the other hand, the batch approach accumulates

average gradients for all examples and then updates the network weights. The

batch approach might approximate the true gradients better than the online

approach, but the online approach tends to have faster training time and

convergence. [5] This is because with an online approach, the network is less

likely to get stuck in a local minimum.

Minibatch training has become more popular recently. Serving as a midway

point between the two approaches, minibatch training exposes the network to

a small number of examples and then accumulates gradients and updates the

network weights. The trend toward minibatch training comes at a time where

parallel computing resources are easily accessible.

Batch Normalization

Batch normalization is a technique that helps to speed up training time and

convergence. Batch normalization accumulates learned statistics of the net-

work to help achieve loss convergence more quickly. More formally, an input

minibatch x is normalized by the following:

y =
x− µ√
σ2 + ϵ

γ + β (13)

[6]. During training, the minibatches are normalized to zero-mean, unit-

variance and transformed by parameters γ and β. At inference time, the

9

learned parameters are instead used, which are made up of the average statis-

tics from training.

Batch normalization prevents activations from saturating from widely varying

input minibatches. This allows us to use faster learning rates and be less

careful about how to initialize our parameters. [6]

Signals and Systems

Domain knowledge of discrete audio signals and systems better informs our

decisions for an audio de-noising system, so some background information on

signals and systems as it pertains to this thesis is detailed below.

Signals

We deal exclusively with discrete-time audio signals in this thesis. A discrete-

time audio signal x[n] is represented as a sequence of numbers (samples), where

each integer-valued slot n in the sequence corresponds to a unit of time based

on the sampling frequency fs. This comes from sampling the continuous-time

audio signal xc(t):

x[n] = xc(nT) (14)

where T = 1/fs. For example, a 1-second speech signal sampled at 8kHz has

8000 samples. Furthermore, digital signals also have discrete valued sample

amplitudes. For the purposes of this thesis, the bit depths of computers we

use for analysis are high enough to allow for perfect reconstruction between

continuous-time signals and digital signals.

We also assume signals collected have been properly sampled according to the

Nyquist-Shannon sampling theorem, which states that a discrete-time signal

10

must be sampled at at least twice the highest frequency present in the signal to

prevent aliasing of different frequencies. For example, speech signals generally

have information up to 8kHz, so many speech signals are sampled at 16kHz.

Music is more complex in that signals often span up to about 20kHz, so CD

quality recordings are often sampled at 44.1kHz or higher. For this thesis, we

use recordings sampled at 44.1kHz or lower.

Convolution

The discrete-time convolution operation takes two sequences x[n] and h[n] and

outputs a third sequence y[n] = x[n] ∗ h[n]:

y[n] =
∞∑

k=−∞

x[k]h[n− k] (15)

Convolution is commutative, so x[n] ∗ h[n] = h[n] ∗ x[n] holds true.

A linear, time-invariant (LTI) system is characterized by its impulse response

h[n], which allows us to determine samples y[n] when x[n] is subject to h[n].

For the purposes of this thesis, our underlying clean signal x[n] might be

subject to the conditions of an acoustic environment h[n] and crowd noise

N [n]:

y[n] = h[n] ∗ x[n] +N [n] (16)

In this scenario, our system would attempt to recover h[n] ∗ x[n] and possibly

even x[n] if the acoustic environment were deemed “noisy enough” due to echo

and reverberation.

11

One of our proposed systems also incorporates convolutional neural networks

(CNN) which use convolutions between frames of samples instead of simple

linear combinations (discussed later).

Frequency Transforms

In some of our proposed systems, we use a frequency transformed version of

the input signal as a preprocessing step to the system input. While no new

information is gained from transforming the input, networks often respond

better to determining the value of the magnitude of varying frequencies at a

time slice instead of the individual time samples.

The frequency transform we use in this thesis is the discrete-time Fourier

transform (DTFT). A sequence of N discrete-time samples is transformed

into another sequence of N samples where each index then corresponds to a

frequency bin. The DTFT X[k] of a signal x[n] is given by the following:

X[k] =
N−1∑
n=0

x[n]W kn
N (17)

where the twiddle factor WN is given by WN = e−j(2π/N). Then the recon-

struction of x[n] from X[k] is given by:

x[n] =
1

N

N−1∑
k=0

X[k]W−kn
N (18)

In this thesis, we also exploit the main duality between the time and frequency

domain using the convolution theorem, which states that convolution in time

is equivalent to multiplication in frequency and vise versa:

F{h[n] ∗ x[n]} = H[k]X[k] (19)

12

F−1{H[k] ∗X[k]} = h[n]x[n] (20)

This allows us to effectively treat our network as a non-linear filter that can

de-noise small time/frequency slices of our noisy signal, which can then be

pieced back together using overlap-add resynthesis. We detail this in the next

section.

Windowing and Perfect Reconstruction

To window a signal is to multiply a window function w[n] by the frame, i.e.

w[n]x[n] over the frame length N . Because we are training a network to de-

noise small segments of a larger audio signal, we window the signal segments.

This accommodates the finite-length requirement of the DTFT and helps to

prevent spectral leakage. [7]

Also, to be able to properly reconstruct our signal, we use a window func-

tion and corresponding overlapping frame percentage to accomplish perfect

reconstruction. The corresponding overlapping frame percentage is set such

that the window sums to a constant for all time. For example, a rectangular

window w[n] = 1 over an interval of length N has an overlap of 0% to sum

to a constant 1 for all time. Another popular window is the Hanning window,

defined over an interval N by the following:

w[n] =
1

2

(
1− cos

(
2πn

N − 1

))
(21)

For the Hann window, the perfect reconstruction overlap is a frame length of

N = 50%.

13

Window Size and Frequency v. Time Resolution Trade-off

We must consider window size as a hyperparameter to our system. In general,

shorter windows give rise to better time resolution at the cost of frequency

resolution. On the other hand, longer windows give rise to better frequency

resolution at the cost of time resolution.

Noise and Signal-to-Noise Ratio

Since we are trying to de-noise audio signals, we must discuss how we measure

noise. One of the most common measures of degradation of signal quality

from additive noise is signal-to-noise ratio (SNR), defined as the ratio of signal

variance to noise variance. [7] For the signal y[n] = x[n] +N [n], where x[n] is

the signal of interest and N [n] is the additive noise, the SNR is defined as

SNR =
σ2
x

σ2
n

(22)

where σ2 refers to the variance of the signal in question over some time in-

terval. For the purposes of this thesis, we achieve desired a desired SNR for

a simulation by scaling the noise to match the variance to the signal, then

scaling the noise or the signal to achieve the desired SNR.

14

Signal Model and Data

Network Input and Output

To simulate an audio de-noising scheme, we define the following inputs and

outputs. We take a known clean signal x[n] which we subject to additive noise

N [n] using a specified SNR, resulting in the following noisy signal y[n]:

y[n] = x[n] +N [n] (23)

To achieve a particular average SNR per simulation, we take the average signal

energy for each minibatch of size B to determine a multiplicative scale factor

k on the noise signal N [n]. For example, for additive white Gaussian noise

(AWGN), we sample from the zero-mean, unit variance normal distribution

(“randn” in Python) and determine our scale factor k as σ using the specified

SNR in decibels:

σ2
n =

1

SNRlin

1

BN

B−1∑
b=0

N−1∑
n=0

x2
b [n] (24)

where SNRlin is given by

SNRlin = 10
SNRdb

10 (25)

In supervised scenarios, we allow the network to train with access to the ground

truth x[n]. On the other hand, in semi-supervised scenarios, we only allow the

network to train with access to a “soft label” indicating if the signal is (1)

noise-only or (2) noise and possibly signal. [1] However, in both supervised

and semi-supervised scenarios, our neural network input can be one of the

following:

15

1. Frames of y[n]

2. Frames of ∥Y [k]∥

3. Magnitude spectrogram frames of Y [k]

4. Complex spectrogram frames of Y [k]

The results we present worked best with frames of ∥Y [k]∥, so we show only

those here. We choose the frame length L, time-domain window w[n], and

frame overlap percentage p as hyperparameters. Generally, we use 1024-sample

frames at 16 kHz with a Hanning window with 50% overlap unless otherwise

specified. In addition, for frequency frames, we use an FFT length the same

length as our frame for a total of L/2 frequency bins. Note that our choice

of frame length and sampling rate allows us to balance time and frequency

resolution. With the given frame length and sampling rate, we achieve a

frequency resolution of 15.625 Hz/bin by the following:

fs/2 Hz
N/2 bins =

fs
N

(26)

= 15.625 Hz/bin (27)

Similarly, our time resolution is given by

N

fs
= 64 msec (28)

Since we want to evaluate the level of de-noising in the time domain, we recom-

bine the network outputs with the noisy phase components of the spectrum if

necessary to obtain an estimate x̂[n]. We then compare x̂[n] to x[n] using the

mean squared error (MSE) to gauge the overall system performance. When

16

our network outputs frames of ∥X̂[k]∥, we take the inverse Fast Fourier trans-

form (IFFT) using the noisy phase ∠Y [k] and use overlap-add to recombine

the frames:

x̂[n] = F−1{∥X̂[k]∥ej∠Y [k]} (29)

Signal and Noise Choices

Our choice of signals include the following:

1. Sine waves with multiple frequencies and random amplitudes and phases

2. Clean speech signals

3. Studio music recordings

4. Live concert recordings

Similarly, our choice of noise signals include the following:

1. Additive white Gaussian noise (AWGN)

2. Restaurant noise

We simulate AWGN using Python’s Numpy library [8], and we obtained sample

restaurant noise from YouTube. [9] As mentioned above, we can use the average

energy per minibatch to specify a given SNR for an experiment. We take

several combinations of clean and noise signals and compare across multiple

SNRs.

