
The Cooper Union for the
Advancement of Science and Art

Interactive Foreground
Extraction with Superpixels

by

Abrar Rahman

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Engineering

September 2014

Dr. Sam Keene

Advisor

http://www.cooper.edu
http://www.cooper.edu

The Cooper Union for the
Advancement of Science and Art

This thesis was prepared under the direction of the Candidates Thesis Advisor

and has received approval. It was submitted to the Dean of the School of

Engineering and the full Faculty, and was approved as partial fulfillment of the

requirements for the degree of Master of Engineering.

Dr. Teresa Dahlberg

Dean, School of Engineering

Dr. Sam Keene

Candidate’s Thesis Advisor

http://www.cooper.edu
http://www.cooper.edu

Acknowledgements

I would like to thank my advisor, Professor Keene, for his guidance and advice

throughout the project. I would also like to thank my family and friend for their

support and encouragement.

ii

Abstract

Interactive segmentation plays a large part in image editing. Segmentation par-

titions an image into regions that share similarities. The GrabCut algorithm

provides a way to get a segmentation of a target object with minimal input from

the user and extracts it as foreground. In cases where the regions of the target

object is missing from the extraction or there are unwanted background pixels,

more user input is required to refine the segmentation. GrabCut performs this

refinement by iteratively updating its model for the foreground and background.

The novel contribution made is to simplify the refinement process by adding or

removing pieces from an image split into atomic regions called superpixels. This

reduces the number of interactions needed from the user to extract the desired

object from the image.

Contents

Acknowledgements ii

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Automatic Segmentation 3

2.1 Segmentation Techniques . 3

2.1.1 K-means Clustering . 3

2.1.2 Mean-shift Clustering . 4

2.1.3 Automatic Segmentation Summary 5

3 Interactive Segmentation Tools 7

3.1 Commercial Selection Tools . 7

3.1.1 Magic Wand . 7

3.1.2 Magnetic Lasso . 8

3.1.3 Quick Selection . 8

3.2 Graph-cut Based Tools . 8

3.2.1 Graph-cut . 9

3.2.2 GrabCut . 10

3.2.3 User Interaction with GrabCut 12

4 Other Approaches Investigated 16

4.1 Segmentation . 16

4.1.1 Bag of Words Clustering . 16

4.1.2 Simple Linear Iterative Clustering 18

4.2 Classification of Superpixels . 22

5 Superpixel Selection Tool Design 25

5.1 Base Comparison . 25

5.2 User Selection Tool . 26

iv

Contents v

6 Results and Analysis 27

6.1 Automatic Segmentation . 27

6.2 User Selection Tool . 29

7 Conclusions and Recommendations 32

A Foreground Extraction Code 34

A.1 GrabCut . 34

A.2 Superpixel Refinement . 37

A.3 Automatic Foreground Extraction 41

A.4 Evaluation Code . 42

Bibliography 45

List of Figures

2.1 K-means segmentation into 4 clusters [1] 4

2.2 Mean-shift example [1] . 5

3.1 Illustration of Paint Selection use [2] 9

3.2 Algorithmic comparison of several tools. Red markings indicates
labelling background while white markings indicates labelling fore-
ground [3] . 12

3.3 Easy extraction example . 13

3.4 Harder extraction example . 13

3.5 Harder extraction example with more user imput 13

3.6 Harder extraction example . 14

3.7 Harder extraction example with more user imput 14

4.1 Difference of Gaussians[4] . 17

4.2 SIFT Bag Of Words Clustering . 19

4.3 SLIC Superpixels . 21

4.4 Classification on Superpixels . 23

6.1 Dataset . 27

6.2 Comparing Refinement Methods . 30

6.3 Reference Boundaries . 31

vi

List of Tables

6.1 Automatic Segmentation Results: Cls S.pix = Classify Superpixels,
GC and SP = GrabCut and Superpixels 28

vii

Chapter 1

Introduction

In the field of Computer Vision, segmentation is often used a preprocessing step

to perform further processing. This is often used in applications of image match-

ing and object recognition [1]. The task of segmentation is to partion an image

into non-overlapping regions that are homogeneous over a set of features. The

standards for performing the task include splitting and merging, region growing,

and clustering, though clustering algorithms have become prevalent. Automatic

segmentation partitions an image into a number of segments based on an algo-

rithm and preset parameters. The pixels within these segments are assumed to

have some similarity with each other, so automatic segmentation can reduce the

processing needed when doing recognition or compression tasks. Procedures from

automatic segmentation can also be used to aid in interactive segmentation, which

is the focus of our efforts.

