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Abstract

Speech enhancement seeks to improve the quality of speech degraded by noise. Its

importance can be found in applications such as mobile phone communication,

speech recognition, and hearing aids. An example of speech enhancement relates

to the famous cocktail party problem. This problem deals with extracting a target

speaker’s voice from a mixture of background conversations. In such a situation,

the human brain tends to do a good job focusing in on the target speech while

blocking out the noisy environment surrounding it. The goal of solving the cocktail

party problem is to find a computer algorithm that functionally mimics how the

brain extracts the target speaker’s voice. In this master’s thesis, a novel approach

to solving the cocktail party problem is presented that relies on a fully convolutional

neural network (FCN) architecture. The FCN takes noisy, raw audio data as input

and performs nonlinear, filtering operations to produce clean, raw audio data of

the target speech at the output. Results from experimentation indicate the ability

to generalize to new speakers and robustness to new noise environments of varying

signal-to-noise ratios.

ii



Contents

1 Introduction 1

2 Background 5

2.1 Speech & Signal Processing Fundamentals . . . . . . . . . . . . . . 5

2.1.1 Basics of Speech . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Time-Dependent Fourier Analysis . . . . . . . . . . . . . . . 7

2.1.3 Signal-to-Noise Ratio (SNR) . . . . . . . . . . . . . . . . . . 8

2.1.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Overlap-Add Method of Reconstruction . . . . . . . . . . . . 9

2.2 Traditional Speech Enhancement Methods . . . . . . . . . . . . . . 10

2.2.1 Spectral Subtraction . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Ideal Binary Mask Estimation . . . . . . . . . . . . . . . . . 16

2.2.4 Performance Evaluation Measures (PESQ, STOI, WER) . . 17

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Example: Linear Regression . . . . . . . . . . . . . . . . . . 21

iii



2.3.3 Unsupervised v.s. Supervised Learning . . . . . . . . . . . . 23

2.3.4 Overfitting v.s. Underfitting . . . . . . . . . . . . . . . . . . 25

2.3.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.6 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.7 Principle of Maximum Likelihood . . . . . . . . . . . . . . . 30

2.3.8 Bias-Variance Tradeo↵ . . . . . . . . . . . . . . . . . . . . . 31

2.3.9 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Deep Feedforward Networks . . . . . . . . . . . . . . . . . . 36

2.4.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . 39

2.4.4 Gradient-based Optimization . . . . . . . . . . . . . . . . . 41

2.4.5 Regularization & Early Stopping . . . . . . . . . . . . . . . 44

2.4.6 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . 46

3 A Fully Convolutional Neural Network Approach 47

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Testing Generalization on the Same Speaker . . . . . . . . . . . . . 59

3.4 Testing Generalization on a New Speaker . . . . . . . . . . . . . . . 61

4 Conclusions & Future Work 66

References 67

A System Design: Top 13 FCN Architectures 71

iv



B Python Code 78

B.1 audio preprocessing.py . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.2 cnn model.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3 main.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

v



List of Figures

2.1 Spectrogram of the spoken words “nineteenth century” [19] . . . . 8

2.2 A diagram of a general LTI system [22] . . . . . . . . . . . . . . . . 13

2.3 A diagram depicting the PESQ model [25] . . . . . . . . . . . . . . 18

2.4 A diagram depicting the STOI model [26] . . . . . . . . . . . . . . 19

2.5 An example WER alignment and calculation [27] . . . . . . . . . . 20

2.6 An example of underfitting/overfitting [28] . . . . . . . . . . . . . . 27

2.7 Varying � and its e↵ect on the model that is fit [28] . . . . . . . . 28

2.8 Graph of the rectified linear unit (ReLU) [28] . . . . . . . . . . . . 38

2.9 An example of a convolutional layer [28] . . . . . . . . . . . . . . . 40

2.10 Plot of learning curves showing early stopping [28] . . . . . . . . . . 45

3.1 Relationship between network depth and validation loss . . . . . . . 54

3.2 Clean (LEFT), noisy (CENTER), and filtered (RIGHT) spectro-

grams of 10 seconds of the new speaker’s speech at 0 dB. . . . . . . 65

vi



List of Tables

3.1 Data collection & splitting . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Relationship between number of filters and validation loss . . . . . . 53

3.3 PESQ & WER for top 13 FCN architectures based on validation loss 56

3.4 Performance of Models #53 and #71 across 0 dB and -5 dB . . . . 57

3.5 A layer-by-layer description of Model #53’s FCN architecture . . . 58

3.6 PESQ of speech enhancement system tested on the same speaker

across multiple SNRs . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 WER of speech enhancement system tested on the same speaker

across multiple SNRs . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 PESQ of speech enhancement system trained on one speaker and

tested on a new speaker across multiple SNRs . . . . . . . . . . . . 62

3.9 WER of speech enhancement system trained on one speaker and

tested on a new speaker across multiple SNRs . . . . . . . . . . . . 62

3.10 PESQ of speech enhancement system trained on one speaker, fine-

tuned on a new speaker, and tested on that new speaker across

multiple SNRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



3.11 WER of speech enhancement system trained on one speaker, fine-

tuned on a new speaker, and tested on that new speaker across

multiple SNRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



Chapter 1

Introduction

One of the largest issues facing hearing impaired individuals in their day-to-day

lives is accurately recognizing speech in the presence of background noise [1].

While modern hearing aids do a good job of amplifying sound, they do not do

enough to increase speech quality and intelligibility. This is not a problem in quiet

environments, but a standard hearing aid that simply amplifies audio will fail to

provide the user with a signal they can easily understand when the user is in a

noisy environment [2]. The problem of speech intelligibility is even more di�cult

if the background noise is also speech, such as in a bar or restaurant with many

patrons.

While people without hearing impairments usually have no trouble focusing

on a single speaker out of multiple, it is a much more di�cult task for people

with a hearing impairment [3]. The problem of picking out one person’s speech

in an environment with many speakers was dubbed the cocktail party problem in

a paper by Colin Cherry, published in 1953 [4]. The paper asserts that humans

are normally capable of separating multiple speakers and focusing on a single
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one. However, hearing impaired individuals may have issues when it comes to

performing this same task. A solution to the cocktail party problem would be an

algorithm that a computer can employ in real-time to enhance the speech corrupted

by babble (background noise from other speakers). Traditionally, the cocktail party

problem has been approached using several di↵erent techniques, such as using

microphone arrays, monaural algorithms involving signal processing techniques,

and Computational Auditory Scene Analysis (CASA) [1].

Modern hearing aids incorporate the microphone array strategy. They use

beamforming to amplify sound coming from a specific direction (the simplest

algorithms assume directly in front of the user) and attenuate the sound coming

from elsewhere [5]. This technique comes with several drawbacks. In order for it to

work, the speech the user is trying to focus on must come from a di↵erent direction

than the noise. Di�culty will also arise when the source of the speech changes

location.

Monaural algorithms use a single microphone and so are not dependent on

the location of the speech source and the noise. These algorithms attempt to

estimate the clean speech signal after a statistical analysis of the speech and noise.

Traditional monaural algorithms include spectral subtraction and Wiener filtering

[8] - [9] . Spectral subtraction removes the estimated power spectral density of the

noise signal from the power spectral density of the noisy speech. Wiener filtering

estimates the clean speech signal by employing an optimal LTI filter in the mean-

squared error sense based on stochastic process assumptions on the noisy input

signal. If the background noise is also speech, as in the cocktail party problem,

these types of filtering techniques have di�culty extracting the target speech. This
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di�culty arises due to speech of di↵erent human speakers occupying overlapping

frequency ranges in the frequency domain. While traditional monaural strategies

have been shown to improve speech quality, they have struggled with improving

speech intelligibility for human listeners [6].

Computational Auditory Scene Analysis (CASA) has some promising results

using ideal binary time-frequency masks to hide regions of the speech mixture

where the SNR is below a certain threshold [7]. However, this method of separating

speech from noise requires prior knowledge of both, as the mask is created based

o↵ of the relative strengths of the speech signal and the noise. This strategy also

faces di�culty if the noise and target speech occupy similar frequency ranges as is

the case with babble noise.

More recent studies in speech enhancement related to the cocktail party prob-

lem fall in the domain of deep learning. With the advent of big data, more memory,

and increased processing power, deep learning has completely revolutionized many

domains such as speech recognition and object recognition. Deep neural networks

are able to learn complex, nonlinear representations of data that tend to far exceed

human crafted features. Deep learning approaches to the cocktail party problem

tend to take noisy spectrograms as input and transform them to clean spectrograms.

The use of deep convolutional neural networks and deep denoising autoencoders on

spectrograms have proven to be powerful techniques in practice [10]. One drawback

to the use of spectrograms as input is the computation of spectrograms tends to

be high since the short-time Fourier transform has to be applied to the raw audio

data. This prior computation before inputting into the network requires time and

hence increases the di�culty of use in real-time applications. In addition, phase
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information of the input speech tends to be lost in many of these approaches since

only the magnitude spectrum is used. This can cause degradation in quality at the

output of the system [11].

This master’s thesis is motivated by the deep learning community’s recently

focused e↵orts on end-to-end speech enhancement systems that take the raw time

domain audio signal as input instead of frequency domain features [12] - [14]. The

approach that will be described in this thesis involves the use of a fully convolutional

neural network (FCN) applied to raw audio data and is motivated by prior work

in the area [15]. The approach builds upon the work of [16] that shows pooling

layers may not be necessary for audio processing tasks. The proposed FCN based

algorithm in this paper is advantageous for many reasons when it comes to a solution

to the cocktail party problem. One reason is an FCN can be viewed as performing

filtering directly in the time-domain and the key idea is the FCN can learn optimal,

nonlinear filters for the given task at hand. In addition, an FCN by definition

has no fully connected layers and generally does a better job at maintaining local

temporal correlations in the audio signal from input to output [15]. Lastly, an FCN

will generally have far fewer parameters than other correspondingly similar deep

neural networks due to parameter sharing. This allows for less memory usage and

quicker computation which is ideal for real-time applications. Before reviewing the

results of this approach, the proceeding pages will review the necessary background

and present an overview of the system.
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Chapter 2

Background

2.1 Speech & Signal Processing Fundamentals

This section will go over some fundamental information related to speech and

signal processing. First, the basics of speech will be reviewed and a simple way

of modeling speech is presented. Next, a discussion of time-dependent Fourier

analysis will take place. Time-dependent Fourier analysis is used in many practical

speech enhancement applications. After this, a measurement of speech degradation

by background noise called signal-to-noise ratio (SNR) will be discussed. Finally,

this background section ends with an introduction to filtering signals and a robust

algorithm for perfectly reconstructing a time-domain signal after it has been

processed by a system.

2.1.1 Basics of Speech

Speech is produced by excitation of an acoustic tube called the vocal tract. There

are three basic classes of speech sounds:
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• Voiced sounds: periodic pulses of airflow excite the vocal tract

• Fricative sounds: produced by constricting the vocal tract somewhat and

forcing air through

• Plosive sounds: pressure is built up by completely closing o↵ the vocal tract

and is then released

Speech can be modeled as the response of an LTI system, namely the vocal tract

[17]. The vocal tract transmits excitations (vibrations) generated in the larynx to

the mouth. In normal speech, the vocal tract tends to change shape slowly with

time and imposes its characteristic frequencies, called formants, on the excitation

traveling through it. Through this view, the vocal tract is a slow, time-varying

filter and a speech signal can be expressed mathematically as

s(t) = e(t) ⇤ v(t) (2.1)

where s(t) is the speech signal, e(t) is the excitation signal, and v(t) is the impulse

response corresponding to the vocal tract.

In a statistical sense, speech is a non-stationary signal. This means that the

statistics of speech generally change over time. When speech is viewed on the

time-scale of 10 - 40 ms, the statistics can be assumed to be relatively constant

and Fourier analysis can be applied [18]. The frequency content of speech is

generally below 8 kHz and hence this implies that the sampling rate used in

speech applications does not need to be higher than 16 kHz. In fact, digital

telephone communication systems have used sampling rates of 8 kHz without loss

of intelligibility [18].
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2.1.2 Time-Dependent Fourier Analysis

Non-stationary signals, such as speech, have statistics (i.e. properties such as

amplitude, frequency) that change over time. A useful representation of these types

of signals is called the spectrogram [18]. A spectrogram provides a time-frequency

representation of a signal by using a mathematical tool called the short-time Fourier

transform:

X[n,!] =
1X

m=�1
x[n+m]w[m]e�j

2⇡!
N m (2.2)

where x[n] is a discrete signal with N points, w[m] is a windowing sequence generally

of shorter length than x[n], n is a discrete-valued variable representing time, and !

is a discrete variable representing frequency.

For discrete signals, the short-time Fourier transform (STFT) can be inter-

preted as a sliding (through time) discrete Fourier transform (DFT) applied to

windowed chunks of the signal. For each windowed chunk of the signal, the DFT

extracts frequency information. The use of a windowing sequence is used to break

the signal up into “pieces” and ensure smooth transitions in frequency information

through time. A popular windowing sequence used in practice is called the Hanning

window and it is defined as:

w[n] =

8
>><

>>:

0.5� 0.5 cos(2⇡n
M

), 0  n M

0, otherwise

(2.3)

A spectrogram plots the magnitude ofX[n,!] across time and across frequency

in a 2-D representation. The value of the magnitude response is represented by

various colors in this 2-D representation (white generally representing higher
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magnitudes, black representing lower magnitudes). For DFT application on real-

valued finite discrete signals, the discrete valued frequency variable, !, uniquely

and exhaustively describes all frequency content of the the input signal when

viewed on the domain of {0, 1, 2, ..., N2 }. The reason for this is found in the study

of discrete sampling theory, including the Nyquist-Shannon Sampling Theorem [18].

Conceptually, the idea is to treat finite real-valued signals as cyclical in time and

in order to represent the information present in the signal the sampling rate must

be at least twice the maximum frequency present in the signal. These facts allow a

spectrogram plot to have a finite frequency axis, as seen in the figure below.

Figure 2.1: Spectrogram of the spoken words “nineteenth century” [19]

2.1.3 Signal-to-Noise Ratio (SNR)

A common measure for quantifying the amount a signal has been degraded by the

presence of background noise is called the signal-to-noise ratio (SNR) [18].