17

Other Network Parameters

Since our networks involve one or more neural network layers, we show some

results compared to choices of nonlinearity, number of layers (depth), and

number of nodes in each layer (width). We use an identity nonlinearity at the

network output, i.e. f(x) = x. For all other layers, we use the modified ReLU

(mReLU) given in Equation 32.

18

De-noising Architectures

In the following sections, we detail all considered shallow network architec-

tures. Note that these network architectures can easily be extended to deep

networks by adding corresponding encode and decode layers before and after

the latent representation, respectively. These networks can be trained using

the various inputs detailed in Chapter 3. However, for the purposes of present-

ing first results, we consider single magnitude FFT frames only to compare

networks.

Supervised Autoencoder

We adopt the shallow supervised autoencoder from [2]. Used for supervised de-

noising, we adopt the relative network size as well as their modified nonlinear

activation function. The network structure is a single hidden layer, dense

neural network. In other words, we can represent our network output X̂i[k]

for various overlapping frames i = 1, · · · , N by the following:

X̂i[k] = f1
(
W(1)h(0)

i + b(1)
)

(30)

h(0)
i = f0

(
W(0)Yi[k] + b(0)

)
(31)

This network is trained to estimate the various layer weight matrices W(l) and

layer bias vectors b(l).

Since we are estimating a magnitude spectrogram for values in the interval

[0,∞), we use a nonlinear activation function whose support is on the same

interval. A natural choice is the rectified linear unit (ReLU). However, as

detailed in [2], the ReLU is subject to a 0-derivative for negative values. The

19

modified ReLU used in [2], which we denote as mReLU, is given by the fol-

lowing:

f(x) =

x if x ≥ ϵ

−ϵ

x− 1− ϵ
if x < ϵ

(32)

The choice of ϵ used in [2] is 10−5. This modified ReLU allows for nodes to

escape zero state since the derivative is always positive. An example plot of

the nonlinearity is given in 2.

−1.0 −0.5 0.0 0.5 1.0

x

−0.2

0.0

0.2

0.4

0.6

0.8

y

Modified Rectified Linear Activation Function (mReLU)

Figure 2: Modified Rectified Linear Unit Activation Function Plot

Since this network is supervised, we allow the training access to the original

magnitude spectra X[k]. The loss function for training this network is defined

as the mean squared error (MSE) between the network output and the clean

spectra X[k]:

l(X, X̂) = ∥X − X̂∥2 (33)

For our simulations, we also apply batch normalization at the input to help

train more quickly and efficiently.

20

Partitioned Autoencoder

Adopted from [1], the partitioned autoencoder is a variation of a traditional

autoencoder in which we do not know the noise corruption process or the

underlying clean signals directly. This model more closely models a practical

scenario. Since we don’t have access to clean data, we rely instead on a “soft”

label indicating whether we have a “noise-only” training example or a “noisy”

training example which possibly has the desired signal present within it.

Depending on a number of factors, a traditional autoencoder can learn many

different latent representations which ultimately learn to encode and decode

the underlying clean signal. A partitioned autoencoder seeks to use regular-

ization during training to give explicit meaning to the latent variables in the

network. If we can identify noise-only components in our training data, we

can potentially train the network to put noise-only information into one part

of the latent space. Then, the rest of the latent variables should correspond

to signal-only if a sufficient representation of the noise is learned. At infer-

ence time, we can then zero out the noise-only latent variables to accomplish

de-noising.

In [1], they use the following loss function to accomplish effective partitioning:

l(Y, y) = ∥Y − X̂∥2 + λy

C̄
∥C ⊙ f(Y)∥2 (34)

where X̂ = g(f(Y)), the latent variables are given by f(Y), C is a masking

matrix dependent on the minibatch and latent sizes taking on the value 1 for

signal latents and 0 for noise or background latents. y corresponds to the

aforementioned soft label which has value 0 for a signal-plus-noise example

and 1 for a noise-only example. λ is a regularization coefficient which is set to

21

a higher value than normally used for regularization to enforce zeroing out of

signal-based latents for noise-only examples.

In other words, when we train the network, we use minibatches with fixed

ordering corresponding to the same proportion of signal-plus-noise examples

and noise-only examples such that C does not change on each training iter-

ation. An example C is given in Figure 3. For signal-plus-noise examples,

the regularization term is 0, and the network seeks to reconstruct the noisy

example. However, for noise-only examples, the network tries to put all of the

latent energy into the predetermined noise-only latent variables. In [1], they

balance this by choosing 25% of minibatches to be noise-only as well as 25%

of latent variables to be noise-only.

Figure 3: Example Partitioned Masking Matrix. [1] The gray area corresponds
to signal (foreground) latents for noise-only examples. We want to penalize the
network for any nonzero energy in the signal latents when there are noise-only
examples.

Note that it is okay for noise-only examples to be mislabeled as signal-plus-

noise, but the opposite would cause the signal to be misrepresented as noise.

22

Therefore, the soft labeling of examples should be cautious on the side of

labeling as noise-only.

In [1], they use spectrogram frames as input. Their partitioned autoencoder is

constructed as a shallow two-dimensional convolutional autoencoder with in-

put normalization to zero-mean and unit-variance, max pooling along the time

index, and a ReLU nonlinearity before the latent layer. Their convolutional

layer is constructed such that the frequency space is fully connected, and the

convolution happens in time. The results of their autoencoder are presented

in the frequency domain only, so we seek to adapt the partitioning concept to

also recover cleaner time-domain audio.

Therefore, we use the same loss function as defined in Equation 34, but we use

single magnitude spectrum frames and compare results on the mean squared

error in the time-domain rather than in the frequency domain as their results

presented. We also used the modified ReLU as presented from [2].

Phase Reconstruction

By extension, we combine the estimated magnitude spectra at the output with

the original noisy phase. We can then recover a time-domain estimate of our

desired signal using overlap-add resynthesis.

Other experiments we tried involved trying to explicitly or implicitly estimate

the clean phase. One such explicit experiment involved training a parallel par-

titioned autoencoder with modified nonlinearities that tried to learn a clean

phase representation. However, this ended up with a worse MSE and distorted

the signal than using the original noisy phase. An implicit phase estimation

example involved training the network using two channels as feature maps,

where the real part of the frequency spectrum made up one feature map and

23

the imaginary part of the frequency spectrum made up the other. This also

resulted in worse reconstructed signals than the case where we estimate the

magnitude spectrum and combine with the noisy phase. Sample code is pro-

vided in the appendix.

Curro Autoencoder

We present here the Curro Partitioned Autoencoder, a novel partitioned neu-

ral network architecture. Similar to [1], we exploit the latent space structure

to put noise and signal energy into different latent variables. A basic overview

of the network is detailed in Figure 4. During training, the signal is recon-

structed using only the bottom half of the network when noise-only examples

are presented. For signal-plus-noise examples, both halves of the network are

summed. The loss function is detailed further below.

Figure 4: Curro Autoencoder Block Diagram. Partitioning occurs on 50% of
the latent space for the signal and the noise. Either can be reconstructed.

In the shallow case, we have an input layer, a fully connected hidden layer,

and then a split in the latent space. We split the network such that half

of the latent variables correspond to signal and the other half correspond to

noise, and then the outputs from both network partitions are summed. For

the shallow case, we use one fully connected layer followed by an output layer

of the same size. The parallel networks are the same size and share the same

24

parameters W and b. Unlike in [1], we constrain the problem to 50% of latent

variables for signal content and 50% for noise content. While there may be

drawbacks to such a restriction, the benefit here is that we do not have to

choose that ratio as a hyperparameter.

More formally,

Ŷi[k] = X̂i[k] + N̂i[k] (35)

where

X̂i[k] = W(3)f(W(2)zi,sig + b(2)) + b(3) (36)

N̂i[k] = W(3)f(W(2)zi,noi + b(2)) + b(3) (37)

and the partitioned latent space zi is given by

zi = f(W(1)f(W(0)Yi[k] + b(0)) + b(1)) (38)

with associated partitions

zi =

 zi,sig

zi,noi

 (39)

Note that for a latent space z with N dimensions, the latent partitions zi,sig

and zi,noi have dimension N/2.

We train the network as in [1] with minibatches consisting of noise-only exam-

ples and signal-plus-noise examples. The way we train the network to learn

the partitions uses the following loss function:

25

l(Y, X̂) =

∥Y − N̂∥2 if Y is noise-only

∥Y − Ŷ∥2 if Y is signal-plus-noise
(40)

We introduce again a soft label y indicating if the example is noise-only or

signal-plus-noise. We can then rewrite our loss function as

l(Y, X̂) = MSE(Y, yX̂ + Ŷ) (41)

= ∥Y − yX̂ − Ŷ∥2 (42)

In this case, the soft label y takes on the opposite values as in [1], i.e. y = 0

for noise-only examples and y = 1 for signal-plus-noise examples.

This network also has the benefit of being able to reconstruct both the noise

and the signal independently. At inference time, the desired signal can be

obtained by only reconstructing the top half of the network. Also, in the case

of introduced distortion, a proportion of the signal half and noise half can be

combined at different ratios, i.e. X̂ + αN̂. Depending on circumstances, this

can be introduced as a learned parameter or can be tuned manually or through

a grid search.

26

Results

We present results here for mainly shallow network architectures. At the

output layer of each network, an identity nonlinearity is used. At any other

layer, the modified ReLU (mReLU) is used. Unless otherwise noted, batch

normalization is applied at the input layer. Each network is compared first to

itself at varying noise levels (-6 dB, -3 dB, 0 dB, 3 dB, 6 dB SNR) in terms of

convergence as well as the mean squared error (MSE) for inferences.

Training minibatches consist of 128 examples, each with 1024-sample FFT

frames of ∥Y [k]∥ at a sampling rate 16 kHz. Time windows are windowed

using the Hanning window, and we use 50% overlap for perfect reconstruction

at inference time. The examples used are a sum of sine waves at four fixed

frequencies with uniform random amplitude and phase. The frequencies are

chosen to form an A4 major chord (1-3-5-8) at slightly de-tuned frequencies so

as not to allow the network to learn any pattern from the immediate harmonic

structure.

f = [441, 549, 660, 881] Hz (43)

x[n] =
3∑

i=0

Ai sin 2πfi/fsn+ ϕi, n = 0, . . . , 1023 (44)

Ai ∼ U(0.25, 0.75) (45)

ϕ ∼ U(0, 2π) (46)

Applied noise is additive-white Gaussian noise (AWGN), with the variance σ2

selected to achieve the desired average SNR for each minibatch as in Equation

24.

27

N [n] ∼ N(0, σ2), n = 0, . . . , 1023 (47)

y[n] = x[n] +N [n] (48)

In semi-supervised cases where we use the soft label y for noise-only versus

signal-plus-noise examples, we use 25% noise-only examples per minibatch. For

inference calculations, we construct a minibatch with consecutive overlapping,

windowed frames.

Simulations are written in Python 2.7 using Lasasgne [10], a “lightweight li-

brary to build and train neural networks in Theano.” Theano is a “Python

library that allows you to define, optimize, and evaluate mathematical ex-

pressions involving multidimensional arrays efficiently.” [11] Theano boasts

parallel GPU support, Numpy support (a mathematical Python library), nu-

merical stability, and symbolic differentiation, among other features. These

libraries and frameworks allow for ease of developing deep, novel architectures

and save time in doing things like calculating gradients, weight updates and

back-propagation. Sample simulation code is shown in the Appendix.

Weight updates are calculated using Adam updates [12]. 2000 iterations (mini-

batches) are used for each simulation. Unless otherwise noted, each hidden

layer uses 2000 hidden nodes.

Loss-based plots show the loss function convergence during training iterations,

where the loss function is as defined in the previous section for each network

architecture. Mean squared error plots show the MSE every 50 training ex-

amples for an inference example that does not change.

28

Supervised Autoencoder

The following results show a single-layer autoencoder with and without batch

normalization at the input layer. We present these to compare the effects of

batch normalization as well as to show the differences between supervised and

semi-supervised de-noising approaches.

Batch Normalized Input

In Figure 5, we can see that the loss function appears to converge at or before

2000 iterations. As expected, as SNR increases, the loss objective converges to

a lower value. Since this network is trained using only the squared error loss,

this should be expected. Note that as the SNR increases, the difference in the

converged value gets smaller. Also interesting is the fact that lower SNR plots

converge more quickly but to higher values. This suggests that the network

does not respond well to too much noise.

0 500 1000 1500 2000

Iterations

10−1

100

101

102

103

L
os

s

Traditional Autoencoder with Modified ReLU
-6 dB
-3 dB
0 dB
3 dB
6 dB

Figure 5: Loss at various SNRs for Supervised Single-Layer Autoencoder with
Batch Normalization at the Input

29

In Figure 6, we can see that the MSE generally goes down as SNR goes up. This

should be expected, though perhaps there may be an error in the simulation

since the lines blur a bit between -3 dB and 6 dB.

We also note from personal listening tests that the reconstructed signals have

some distortion introduced from the network.

0 500 1000 1500 2000

Iterations

10−2

10−1

100

M
ea

n
Sq

ua
re

d
E

rr
or

Traditional Autoencoder with Modified ReLU
-6 dB
-3 dB
0 dB
3 dB
6 dB

Figure 6: MSE at various SNRs for Supervised Single-Layer Autoencoder with
Batch Normalization at the Input

Non-Batch Normalized Input

As expected, in Figure 7, the loss metric converges about the same as for

the batch normalized case. As expected, the convergence time in terms of

number of iterations is slightly higher. One interesting section is how the 6 dB

curve converges. It appears to have a strong section of downward concavity.

It is possible that this occurred randomly, as the random number generator

in Numpy was set to a random seed. It is also possible that because of an

absence of batch normalization, some neurons saturated and did not change

substantially for some time.

30

0 500 1000 1500 2000

Iterations

10−1

100

101

102

103

L
os

s

Traditional Autoencoder with Modified ReLU
-6 dB
-3 dB
0 dB
3 dB
6 dB

Figure 7: Loss at various SNRs for Supervised Single-Layer Autoencoder with-
out Batch Normalization at the Input

The MSE in Figure 8 converges to a lower value than that of Figure 6. This

suggests that there may be an error in the simulation, likely in using the

stored statistics for batch normalization as opposed to using an on-the-fly

calculation of the minibatch statistics at inference time. Batch normalization

usually allows for faster convergence of the loss function. This may suggest

that the mean squared error of the magnitude FFT coefficients are not as

directly correlated to the time-domain signal mean squared error convergence.

However, we still achieve convergence here which is expected. Past 0 dB, the

MSE seems to converge to a similar value, suggesting that the network has

diminishing returns for higher SNR.

Partitioned Autoencoder

For the dense partitioned autoencoder, the loss function appears to converge

although at a slower rate in Figure 9. The loss function also converges to a

higher magnitude value since the network is not supervised. In addition, the

31

0 500 1000 1500 2000

Iterations

10−2

10−1

100

M
ea

n
Sq

ua
re

d
E

rr
or

Traditional Autoencoder with Modified ReLU
-6 dB
-3 dB
0 dB
3 dB
6 dB

Figure 8: MSE at various SNRs for Supervised Single-Layer Autoencoder with-
out Batch Normalization at the Input

large regularization term in the loss function defined in Equation 34 contributes

to the higher convergence values for the simulation.

0 500 1000 1500 2000

Iterations

102

103

104

105

106

107

L
os

s

Paritioned Dense Autoencoder with Modified ReLU
-6 dB
-3 dB
0 dB
3 dB
6 dB

Figure 9: Loss at various SNRs for Single-Layer Partitioned Autoencoder [1]

The MSE is surprisingly low in Figure 10. Unlike in the supervised case, the

MSE seems to spread out more as SNR increases. Even at 0 dB, the network

32

seems to learn the noise to some success. A listening test indicates noticeably

lower noise level with minimal introduced distortion.

0 500 1000 1500 2000

Iterations

10−3

10−2

10−1

100

M
ea

n
Sq

ua
re

d
E

rr
or

Paritioned Dense Autoencoder with Modified ReLU
-6 dB
-3 dB
0 dB
3 dB
6 dB

Figure 10: MSE at various SNRs for Single-Layer Partitioned Autoencoder [1]

Partitioned Curro Autoencoder

For the Curro Autoencoder simulation, we used 2 dense layers of size 2048

each before partitioning into two 1024 networks. After the partition, we used

two dense layers and an output layer for both partitions, all at size 1024.

Interesting to note for the Curro Autoencoder is the fact that it converges

almost as quickly across SNR, which can be seen in Figure 11. This suggests

that the network might have a lesser dependence on SNR than for the other

networks. For a real-time systems application, this suggests that the Curro

network could outperform the Dense Partitioned Autoencoder. On the other

hand, this could suggest that the network quickly gets stuck in a local minimum

and fails to reach lower convergence.

In Figure 12, for -6 dB, the time-domain MSE seems to go up slightly after

50-100 iterations, suggesting that either the loss function or the reconstruction

33

0 500 1000 1500 2000

Iterations

100

101

102

103

104

L
os

s

Paritioned Dense Curro Autoencoder with Modified ReLU
-6 dB
-3 dB
0 dB
3 dB
6 dB

Figure 11: Loss at various SNRs for Single-Layer Curro Autoencoder

could be incorrect. As expected, the network performs better for higher SNR

but still seems to get diminishing returns for SNRs greater than 0 dB.