SNR = 10 log10
�
x

2

�
e

2
(2.4)
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where �
x

2 represents the variance of the signal and �
e

2 represents the variance of

the background noise. The units of SNR are named decibels (dB). If a signal is in

the presence of background noise such that the SNR is equal to 0 dB, this implies

that the relative power of each is about equal. A positive SNR indicates the signal

power is stronger than the noise power, while a negative SNR indicates the noise

power is stronger than the signal power.

2.1.4 Filtering

The concept of filtering in signal processing refers to the removal of unwanted

frequency components from a signal. Commonly used filters in signal processing

are found inside the class of linear-time invariant (LTI) systems. These filters

are characterized entirely by their impulse response [18]. Specifically, the output

signal can be expressed as a convolution of the filter’s impulse response with the

input signal. Many types of LTI filters exist with two popular ones being the ideal

low-pass and ideal high-pass filters. The ideal low-pass filter is a system designed

for removing frequency components above a specified cuto↵ frequency, while the

ideal high-pass filter is a system designed for removing frequency components below

a specified cuto↵ frequency. In practicality, ideal filters are not realizable but many

approximations exist such as Butterworth filters and Chebyshev filters [18].

2.1.5 Overlap-Add Method of Reconstruction

In applications, such as speech enhancement and audio coding, where the input

signal’s time-dependent Fourier transform is modified, the overlap-add method of

reconstruction provides a robust algorithm for perfectly reconstructing the output
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time domain signal [18].

Suppose that R  L  N . The following decomposition can be expressed:

x
r

[m] = x[rR +m]w[m] =
1

N

N�1X

!=0

X
r

[k]ej
2⇡!
N m 0  m  L� 1 (2.5)

where x[n] is anN -point signal, w[n] is an L-point windowing sequence, R represents

the spacing between successive DFTs, and x
r

[n] represents the rth recovered

windowed slice of the signal x[n]. If the following condition is assumed about the

windowing sequence:
1X

r=�1
w[n� rR] = 1 (2.6)

Then x[n] can be perfectly reconstructed by shifting the recovered segments to

their original time locations and summing:

x[n] =
1X

r=�1
x
r

[n� rR] (2.7)

An example of a windowing sequence that satisfies the above criteria is the Hanning

window (discussed in Section 2.1.2) with length L = M + 1 and R = M/2.

2.2 Traditional Speech Enhancement Methods

To get a better sense of the history of speech enhancement, this section will review

a few traditional methods for removing background noise from a corrupted speech

signal. These methods include spectral subtraction, Wiener filtering, and Ideal

Binary Mask (IBM) estimation. In addition, a brief overview of popular evaluation

metrics for speech enhancement systems will be presented. The metrics to be

presented are named perceptual evaluation of speech quality (PESQ), short-time

10



objective intelligibility (STOI), and word error rate (WER).

2.2.1 Spectral Subtraction

One of the first techniques introduced in the field of speech enhancement is called

spectral subtraction [21]. The main idea of spectral subtraction is to obtain

an estimate of the magnitude spectrum of the background noise and subtract

this estimate from the magnitude spectrum of the combined target speech and

background noise. The final result of this computation is an estimate of the

target speech’s magnitude spectrum which can be used to invert back into the

time-domain.

Suppose a target speech signal x[k] and statistically independent additive

noise n[k]. Then speech corrupted by background noise, y[k], can be represented

as follows:

y[k] = x[k] + n[k] (2.8)

This implies the following in the short-time Fourier domain:

X[k,!] = Y [k,!]�N [k,!] (2.9)

where X[k,!] is the STFT of x[k], Y [k,!] is the STFT of y[k], and N [k,!] is the

STFT of n[k]. This can be equivalently expressed in polar form:

X[k,!] = |Y [k,!]|ej�y(k,!) � |N [k,!]|ej�n(k,!) (2.10)

where �
y

(k,!) is the phase of Y [k,!] and �
n

(k,!) is the phase of N [k,!]. In

practice, it can be shown that the noise-free phase can be estimated by the noisy

11



phase which implies:

�
y

(k,!) ⇡ �
n

(k,!) (2.11)

This assumption leads to the following:

X[k,!] = (|Y [k,!]|� |N [k,!]|)ej�y(k,!) (2.12)

Therefore, to obtain an estimate of the STFT of the target speech, X̂[k,!], an

estimate of the magnitude of the STFT of the noise, |N̂ [k,!]| is required:

X̂[k,!] = (|Y [k,!]|� |N̂ [k,!]|)ej�y(k,!) (2.13)

X̂[k,!] can finally be inverted back to the time domain with the help of the

overlap-add method of reconstruction to recover an estimate of the target speech,

x̂[k].

In practice, |N̂ [k,!]| can be obtained by sampling the noise during pauses

in the speech, computing the STFT of these samples, and then averaging the

magnitude spectrums across these sampled STFTs to obtain an estimate of |N [k,!]|.

The main drawback of the spectral subtraction algorithm is the limited ability to

obtain a precise estimate of |N [k,!]|. This is especially a problem for background

noise that is non-stationary, such as babble noise as illustrated in the cocktail party

problem. A poor estimate of |N [k,!]| will tend to cause errors in the subtraction

step which can result in remnant noise and speech distortion of the target speech

estimate, x̂[k].

12



2.2.2 Wiener Filter

In the study of LTI systems and filtering, a natural question arises pertaining to

finding the minimum-mean-square-error (MMSE) filter of a wide-sense stationary

(WSS) input process. This optimal MMSE filter is called the Wiener filter. The

derivation for characterizing the Wiener filter (in discrete time) will be given below

[22].

Suppose a WSS random process, x[n]. The goal is to determine the frequency

response characterizing an LTI system, h[n], that outputs a WSS process ŷ[n] that

is the minimum-mean-square-error (MMSE) estimate of some target process y[n]

that is jointly WSS with x[n].

Figure 2.2: A diagram representing an input process, x[n], passing through an LTI
system, h[n], that outputs an estimate ŷ[n] of the target process y[n] [22].

The error, e[n], between the filter’s output, ŷ[n], and the target process, y[n],

is defined as follows:

e[n] , ŷ[n]� y[n] (2.14)

An optimization problem can be written down that is solved by finding the LTI

filter’s impulse response, h[n], (the Wiener filter) that satisfies the following criteria:

minimize
h[.]

E{e2[n]} (2.15)

13



First, the error criterion is expanded using the fact that the output of an LTI filter

can be expressed as a convolution of its impulse response with the input signal:

✏ = E{(
1X

k=�1

h[k]x[n� k]� y[n])2} (2.16)

The goal is to choose the values of h[m] for all m that minimize this error criterion, ✏.

Multivariate optimization is applied to minimize ✏ by taking the partial derivative

of ✏ with respect to h[m] for each m and setting each of these expressions equal to

zero.
@✏

@h[m]
= E{2(

X

k

h[k]x[n� k]� y[n])x[n�m]} = 0 (2.17)

This implies the following:

R
ex

[m] = E{e[n]x[n�m]} = 0 for all m (2.18)

By Equation 2.18 and the definition of orthogonality, it can be concluded that

the error signal and the input signal are mutually orthogonal. This orthogonality

condition can be equivalently re-written as follows:

R
ex

[m] = E{e[n]x[n�m]} = E{(ŷ[n]� y[n])x[n�m]} = R
ŷx

[m]�R
yx

[m]

(2.19)

Combining the orthogonality condition stated in Equation 2.18 with Equation 2.19,

the following statement is true:

R
ŷx

[m] = R
yx

[m] for all m (2.20)

Equation 2.20 says that the optimal filter’s estimate of the target process has a

14



cross-correlation with the input process that is equal to the cross-correlation of the

target process’ cross-correlation with the input process. Since the estimate, ŷ[n] is

obtained by inputting the input process x[n] through an LTI filter, the following

convolution relationship applies:

R
ŷx

[m] = h[m] ⇤R
xx

[m] (2.21)

Combining Equation 2.20 and Equation 2.21 implies:

R
yx

[m] = h[m] ⇤R
xx

[m] (2.22)

Then taking the z-transform of both sides of Equation 2.22:

S
yx

(z) = H(z)S
xx

(z) (2.23)

where S
yx

(z) is the cross-spectral density of y[n] and x[n] and S
xx

(z) is the power-

spectral density of x[n]. Therefore, the optimal LTI filter in the MMSE sense (the

Wiener filter), is characterized by the following equation:

H(z) =
S
yx

(z)

S
xx

(z)
(2.24)

The Wiener filter tends to perform better than spectral subtraction in practice,

but it su↵ers from the fact that it is constrained to be a linear estimator. A

linear estimator may not have enough complexity to remove highly non-stationary

background noise.
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2.2.3 Ideal Binary Mask Estimation

Another common technique in the field of speech enhancement is based on the

concept of an Ideal Binary Mask (IBM) [21]. The idea of an IBM arises from

a model for human auditory perception called Auditory Scene Analysis (ASA).

ASA can be broken down into two stages. The first stage, called the segmentation

stage, involves the decomposition of an input signal into time-frequency units (T-F

units). An example of an input signal can be speech or any other type of sound

that enters the human auditory system. After the segmentation stage is the second

stage called the grouping stage. The grouping stage involves grouping T-F units

that are most likely to have been generated from the same source. This model,

proposed by Albert Stanley Bregman in 1990, is theorized to model how the human

auditory system separates sounds in an input signal mixture. ASA has inspired the

field of Computational Auditory Scene Analysis (CASA). CASA’s main focus is

to find computational means of separating an input signal mixture similar to how

a human does so [23]. In a typical CASA system, an input signal is first passed

through a gammatone filter bank to generate a T-F representation that mimics

the human auditory system. This T-F representation is called a cochleagram. The

next goal in a typical CASA system is to use the cochleagram to separate an input

signal mixture into groups. For speech enhancement, this process of separation

brings up the concept of an Ideal Binary Mask. Put simply, an Ideal Binary Mask

is a decision rule that determines whether a T-F unit in the T-F representation

is dominated by the noise source or by the target speech. The IBM, H[n,w], is
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defined as:

H[n,w] =

8
>><

>>:

1, if kX[n,w]k2

kN [n,w]k2 > ✓,

0, otherwise

(2.25)

where kX[n,w]k2 represents the energy in a speech T-F unit at position [n,w],

kN [n,w]k2 represents the energy in a noise T-F unit at position [n,w], and ✓ is a

threshold value. Conceptually, the IBM attempts to remove T-F units in which the

noise signal’s energy is higher than the speech signal’s energy according to some

threshold, ✓. In theory, an IBM will preserve the T-F units that correspond to

the target speech. Though in practice, one will not have direct access to both the

target speech and noise sources and therefore an IBM will need to be estimated.

Machine learning techniques, such as support vector machines and neural networks,

have been employed in the field of IBM estimation in order to classify when a T-F

unit has more target speech energy than background noise energy [24].

2.2.4 Performance Evaluation Measures (PESQ, STOI, WER)

Three popular measures for measuring performance of speech enhancement systems

are: perceptual evaluation of speech quality (PESQ), subjective short-time objective

intelligibility (STOI), and word error rate (WER).

PESQ was introduced as a reliable objective speech quality measurement for

communication networks [25]. The key motivation for PESQ was to create a metric

that was objective and correlated well with subjective human opinion of speech

quality. PESQ computes a number on the range -0.5 to 4.5 called mean opinion

score (MOS) that is a function of the target speech and filtered speech. The PESQ

model takes the target speech and filtered speech as input and first aligns both
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signals to a standard listening level. Next, the signals are filtered with an input

filter that mimics a standard telephone handset. These filtered outputs are then

aligned and processed through an auditory transformation (attempting to mimic

the human auditory system). Two distortion parameters are extracted from the

disturbance (the di↵erence between the transformed outputs) and mapped to an

MOS that gives a measure of speech quality.

Figure 2.3: A diagram depicting the PESQ model [25]

STOI was introduced as a reliable objective speech intelligibility measurement

for speech enhancement systems [26]. As with PESQ, STOI is a function of the

target speech and filtered speech that produces a scalar value that is expected to

correlate well with the average intelligibility (the percentage of correctly understood

words averaged across a group of users) of the target speech. As an overview, STOI

can be broken into three stages. The first stage involves a T-F decomposition

of both signals corresponding to the properties of the human auditory system.

Next, the T-F representations are segmented into short time intervals, normalized

appropriately, and a correlation coe�cient is computed between corresponding

T-F representation intervals of the target speech and filtered speech. Finally,
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these computed correlation coe�cients are averaged across all frequency bands and

frames.

Figure 2.4: A diagram depicting the STOI model [26]

WER is another performance evaluation measure for characterizing intelli-

gibility of speech directly [27]. It is primarily used in speech recognition to get a

measure of improvement. It can also be used in speech enhancement to determine if

a speech enhancement system improves speech intelligility relative to the degraded

speech’s intelligibility. In speech enhancement, a speech recognition system would

first be applied to the target speech to obtain a predicted text-based word sequence.

The target speech’s text-based word sequence, call it y[n], will be used as a reference

in the WER calculation. Next, the speech recognition system will be applied to

the degraded speech signal to obtain a predicted text-based word sequence, call

it y
noisy

[n]. Finally, the speech recognition system will be applied to the filtered

speech signal (the output of the speech enhancement system when the degraded

speech signal is used as input) to obtain a predicted text-based word sequence, call
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it ŷ[n]. A WER will be computed for the pair y[n] and y
noisy

[n], as well as for the

pair y[n] and ŷ[n]. Before actually computing each pair of text-based sequences’

WER, each pair of sequences will first be aligned with one another to minimize their

edit distance. This minimization of edit distance is usually achieved via Viterbi

algorithm. The WER for each pair is computed using the following definition:

WER =
S +D + I

H + S +D
(2.26)

where H represents the number of word hits, S represents the number of substi-

tutions, D represents the number of deletions, and I represents the number of

insertions. An example using this terminology is below:

Figure 2.5: An example of calculating the number of hits (H), substitutions (S),
deletions (D), and insertions (I) of two aligned text-based word sequences. The top
sequence can be interpreted as either y

noisy

[n] or ŷ[n], and the bottom sequence is
the reference sequence y[n] [27].
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2.3 Machine Learning

The focus of this master’s thesis relies on techniques in the domain of deep learning.

Deep learning is a subdomain of the larger domain of machine learning. Therefore,

this section will briefly review the fundamentals of machine learning.