The plot shows the MSE for reconstruction using only the signal half of the

network, i.e. the top half. Interestingly, a listening test indicates that summing

the two partitions at the output seems to produce a lower noise volume and

lower distortion than for either partition individually. This suggests that the

network might not be properly partitioning. It is currently unclear as to

whether or not this is the result of a bug in the code or a fundamental flaw in

the network architecture. Since this network does not have additional dense

layers at the summed output, it could be that the network needs to be deeper.

Another possibility is that the underlying symmetry in the FFT is causing the

network to effectively initialize to two parallel networks. This could be miti-

gated by only using the first half of the FFT. Also, adding batch normalization

to the rest of the layers might result in better convergence and performance.

34

0 500 1000 1500 2000

Iterations

10−3

10−2

10−1

100

M
ea

n
Sq

ua
re

d
E

rr
or

Paritioned Dense Curro Autoencoder with Modified ReLU
-6 dB
-3 dB
0 dB
3 dB
6 dB

Figure 12: MSE at various SNRs for Single-Layer Curro Autoencoder

Comparison of Loss Convergence

A comparison of loss functions is not reasonable Since our networks have dif-

ferent loss functions, it does not make sense to compare them based on the

converged value. Rather, we would like to compare the networks for con-

vergence time in terms of number of iterations, i.e. number of minibatches

exposed to the network. From previous figures, we should expect that the

SNR might have some difference depending on the network.

In Figures figs. 13 to 17, the Curro Autoencoder seems to converge the quickest,

followed by the two supervised networks, then the Dense Partitioned Autoen-

coder converging the slowest. As expected, as SNR goes up, the supervised

networks converge slower while the semi-supervised networks seem to not be

as effected by SNR.

35

0 500 1000 1500 2000

Iterations

100

101

102

103

104

105

106

107

lo
ss

Comparison of loss of various networks at -6 dB
Partitioned Autoencoder
Autoencoder w/ BatchNorm
Autoencoder w/o BatchNorm
Curro Autoencoder

Figure 13: Loss Comparison of Various Networks at -6 dB

0 500 1000 1500 2000

Iterations

100

101

102

103

104

105

106

lo
ss

Comparison of loss of various networks at -3 dB
Partitioned Autoencoder
Autoencoder w/ BatchNorm
Autoencoder w/o BatchNorm
Curro Autoencoder

Figure 14: Loss Comparison of Various Networks at -3 dB

Comparison of Mean Squared Error Convergence

In terms of MSE convergence, we can safely compare both the convergence

time and the value of convergence since the reconstruction is based on the

same inference example.

36

0 500 1000 1500 2000

Iterations

10−1

100

101

102

103

104

105

106

lo
ss

Comparison of loss of various networks at 0 dB
Partitioned Autoencoder
Autoencoder w/ BatchNorm
Autoencoder w/o BatchNorm
Curro Autoencoder

Figure 15: Loss Comparison of Various Networks at 0 dB

0 500 1000 1500 2000

Iterations

10−1

100

101

102

103

104

105

106

lo
ss

Comparison of loss of various networks at 3 dB
Partitioned Autoencoder
Autoencoder w/ BatchNorm
Autoencoder w/o BatchNorm
Curro Autoencoder

Figure 16: Loss Comparison of Various Networks at 3 dB

In Figures figs. 18 to 20, we see that at low SNR the Dense Partitioned Autoen-

coder usually has the highest MSE. We expect the supervised autoencoders

to have lower MSE, which is the case for these figures. However, the Curro

Autoencoder has better performance than the supervised systems which is

somewhat unexpected. We should expect that the network which has access

37

0 500 1000 1500 2000

Iterations

10−1

100

101

102

103

104

105

106

lo
ss

Comparison of loss of various networks at 6 dB
Partitioned Autoencoder
Autoencoder w/ BatchNorm
Autoencoder w/o BatchNorm
Curro Autoencoder

Figure 17: Loss Comparison of Various Networks at 6 dB

0 500 1000 1500 2000

Iterations

10−2

10−1

100

M
SE

Comparison of mse of various networks at -6 dB
Partitioned Autoencoder
Curro Autoencoder
Autoencoder w/o BatchNorm
Autoencoder w/ BatchNorm

Figure 18: MSE Comparison of Networks at -6 dB

to the ground truth during training should converge to a lower MSE. This

could be a simulation error and is an important area of future research.

Also interesting to note is that for higher SNR, the Partitioned Dense Au-

toencoder outperforms both supervised methods. This can be seen in Figures

figs. 21 and 22. If the results are correct, this suggests that a semi-supervised

network can outperform a supervised network. This might be the result of

38

0 500 1000 1500 2000

Iterations

10−2

10−1

100

M
SE

Comparison of mse of various networks at -3 dB
Partitioned Autoencoder
Curro Autoencoder
Autoencoder w/o BatchNorm
Autoencoder w/ BatchNorm

Figure 19: MSE Comparison of Networks at -3 dB

0 500 1000 1500 2000

Iterations

10−3

10−2

10−1

100

M
SE

Comparison of mse of various networks at 0 dB
Partitioned Autoencoder
Curro Autoencoder
Autoencoder w/o BatchNorm
Autoencoder w/ BatchNorm

Figure 20: MSE Comparison of Networks at 0 dB

enforcing a structure of the latent space, whereas normally differences in ini-

tialization of parameters can cause vastly different latent representations.

Also interesting is the fact that for the highest SNR 6 dB, the Partitioned

Dense Autoencoder outperforms the Curro Autoencoder. This can be seen in

Figure 22. Again, this could be the result of a simulation error or it could

suggest that the Dense Partitioned Autoencoder performs well at high SNR.

39

0 500 1000 1500 2000

Iterations

10−3

10−2

10−1

100

M
SE

Comparison of mse of various networks at 3 dB
Partitioned Autoencoder
Curro Autoencoder
Autoencoder w/o BatchNorm
Autoencoder w/ BatchNorm

Figure 21: MSE Comparison of Networks at 3 dB

0 500 1000 1500 2000

Iterations

10−3

10−2

10−1

100

M
SE

Comparison of mse of various networks at 6 dB
Partitioned Autoencoder
Curro Autoencoder
Autoencoder w/o BatchNorm
Autoencoder w/ BatchNorm

Figure 22: MSE Comparison of Networks at 6 dB

Conclusions and Future Work

Conclusions

Deep partitioned neural network architectures using time and frequency input

data seem promising in long-term solutions for de-noising speech and music

signals. Future work is detailed in the next section.

40

Future Work

Models

The simulations can easily be extended to multiple hidden layers. These layers

can be a combination of convolutional layers as well as fully connected lay-

ers. [13] Other recent literature has pointed to recurrent neural networks as an

advanced technique for de-noising which has had some success. [14] Batch nor-

malization and layer normalization techniques can help speed up convergence

in terms of wall time as well as number of minibatch iterations. [15]

Additionally, the partitions can potentially be constructed to have varying

degrees of signal/noise energy such that a more gradual de-noising can occur

with less distortion. The partitions can also potentially span more than one

layer, which might produce interesting results. Results can then be presented

in terms of additional learned parameters which dictate how much of each

latent variable to use in reconstruction.

Other metrics could be useful as well in reporting results besides Mean Squared

Error. For instance, we could measure the signal-to-distortion ratio (SDR) to

identify which networks are introducing distortion and which ones are pre-

venting it. We could also modify our MSE to report as a gain in SNR instead.

If we want to preserve audio quality and measure it, we could potentially use

user listening tests and audio quality metrics which are based on perceptual

models of human hearing.

It would also be interesting to explore whether or not these models might

generalize to similar situations of noisy conditions but with different signals,

or vise versa.

41

Data

Various data sources could be considered in validating the various presented

network architectures. Different signal types, e.g. various speech examples

and music recordings could provide more useful insights across models and

simulations. Similarly, different noise signal types, e.g. restaurant noise, train

noise, and crowd noise could provide more insight into how the networks re-

spond. Combinations of varying signals and noises should be investigated in

future work.

42

References

[1] D. Stowell and R. E. Turner, “Denoising without access to clean data
using a partitioned autoencoder,” CoRR, vol. abs/1509.05982, 2015.
[Online]. Available: http://arxiv.org/abs/1509.05982

[2] D. Liu, P. Smaragdis, and M. Kim, “Experiments on deep learning for
speech denoising.” in INTERSPEECH, 2014, pp. 2685–2689.

[3] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[4] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks.” in Aistats, vol. 15, no. 106, 2011, p. 275.

[5] D. R. Wilson and T. R. Martinez, “The general inefficiency of batch
training for gradient descent learning,” Neural Networks, vol. 16, no. 10,
pp. 1429–1451, 2003.

[6] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[7] V. O. Alan, W. S. Ronald, and R. John, “Discrete-time signal
processing,” New Jersey, Printice Hall Inc, 1989.

[8] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–, [Online; accessed 2016-09-24]. [Online].
Available: http://www.scipy.org/

[9] “freesfx.co.uk - download free sound effects,”
http://www.freesfx.co.uk/download/?type=mp3&id=5990, accessed:
2016-06-10.

[10] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri,
D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw,
M. Heilman, diogo149, B. McFee, H. Weideman, takacsg84,
peterderivaz, Jon, instagibbs, D. K. Rasul, CongLiu, Britefury, and
J. Degrave, “Lasagne: First release.” Aug. 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.27878

[11] Theano Development Team, “Theano: A Python framework for fast
computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016. [Online]. Available:
http://arxiv.org/abs/1605.02688

43

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[13] M. Kayser and V. Zhong, “Denoising convolutional autoencoders for
noisy speech recognition.”

[14] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks.” in ICML, vol. 14, 2014, pp. 1764–1772.

[15] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” ArXiv
e-prints, Jul. 2016.

[16] P. Baldi and Z. Lu, “Complex-valued autoencoders,” Neural Networks,
vol. 33, pp. 136–147, 2012.

[17] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on
speech enhancement based on deep neural networks,” IEEE Signal
Processing Letters, vol. 21, no. 1, pp. 65–68, 2014.

[18] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[19] T. Ishii, H. Komiyama, T. Shinozaki, Y. Horiuchi, and S. Kuroiwa,
“Reverberant speech recognition based on denoising autoencoder.” in
INTERSPEECH, 2013, pp. 3512–3516.

[20] B. Gold, N. Morgan, and D. Ellis, “Speech and audio signal processing:
processing and perception of speech and music,” 2011.

[21] U. Zölzer, Digital audio signal processing. John Wiley & Sons, 2008.

[22] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[23] A. Rad and T. Virtanen, “Phase spectrum prediction of audio signals,”
in International Symposium on Communications Control and Signal
Processing (ISCCSP), 2012, pp. 1–5.

[24] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in
Proceedings of the Twenty-fifth International Conference on Machine

44

Learning (ICML’08), W. W. Cohen, A. McCallum, and S. T. Roweis,
Eds. ACM, 2008, pp. 1096–1103.

[25] W. W. Cohen, A. McCallum, and S. T. Roweis, Eds., Proceedings of the
Twenty-fifth International Conference on Machine Learning (ICML’08).
ACM, 2008.

[26] (2010) Denoising autoencoders (da). [Online]. Available:
http://deeplearning.net/dA.html

[27] S. Sonoda and N. Murata, “Decoding stacked denoising autoencoders,”
CoRR, vol. abs/1605.02832, 2016. [Online]. Available:
http://arxiv.org/abs/1605.02832

45

Simulation Code

The following code samples show how network architectures were constructed,

how GPU functions were compiled, how networks were trained, and how sim-

ulation results were collected and plotted.

46

from __future__ import division
different networks (autoencoder, conv autoencoder, recurrent)
different signals (sine, recording)
different noises (awgn, crowd)
different domains (time, freq)
from numpy import complex64
import scipy
import lasagne
import theano
import theano.tensor as T
import numpy as np
from scikits.audiolab import wavwrite
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error

SIMULATION_SNR = 6
FILE_SNR = ’{} dB’.format(SIMULATION_SNR)
FILENAME_LOSS = ’plotfinal/curro−loss.csv’
FILENAME_MSE = ’plotfinal/curro−mse.csv’
LOSSFILE = open(FILENAME_LOSS, ’a’)
MSEFILE = open(FILENAME_MSE, ’a’)
LINEFMT = FILE_SNR + ’,{}\n’
LINEFMTLOSS = FILE_SNR + ’,{},{},{}\n’ # for dan net, we look at square loss &
 reg loss

LATENTFILE = open(’plotfinal/dan−latent.csv’, ’a’)

dtype = theano.config.floatX
batchsize = 128
framelen = 441
srate = 16000
pct = 0.5 # overlap
fftlen = 1024
framelen = fftlen
overlap = int(framelen/2)

dan−specific
shape = (batchsize,framelen)
latentsize = 2000
#background_latents_factor = 0.25
background_latents_factor = 0.5
minibatch_noise_only_factor = 0.5 # also for curro net
n_noise_only_examples = int(minibatch_noise_only_factor * batchsize)
n_background_latents = int(background_latents_factor * latentsize)
lambduh = 0.75

batch_norm = lasagne.layers.batch_norm

def mod_relu(x):
 eps = 1e−5
 return T.switch(x > eps, x, −eps/(x−1−eps))

def normalize(x):
 return x / max(abs(x))

def snr_after(x, x_hat):
 return np.var(x)/np.var(x−x_hat)

Page 1/13autoencoder.py

class ZeroOutBackgroundLatentsLayer(lasagne.layers.Layer):
 def __init__(self, incoming, **kwargs):
 super(ZeroOutBackgroundLatentsLayer, self).__init__(incoming)
 mask = np.ones((batchsize,latentsize))
 mask[:, 0:n_background_latents] = 0
 self.mask = theano.shared(mask, borrow=True)

 def get_output_for(self, input_data, reconstruct=False, **kwargs):
 if reconstruct:
 return self.mask * input_data
 return input_data

def dan_net():
 # net
 x = T.matrix(’X’) # input
 y = T.matrix(’Y’) # soft label
 network = batch_norm(lasagne.layers.InputLayer(shape, x))
 # network = lasagne.layers.InputLayer(shape, x)
 print network.output_shape
 network = lasagne.layers.DenseLayer(network, latentsize, nonlinearity=mo
d_relu)
 print network.output_shape
 latents = network
 network = ZeroOutBackgroundLatentsLayer(latents, background_latents_fact
or=background_latents_factor)
 network = lasagne.layers.DenseLayer(network, shape[1], nonlinearity=lasa
gne.nonlinearities.rectify)
 print network.output_shape

 # loss
 C = np.zeros((batchsize,latentsize))
 C[0:n_noise_only_examples, n_background_latents + 1:] = 1
 C_mat = theano.shared(np.asarray(C, dtype=dtype), borrow=True)
 mean_C = theano.shared(C.mean(), borrow=True)
 prediction = lasagne.layers.get_output(network)
 mse_term = lasagne.objectives.squared_error(prediction, x).sum(axis=[1],
 keepdims=True)
 scf = lambduh/mean_C
 regularization_term = scf * y * ((C_mat * lasagne.layers.get_output(late
nts))**2).sum(axis=[1], keepdims=True)
 loss = mse_term + regularization_term
 loss = loss.mean()

 # training compilation
 params = lasagne.layers.get_all_params(network, trainable=True)
 updates = lasagne.updates.adam(loss, params)
 train_fn = theano.function([x,y], loss, updates=updates)

 # inference compilation
 predict_fn = theano.function([x], lasagne.layers.get_output(network, det
erministic=True, reconstruct=True))

 #
 # other objectives
 #

Page 2/13autoencoder.py

 square_term = theano.function([x], mse_term.mean())
 regularization_term = theano.function([x,y], regularization_term.mean())

 def do_stuff(network, latents, predict_fn):
 pass

 latent_fn = theano.function([x], lasagne.layers.get_output(latents, dete
rministic=True))
 return network, latents, loss, square_term, regularization_term, train_f
n, predict_fn, do_stuff, latent_fn

def dan_main(params):
 network, latents, loss, square_loss, reg_loss, train_fn, predict_fn, do_
stuff, latent_fn = dan_net()
 lmse = []
 lsq = []
 lreg = []
 # inference example for simulations
 clean, noisy, n, labels = gen_freq_data(sample=True, gen_data_fn=gen_bat
ch_half_noisy_half_noise)

 for i in xrange(params.niter+1):
 _clean, _noisy, _n, _labels = gen_freq_data(sample=False, gen_data_f
n=gen_batch_half_noisy_half_noise)
 # swap 0 and 1 since for dan net, 0 is signal and 1 is background
 _labels = np.expand_dims(np.abs(_labels−1).astype(dtype)[:,1], axis=
1)
 # labels = np.abs(labels−1).astype(dtype)

 loss = train_fn(_noisy[0], _labels)
 lmse.append(loss)

 loss_lsq = square_loss(_noisy[0])
 lsq.append(loss_lsq)

 loss_reg = reg_loss(_noisy[0], _labels)
 lreg.append(loss_reg)
 print ’%d\t%.3E\t%.3E\t%.3E’ % (i, loss, loss_lsq, loss_reg)

 LOSSFILE.write(LINEFMTLOSS.format(loss, loss_lsq, loss_reg))

 if i in range(0, params.niter+50, 50):
 # validate mse
 cleaned_up = predict_fn(noisy[0])
 cleaned_up_time = normalize(ISTFT(cleaned_up, noisy[1], fftlen))
 clean_time = normalize(ISTFT(clean[0], clean[1], fftlen))
 noisy_time = normalize(ISTFT(noisy[0], noisy[1], fftlen))
 baseline_mse = mean_squared_error(clean_time, noisy_time)
 print ’baseline mse:’, baseline_mse
 mse = mean_squared_error(cleaned_up_time, clean_time)
 print ’mse:’, mse
 MSEFILE.write(LINEFMT.format(mse))

 latentz = latent_fn(noisy[0])
 LATENTFILE.write(’{},{}’.format(i, ’,’.join([str(x) for x in late
ntz])))

 cleaned_up = predict_fn(noisy[0])