2.3.1 Definition

Machine learning deals with algorithms that learn to perform a given task through

experience. A machine learning algorithm can be viewed as a computer program

that performs a task, but is not entirely specified by a computer programmer.

Instead, the computer program relies on access to relevant data to specify itself and

hence learn to perform the given task. Mitchell (1997) provides a simple, general

definition that does a good job of characterizing a machine learning algorithm [28]:

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.”

2.3.2 Example: Linear Regression

Due to the abstract nature of the definition presented in the previous section, a

concrete example will prove to be helpful in understanding the terminology and

goal of machine learning. One of the simplest examples of a machine learning

algorithm is known as linear regression [28]. Linear regression takes a vector x ✏ Rn

as input and attempts to predict a scalar output y ✏ R. The prediction, ŷ, is defined
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as follows:

ŷ = w>x (2.27)

where w ✏ Rn is a vector of parameters.

In machine learning, x is referred to as a feature vector and y as the corre-

sponding label. Each entry of x is a real number that is defined in a way that is

useful for predicting y. As an example, one can imagine x containing measurements

like age and weight of a person and from this wanting to predict the person’s height,

y. In linear regression, each entry of w acts as a coe�cient for the corresponding

entry of x. In other words, the task, T, is to predict y by learning a linear trans-

formation, parametrized by w, that is applied to x. This linear transformation is

learned through experience, E, from a training set, X(train) ✏ Rm⇥n, of m examples

with m labels specified as a vector y(train) ✏ Rm. Using mean squared error as the

performance measure, P, the following equation is sought to be minimized on the

training set:

MSE
train

=
1

m
kŷ(train) � y(train)k2

2
(2.28)

Using tools from multi-variable calculus, the gradient of Equation 2.28 is taken

with respect to w and set equal to zero in order to solve for the optimal parameter

vector w that minimizes the equation.

O
w

MSE
train

= 0

O
w

1

m
kŷ(train) � y(train)k2

2
= 0

1

m
O

w

kX(train)w� y(train)k2
2
= 0

(2.29)
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Applying matrix algebra will yield the following solution to Equation 2.29:

w = (X(train)>X(train))�1X(train)y(train) (2.30)

Linear regression is sometimes referred to as one-step learning due to the closed-

form expression found in Equation 2.30. Many other types of machine learning

algorithms do not have a closed-form expression and clever methods of optimization

are needed. It is worth noting that linear regression is most often used with an

intercept (bias) parameter, b, in order to learn an a�ne transformation rather than

a more limited linear transformation as seen in Equation 2.27.

ŷ = w>x+ b (2.31)

where w ✏ Rn is a vector of parameters and b ✏ R is a parameter. Equation 2.31

can be written to satisfy the functional form of Equation 2.27 by appending an

entry of 1 to every feature vector x and the derivation for w follows with the

bias b being implicitly included as an entry of w. To conclude, linear regression

is a simple, e�cient algorithm for practical learning problems. It also acts as an

e↵ective introduction to the space of machine learning algorithms.

2.3.3 Unsupervised v.s. Supervised Learning

Machine learning can be broadly categorized into two classes: unsupervised learning

and supervised learning [28]. The distinction between unsupervised learning and

supervised learning is the type of experience the learning algorithm is allowed to

have. In general, machine learning algorithms learn via a dataset of examples
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pertaining to a task that is to be learned. For example, one of the oldest datasets

studied is called the Iris dataset. An example (data point) in the Iris dataset

corresponds to measurements taken of a specific Iris plant. The dataset consists of

three species of Iris plants and a common task pertaining to the Iris dataset is to

classify a given example as one of the three species. The Iris dataset contains an

entry for each example specifying which species of Iris plant the example belongs to.

If a machine learning algorithm uses this information to accomplish the classification

task, this is called supervised learning. The idea is the machine learning algorithm

has explicit knowledge that a relationship exists between the measurements of the

Iris plants and the species of the Iris plants. The algorithm is in essence being

“supervised” during the learning process. If instead only the measurements of

each plant are given but not the information specifying each example’s species,

this task is now referred to as unsupervised learning. The goal is to now cluster

the examples together based on their measurements in hopes that this will reveal

structure pertaining to the task of species classification.

Unsupervised and supervised learning can be spoken of informally using the

language of probability. In unsupervised learning, an attempt is made to learn

about the probability distribution p(x) where x is a random vector corresponding

to the features of an example (e.g. measurements of the Iris plant). In supervised

learning, an attempt is made to learn about the probability distribution p(y|x)

where y is a random scalar (or vector in more general scenarios) corresponding to

the labels of the examples (e.g. type of species) and x is again a random vector

corresponding to the features of an example (e.g measurements of the Iris plant). In

both of these scenarios, learning about the corresponding probability distributions

24



will help in accomplishing related tasks (e.g. determining an Iris plant’s species).

2.3.4 Overfitting v.s. Underfitting

A central challenge in machine learning relates to generalization. In the least, it

is important to learn how to accomplish a task on the training set in possession.

More importantly though, the goal is to learn how to accomplish the task in general

(i.e. for data points outside of the training set). The concepts of overfitting and

underfitting relate to this idea of generalization [28]. A machine learning algorithm

is said to underfit a given problem when its model complexity is not high enough

to estimate the underlying process representing the task. When a machine learning

algorithm underfits, it is unable to perform well on the training set and hence will

have poor performance generalizing to new data. A machine learning algorithm is

said to overfit when its model complexity is too high and hence the algorithm is

able to memorize the training set. This training set memorization enables error

within the training set to be very low but the algorithm will tend to do perform

poorly on new data points. Overfitting does not learn the true underlying process

representing the task, but only how to perform the task on a finite number of

data points. Many methodologies for quantifying model complexity exist with

the most popular being the Vapnik-Chervonenkis dimension [29]. The underlying

thought in machine learning is to pick a model complexity that is appropriate for

the given task. The belief is there is an optimal point in terms of model complexity

for achieving optimal generalization. The example to follow provides an intuitive

notion of these ideas.

Suppose a training set of 8 data points in the Cartesian plane, each represented
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as a coordinate pair (x, y). It is believed there exists a relationship between x and

y and the following three linear regression based models are chosen to try and

model the relationship:

ŷ = b+ wx

ŷ = b+ w1x+ w2x
2

ŷ = b+
9X

i=1

w
i

xi

(2.32)

The first model represents a hypothesis space (model space) of the family of polyno-

mials with degree 1. The second model represents a hypothesis space of the family

of polynomials with degree 2. Finally, the third model represents a hypothesis space

of the family of polynomials with degree 9. These models clearly are increasing

in complexity. Suppose it is known that the true relationship between x and y

is quadratic (of course in practice one would not have access to this knowledge).

Using the solution derived in Section 2.3.2 to solve for the best parameters for each

of the models, one can imagine that the first model will underfit the problem since

it does not have enough model complexity to describe the true underlying process.

The second model is specified with optimal model complexity and this model will

provide optimal generalization error. The third model is too complex and instead

will overfit to the data points and thus lead to poor generalization performance.

The following figure visually describes this phenomena.
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Figure 2.6: (LEFT) Represents the first model’s fit, (CENTER) represents the
second model’s fit, and (RIGHT) represents the third model’s fit. [28]

2.3.5 Regularization

The concept of regularization focuses on the issue observed in the previous section

involving model complexity and generalization error. Regularization is any modifi-

cation made to a learning algorithm that is intended to reduce its generalization

error but not its training error [28]. The fundamental idea behind regularization is

based on the assumption that the model should be as simple as possible without

losing predictive power. One of the most popular approaches to regularization

is called weight decay. Weight decay directly modifies the cost function of the

learning algorithm by adding a penalty that penalizes large parameter values:

J(w) = MSE
train

+ �w>x (2.33)

where � is a nonnegative real number that specifies how much regularization

to impose and w represents the parameters of the model. When the learning

algorithm minimizes J(w) (such as in linear regression), it makes a tradeo↵ between
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minimizing the training set error and the size of the parameter values. Smaller

parameter values tend to imply a smoother model and decrease the likelihood

of overfitting. Suppose the model complexity example discussed in Section 2.3.4

and focus on the third model (family of polynomials of degree 9). Suppose that

weight decay is added to the cost function for linear regression and then the best

parameters are solved for using a modified form of the closed-form solution discussed

in Section 2.3.2. The following figure visually depicts the various models that are

fit depending on how much regularization is imposed.

Figure 2.7: Varying � and its e↵ect on the model that is fit [28]

As � increases, the linear regression algorithm seeks out a smoother solution

that does a good job decreasing training error. This example motivates how

regularization can be used as an e↵ective means of limiting model complexity in a

systematic manner.
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2.3.6 Cross-Validation

Choosing the optimal � for weight decay requires a systematic procedure. The goal

is to choose the � that results in the lowest generalization error. In practice, it

is usually impossible to compute the theoretical generalization error but instead

a validation set is used as a proxy for measuring generalization error. Common

practice in machine learning is to split the initial training set into a new training

set (using 80% of the initial training set) and a validation set (using the remaining

20% of the initial training set). The machine learning algorithm trains on this

new training set and the fitted model is tested on the validation set to compute

an estimate of the generalization error. Since this estimate is a function of the

validation set chosen, the procedure of cross-validation allows for a more stable

estimate of the generalization error. The most common form of cross-validation is

called k-fold-cross-validation [28]. The idea is to perform the fitting and testing

procedure k-times and take the average of the k generalization error estimates

obtained. For example, given an initial training set one would randomly partition it

into k mutually exclusive and exhaustive subsets. Next, one subset is chosen as the

validation set and the other k�1 subsets are used as the training set. Once a model

is trained on the training set, it is used to compute the error on the validation

set. This procedure is repeated for each of the k subsets and the average of the

errors computed on each respective validation set is taken as the generalization

error estimate.
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2.3.7 Principle of Maximum Likelihood

The principle of maximum likelihood gives a principled manner for selecting a

model from a given model space [28]. The essential idea is to seek out the model

that results in the training set having maximal likelihood of occurring. This is the

most common principle used in machine learning to select a model.

Suppose a training set of m examples: X = {x(1), ...,x(m)} drawn indepen-

dently from some true but unknown data-generating distribution p
data

(x) where

a given x(i) is represented as a vector of real numbers of some fixed length. Let

p
model

(x;✓) be a family of probability distributions parametrized by ✓. For a

fixed ✓, p
model

(x;✓) estimates p
data

(x). The maximum likelihood estimator for ✓ is

defined as:

✓

ML

= argmax ✓ p
model

(X;✓)

= argmax ✓

mY

i=1

p
model

(x(i);✓)
(2.34)

Equation 2.34 specifies a criterion for selecting the parameter vector ✓ that

maximizes the likelihood of the training set. Due to Equation 2.34 being prone to nu-

merical underflow (i.e. small probabilities being multiplied), it can be reformulated

as follows:

✓

ML

= argmax ✓

mX

i=1

log(p
model

(x(i);✓)) (2.35)

Equation 2.35 can be rescaled such that each term is weighted by the frequency

it occurs in the training set (this does not a↵ect the arg max). This is done such

that the maximization process can be viewed as minimizing the dissimilarity, as

measured by KL divergence, between the empirical distribution p̂
data

(x) defined by
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the training set and the model distribution p
model

(x;✓).

✓

ML

= argmax ✓ E
x⇠p̂data

log(p
model

(x(i);✓)) (2.36)

In other words, Equation 2.36 is saying that the principle of maximum likelihood is

equivalent to minimizing the cross-entropy between the empirical distribution and

the model’s distribution. For example, using mean squared error as the cost function

for linear regression, as discussed in Section 2.3.2, is equivalent to minimizing the

cross-entropy between the empirical distribution and a homoscedastic, Gaussian

probability model. The principle of maximum likelihood therefore provides a

justification for using mean squared error as the cost function in linear regression

and many other machine learning algorithms.

2.3.8 Bias-Variance Tradeo↵

As discussed in Section 2.3.4, the tradeo↵ between overfitting and underfitting deals

with the issue of model complexity. One should choose a model that is complex

enough to describe the underlying task and generalize well to new data. If the model

complexity is too low for the corresponding task to be learned, performance on the

training set will be sub-optimal and hence generalizing will be out of the question.

If the model complexity is too high, this increases the likelihood of overfitting to

the training set, in essence memorizing the training set and hence leading to poor

generalization. This tradeo↵ described can be analyzed through another theoretical

abstraction called the bias-variance tradeo↵ [29]. The idea is to decompose the

theoretical generalization error into two components: bias and variance. First,

suppose the goal is to learn an estimate, g(D), of some function, f , describing an
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underlying task corresponding to a dataset, D, of N examples. Each example is

assumed to be independently drawn from some joint probability distribution p(x, y)

where x ✏ Rn and y ✏ R. The function, f , describes the true relationship between

the input vector x and output label y. The expected out-of-sample mean squared

error, E
out

, dependent on the estimate, g(D), is defined as follows:

E
out

(g(D)) = E
x

[(g(D)(x)� f(x))
2
] (2.37)

where the expectation operator E
x

is taken over the underlying probability distri-

bution on x, p(x). In order to define the full expected out-of-sample mean squared

error that takes into account all possible realizations of the dataset D, integration is

to be performed over the probability distribution p(x, y) that generates the realized

dataset D. This is taken into account by applying the expectation operator E
D

over p(x, y) on Equation 2.37.