Page 3/13autoencoder.py

 print ’freq mse:’, mean_squared_error(cleaned_up, clean[0])
 cleaned_up_time = normalize(ISTFT(cleaned_up, noisy[1], fftlen))
 cleaned_up_clean_phase = normalize(ISTFT(cleaned_up, clean[1], fftlen))
 clean_time = normalize(ISTFT(clean[0], clean[1], fftlen))
 noisy_time = normalize(ISTFT(noisy[0], noisy[1], fftlen))
 print ’time mse noisy phase:’, mean_squared_error(cleaned_up_time, clean_time)
 print ’time mse clean phase:’, mean_squared_error(cleaned_up_clean_phase, clea
n_time)
 print ’baseline time mse noisy to clean:’, mean_squared_error(noisy_time, clean_ti
me)
 wavwrite(clean_time, ’dan/x.wav’, fs=srate, enc=’pcm16’)
 wavwrite(noisy_time, ’dan/y.wav’, fs=srate, enc=’pcm16’)
 wavwrite(cleaned_up_time, ’dan/xhat.wav’, fs=srate, enc=’pcm16’)
 wavwrite(cleaned_up_clean_phase, ’dan/xhat_cleanphase.wav’, fs=srate, enc=’pcm
16’)

 plt.figure()
 plt.semilogy(lmse)
 plt.semilogy(lsq)
 plt.semilogy(lreg)
 plt.legend([’overall loss’, ’squared error loss’, ’regularization loss’])
 plt.savefig(’dan/losses.svg’, format=’svg’)

def paris_net(params):
 shape = (batchsize, fftlen)
 x = T.matrix(’x’) # dirty
 s = T.matrix(’s’) # clean
 #in_layer = batch_norm(lasagne.layers.InputLayer(shape, x))
 in_layer = lasagne.layers.InputLayer(shape, x)
 h1 = batch_norm(lasagne.layers.DenseLayer(in_layer, 2000, nonlinearity=m
od_relu))
 h1 = lasagne.layers.DenseLayer(h1, fftlen, nonlinearity=lasagne.nonlinea
rities.identity)

 # loss function
 prediction = lasagne.layers.get_output(h1)
 loss = lasagne.objectives.squared_error(prediction, s)
 return h1, x, s, loss.mean(), None, prediction

def curro_net(params):
 # input
 shape = (batchsize, framelen)
 x = T.matrix(’x’) # dirty input
 label = T.matrix(’label’) # noise OR signal/noise

 nonlin = mod_relu

 # network
 # in_layer = batch_norm(lasagne.layers.InputLayer(shape, x)) # batch no
rm or no?
 in_layer = lasagne.layers.InputLayer(shape, x) # batch norm or no?
 layersizes = 1024*2
 h1 = lasagne.layers.DenseLayer(in_layer, layersizes, nonlinearity=nonlin
)
 h2 = lasagne.layers.DenseLayer(h1, layersizes, nonlinearity=nonlin)
 h3 = lasagne.layers.DenseLayer(h2, layersizes, nonlinearity=nonlin)
 f = h3 # at this point, first half is signal, second half is noise

Page 4/13autoencoder.py

 # signal split
 f_sig = lasagne.layers.SliceLayer(f, indices=slice(0,int(layersizes/2)),
 axis=−1)
 print ’sig split size: ’, lasagne.layers.get_output_shape(f_sig)
 sig_d3 = lasagne.layers.DenseLayer(f_sig, framelen, nonlinearity=nonlin)
 # save parameters for noise split
 d3_W = sig_d3.W
 d3_b = sig_d3.b
 sig_d2 = lasagne.layers.DenseLayer(sig_d3, framelen, nonlinearity=nonlin
)
 d2_W = sig_d2.W
 d2_b = sig_d2.b
 g_sig = lasagne.layers.DenseLayer(sig_d2, framelen, nonlinearity=lasagne
.nonlinearities.identity)
 gs_W = g_sig.W
 gs_b = g_sig.b

 f_noi = lasagne.layers.SliceLayer(f, indices=slice(int(layersizes/2),lay
ersizes), axis=−1)
 print ’noisy split size: ’, lasagne.layers.get_output_shape(f_noi)
 noi_d3 = lasagne.layers.DenseLayer(f_noi, framelen, W=d3_W, b=d3_b, nonl
inearity=nonlin)
 noi_d2 = lasagne.layers.DenseLayer(noi_d3, framelen, W=d2_W, b=d2_b, non
linearity=nonlin)
 g_noi = lasagne.layers.DenseLayer(noi_d2, framelen, W=gs_W, b=gs_b, nonl
inearity=lasagne.nonlinearities.identity)

 out_layer = lasagne.layers.ElemwiseSumLayer([g_sig,g_noi])

 prediction_sig = lasagne.layers.get_output(g_sig)
 prediction_noi = lasagne.layers.get_output(g_noi)
 # label is 1 for signal, 0 for noise
 prediction = label * prediction_sig + prediction_noi
 loss = lasagne.objectives.squared_error(prediction, x)
 loss_sig = lasagne.objectives.squared_error(prediction_sig, x)
 loss_noi = lasagne.objectives.squared_error(prediction_noi, x)

 return out_layer, g_sig, x, label, loss.mean(), g_noi, prediction, loss_
sig, loss_noi

def autoencoder(params):
 # network
 shape = (batchsize, framelen)
 x = T.matrix(’x’) # dirty
 s = T.matrix(’s’) # clean
 in_layer = batch_norm(lasagne.layers.InputLayer(shape, x))
 h1 = batch_norm(lasagne.layers.DenseLayer(in_layer, 400, nonlinearity=la
sagne.nonlinearities.leaky_rectify))
 h2 = batch_norm(lasagne.layers.DenseLayer(h1, 330, nonlinearity=lasagne.
nonlinearities.leaky_rectify))
 h3 = batch_norm(lasagne.layers.DenseLayer(h2, 300, nonlinearity=lasagne.
nonlinearities.leaky_rectify))
 h4 = batch_norm(lasagne.layers.DenseLayer(h3, 270, nonlinearity=lasagne.
nonlinearities.leaky_rectify))
 bottle = h4
 d4 = batch_norm(lasagne.layers.DenseLayer(h4, 300, nonlinearity=lasagne.
nonlinearities.leaky_rectify))
 d3 = batch_norm(lasagne.layers.DenseLayer(d4, 330, nonlinearity=lasagne.

Page 5/13autoencoder.py

nonlinearities.leaky_rectify))
 d2 = batch_norm(lasagne.layers.DenseLayer(d3, 400, nonlinearity=lasagne.
nonlinearities.leaky_rectify))
 x_hat = batch_norm(lasagne.layers.DenseLayer(d2, framelen, nonlinearity=
lasagne.nonlinearities.identity))

 # loss function
 prediction = lasagne.layers.get_output(x_hat)
 loss = lasagne.objectives.squared_error(prediction, s)
 reg = 2 * (1e−5 * lasagne.regularization.regularize_network_params(x_hat
, lasagne.regularization.l2) + \
 1e−6 * lasagne.regularization.regularize_network_params(x_hat, las
agne.regularization.l1))
 loss = loss + reg
 return x_hat, x, s, loss.mean(), reg.mean(), prediction

def train(autoencoder, x, s, loss):
 params = lasagne.layers.get_all_params(autoencoder, trainable=True)
 updates = lasagne.updates.adam(loss, params)
 train_fn = theano.function([x,s], loss, updates=updates)
 return train_fn

def gen_data(sample=False):
 def _sin_f(a, f, srate, n, phase):
 return a * np.sin(2*np.pi*f/srate*n+phase)

 def _noise_var(clean, snr_db):
 # we use one noise variance per minibatch
 avg_energy = np.sum(clean*clean)/clean.size
 snr_lin = 10**(snr_db/10)
 noise_var = avg_energy / snr_lin
 print ’\tnoise variance for minibatch: ’, noise_var
 return noise_var