E
D

[E
out

(g(D))] = E
D

[E
x

[(g(D)(x)� f(x))
2
]]

= E
x

[E
D

[(g(D)(x)� f(x))
2
]]

(2.38)

The expectation operators E
D

and E
x

in Equation 2.38 can be swapped due to

the rules of multi-variable integration. Next, attention is focused on the expression

inside E
x

on the right-side of Equation 2.38. The goal is to decompose this

expression into competing terms that provide an understanding of the tradeo↵ in

generalization error encountered with increased model complexity. To enable this

type of decomposition, first a function called the average hypothesis, ḡ, is defined:

ḡ(x) = E
D

[g(D)(x)] (2.39)
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ḡ can be interpreted as the average learned function obtained by taking a weighted

average point-wise of learned functions g(D) across all possible datasets, D. Using

this definition of an average hypothesis and some algebraic manipulations (removed

for brevity but can be accessed via the reference [29]), the following decomposition

is obtained:

E
D

[(g(D)(x)� f(x))
2
] = E

D

[(g(D)(x)� ḡ(x))
2
] + (ḡ(x)� f(x))2 (2.40)

Motivated by the additive decomposition above, the following terms are defined:

var(x) = E
D

[(g(D)(x)� ḡ(x))
2
]

bias(x) = (ḡ(x)� f(x))2
(2.41)

With the terms defined in Equation 2.41, Equation 2.40 can be re-written as follows:

E
D

[(g(D)(x)� f(x))
2
] = var(x) + bias(x) (2.42)

Using the decomposition provided by Equation 2.42 and returning to the equation

for generalization error provided by Equation 2.38, the final decomposition of

interest is obtained:

E
D

[E
out

(g(D))] = E
x

[E
D

[(g(D)(x)� f(x))
2
]]

= E
x

[var(x) + bias(x)]

= var + bias

(2.43)

The term var in Equation 2.43 gives a measure of the average squared “distance”

of the learned function estimated by a fixed, realized dataset, D, from a best
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hypothetical average function, ḡ, that is obtained using all realizations of D. The

term bias in Equation 2.43 gives a measure of the average squared “distance”

the best hypothetical average function ḡ is from the true underlying function,

f . Conceptually, if model complexity is very high this will tend to imply lower

generalization error due to bias since ḡ will tend to have the ability to approximate

f . In turn, this will tend to lead to the tradeo↵ of having higher generalization

error due to var since the learned estimate g(D) will tend to be very sensitive to

the realized dataset, D. Likewise if model complexity is very low, this will tend to

imply higher generalization error due to bias since the best hypothetical average

function ḡ will have a di�cult time approximating the underlying function, f . In

turn, this will tend to lead to the tradeo↵ of having lower generalization error due

to var since the learned estimate g(D) will be less sensitive to the realized dataset,

D. The bias-variance tradeo↵ gives a theoretical tool for formalizing the need for

choosing model complexity appropriately when applying machine learning.

2.3.9 Bayesian Inference

Many machine learning algorithms rely on a frequentist’s perspective on statistics.

This type of approach involves finding one optimal set of parameters (based on some

specified criterion such as minimizing mean squared error) in a specified model’s

parameter space. The principle of maximum likelihood, discussed in Section 2.3.7,

is a form of this type of approach. A frequentist approach tends to make the

assumption that there exists one true set of parameters, call it ✓, underlying the

task to be learned. The learned estimate, ✓̂, is a random variable that is a function

of the realized dataset, D. The fundamental idea in Bayesian inference is to view
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all sets of the parameters in a specified model’s parameter space as possible and

use the dataset, D, to narrow in on the most likely ones [28]. This is usually done

by first specifying a prior probability distribution, p(✓), on the parameters of the

specified model space. This prior probability distribution is then updated to a new

probability distribution, called the posterior distribution p(✓|D). This posterior

distribution represents a learned collection of models for future predictions (each

weighted in importance based on p(✓|D) rather than just one model as in the

frequentist approach. A Bayesian approach to statistics develops a full probabilistic

framework (using Bayes’ law) for machine learning. Bayesian inference can be

formalized with the following two equations. The first equation formalizes how to

use Bayes’ law of probability to update the prior distribution p(✓) given a dataset,

D = {x(1), ...,x(m)}.

p(✓|x(1), ...,x(m)) =
p(x(1), ...,x(m))|✓)p(✓)

p(x(1), ...,x(m))
(2.44)

The second equation formalizes how to compute the predictive distribution for a

future data point, x(m+1).

p(x(m+1)|x(1), ...,x(m)) =

Z
p(x(m+1)|✓)p(✓|x(1), ...,x(m))d✓ (2.45)

In practice, the given framework above tends to be computationally expensive. The

idea of regularization, discussed in Section 2.3.5, can be viewed as a computationally

feasible way of blending a Bayesian approach with a frequentist approach to machine

learning.
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2.4 Deep Learning

The approach to be discussed in this master’s thesis employs a technique from the

domain of deep learning. This technique is called convolutional neural networks.

Therefore, this section will briefly review the fundamentals of deep learning.

2.4.1 Motivation

Deep learning was motivated by traditional machine learning algorithms failing

to generalize well on artificial intelligence tasks, such as speech recognition and

object recognition [28]. With the advent of increasingly larger datasets and higher

computational power, deep learning has recently gained much traction for solving

problems in the world of machine learning. Fundamentally, deep learning relies on

the use of complex models, called neural networks, that assume many tasks in the

natural world are generated by a composition of factors. The layers of a neural

network represent a composition of functions that aim to learn the given composition

of factors that generated the specific task. This composition of functions can be

highly nonlinear and allows for approximating highly complex underlying functions.

In practice, these models tend to generalize well to new data points given enough

training data.

2.4.2 Deep Feedforward Networks

Deep feedforward networks are the most fundamental class of models in deep

learning [28]. In general, the goal of neural networks is to approximate some

function, f , that underlies a specific task (e.g. object recognition). A feedforward
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network can be defined as a mapping ŷ = f̂(x;✓) where x represents an input vector,

ŷ represents a scalar (or output vector in more general scenarios) estimating some

true label y, and ✓ represents the parametrization of f̂ that is an approximation

of f . This class of models is called feedforward because information propagates

from the input of the network, through intermediate computations that define

f̂ , and finally to the estimate ŷ. The use of the term networks corresponds to a

model typically being represented as a composition or connection of many di↵erent

functions. For example, suppose the following three functions: f̂ (1), f̂ (2), and f̂ (3).

These functions can be composed in such a manner such that the deep feedforward

network represents the function f̂(x) = f̂ (3)(f̂ (2)(f̂ (1)(x))). This network is referred

to as having three layers and the term “deep” comes from this notion of depth

that refers to the number of layers. As more interestingly behaved functions are

chained together, the network is able to learn complex functions for approximating

di�cult tasks. Once a compositionally defined function f̂ is defined parametrically,

an optimal set of parameters can be found by using gradient-based optimization

on a specified loss function (i..e. using the principle of maximum likelihood). The

goal during training is to drive the function output of the network f̂(x) closer to

f(x) for each x in the training set. The output layer of the network is being forced

to produce a result close to the label y = f(x), but the intermediary computations

done in previous layers are learned by the network. The intermediary computations

are done between the input layer and output layer and are usually called the hidden

layers. A fundamental question in deep learning relates to determining which

parametrized families of functions are most useful for learning to accomplish real

world tasks. One of the most commonly used parametric families, inspired by
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biological neurons, is the application of an a�ne transformation applied to the

input vector followed by an element-wise nonlinearity, such as the sigmoid function.

This type of layer is called a fully-connected layer. Let � be a function from this

parametric family and suppose an input vector x ✏ Rn. This function is formally

defined as follows:

�(x) = �(W> x+ b) (2.46)

where W ✏ Rn⇥m, b ✏ Rn, and �(z) = 1
1+e

�z is applied element-wise. The nonlin-

earity � in Equation 2.47 is referred to as an activation function in deep learning

because it “activates” dependent on the value of the a�ne transformed input signal.

The a�ne transformed input signal can be viewed as weighing the di↵erent vector

entries of the input signal dependent on the task at hand. Another activation

function widely used in deep learning is called the rectified linear unit (ReLU).

Figure 2.8: Graph of the rectified linear unit (ReLU) [28]
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The class of deep feedforward networks provides a solid framework for learning

arbitrarily complex models in a systematic fashion. A theoretical result known

as the universal approximation theorem supports the use of these models [28].

Informally, it states that a single hidden layer feedforward network of su�cient

functional complexity can approximate any continuous function on Rn.

2.4.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialized kind of neural network

for processing input data that has an inherent grid-like topology [28]. Generally,

the input data to a CNN will have natural structure to it such that nearby entries

are correlated. Examples of this type of data are 1-D audio time series data and

2-D images. The more formal definition of a CNN is a neural network that uses

convolution in place of general matrix multiplication in at least one of its layers.

Convolution of two discrete vectors, x[n] and w[n], is defined as follows:

y[n] = (x ⇤ w)[n] =
1X

k=�1

x[k]w[n� k] (2.47)

Convolution can be interpreted as fixing one vector in place, striding the other

vector along it, and for each stride a dot product is computed. Each dot product

produces one number that is an entry in the output vector. In the case of CNNs, a

convolutional layer is generally composed of three stages. The first stage involves

parametrized, learnable filters each performing a convolution in parallel. This

convolution operation can be modified from the definition in Equation 2.47 in

di↵erent ways, such as how much to stride before computing another dot product.

The second stage involves an element-wise non-linearity similar to a fully-connected

39



layer. Finally, the third stage is called pooling. Pooling is a method of downsampling

the output vector of the second stage. One way to do this is called max-pooling in

which the maximal element in a defined section of the output is taken to represent

the entire section. To summarize, a convolutional layer tries to find local patterns

in the input. Each filter in the first stage is learned during training in such a way

that is task specific. In other words, the CNN attempts to find the most relevant

patterns that help determine how to accomplish the given task. An equivalent

way of thinking about CNNs is by imagining a convolutional layer as being a fully

connected layer with an infinitely strong prior that says weights are shared across

input data entries and a majority of them are zero [28]. In addition, it is important

to note that the ideas discussed here generalize to N-dimensional, finite tensors.

Figure 2.9: An example of a convolutional layer with a filter of kernel size 3
applied to an input vector x. First, convolution is performed and a nonlinearity is
applied element-wise to produce the vector z. Then z is downsampled via a pooling
operation to produce the final output vector s [28].

In practice, CNNs have been a powerful neural network architecture for object
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recognition and other related tasks. This can be attributed to CNNs having a

neuroscientific basis in how the mammalian visual system works.

2.4.4 Gradient-based Optimization

A neural network is a function, f̂(x;✓), from some specified parametric family

defined by ✓ that approximates some true underlying function, f . This approxima-

tion, f̂(x;✓), is found by minimizing some defined cost function J(✓). The cost

function is typically written as an average over the training set as follows:

J(✓) =
1

N

NX

n=1

L(f̂(x(i);✓), y(i)) (2.48)

where N is the number of training examples, L is the per example loss function,

f̂(x(i);✓) is the output of the neural network with x(i) as input and parameters ✓,

and y(i) is the corresponding label. Due to J(✓) generally being highly non-convex

in the context of deep learning, a technique called gradient-based optimization

is applied in order to minimize it [28]. Conceptually, results from multi-variable

calculus show that the gradient of a function points in the direction of local maximal

increase. It can be shown that the direction opposite this will point toward local

maximal decrease. Therefore, by “following” the gradient by taking small steps in

its opposite direction inside the input parameter space, J(✓) is slowly minimized

until a good set of parameters are found to use to approximate the underlying

function f . Formally, the parameter vector ✓ is updated to a new parameter vector

✓

0 in an iterative, step-wise fashion:

✓

0 = ✓ � ✏r✓J(✓) (2.49)
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where ✏ is a positive real number referred to as the learning rate (typically between

0.001 - 0.1). In practice, as the number of examples N gets large, Equation 2.49

becomes computationally infeasible due to Equation 2.48. Therefore, a variant to

gradient descent called stochastic gradient descent (SGD) is introduced. The key

idea to SGD is for every iteration m examples are sampled from the N examples in

the training set such that m << N . The idea here is to obtain an unbiased estimate

of the gradient by taking the average gradient on a minibatch of m examples drawn

i.i.d from the data-generating distribution. By doing this, an estimate of the true

gradient is obtained at a tremendously reduced computational cost compared to

using all N examples from a possibly very large training set. In practice, SGD or

some variant of SGD is generally always used without loss of optimization accuracy

and improved optimization e�ciency [30]. Here’s the formal algorithm description

for SGD [28]:

Algorithm 1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ✏
k

Require: Initial parameter ✓
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), ....,x(m)}
with corresponding labels y(i).
Compute gradient estimate: ĝ  1

m

r✓

P
m

n=1 L(f̂(x
(i);✓), y(i))

Apply update: ✓  ✓ � ✏
k

ĝ

end while

SGD is a useful gradient-based optimization algorithm. Many variants of

SGD have been introduced, such as the Adam algorithm, that attempt to increase

optimization performance [31]. The Adam algorithm uses information from the first

and second moment of the gradient while also incorporating historical values of the
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gradient moments in order to achieve a momentum aspect. The momentum aspect

is achieved by weighing current gradient moment estimates with an exponentially

decaying history of the gradient moment estimates. The use of momentum aids

in creating a smoother traversal in the input parameter space of a possibly very

complex multivariate function. Adam can be viewed as an adaptive learning

algorithm that adapts its learning rate for each parameter in accordance with the

functional landscape that is encountered during optimization. Below is a formal

algorithm description for the Adam algorithm [28].

Algorithm 2 The Adam algorithm

Require: Step size ✏ (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, ⇢1 and ⇢2 in [0, 1).
(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant � used for numerical stabilization (Suggested default:
10�8)

Require: Initial parameters ✓
Initialize 1st and 2nd moment variables s = 0, r = 0.
Initialize time step t = 0.
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), ....,x(m)} with
corresponding labels y(i).
Compute gradient estimate: ĝ  1

m

r✓

P
m

n=1 L(f̂(x
(i);✓), y(i))

t t+ 1
Update biased first moment estimate: s  ⇢1s+ (1� ⇢1) ĝ
Update biased second moment estimate: r  ⇢2r + (1� ⇢2) ĝ � ĝ

Correct bias in first moment: ŝ s
1�⇢1

t

Correct bias in second moment: r̂  r
1�⇢2

t

Compute update: �✓ = �✏ ŝp
r̂+�

Apply update: ✓  ✓ +�✓

end while
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2.4.5 Regularization & Early Stopping

As in machine learning, regularization in deep learning deals with techniques that

seek to improve generalization error possibly at the cost of increased training

error. Some of the most popular regularization techniques deal with the concept of

parameter norm penalties. These penalties are added to a specified cost function

that is to be optimized, generally via some gradient descent based algorithm. The

central idea here is to limit the e↵ective capacity of a parametric model based on

the prior belief that the parameter values should not be very large. Suppose a

cost function J(✓;X,y) where ✓ parametrizes a neural network, X corresponds

to a training set of feature vectors, and y corresponds to the associated labels. A

parameter norm penalty ⌦(✓) is added to the objective function, J , to get a new

regularized objective function called J̃ :

J̃(✓;X,y) = J(✓;X,y) + ⌦(✓) (2.50)

The most common parameter norm penalty is the L2-norm. Another option

is the L1-norm, which also acts as a feature selection method since it strongly

biases parameter values toward zero if they do not contribute enough meaningful

information to the given task.

Another more general form of regularization is the technique of early stopping.

Deep learning relies on gradient descent on a defined cost function over a training

set. In general, the cost on the training set is to be minimized with the hope that

this leads to a solution that generalizes well to the given task. This methodology is

prone to overfitting since deep learning models tend to have a high e↵ective capacity
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in terms of parameter space. Early stopping seeks to improve this methodology

by computing the cost on a separate validation set every fixed number of training

iterations. If the cost on the validation set is seemingly not decreasing, this implies

that the generalization error is most likely not improving and that training should

be halted. The model parameters from the best iteration with respect to validation

set cost are saved.

Figure 2.10: Learning curves showing how the loss (cost) on the training set and
validation set change over training epochs when training a neural network on the
famous MNIST dataset. Notice the training loss continues to decrease through 200
epochs, but the validation loss reaches a minimum value before 50 epochs [28].

Early stopping can be applied to any deep learning model and is extremely

powerful in practice. Another thing to note is the cost computed on the validation

set need not be the same cost function used for minimization on the training set.

The cost function needed to be di↵erentiable on the training set in order to use

gradient-based optimization, but the cost function on the validation set need not be

di↵erentiable. Instead, a cost function on the validation set that more closely gives a
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measure of task performance can be used, such as accuracy in binary classification.

2.4.6 Batch Normalization

An issue that arises when training deep neural networks is known as internal

covariate shift. The idea is that the distribution of each layer’s inputs changes

during training, as the parameters of the previous layers change. This tends to

slow down training, requires tuning learning rates appropriately, and being careful

with parameter initialization. In practice, this problem has been shown to make

training deep networks di�cult. A method for solving this issue is called batch

normalization [32]. Batch normalization relies on normalizing layer inputs for

each training mini-batch that is seen. By performing this normalization, tuning

learning rates becomes increasingly unnecessary as well as setting correct parameter

initializations. Formally, the batch normalization transform is described as follows

[32]:

Algorithm 3 Batch normalization transform, ŷ
i

, of an activation x
i

Require: m instances of a layer activation across a mini-batch, B = x1...m

Require: Parameters to be learned: �, �
Require: ✏ (a small positive constant for numerical stability)

µ
B

 1
m

P
m

i=1 xi

�2
B

 1
m

P
m

i=1(xi

� µ
B

)2

x̂
i

 x̂i�µBp
�

2
B+✏

ŷ
i

 �x̂
i

+ � ⌘ BN
�,�

(x
i

)

Once a network is trained, the batch normalization transform uses population

statistics of the training set for computation during inference time. In practice,

the use of batch normalization has shown to decrease training times and regularize

models leading to improved generalization.
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Chapter 3

A Fully Convolutional Neural

Network Approach

Having covered the necessary background, this section will now describe this mas-

ter’s thesis’s novel approach to speech enhancement that uses a fully convolutional

neural network (FCN) architecture. The first part will discuss how the approach

was motivated. The next part will discuss how the system was designed. The final

two parts of this section deal with testing the speech enhancement system and

present results in terms of the performance measures PESQ and WER [33] - [36].

3.1 Motivation

Deep learning has been very successful in learning how to complete complex tasks,

such as speech recognition, object recognition, and speech enhancement. Many

of the deep learning approaches in speech enhancement require feature extraction

before inputting into a neural network, such as a denoising autoencoder or convolu-

tional neural network. The most popular methodology is to use spectrograms as
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input to the neural network [35]. The drawback here is the extra prior computation

of the STFT and loss of phase information at the output.

More recent deep learning approaches have considered an end-to-end approach

to speech enhancement that requires no feature extraction [12] - [14]. The idea is

to use the noisy time-domain audio signal as input to a neural network and obtain

a filtered time-domain audio signal at the output. This methodology rids the need

for a prior STFT computation and retains phase information at the output. This

recent push in the deep learning community towards end-to-end speech enhance-

ment systems is one of the motivations for this master’s thesis’s approach. The

other large motivation comes from two papers dealing with the study of CNNs on

raw audio data. In the first paper [15], the authors make a strong case for the lack

of need for fully connected layers in a neural network that processes raw audio

data at the input. Instead, they recommend the use of convolutional layers in

order to maintain local correlations in the signal as it passes through the network.

In addition, a fully convolutional network (i.e. a CNN with no fully connected

layers) will generally have much fewer parameters than a correspondingly similar

network that includes fully connected layers. This reduced model complexity is

especially important for real-time application of the speech enhancement algorithm.

In the second paper [16], the authors provide insight into the inner workings of

convolutional layers applied to raw audio data. They make a strong case for the

lack of need for pooling layers and emphasize the convolution theorem:

x ⇤ h = F�1{F{x} · F{h}} (3.1)
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where x can be viewed as the input audio signal, h is a learned filter, and F is the

Fourier transform operator. The convolution theorem allows an FCN to be viewed

as a large, nonlinear filter bank. By maintaining the size of the raw audio input

vector throughout intermediary computations, each filter’s output can be viewed

as providing a nonlinear filtered representation of the input vector. As the depth of

the FCN increases, a larger number of nonlinear filtered representations is achieved.

At the final filtering layer, these representations are combined in a matter that rids

the input signal of the background noise representations and only keeps the target

speech representations. With the motivation of the approach in mind, the next

section will provide specific details of the system design.

3.2 System Design

The first step in designing the speech enhancement system is gathering data for

training and validation purposes. An openly available audiobook (narrated by a

speaker named Pamela) found online serves as the target speech for designing the

system [37]. In addition, babble noise audio clips were found online to serve as

background noise when additively combined to Pamela’s speech [39] - [40]. All

of these audio clips were downsampled to 16 kHz and to have only one audio

channel (taking the element-wise average of the two channels if necessary). Table

3.1 concisely describes this data and how it is split for training and validation.
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Target Speech Babble Noise SNR Time (Min:Sec)

Training Set Chapter 1 Bar Noise 5 dB 35:37

Validation Set Chapter 2 Cafe Noise 5 dB 5:04

Table 3.1: Data collection and splitting for system design purposes. Target speech
refers to Pamela’s narration of Chapters 1 - 2 in [37]. Babble noise refers to
two di↵erent environments found online [39] - [40]. Each set of target speech is
additively combined with its corresponding set of babble noise at an SNR of 5 dB.

It is important to note that the system is being designed around a single

speaker (i.e. Pamela) and a single SNR of 5 dB. The reason for doing this is to first

find a few reasonable FCN architectures for the task of denoising Pamela’s speech

that has been corrupted by babble noise at an SNR of 5 dB. After choosing a

subset of FCN architectures, further exploration will be done for denoising Pamela’s

speech at SNRs of 0 dB and -5 dB in order to choose one FCN architecture for the

system. Once a single FCN architecture is selected and fixed, the next step will

involve exploring generalization to a new speaker and the system’s robustness to

di↵erent signal-to-noise ratios.

Having decided on training and validation data, designing the system relies

on three main things: (1) a methodology for pre-processing the raw audio data

for input into the FCN, (2) fixing an FCN architecture, (3) a methodology for

post-processing the raw audio data that is output by the FCN. To begin, let’s

discuss (1). First, target speech is additively combined with its corresponding

babble noise. Next, based on stationarity assumptions for speech, the noisy audio

data is split into 20 ms frames in which consecutive frames overlap by 50%. Each
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noisy frame is to be multiplied by a corresponding Hanning window of equal length.

To complete the pre-processing methodology, for each noisy frame the mean of the

entire training target speech is element-wise subtracted and standard deviation

of the entire training target speech is element-wise divided. Having fixed the

methodology for pre-processing, the methodology for post-processing, (3), can also

be fixed if it is assumed the FCN outputs a preprocessed filtered 20 ms frame of

the preprocessed noisy 20 ms input frame. Given an output frame from the FCN,

it is element-wise multiplied by the standard deviation of the entire training target

speech and the mean of the entire training target speech is added element-wise.

Next, the output from the FCN for the next frame (keeping in mind that these two

consecutive frames overlap by 50%) is obtained and the same thing is done. Finally,

the overlap-add method of reconstruction is applied to undo the Hanning window

that was applied to both overlapping frames. This results in having reconstructed

30 ms of filtered raw audio data that is ready for playback. This post-processing

methodology can be iteratively done for an arbitrary amount of noisy input audio

data. The most important part of the system design deals with (2), fixing an FCN

architecture.

Since a fully convolutional neural network contains only convolutional layers,

the only things to be determined are how deep the network needs to be and the

details of each layer (i.e. number of filters, kernel size, etc.). The output of the

network is to be a one dimensional vector of the same length as the 20 ms input

vector, so two things can be immediately concluded upon. The first conclusion

is to use “same” padding in all layers to ensure the temporal length of the input

vector remains the same throughout intermediary computations and therefore at
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the output. This allows the FCN to be viewed as a nonlinear, filter bank. The

second conclusion is the output layer will be a convolutional layer with one filter

and no activation function. This output layer is suitable for reconstructing audio

data from its nonlinear representations (i.e. the output layer is able to match the

range in which audio data exists) and allows for an output that is one-dimensional.

Next, the kernel size for all filters in the network will initially be fixed at 5 ms in

length, i.e. 25% of the input size. This can be tuned later on via the validation

set. In addition, a dilation factor will not be used in any convolutional layer in

order to better preserve local correlations. The structure of each hidden layer

will be the following: convolution operation, batch normalization, and ReLU (or

PReLU) activation. Batch normalization between the convolution operation and

activation function tends to improve training time and generalization performance

[32]. Also, the ReLU (or PReLU) activation tends to work well in general CNN

practice [28]. With all of this covered, the only thing left to determine is how

many hidden layers are necessary and how many filters per hidden layer. These

hyperparameters will be determined by training di↵erent FCN architectures and

comparing MSE performance on the validation set. All models to follow are trained

with Adam SGD. In addition, all training employs early stopping that terminates

after 20 epochs of no improvement and returns the parameters of the model with

best validation loss during training.

To begin, an architecture with one hidden layer is trained to find the number

of filters needed in a layer. The number of filters is slowly increased and with each

new number of filters a model is trained and validation loss computed. This process

provides an understanding of how much complexity, in terms of number of filters
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per layer, is needed for this task.

Number of Filters Training Loss (MSE) Validation Loss (MSE)

50 0.0401 0.0541

100 0.0384 0.0512

200 0.0398 0.0519

300 0.0383 0.0504

400 0.0372 0.0496

500 0.0377 0.0490

600 0.0381 0.0504

700 0.0384 0.0503

800 0.0375 0.0507

900 0.0391 0.0497

1000 0.0373 0.0498

Table 3.2: This table describes training loss & validation loss (MSE) of single
hidden layer FCN architectures as the number of filters increases.

Table 3.2 shows that increasing the number of filters marginally helps reduce

training loss and validation loss. With this result, a similar procedure will be

followed to gain an understanding of how the depth of the network improves

performance. The procedure involves first fixing the number of filters to be either

50, 100, or 200 filters per layer and then the depth of the network is increased.
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Figure 3.1: A plot that shows increasing network depth leads to large decreases
in validation loss. Each curve was generated by fixing the number of filters per
hidden layer (either 50, 100, or 200) and increasing the number of hidden layers in
the network.

From Figure 3.1, it can be concluded that increasing depth largely helps

decrease validation loss as compared to increasing the number of filters in a given

layer. With the knowledge that between 1 to 200 filters in a layer and a depth of 5

to 6 layers tends to provide good validation loss, di↵erent network architectures

are experimented with within this range. Architectures with di↵erent kernel sizes,

activation functions, number of filters and regularization were experimented with

with the goal of minimizing validation loss. Over 70 FCN architectures were trained

and validated in total. From the over 70 FCN architectures, the top 13 FCN

architectures that provide the lowest validation loss are taken to be studied further.
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These architectures are detailed in Appendix A. The PESQ and WER of the filtered

validation set is computed for each of the 13 architectures and compared to the

PESQ and WER of the noisy validation set (at an SNR of 5 dB). The goal is to

pick an architecture that provides a high PESQ (good speech quality), low WER

(good intelligibility), and has a small number of parameters (low model complexity).

The following table contains these results.
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Model # Number of Parameters PESQ WER

25 3,218,501 2.470 29.001%

26 12,837,001 2.445 28.591%

27 1,009,501 2.390 26.402%

30 1,209,751 2.441 31.464%

31 4,819,501 2.490 31.737%

33 2,142,896 2.421 28.728%

38 5,867,728 2.452 29.001%

41 4,682,896 2.422 28.454%

53 2,266,736 2.458 25.718%

64 761,251 2.437 29.275%

69 761,501 2.443 27.633%

70 1,562,101 2.451 29.412%

71 841,251 2.480 27.223%

Table 3.3: Number of parameters, PESQ, and WER of top 13 FCN architectures
in terms of validation loss. The specific details of each architecture can be found in
Appendix A. For comparison, the noisy validation set at an SNR of 5 dB has a
PESQ of 1.764 and WER of 50.479%.

Using the results of Table 3.3, Model #53 and Model #71 are chosen to be

studied further. Both of these models have good PESQ, WER (Model #53 has

the best WER), and model complexities that are not too high relatively. Model
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#53 is over twice as complex as Model #71, but this complexity may be needed

to achieve generalization across di↵erent SNRs. This leads to experimenting with

both models on the same validation set but at other SNRs rather than only 5 dB

(specifically 0 dB and -5 dB). First, each architecture will be trained on the same

training set but at 0 dB and then PESQ and WER will be computed on the 0 dB

validation set. This process will be repeated for -5 dB. The results across these

di↵erent SNRs for both models are displayed in the following table.