 # f = 440
 if sample:
 n = np.linspace(0, batchsize * framelen − 1, batchsize * framelen)
 phase1 = np.random.uniform(0.0, 2*np.pi)
 phase2 = np.random.uniform(0.0, 2*np.pi)
 phase3 = np.random.uniform(0.0, 2*np.pi)
 phase4 = np.random.uniform(0.0, 2*np.pi)
 amp1 = np.random.uniform(0.25, 0.75)
 amp2 = np.random.uniform(0.25, 0.75)
 amp3 = np.random.uniform(0.25, 0.75)
 amp4 = np.random.uniform(0.25, 0.75)
 else:
 n = np.tile(np.linspace(0, framelen−1, framelen), (batchsize,1))
 phase1 = np.tile(np.random.uniform(0.0, 2*np.pi, batchsize), (framel
en, 1)).transpose()
 phase2 = np.tile(np.random.uniform(0.0, 2*np.pi, batchsize), (framel
en, 1)).transpose()
 phase3 = np.tile(np.random.uniform(0.0, 2*np.pi, batchsize), (framel
en, 1)).transpose()
 phase4 = np.tile(np.random.uniform(0.0, 2*np.pi, batchsize), (framel
en, 1)).transpose()
 amp1 = np.tile(np.random.uniform(0.25, 0.75, batchsize), (framelen,1
)).transpose()
 amp2 = np.tile(np.random.uniform(0.25, 0.75, batchsize), (framelen,1

Page 6/13autoencoder.py

)).transpose()
 amp3 = np.tile(np.random.uniform(0.25, 0.75, batchsize), (framelen,1
)).transpose()
 amp4 = np.tile(np.random.uniform(0.25, 0.75, batchsize), (framelen,1
)).transpose()
 # clean = amp * np.sin(2 * np.pi * f / srate * n + phase)
 clean = _sin_f(amp1,441,srate,n,phase1) + \
 _sin_f(amp2,549,srate,n,phase2) + \
 _sin_f(amp3,660,srate,n,phase3) + \
 _sin_f(amp4,881,srate,n,phase4)

 # corrupt with gaussian noise
 var = _noise_var(clean, SIMULATION_SNR)
 noise = np.random.normal(0, var, clean.shape)
 noisy = clean + noise

 if sample:
 noisy = np.array([noisy[i:i+framelen] for i in xrange(0, len(noisy),
 int(pct*framelen))][0:batchsize])
 clean = np.array([clean[i:i+framelen] for i in xrange(0, len(clean),
 int(pct*framelen))][0:batchsize])
 #noisy = noisy.reshape(batchsize, framelen)
 #clean = clean.reshape(batchsize, framelen)

 return clean.astype(dtype), noisy.astype(dtype), n, None

def gen_batch_half_noisy_half_noise(sample=False):
 def _sin_f(a, f, srate, n, phase):
 return a * np.sin(2*np.pi*f/srate*n+phase)

 nop = minibatch_noise_only_factor # noise only percentage of minibatch
 f = 440
 if sample:
 n = np.linspace(0, batchsize * framelen − 1, batchsize * framelen)
 np.random.seed(3) # to get consistent samples
 phase1 = np.random.uniform(0.0, 2*np.pi)
 phase2 = np.random.uniform(0.0, 2*np.pi)
 phase3 = np.random.uniform(0.0, 2*np.pi)
 phase4 = np.random.uniform(0.0, 2*np.pi)
 amp1 = np.random.uniform(0.25, 0.75)
 amp2 = np.random.uniform(0.25, 0.75)
 amp3 = np.random.uniform(0.25, 0.75)
 amp4 = np.random.uniform(0.25, 0.75)
 np.random.seed()
 clean = _sin_f(amp1,441,srate,n,phase1) + \
 _sin_f(amp2,549,srate,n,phase2) + \
 _sin_f(amp3,660,srate,n,phase3) + \
 _sin_f(amp4,881,srate,n,phase4)
 else:
 n = np.tile(np.linspace(0, framelen−1, framelen), (batchsize,1))
 phase1 = np.tile(np.random.uniform(0.0, 2*np.pi, batchsize), (framel
en, 1)).transpose()
 phase2 = np.tile(np.random.uniform(0.0, 2*np.pi, batchsize), (framel
en, 1)).transpose()
 phase3 = np.tile(np.random.uniform(0.0, 2*np.pi, batchsize), (framel
en, 1)).transpose()
 phase4 = np.tile(np.random.uniform(0.0, 2*np.pi, batchsize), (framel
en, 1)).transpose()

Page 7/13autoencoder.py

 amp1 = np.tile(np.random.uniform(0.25, 0.75, batchsize), (framelen,1
)).transpose()
 amp2 = np.tile(np.random.uniform(0.25, 0.75, batchsize), (framelen,1
)).transpose()
 amp3 = np.tile(np.random.uniform(0.25, 0.75, batchsize), (framelen,1
)).transpose()
 amp4 = np.tile(np.random.uniform(0.25, 0.75, batchsize), (framelen,1
)).transpose()
 # clean = amp * np.sin(2 * np.pi * f / srate * n + phase)
 clean = _sin_f(amp1,441,srate,n,phase1) + \
 _sin_f(amp2,549,srate,n,phase2) + \
 _sin_f(amp3,660,srate,n,phase3) + \
 _sin_f(amp4,881,srate,n,phase4)
 clean[0:int(batchsize*nop),:] = 0

 def _noise_var(clean, snr_db):
 # we use one noise variance per minibatch
 avg_energy = np.sum(clean*clean)/clean.size
 snr_lin = 10**(snr_db/10)
 noise_var = avg_energy / snr_lin
 print ’\tnoise variance for minibatch: ’, noise_var
 return noise_var

 # corrupt with gaussian noise
 # use only the signal examples do determine noise variance (in both case
s)
 if not sample:
 noise_var = _noise_var(clean[int(batchsize*nop):,:], SIMULATION_SNR)
 else:
 noise_var = _noise_var(clean[int(batchsize*nop):], SIMULATION_SNR)
 noise = np.random.normal(0, noise_var, clean.shape)
 noisy = clean + noise

 if sample:
 noisy = np.array([noisy[i:i+framelen] for i in xrange(0, len(noisy),
 int(pct*framelen))][0:batchsize])
 clean = np.array([clean[i:i+framelen] for i in xrange(0, len(clean),
 int(pct*framelen))][0:batchsize])

 if not sample:
 labels = np.ones((batchsize,1))
 labels[0:int(batchsize*nop)]=0
 # labels = np.zeros((batchsize,1))
 # labels[0:int(batchsize*nop)]=1
 else:
 # assuming "noisy" example for sample, not noise example
 labels = np.ones((batchsize,1))
 # labels = np.zeros((batchsize,1))
 labels = np.tile(labels, (1,framelen))

 return clean.astype(dtype), noisy.astype(dtype), n, labels.astype(dtype)

def stft(x, framelen, overlap=int(pct*framelen)):
 w = scipy.hanning(framelen)
 X = np.array([scipy.fft(w*x[i:i+framelen], freq_bins)
 for i in range(0, len(x)−framelen, overlap)], dtype=com
plex64)
 X = np.transpose(X)

Page 8/13autoencoder.py

 return np.abs(X), np.angle(X)

def fft(x, fftlen):
 w = np.tile((scipy.hanning(fftlen)), (batchsize, 1))
 X = scipy.fft(w*x, fftlen, axis=−1)
 return np.abs(X).astype(dtype), np.angle(X).astype(dtype)

def gen_freq_data(sample=False, gen_data_fn=gen_data):
 # for training, use FFTs of any frames
 # for testing, use FFTs of frames with 25% overlap for proper reconstruc
tion
 clean, noisy, n, labels = gen_data_fn(sample)
 # get FFTs
 clean_stft = fft(clean, fftlen) # mag, phase
 noisy_stft = fft(noisy, fftlen) # mag, phase
 return clean_stft, noisy_stft, n, labels # (mag, phase), (mag, phase)

def istft(X, framelen):
 frames_avg = int(1/pct) # 4 in this case
 # no avg first,
 overlap = int(pct * framelen)
 #x = scipy.zeros(int(framelen/2*(time_bins + 1)))
 x = scipy.zeros(int(X.shape[1]*(X.shape[0]*pct+1−pct)))
 for n,i in enumerate(range(0, len(x)−framelen, overlap)):
 x[i:i+framelen] += scipy.real(scipy.ifft(X[n, :]))
 return x

def ISTFT(mag, phase, framelen):
 stft = mag * np.exp(1j*phase)
 # return np.fft.ifft(stft, framelen)
 return istft(stft, framelen)

def paris_main(params):
 a, x, s, loss, _, x_hat = paris_net({})
 train_fn = train(a,x,s,loss)
 lmse = []
 predict_fn = theano.function([x], x_hat)

 np.random.seed(3)
 clean, noisy, n, _ = gen_freq_data(sample=True)
 np.random.seed()

 for i in xrange(params.niter+1):
 _clean, _noisy, _n, _ = gen_freq_data()
 loss = train_fn(_noisy[0], _clean[0])
 LOSSFILE.write(LINEFMT.format(loss))
 lmse.append(loss)
 print i, loss

 if i in range(0,params.niter+50,50):
 # validate mse

 cleaned_up = predict_fn(noisy[0])
 cleaned_up_time = normalize(ISTFT(cleaned_up, noisy[1], fftlen))
 clean_time = normalize(ISTFT(clean[0], clean[1], fftlen))
 noisy_time = normalize(ISTFT(noisy[0], noisy[1], fftlen))
 baseline_mse = mean_squared_error(clean_time, noisy_time)
 print ’baseline mse:’, baseline_mse