Model # SNR PESQ WER

53 0 2.056 60.411%

71 0 2.037 63.699%

53 -5 1.395 94.110%

71 -5 1.314 96.849%

Table 3.4: Results of Model #53 and Model #71 trained and validated at SNRs of
0 dB and -5 dB. For comparison, the noisy validation set at an SNR of 0 dB has a
PESQ of 1.382 and WER of 88.493% and at an SNR of -5 dB it has a PESQ of
1.103 and WER of 98.493%

Model #53 clearly outperforms Model #71 at both 0 dB and -5 dB. Therefore,

Model #53 is chosen to be the FCN architecture for the speech enhancement system.
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Layer Type Output Shape Number of Parameters

1-D Convolution (320, 12) 972

Batch Normalization (320, 12) 48

PReLU Activation (320, 12) 3,840

1-D Convolution (320, 25) 24,025

Batch Normalization (320, 25) 100

PReLU Activation (320, 25) 8,000

1-D Convolution (320, 50) 100,050

Batch Normalization (320, 50) 200

PReLU Activation (320, 50) 16,000

1-D Convolution (320, 100) 400,100

Batch Normalization (320, 100) 400

PReLU Activation (320, 100) 32,000

1-D Convolution (320, 200) 1,600,200

Batch Normalization (320, 200) 800

PReLU Activation (320, 200) 64,000

1-D Convolution (320, 1) 16,001

Table 3.5: A layer-by-layer description of Model #53’s FCN architecture. More
details on this architecture can be found in Appendix A.
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Now that the FCN architecture is fixed and the speech enhancement system

is completely specified, the next section will deal with testing the system on new

audio data in order to measure its ability to generalize on the same speaker.

3.3 Testing Generalization on the Same Speaker

The first part of testing involves training the speech enhancement system on a

speaker and testing it on the same speaker, but the speech will have never been

seen by the system nor the babble environment. First, the speech enhancement

system trained and validated from the previous section, i.e. using Model #53 as

the FCN architecture, is used for testing. Five minutes from Chapter 3 from [37]

will be used as the test target speech and five minutes of a new babble environment

[41] will be used for the test background noise. To make sure the testing procedure

is clear, consider the following walkthrough of the process.

First, using the training setup of the previous section, the speech enhancement

system is trained using Chapter 1 from [37] and bar babble noise from [39] at a

specific SNR, say 5 dB. The training process employs early stopping that uses 5

minutes from Chapter 2 from [37] and 5 minutes of cafe babble noise from [40] at

the same SNR. Next, the trained system is tested on 5 minutes from Chapter 3 in

[37] and 5 minutes of co↵ee shop babble noise from [41] at the same SNR (i.e. 5

dB), but also at 0 dB and -5 dB to get a measure of the system’s robustness across

SNRs. This process is repeated for an SNR of 0 dB and an SNR of -5 dB. Tables

3.6 & 3.7 report the results of this process.
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Testing SNR

5 dB 0 dB -5 dB

Training SNR

5 dB 2.478 1.917 1.350

0 dB 2.530 2.100 1.461

-5 dB 2.379 2.060 1.482

(Noisy: 1.782) (Noisy: 1.444) (Noisy: 1.321)

Table 3.6: This table presents PESQ test results across di↵erent SNRs for testing
on the same speaker. Each row represents the SNR that the speech enhancement
system was trained at. Each column represents the SNR of the test set. For
reference, the PESQ of the noisy test set is included for each SNR.

Testing SNR

5 dB 0 dB -5 dB

Training SNR

5 dB 25.243% 60.888% 94.868%

0 dB 31.900% 58.391% 91.817%

-5 dB 52.705% 77.531% 94.452%

(Noisy: 43.689%) (Noisy: 86.269%) (Noisy: 97.503%)

Table 3.7: This table presents WER test results across di↵erent SNRs for testing
on the same speaker. Each row represents the SNR the speech enhancement system
was trained at. Each column represents the SNR of the test set. For reference, the
WER of the noisy test set is included for each SNR.

Table 3.6 and Table 3.7 provide some interesting insights into the generaliz-
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ability of the speech enhancement system. The first key insight is that both PESQ

and WER on the test set do a good job tracking the results for PESQ and WER

on the validation set from the previous section. The other key insight is that the

speech enhancement system trained at 0 dB is quite robust across SNRs, sometimes

doing better in scenarios one would not expect. With promising results from testing

on the same speaker, the second part of testing will study generalizability to a new

speaker.

3.4 Testing Generalization on a New Speaker

The second part of testing will employ the same methodology as the first part of

testing but the target speech will come from a new speaker. Audio data is acquired

for a new speaker (specifically another female speaker by the name of Tricia) via

another audiobook [38]. First, performance will be measured when the speech

enhancement system is trained only on the speaker Pamela (as has been done up

to this point) and tested on the speaker Tricia. All trained models (i.e. at each

specific SNR) from the first part of testing are used again in the second part of

testing. These trained models filter 5 minutes of speech from Chapter 1 of [38]

corrupted by the same co↵ee shop babble noise [41] at SNRs of -5, 0, and 5 dB.

Tables 3.8 & 3.9 report the results of this process.
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Testing SNR

5 dB 0 dB -5 dB

Training SNR

5 dB 2.215 1.781 1.291

0 dB 2.171 1.839 1.382

-5 dB 2.229 1.876 1.437

(Noisy: 1.874) (Noisy: 1.471) (Noisy: 1.182)

Table 3.8: This table presents PESQ test results across di↵erent SNRs for training
on one speaker and testing on a new speaker. Each row represents the SNR that
the speech enhancement system was trained at. Each column represents the SNR
of the test set. For reference, the PESQ of the noisy test set is included for each
SNR.

Testing SNR

5 dB 0 dB -5 dB

Training SNR

5 dB 25.134% 54.545% 89.037%

0 dB 29.412% 50.401% 84.358%

-5 dB 55.615% 67.380% 89.305%

(Noisy: 33.556%) (Noisy: 72.326%) (Noisy: 94.652%)

Table 3.9: This table presents WER test results across di↵erent SNRs for training
on one speaker and testing on a new speaker. Each row represents the SNR that
the speech enhancement system was trained at. Each column represents the SNR
of the test set. For reference, the WER of the noisy test set is included for each
SNR.
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When comparing Tables 3.6 & 3.7 with Tables 3.8 & 3.9, it is noticed that

performance on the new speaker is good but does not quite track the performance

of a system trained on a speaker and then tested on that same speaker. It is

hypothesized that fine-tuning the parameters of the trained network with a few

minutes of data from the new speaker should improve performance and more closely

track performance on the same speaker. Therefore, an additional, disjoint 5 minutes

of speech from Chapter 1 of [38] corrupted by 5 minutes of cafe babble noise from

[40] at a given SNR is used to fine-tune the already trained model (i.e. trained

on the speaker Pamela) by doing 5 epochs of gradient descent. The resulting

trained model is then used to again filter 5 minutes of speech from Chapter 1 of

[38] corrupted by the same co↵ee shop babble noise [41] at SNRs of -5, 0, and 5

dB. Tables 3.10 & 3.11 report the results of this process.

Testing SNR

5 dB 0 dB -5 dB

Training SNR

5 dB 2.417 1.953 1.442

0 dB 2.378 2.025 1.571

-5 dB 2.283 2.026 1.619

(Noisy: 1.874) (Noisy: 1.471) (Noisy: 1.182)

Table 3.10: This table presents PESQ test results across di↵erent SNRs for training
on one speaker, fine-tuning on a new speaker, and then testing on that new speaker.
Each row represents the SNR that the speech enhancement system was trained at.
Each column represents the SNR of the test set. For reference, the PESQ of the
noisy test set is included for each SNR.
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Testing SNR

5 dB 0 dB -5 dB

Training SNR

5 dB 21.791% 45.588% 87.166%

0 dB 28.342% 40.909% 76.337%

-5 dB 58.690% 79.813% 81.684%

(Noisy: 33.556%) (Noisy: 72.326%) (Noisy: 94.652%)

Table 3.11: This table presents WER test results across di↵erent SNRs for training
on one speaker, fine-tuning on a new speaker, and then testing on that new speaker.
Each row represents the SNR that the speech enhancement system was trained at.
Each column represents the SNR of the test set. For reference, the WER of the
noisy test set is included for each SNR.

When comparing Tables 3.6 & 3.7 with Tables 3.10 & 3.11, it is noticed that

performance on the new speaker now does a good job tracking the performance of a

system trained on a speaker then tested on that same speaker. This proves the initial

hypothesis and it can be concluded that the speech enhancement system trained at

0 dB is able to generalize to new speakers (via fine-tuning) and is markedly robust

across di↵erent SNRs. Figure 3.2 contains spectrograms illustrating the workings

of the speech enhancement system.
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Figure 3.2: Clean (LEFT), noisy (CENTER), and filtered (RIGHT) spectrograms
of 10 seconds of the new speaker’s speech at 0 dB.
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Chapter 4

Conclusions & Future Work

A fully convolutional neural network based end-to-end speech enhancement system

that serves as a solution to the famous cocktail party problem has been presented.

A strong ability to generalize to new speakers is presented by fine-tuning of the

system with limited data. Test results show that the system is robust to di↵erent

babble noise environments of varying SNRs. This speech enhancement system shows

promising results objectively, using PESQ and WER measures, and subjectively

by listening to the filtered audio. A few questions to consider for future research

pertaining to this speech enhancement system are presented below:

1) What is the optimal model complexity for the task?

2) Does the system continue to generalize well to new environments and speakers?

3) What is the minimal computational/storage complexity needed to employ this

system in real-time?
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Appendix A

System Design: Top 13 FCN
Architectures

FCN Name: Model #25
Number of Filters Per Hidden Layer: 100, 100, 100, 100, 100
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 29
Activation: ReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0149619835036
Validation Loss: 0.0280033512336
Number of Parameters: 3,218,501
Validation PESQ: 2.470
Validation WER: 29.001%

FCN Name: Model #26
Number of Filters Per Hidden Layer: 200, 200, 200, 200, 200
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
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SNR: 5 dB
Best Epoch: 35
Activation: ReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0146398135166
Validation Loss: 0.0281914634397
Number of Parameters: 12,837,001
Validation PESQ: 2.445
Validation WER: 28.591%

FCN Name: Model #27
Number of Filters Per Hidden Layer: 50, 50, 50, 50, 50, 50
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 35
Activation: ReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.016485615045
Validation Loss: 0.028403555044
Number of Parameters: 1,009,501
Validation PESQ: 2.390
Validation WER: 26.402%

FCN Name: Model #30
Number of Filters Per Hidden Layer: 50, 50, 50, 50, 50, 50, 50
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 20
Activation: ReLU
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Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0179147224677
Validation Loss: 0.0284523007359
Number of Parameters: 1,209,751
Validation PESQ: 2.441
Validation WER: 31.464%

FCN Name: Model #31
Number of Filters Per Hidden Layer: 100, 100, 100, 100, 100, 100, 100
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 29
Activation: ReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0141895399333
Validation Loss: 0.0266052821079
Number of Parameters: 4,819,501
Validation PESQ: 2.490
Validation WER: 31.737%

FCN Name: Model #33
Number of Filters Per Hidden Layer: 12, 25, 50, 100, 200
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 69
Activation: ReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0150186144539
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Validation Loss: 0.0284648104539
Number of Parameters: 2,142,896
Validation PESQ: 2.421
Validation WER: 28.728%

FCN Name: Model #38
Number of Filters Per Hidden Layer: 12, 25, 50, 100, 200
Filter Size Per Hidden Layer: 1.0, 2.0, 4.0, 8.0, 16.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 46
Activation: ReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0144523108945
Validation Loss: 0.027507254274
Number of Parameters: 5,867,728
Validation PESQ: 2.452
Validation WER: 29.001%

FCN Name: Model #41
Number of Filters Per Hidden Layer: 12, 25, 50, 100, 200
Filter Size Per Hidden Layer: 5.0, 5.0, 8.0, 8.0, 12.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 72
Activation: ReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0127350104231
Validation Loss: 0.0283544569146
Number of Parameters: 4,682,896
Validation PESQ: 2.422
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Validation WER: 28.454%

FCN Name: Model #53
Number of Filters Per Hidden Layer: 12, 25, 50, 100, 200
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 125
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 29
Activation: PReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Number of Parameters: 2,266,736
Training Loss: 0.0153066175394
Validation Loss: 0.0276513302435
Validation PESQ: 2.458
Validation WER: 25.718%
Training Loss (0 dB): 0.0329275182994
Validation Loss (0 dB): 0.0830621913256
Validation PESQ (0 dB): 2.056
Validation WER (0 dB): 60.411%
Training Loss (-5 dB): 0.109046343979
Validation Loss (-5 dB): 0.237691486046
Validation PESQ (-5 dB): 1.395
Validation WER (-5 dB): 94.110%

FCN Name: Model #64
Number of Filters Per Hidden Layer: 25, 25, 50, 50, 100
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 150
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 35
Activation: ReLU
Batch Normalization: YES, between convolution & activation
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Regularization: NONE
Training Loss: 0.0171705612745
Validation Loss: 0.0283289428108
Number of Parameters: 761,251
Validation PESQ: 2.437
Validation WER: 29.275%

FCN Name: Model #69
Number of Filters Per Hidden Layer: 25, 25, 50, 50, 100
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 300
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 36
Activation: PReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0167125569588
Validation Loss: 0.0286627422307
Number of Parameters: 761,501
Validation PESQ: 2.443
Validation WER: 27.633%

FCN Name: Model #70
Number of Filters Per Hidden Layer: 25, 25, 50, 50, 100, 100
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 300
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 24
Activation: PReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0159617189242
Validation Loss: 0.028751412553
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Number of Parameters: 1,562,101
Validation PESQ: 2.451
Validation WER: 29.412%

FCN Name: Model #71
Number of Filters Per Hidden Layer: 25, 25, 50, 50, 100
Filter Size Per Hidden Layer: 5.0, 5.0, 5.0, 5.0, 5.0 ms
Filter Size for Output Layer: 5.0 ms
Input Frame Time: 20.0 ms
Total Epochs: 300
Batch Size: 100 examples
SNR: 5 dB
Best Epoch: 36
Activation: ReLU
Batch Normalization: YES, between convolution & activation
Regularization: NONE
Training Loss: 0.0157915527726
Validation Loss: 0.0285157191015
Number of Parameters: 841,251
Validation PESQ: 2.480
Validation WER: 27.223%
Training Loss (0 dB): 0.0352021876569
Validation Loss (0 dB): 0.0823882113324
Validation PESQ (0 dB): 2.037
Validation WER (0 dB): 63.699%
Training Loss (-5 dB): 0.119671967316
Validation Loss (-5 dB): 0.252999086193
Validation PESQ (-5 dB): 1.314
Validation WER (-5 dB): 96.849%
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Appendix B

Python Code

B.1 audio preprocessing.py

1 from os . path import j o i n
2 import l i b r o s a
3 import l i b r o s a . d i sp l ay
4 import numpy as np
5 import s c ipy . s i g n a l
6 import s c ipy . i o . wav f i l e
7 import matp lo t l i b . pyplot as p l t
8 from s k l e a rn . p r ep ro c e s s i ng import s c a l e
9 import math

10
11
12 def round up to even (x ) :
13 return int (math . c e i l ( x / 2 . ) ⇤ 2)
14
15 def next pow2 (x ) :
16 return 2⇤⇤(x�1) . b i t l e n g t h ( )
17
18 def apply window ( frame ) :
19
20 M = frame . s i z e
21 window = sc ipy . s i g n a l . hann (M)
22
23 return ( frame⇤window)
24
25 def ove r l app add r e con s t ruc t i on ( frame1 windowed , frame2 windowed ) :
26
27 M = frame2 windowed . s i z e
28 R = M/2
29 output = np . z e r o s ( frame1 windowed . s i z e + R)
30 output [ : frame1 windowed . s i z e ] = frame1 windowed
31 output [ ( frame1 windowed . s i z e�R) : ] = output [ ( frame1 windowed . s i z e�R) : ] +

frame2 windowed
32
33 return ( output )
34
35 def l o a d a u d i o f i l e s ( aud i o f o l d e r pa th , chapter names , noise names ) :
36
37 chapter s = {}
38 for chapter name in chapter names :
39 f i l e p a t h = j o i n ( aud i o f o l d e r pa th , chapter name + ” . wav” )
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40 f s , a ud i o t im e s e r i e s = sc ipy . i o . wav f i l e . read ( f i l e p a t h )
41 chapter s [ chapter name ] = ( aud i o t ime s e r i e s , f s )
42
43 no i s e = {}
44 for noise name in noise names :
45 f i l e p a t h = j o i n ( aud i o f o l d e r pa th , noise name + ” . wav” )
46 f s , a ud i o t im e s e r i e s = sc ipy . i o . wav f i l e . read ( f i l e p a t h )
47 no i s e [ noise name ] = ( aud i o t ime s e r i e s , f s )
48
49 return chapters , no i s e
50
51 def l oad aud io ( aud i o f o l d e r pa th , aud io f i l ename ) :
52 f i l e p a t h = aud i o f o l d e r pa th + aud io f i l ename
53 f s , a u d i o t im e s e r i e s = sc ipy . i o . wav f i l e . read ( f i l e p a t h )
54 return aud i o t ime s e r i e s , f s
55
56 def concatenate aud io ( names , dict ) :
57
58 a r r ay s t o conca t ena t e = [ ]
59 f s = dict [ names [ 0 ] ] [ 1 ]
60 for name in names :
61 a r r ay s t o conca t ena t e . append ( dict [ name ] [ 0 ] )
62
63 return (np . concatenate ( a r r ay s t o conca t ena t e ) , f s )
64
65 def combine c l ean and no i s e ( a ud i o t im e s e r i e s t r a i n , a ud i o t ime s e r i e s n o i s e ,

snr db ) :
66 i f ( a u d i o t im e s e r i e s t r a i n . s i z e <= aud i o t im e s e r i e s n o i s e . s i z e ) :
67 a u d i o t im e s e r i e s n o i s e = aud i o t im e s e r i e s n o i s e [ 0 : a u d i o t im e s e r i e s t r a i n . s i z e

]
68 else :
69 a u d i o t im e s e r i e s t r a i n = aud i o t im e s e r i e s t r a i n [ 0 : a u d i o t im e s e r i e s n o i s e . s i z e

]
70
71 a u d i o t im e s e r i e s t r a i n = aud i o t im e s e r i e s t r a i n . astype ( ’ f l o a t ’ )
72 a u d i o t im e s e r i e s n o i s e = aud i o t im e s e r i e s n o i s e . astype ( ’ f l o a t ’ )
73
74 A tra in 2 = np .mean(np . power (np . abso lu t e ( a u d i o t im e s e r i e s t r a i n ) ,2 ) )
75 A no i se 2 = np .mean(np . power (np . abso lu t e ( a u d i o t im e s e r i e s n o i s e ) , 2 ) )
76 A no i s e t a r g 2 = A tra in 2 / (10⇤⇤ ( snr db /10 . ) )
77
78 s c a l i n g c o e f f = np . s q r t ( A no i s e t a r g 2 ) / np . s q r t ( A no i se 2 )
79
80 combined re su l t = aud i o t im e s e r i e s t r a i n + ( s c a l i n g c o e f f ⇤

a ud i o t im e s e r i e s n o i s e )
81
82 return ( combined re su l t )
83
84 def downsample ( audio , o r i g s r , t a r g s r ) :
85 audio = audio . astype ( ’ f l o a t ’ )
86 audio downsampled = l i b r o s a . resample ( audio , o r i g s r , t a r g s r )
87 audio downsampled = audio downsampled . astype ( ’ in t16 ’ )
88 return audio downsampled , t a r g s r
89
90 def gene ra t e f rames ( a ud i o t im e s e r i e s t r a i n , f s , frame time , l ag = 0 .5 ) :
91 f rame length = round up to even ( frame time ⇤ f s )
92 t o t a l t im e s t e p s = int ( ( a u d i o t im e s e r i e s t r a i n . s i z e / ( f rame length ⇤ l ag ) ) � 1)
93
94 x t r a i n = np . z e r o s ( shape = ( frame length , t o t a l t im e s t e p s ) )
95
96 for i in range (0 , ( t o t a l t im e s t e p s � 1) ) :
97 x t r a i n [ : , i ] = apply window ( a u d i o t im e s e r i e s t r a i n [ i ⇤( f rame length / 2) : (
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i ⇤( f rame length / 2) + f rame length ) ] )
98
99 return ( x t r a i n )

100
101 def g e n e r a t e t r a i n f e a t u r e s ( x t r a i n ) :
102 n = next pow2 ( x t r a i n . shape [ 0 ] )
103 x t r a i n f e a t u r e s = np . z e r o s ( shape = (n , x t r a i n . shape [ 1 ] ) )
104 for i in range (0 , x t r a i n . shape [ 1 ] ) :
105 x t r a i n f e a t u r e s [ : , i ] = np . abs (np . f f t . f f t ( a = x t r a i n [ : , i ] , n = n ) )
106 return ( x t r a i n f e a t u r e s )
107
108 def s c a l e f e a t u r e s ( x t r a i n f e a t u r e s , mu, std ) :
109
110 x t r a i n f e a t u r e s = ( x t r a i n f e a t u r e s � mu) / f loat ( std )
111
112 return ( x t r a i n f e a t u r e s .T)
113
114 def r e bu i l d aud i o f r om ind i c e s ( p r e d i c t e d t im e s e r i e s i n d i c e s , x t r a i n ) :
115 output = x t r a i n [ : , p r e d i c t e d t im e s e r i e s i n d i c e s [ 0 ] ]
116
117 for i in p r e d i c t e d t im e s e r i e s i n d i c e s [ 1 : ] :
118 output = ove r l app add r e con s t ru c t i on ( output , x t r a i n [ : , i ] )
119
120 return ( output . astype ( ’ in t16 ’ ) )
121
122 def r ebu i l d aud i o ( x t e s t ) :
123 output = x t e s t [ 0 , : ]
124 for i in xrange (1 , x t e s t . shape [0 ]�1) :
125 output = ove r l app add r e con s t ru c t i on ( output , x t e s t [ i , : ] )
126
127 return ( output . astype ( ’ in t16 ’ ) )
128
129 def sdr computat ion ( ta rge t speech , d i s t o r t e d sp e e ch ) :
130 i f ( t a r g e t sp e e ch . s i z e <= d i s t o r t e d sp e e ch . s i z e ) :
131 d i s t o r t e d sp e e ch = d i s t o r t ed sp e e ch [ 0 : t a r g e t sp e e ch . s i z e ]
132 else :
133 t a r g e t sp e e ch = ta rg e t sp e e ch [ 0 : d i s t o r t e d sp e e ch . s i z e ]
134
135 t a r g e t sp e e ch = ta rg e t sp e e ch . astype ( ’ f l o a t ’ )
136 d i s t o r t e d sp e e ch = d i s t o r t ed sp e e ch . astype ( ’ f l o a t ’ )
137
138 A targe t 2 = np .mean(np . power (np . abso lu t e ( t a r g e t sp e e ch ) ,2 ) )
139 A no i s e d i s t o r t i o n 2 = np .mean(np . power (np . abso lu t e ( d i s t o r t e d sp e e ch ) ,2 ) )
140
141 sdr = 10⇤np . log10 ( A targe t 2 / A no i s e d i s t o r t i o n 2 )
142
143 return ( sdr )
144
145 def gene ra t e input ( aud i o t ime s e r i e s , f s , frame time , train mu , t r a i n s t d ) :
146
147 x frames = gene ra te f rames ( aud i o t ime s e r i e s , f s , frame time , )
148 x f r ame s s c a l ed = s c a l e f e a t u r e s ( x frames , train mu , t r a i n s t d )
149 x f r ame s s c a l e d i npu t = np . reshape ( x f rames s ca l ed , ( x f r ame s s c a l ed . shape [ 0 ] ,

x f r ame s s c a l ed . shape [ 1 ] , 1) )
150
151 return ( x f r ame s s c a l e d i npu t )

B.2 cnn model.py

1 from keras . models import Sequent i a l
2 from keras . l a y e r s import Dense , Dropout , F lat ten
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3 from keras . l a y e r s import Conv1D , MaxPooling1D , UpSampling1D , Act ivat ion , LeakyReLU
, PReLU, Dropout

4 from keras . l a y e r s . norma l i za t i on import BatchNormal izat ion
5 from keras import r e g u l a r i z e r s
6 from keras . models import load model
7 from keras import backend as K
8 import numpy as np
9 from keras . c a l l b a c k s import ModelCheckpoint , History , Ear lyStopping

10
11 def create mode l ( input shape , num f i l t e r s p e r h i dd en l a y e r ,

f i l t e r s i z e p e r h i d d e n l a y e r , f i l t e r s i z e o u t p u t l a y e r ) :
12
13 K. c l e a r s e s s i o n ( )
14
15 model = Sequent i a l ( )
16
17 model . add (Conv1D( f i l t e r s = num f i l t e r s p e r h i d d en l a y e r [ 0 ] , k e r n e l s i z e =

f i l t e r s i z e p e r h i d d e n l a y e r [ 0 ] , padding=’ same ’ , input shape = input shape ) )
18 model . add ( BatchNormalizat ion ( ) )
19 model . add (PReLU( ) )
20
21 for num f i l t e r s , f i l t e r s i z e in zip ( num f i l t e r s p e r h i d d en l a y e r [ 1 : ] ,

f i l t e r s i z e p e r h i d d e n l a y e r [ 1 : ] ) :
22 model . add (Conv1D( f i l t e r s = num f i l t e r s , k e r n e l s i z e = f i l t e r s i z e , padding=’ same

’ ) )
23 model . add ( BatchNormal izat ion ( ) )
24 model . add (PReLU( ) )
25
26
27 model . add (Conv1D(1 , k e r n e l s i z e = f i l t e r s i z e o u t p u t l a y e r , padding=’ same ’ ) )
28
29 return (model )
30
31 def t ra in mode l ( model , t r a i n i npu t s , t r a i n l a b e l s , epochs , ba t ch s i z e ,

v a l i d a t i on i npu t s , v a l i d a t i o n l a b e l s , f i l e p a t h , pa t i ence ) :
32
33 model . compile ( opt imize r = ’adam ’ , l o s s=’ mean squared error ’ )
34
35 checkpo inte r = ModelCheckpoint ( f i l e p a t h = f i l e p a t h , monitor = ” v a l l o s s ” , verbose

= 1 , mode = ’min ’ , s a v e b e s t on l y = True )
36 e a r l y s t opp i ng = EarlyStopping ( monitor = ’ v a l l o s s ’ , min de l ta = 0 , pat i ence =

pat ience , verbose = 1 , mode=’ auto ’ )
37
38 h i s t o r y = model . f i t ( t r a i n i npu t s , t r a i n l a b e l s ,
39 epochs = epochs ,
40 ba t ch s i z e = bat ch s i z e ,
41 s h u f f l e = True ,
42 va l i d a t i on da t a = ( va l i d a t i on i npu t s , v a l i d a t i o n l a b e l s ) ,
43 c a l l b a c k s = [ checkpo inter , e a r l y s t opp i ng ] )
44
45 model = load model ( f i l e p a t h )
46
47 return (model , h i s t o r y )
48
49 def t r a i n mode l f i n e tun e ( model , t r a i n i npu t s , t r a i n l a b e l s , epochs , b a t ch s i z e ) :
50
51 model . compile ( opt imize r = ’adam ’ , l o s s=’ mean squared error ’ )
52
53 h i s t o r y = model . f i t ( t r a i n i npu t s , t r a i n l a b e l s ,
54 epochs = epochs ,
55 ba t ch s i z e = bat ch s i z e ,
56 s h u f f l e = True )

81



57
58 return (model , h i s t o r y )
59
60 def save model ( model , save path ) :
61 model . save ( save path )
62
63 def l oad mode l ( load path ) :
64 model = load model ( load path )
65 return (model )
66
67 def pred i c t mode l ( model , inputs ) :
68 p r e d i c t i o n s = model . p r ed i c t ( inputs , b a t ch s i z e = None , verbose=0, s t ep s=None )
69 return ( p r e d i c t i o n s )
70
71 def get output ( model , new input ) :
72 get output = K. func t i on ( [ model . l a y e r s [ 0 ] . input , K. l e a rn ing pha s e ( ) ] ,
73 [ model . l a y e r s [ len (model . l a y e r s ) � 1 ] . output

] )
74 l aye r ou tput = get output ( [ new input , 0 ] ) [ 0 ]
75
76 return ( l aye r ou tput )
77
78 def ge t ou tpu t mu l t i p l e ba t ch e s (model , input f rames , b a t ch s i z e = 100) :
79
80 bat che s output f r ames ho lde r = [ ]
81 for i in xrange (0 , input f rames . shape [ 0 ] , b a t c h s i z e ) :
82 batch input f rames = input f rames [ i : i+ba t ch s i z e , : , : ]
83 batch output f rames = get output ( model , batch input f rames )
84 batch output f rames = np . reshape ( batch output f rames , ( batch output f rames . shape