Page 9/13autoencoder.py

 mse = mean_squared_error(cleaned_up_time, clean_time)
 print ’mse:’, mse
 MSEFILE.write(LINEFMT.format(mse))

 clean, noisy, n, _ = gen_freq_data(sample=True)
 cleaned_up = predict_fn(noisy[0])
 cleaned_up_time = normalize(ISTFT(cleaned_up, noisy[1], fftlen))
 clean_time = normalize(ISTFT(clean[0], clean[1], fftlen))
 mse = mean_squared_error(cleaned_up_time, clean_time)
 # print ’mse ’, mse
 wavwrite(normalize(cleaned_up_time), ’paris/xhat.wav’, fs=srate, enc=’pcm16’
)
 wavwrite(normalize(clean_time), ’paris/x.wav’, fs=srate, enc=’pcm16’)
 noisy_time = normalize(ISTFT(noisy[0], noisy[1], fftlen))
 wavwrite(normalize(noisy_time), ’paris/n.wav’, fs=srate, enc=’pcm16’)
 plt.figure()
 plt.subplot(411)
 #plt.plot(cleaned_up_time[0:fftlen*2])
 #plt.plot(clean_time[0:fftlen*2])
 plt.plot(cleaned_up_time[1000:1250])
 plt.plot(clean_time[1000:1250])
 plt.subplot(412)
 plt.semilogy(lmse)
 plt.subplot(413)
 plt.plot(clean[0][0,:])
 plt.subplot(414)
 plt.plot(np.unwrap(clean[1][0,:]))
 plt.savefig(’paris/x.svg’, format=’svg’)

def curro_main(params):
 g_sig, g_sig_for_real, x, s, loss, g_noi_for_real, x_hat, loss_sig, loss
_noi = curro_net({})
 train_fn = train(g_sig,x,s,loss)
 train_sig = theano.function([x], loss_sig.mean())
 train_noi = theano.function([x], loss_noi.mean())
 lmse = []
 lsig = []
 lnoi = []
 predict_fn = theano.function([x], lasagne.layers.get_output(g_sig_for_re
al, deterministic=True))
 predict_fn_noi = theano.function([x], lasagne.layers.get_output(g_noi_fo
r_real, deterministic=True))
 both = theano.function([x], lasagne.layers.get_output(g_sig, determinist
ic=True))

 np.random.seed(3)
 clean, noisy, n, labels = gen_freq_data(sample=True, gen_data_fn=gen_bat
ch_half_noisy_half_noise)
 np.random.seed()

 for i in xrange(params.niter+1):
 _clean, _noisy, _n, _labels = gen_freq_data(sample=False, gen_data_f
n=gen_batch_half_noisy_half_noise)
 loss = train_fn(_noisy[0], _labels)
 lmse.append(loss)

 loss1 = train_sig(_noisy[0])
 lsig.append(loss1)

Page 10/13autoencoder.py

 loss2 = train_noi(_noisy[0])
 lnoi.append(loss2)

 print i, loss, loss1, loss2
 LOSSFILE.write(LINEFMTLOSS.format(loss,loss1,loss2))

 if i in range(0,params.niter+50,50):
 # validate mse

 cleaned_up = predict_fn(noisy[0])
 cleaned_up_time = normalize(ISTFT(cleaned_up, noisy[1], fftlen))
 clean_time = normalize(ISTFT(clean[0], clean[1], fftlen))
 noisy_time = normalize(ISTFT(noisy[0], noisy[1], fftlen))
 baseline_mse = mean_squared_error(clean_time, noisy_time)
 print ’baseline mse:’, baseline_mse
 mse = mean_squared_error(cleaned_up_time, clean_time)
 print ’mse:’, mse
 MSEFILE.write(LINEFMT.format(mse))

 cleaned_up = predict_fn(noisy[0])
 noisy_reconstructed = predict_fn_noi(noisy[0])
 both_ffts = both(noisy[0])

 cleaned_up_time = normalize(ISTFT(cleaned_up, noisy[1], fftlen))
 clean_time = normalize(ISTFT(clean[0], clean[1], fftlen))
 noisy_reconstructed = normalize(ISTFT(noisy_reconstructed, noisy[1], fft
len))
 both_time = normalize(ISTFT(both_ffts, noisy[1], fftlen))

 mse = mean_squared_error(cleaned_up_time, clean_time)
 mse_noi = mean_squared_error(noisy_reconstructed, clean_time)
 mse_both = mean_squared_error(both_time, clean_time)
 #print ’baseline mse’, mean_squared_error() TODO: mse
 print ’mse ’, mse
 print ’mse of noisy half ’, mse_noi
 print ’mse of combined (both) ’, mse_both
 wavwrite(normalize(cleaned_up_time), ’curro/xhat.wav’, fs=srate, enc=’pcm16’
)
 wavwrite(normalize(clean_time), ’curro/x.wav’, fs=srate, enc=’pcm16’)
 wavwrite(normalize(noisy_reconstructed), ’curro/nxhat.wav’, fs=srate, enc=’p
cm16’)
 wavwrite(normalize(both_time), ’curro/both.wav’, fs=srate, enc=’pcm16’)
 plt.figure()
 plt.subplot(511)
 plt.plot(clean_time[0:fftlen*3])
 plt.plot(cleaned_up_time[0:fftlen*3])
 plt.subplot(512)
 plt.semilogy(lmse)
 plt.subplot(513)
 #plt.plot(cleaned_up[0,:])
 plt.semilogy(np.abs(np.fft.fft(np.blackman(cleaned_up_time.size)*cleaned
_up_time)))
 plt.subplot(514)
 plt.plot(np.unwrap(noisy[1][0,:]))
 plt.subplot(515)
 plt.plot(noisy_reconstructed[0:fftlen*3])

Page 11/13autoencoder.py

 plt.savefig(’curro/x.svg’, format=’svg’)
 plt.figure()
 plt.plot(lsig)
 plt.plot(lnoi)
 plt.legend([’sig’, ’noi’])
 plt.savefig(’curro/split.svg’, format=’svg’)

def sim_():
 # a, x, s, loss, reg, x_hat = autoencoder({})
 a, x, s, loss, _, x_hat = curro_net({})
 train_fn = train(a,x,s,loss)
 loss_mse = theano.function([x, s], loss)
 # loss_reg = theano.function([], reg)
 lmse = []
 # lreg = []
 predict_fn = theano.function([x,s], x_hat)
 # clean, noisy = gen_data()
 # wavwrite(clean[1,:], ’fig/s.wav’, fs=srate, enc=’pcm16’)
 for i in xrange(niter):
 clean, noisy, _, labels = gen_freq_data(sample=False, gen_data_fn=ge
n_batch_half_noisy_half_noise)
 loss = train_fn(noisy, labels)
 lmse.append(loss)
 # lmse.append(loss_mse(noisy, clean))
 # lreg.append(loss_reg())
 print i, loss
 clean, noisy, n, labels = gen_batch_half_noisy_half_noise(sample=True)
 cleaned_up = predict_fn(noisy, labels)
 cleaned_up = cleaned_up.reshape(batchsize * framelen)
 # mse calculation
 mse = mean_squared_error(cleaned_up, clean.reshape(batchsize * framelen)
)
 print ’mse ’, mse
 wavwrite(clean.reshape(batchsize * framelen), ’fig/s.wav’, fs=srate, enc=’p
cm16’)
 wavwrite(noisy.reshape(batchsize * framelen), ’fig/xn.wav’, fs=srate, enc=
’pcm16’)
 wavwrite(cleaned_up, ’fig/x.wav’, fs=srate, enc=’pcm16’)
 plt.figure()
 plt.subplot(211)
 # plt.plot(n, clean.reshape(batchsize * framelen))
 # plt.plot(n, noisy.reshape(batchsize * framelen))
 # plt.plot(n, cleaned_up)
 plt.plot(n[0:framelen*2],clean[0:2,:].reshape(−1))
 plt.plot(n[0:framelen*2],noisy[0:2,:].reshape(−1))
 plt.plot(n[0:framelen*2],cleaned_up[0:framelen*2])
 # plt.plot(n[0:framelen],cleaned_up[0:framelen])
 plt.subplot(212)
 plt.plot(lmse)
 plt.semilogy(lmse)
 # plt.subplot(313)
 # plt.plot(lreg)
 # plt.semilogy(lreg)
 plt.savefig(’fig/x.svg’, format=’svg’)

if __name__ == "__main__":
 import sys

Page 12/13autoencoder.py

 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument(’net’, type=str, help=’super, paris, dan, or curro’, default=’s
uper’)
 parser.add_argument(’−n’, ’−−niter’, type=int, help=’number of iterations’, defa
ult=2000)
 args = parser.parse_args()
 mapping = {
 ’super’: autoencoder,
 ’paris’: paris_main,
 ’dan’: dan_main,
 ’curro’: curro_main,
 }
 mapping[args.net](args)
 LOSSFILE.close()
 MSEFILE.close()
 LATENTFILE.close()

Page 13/13autoencoder.py