[ 0 ] , �1) )
85 ba t che s output f r ames ho lde r . append ( batch output f rames )
86
87 output f rames concatenated = np . concatenate ( batche s output f rames ho lde r , ax i s =

0 )
88
89 return ( output f rames concatenated )
90
91 def summary s ta t i s t i c s ( f i l ename , model name , h i s to ry , frame time , snr db ,
92 num f i l t e r s p e r h i dd en l a y e r , f i l t e r s i z e p e r h i d d e n l a y e r ,

f i l t e r s i z e o u t p u t l a y e r ,
93 epochs , b a t ch s i z e ) :
94
95
96 b e s t v a l l o s s = min( h i s t o r y . h i s t o r y [ ” v a l l o s s ” ] )
97 be s t epoch index = h i s t o r y . h i s t o r y [ ” v a l l o s s ” ] . index ( b e s t v a l l o s s )
98 b e s t t r a i n l o s s = h i s t o r y . h i s t o r y [ ” l o s s ” ] [ be s t epoch index ]
99

100 print ( ”\tFCNN Name : ” + model name )
101 print ( ”\tNumber o f F i l t e r s Per Hidden Layer : ” + ’ , ’ . j o i n (map( str ,

n um f i l t e r s p e r h i d d en l a y e r ) ) )
102 print ( ”\ t F i l t e r S i z e Per Hidden Layer : ” + ’ , ’ . j o i n (map( str , l i s t (np . array (

f i l t e r s i z e p e r h i d d e n l a y e r ) ⇤1000) ) ) + ” ms” )
103 print ( ”\ t F i l t e r S i z e f o r Output Layer : ” + str ( f i l t e r s i z e o u t p u t l a y e r ⇤1000 )

+ ” ms” )
104 print ( ”\tFrame Time : ” + str ( f rame t ime ⇤1000 ) + ” ms” )
105 print ( ”\ tTota l Epochs : ” + str ( epochs ) )
106 print ( ”\ tBatch S i z e : ” + str ( b a t ch s i z e ) + ” examples ” )
107 print ( ”\tSNR : ” + str ( snr db ) + ” dB” )
108 print ( ”\ tBest Epoch : ” + str ( be s t epoch index + 1 ) )
109 print ( ”\ tTra in ing Loss : ” + str ( b e s t t r a i n l o s s ) )
110 print ( ”\ tVa l i da t i on Loss : ” + str ( b e s t v a l l o s s ) )
111 print ( ”\n” )
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112 with open( f i l ename , ”a” ) as t e x t f i l e :
113 t e x t f i l e . wr i t e ( ”FCNN Name : ” + model name )
114 t e x t f i l e . wr i t e ( ”\n” )
115 t e x t f i l e . wr i t e ( ”Number o f F i l t e r s Per Hidden Layer : ” + ’ , ’ . j o i n (map( str ,

n um f i l t e r s p e r h i d d en l a y e r ) ) )
116 t e x t f i l e . wr i t e ( ”\n” )
117 t e x t f i l e . wr i t e ( ” F i l t e r S i z e Per Hidden Layer : ” + ’ , ’ . j o i n (map( str , l i s t (np .

array ( f i l t e r s i z e p e r h i d d e n l a y e r ) ⇤1000) ) ) + ” ms” )
118 t e x t f i l e . wr i t e ( ”\n” )
119 t e x t f i l e . wr i t e ( ” F i l t e r S i z e f o r Output Layer : ” + str (

f i l t e r s i z e o u t p u t l a y e r ⇤1000 ) + ” ms” )
120 t e x t f i l e . wr i t e ( ”\n” )
121 t e x t f i l e . wr i t e ( ”Frame Time : ” + str ( f rame t ime ⇤1000 ) + ” ms” )
122 t e x t f i l e . wr i t e ( ”\n” )
123 t e x t f i l e . wr i t e ( ”Total Epochs : ” + str ( epochs ) )
124 t e x t f i l e . wr i t e ( ”\n” )
125 t e x t f i l e . wr i t e ( ”Batch S i z e : ” + str ( b a t ch s i z e ) + ” examples ” )
126 t e x t f i l e . wr i t e ( ”\n” )
127 t e x t f i l e . wr i t e ( ”SNR: ” + str ( snr db ) + ” dB” )
128 t e x t f i l e . wr i t e ( ”\n” )
129 t e x t f i l e . wr i t e ( ”Best Epoch : ” + str ( be s t epoch index + 1 ) )
130 t e x t f i l e . wr i t e ( ”\n” )
131 t e x t f i l e . wr i t e ( ”Train ing Loss : ” + str ( b e s t t r a i n l o s s ) )
132 t e x t f i l e . wr i t e ( ”\n” )
133 t e x t f i l e . wr i t e ( ”Va l ida t i on Loss : ” + str ( b e s t v a l l o s s ) )
134 t e x t f i l e . wr i t e ( ”\n\n” )

B.3 main.py

1 import aud i o p r ep ro c e s s i ng as ap
2 import cnn model as cnn
3 import numpy as np
4 import s c ipy . i o . wav f i l e
5 import os
6 from subproces s import c a l l
7
8 print ( ”Gett ing paths to audio f i l e s . . . ” )
9 cwd = os . getcwd ( )

10 parent cwd = os . path . abspath ( os . path . j o i n (cwd , os . pa rd i r ) )
11 aud i o f o l d e r pa th = parent cwd + ”/Aud io F i l e s /”
12
13 print ( ”Creat ing t ra in ing , va l i da t i on , and t e s t s e t s . . . ” )
14 snr db = 5
15 frame time = 0.020
16
17 # Generate t r a i n i n g s e t

18 aud i o t im e s e r i e s t r a i n , f s = ap . l oad aud io ( aud i o f o l d e r pa th , aud io f i l ename = ”
Chapter1 . wav” )

19 a u d i o t im e s e r i e s t r a i n n o i s e , f s = ap . l oad aud io ( aud i o f o l d e r pa th ,
aud io f i l ename = ”Chapter1 Babble . wav” )

20 a u d i o t im e s e r i e s t r a i n n o i s y = ap . combine c l ean and no i s e ( a ud i o t im e s e r i e s t r a i n
, a u d i o t im e s e r i e s t r a i n n o i s e , snr db )

21 train mu = np .mean( a u d i o t im e s e r i e s t r a i n )
22 t r a i n s t d = np . std ( a u d i o t im e s e r i e s t r a i n )
23
24 t r a i n c l e a n = ap . g ene ra t e input ( a ud i o t im e s e r i e s t r a i n , f s , frame time ,

train mu , t r a i n s t d )
25 t r a i n n o i s y = ap . g ene ra t e input ( a ud i o t im e s e r i e s t r a i n n o i s y , f s , frame time ,

train mu , t r a i n s t d )
26
27 # Generate v a l i d a t i o n s e t
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28 aud i o t im e s e r i e s v a l i d a t i o n , f s = ap . l oad aud io ( aud i o f o l d e r pa th ,
aud io f i l ename = ”Chapter2 5 Min . wav” )

29 a ud i o t im e s e r i e s v a l i d a t i o n n o i s e , f s = ap . l oad aud io ( aud i o f o l d e r pa th ,
aud io f i l ename = ”Chapter2 5 Min Babble . wav” )

30 a u d i o t im e s e r i e s v a l i d a t i o n n o i s y = ap . combine c l ean and no i s e (
a ud i o t im e s e r i e s v a l i d a t i o n , a u d i o t im e s e r i e s v a l i d a t i o n n o i s e , snr db )

31
32 v a l i d a t i o n c l e a n = ap . g ene ra t e input ( a ud i o t im e s e r i e s v a l i d a t i o n , f s ,

frame time , train mu , t r a i n s t d )
33 v a l i d a t i o n n o i s y = ap . g ene ra t e input ( a ud i o t im e s e r i e s v a l i d a t i o n n o i s y , f s ,

frame time , train mu , t r a i n s t d )
34
35 # Generate t e s t s e t

36 a ud i o t im e s e r i e s t e s t , f s = ap . l oad aud io ( aud i o f o l d e r pa th , aud io f i l ename = ”
Chapter3 5 Min . wav” )

37 a u d i o t im e s e r i e s t e s t n o i s e , f s = ap . l oad aud io ( aud i o f o l d e r pa th ,
aud io f i l ename = ”Chapter3 5 Min Babble . wav” )

38 a u d i o t im e s e r i e s t e s t n o i s y = ap . combine c l ean and no i s e ( a u d i o t im e s e r i e s t e s t ,
a u d i o t im e s e r i e s t e s t n o i s e , snr db )

39 s c ipy . i o . wav f i l e . wr i t e ( f i l ename = parent cwd + ”/Aud io F i l e s / Te s t F i l e s /” + ”
CleanTest 5min ” + str ( snr db ) + ”dB .wav” , r a t e = fs , data =
aud i o t im e s e r i e s t e s t . astype ( ’ in t16 ’ ) )

40 s c ipy . i o . wav f i l e . wr i t e ( f i l ename = parent cwd + ”/Aud io F i l e s / Te s t F i l e s /” + ”
CleanTest 1min ” + str ( snr db ) + ”dB .wav” , r a t e = fs , data =
aud i o t im e s e r i e s t e s t . astype ( ’ in t16 ’ ) [ 0 : ( 6 0 ⇤ f s ) ] )

41 s c ipy . i o . wav f i l e . wr i t e ( f i l ename = parent cwd + ”/Aud io F i l e s / Te s t F i l e s /” + ”
NoisyTest 5min ” + str ( snr db ) + ”dB .wav” , r a t e = fs , data =
aud i o t im e s e r i e s t e s t n o i s y . astype ( ’ in t16 ’ ) )

42 s c ipy . i o . wav f i l e . wr i t e ( f i l ename = parent cwd + ”/Aud io F i l e s / Te s t F i l e s /” + ”
NoisyTest 1min ” + str ( snr db ) + ”dB .wav” , r a t e = fs , data =
aud i o t im e s e r i e s t e s t n o i s y . astype ( ’ in t16 ’ ) [ 0 : ( 6 0 ⇤ f s ) ] )

43
44 t e s t c l e a n = ap . g ene ra t e input ( a u d i o t im e s e r i e s t e s t , f s , frame time , train mu ,

t r a i n s t d )
45 t e s t n o i s y = ap . g ene ra t e input ( a u d i o t im e s e r i e s t e s t n o i s y , f s , frame time ,

train mu , t r a i n s t d )
46
47
48 print ( ”Prepar ing neura l network f o r t r a i n i n g . . . ” )
49 input shape = ( t r a i n n o i s y . shape [ 1 ] , 1)
50 epochs = 1
51 ba t ch s i z e = 100
52 f i l t e r s i z e p e r h i d d e n l a y e r = [ 0 . 0 0 5 , 0 . 005 , 0 . 005 , 0 . 005 , 0 . 0 0 5 ]
53 f i l t e r s i z e o u t p u t l a y e r = 0.005
54 num f i l t e r s p e r h i d d en l a y e r = [ 12 , 25 , 50 , 100 , 200 ]
55 pat i ence = 20
56
57 model name = ”MODELNAMEHERE”
58 model save path = parent cwd + ”/Saved Models /” + model name
59 #model = cnn . load mode l ( mode l save path )

60
61 model = cnn . c reate mode l ( input shape , num f i l t e r s p e r h i dd en l a y e r , map( int , l i s t

(np . array ( f i l t e r s i z e p e r h i d d e n l a y e r ) ⇤ f s ) ) , int ( f i l t e r s i z e o u t p u t l a y e r ⇤ f s )
)

62 model , h i s t o r y = cnn . t ra in mode l ( model = model ,
63 t r a i n i n pu t s = t r a i n no i s y ,
64 t r a i n l a b e l s = t r a i n c l e an ,
65 epochs = epochs ,
66 ba t ch s i z e = bat ch s i z e ,
67 v a l i d a t i o n i npu t s = va l i d a t i on no i s y ,
68 v a l i d a t i o n l a b e l s = va l i d a t i o n c l e an ,
69 f i l e p a t h = model save path ,
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70 pat i ence = pat i ence )
71
72 print ( ”Gett ing CNN output f o r no i sy t e s t s e t input . . . ” )
73 t e s t f i l t e r e d f r am e s = ( t r a i n s t d ⇤ cnn . g e t ou tpu t mu l t i p l e ba t ch e s (model ,

t e s t n o i s y ) ) + train mu
74
75 print ( ” Pe r f e c t l y r e c on s t r u c t i n g f i l t e r e d t e s t s e t audio & sav ing to memory . . . ” )
76 t e s t f i l t e r e d = ap . r ebu i l d aud i o ( t e s t f i l t e r e d f r am e s )
77 s c ipy . i o . wav f i l e . wr i t e ( f i l ename = parent cwd + ”/Aud io F i l e s / Te s t F i l e s /” +

model name + ” F i l t e r e dTe s t ” + str ( snr db ) + ”dB 5min . wav” , r a t e = fs , data =
t e s t f i l t e r e d )

78 s c ipy . i o . wav f i l e . wr i t e ( f i l ename = parent cwd + ”/Aud io F i l e s / Te s t F i l e s /” +
model name + ” F i l t e r e dTe s t ” + str ( snr db ) + ”dB 1min . wav” , r a t e = fs , data =
t e s t f i l t e r e d [ 0 : ( 6 0 ⇤ f s ) ] )

79
80 os . chd i r ( parent cwd + ”/Aud io F i l e s / Te s t F i l e s ” )
81 c a l l ( [ ” . /PESQ” , ”+16000” , ”CleanTest 1min ” + str ( snr db ) + ”dB .wav” , ”

NoisyTest 1min ” + str ( snr db ) + ”dB .wav” ] )
82 c a l l ( [ ” . /PESQ” , ”+16000” , ”CleanTest 1min ” + str ( snr db ) + ”dB .wav” , model name

+ ” F i l t e r e dTe s t ” + str ( snr db ) + ”dB 1min . wav” ] )
83
84 summary stats f i l ename = parent cwd + ”/Saved Models /Mode l Descr ipt ions . txt ”
85 cnn . summary s ta t i s t i c s ( summary stats f i l ename , model name , h i s to ry , frame time ,

snr db ,
86 num f i l t e r s p e r h i dd en l a y e r , f i l t e r s i z e p e r h i d d e n l a y e r ,

f i l t e r s i z e o u t p u t l a y e r ,
87 epochs , b a t ch s i z e )
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