Interactive segmentation is commercially used primarily for photo editing tasks.

The tools provided to do so vary in quality of the segmention and the effort required

by the user to get the desired segment. All require some form of input from the

user and this could be as involved as roughly tracing out the desired segment to as

effortless at putting a box around desired segment [3]. The segmentation algorithm

then labels the part of the image that it believes the user wants as foreground,

while the rest of the image is labelled as background. The foreground is extracted

from the image to perform further editing tasks.

Though there are many interactive segmentation tools available, GrabCut stands

out because of its ease of use and segmentation performance compared to the

competition[3]. Even so, there are cases in which extracting the desired object

1

Chapter 1. Introduction 2

from the image requires further supervision from the user. This is done by adding

samples into the iterative learning model of GrabCut. If adding or removing

regions of monotonous color, this works quite well. There are difficulties though

in adding or removing certain types of regions, especially in portions of an image

that is noisy or has textures.

To deal with these trouble regions, we group them together with a superpixel

representation of the image. A superpixel representation reduces the complexity of

an image by going from working with hundreds of thousands of pixels to hundreds

of superpixels. A superpixel is perceptually meaningful unit of an image that is

most likely uniform in color and texture[5]. There is also a regional constraint

on superpixels which keep them small and compact. Regions that give GrabCut

trouble in adding or removing are consolidated into one or more superpixels and

can be manipulated as a unit. This makes it easier on the part of the user to make

adjustments to an extraction.

Chapter 2

Automatic Segmentation

The background information is split into two chapters. This chapter includes

commonly used segmentation algorithms that will aid in the understanding of the

interactive segmentation algorithms in Chapter 3. The techniques in this chapter

only segments the image and does not do anything toward selecting out an object

or foreground region, though it does not preclude using them as a step in that

process.

2.1 Segmentation Techniques

2.1.1 K-means Clustering

K-means clustering is a simple, but widely used clustering algorithm [6]. The user

would need to specify a K for the number of desired segments for the image to

be partitioned into. The segments are determined by grouping pixels by set of

property values. In the simplest case, the property value is the grayscale intensity

of the pixel. In color images the property values could be the color of the pixel

represented in RGB or the HSV format. The segments need not be a coherent

region unless some property values are included to encourage coherency, such as

the pixel position.

To perform the clustering, K clusters are initialized with a random value as their

mean property vector. A distance function determines how close the property

vector of each pixel is to any of the cluster means. The pixel is associated with

3

Chapter 2. Automatic 4

the cluster that is the most similar to it, which corresponds to the least distance

as calculated by the distance function. The cluster mean property vectors are

updated to be the mean of the vectors associated with the cluster. The process

begins again with the new mean property vector. The process continues until

convergence, where pixels no longer change their association. After convergence

each pixel is associated with K clusters.

The result of clustering an image with a K of 4 using color is shown in Figure 2.1.

With a small K we see that all of the people get lumped together with the ground

and roof. Furthermore, the parts of the building in shadow on the right fall into

the same cluster as the ground and the trees rather than the rest of the building.

To be useful for segmenting specific objects, many more segments are needed, and

some consideration to regionality is needed to prevent the ground and roof being

in the same cluster. Both these aspects can be found in the superpixel algorithm

based on K-means in Chapter 4.

Figure 2.1: K-means segmentation into 4 clusters [1]

2.1.2 Mean-shift Clustering

The Mean-shift algorithm works to find dense clusters in a set of data [7]. The

procedure for mean-shift first involves taking a histogram of property values of

the pixels (e.g intensity) and a window size σs (in units of number of bins) is

chosen. A pixel is chosen and the corresponding histogram bin set as the center

of the window of size σs. The property value of the pixels in the bins are averaged

and the window center is shifted to bin of that mean value. This averaging and

shifting continues until convergence. The center moves toward dense groups of

Chapter 2. Automatic 5

values incrementally. This procedure is run for each pixel, and by the end, all the

pixels will have converged toward local maxima in the histogram. The pixels that

converged to the same points are grouped together as a cluster. If the distribution

of the historgrom was Gaussian, you can expect that all the points would converge

to the center of the curve. If histogram has multiple peaks, points will cluster to

those peaks if the window size is not too small that it does not move from its local

group of points, or too large so that points gather to intermediary points bewteen

peaks.

The Figure 2.2, shows the result of mean-shift with σs = 50 and σs = 5 on

the same image as in Figure 2.1. As mentioned before σs is the window size for

averaging, and as seen in the example, the larger the window, the more clusters in

the image. With this method we do see much of the building clustered together

and has individually clustered the people in the image. In exchange it does seem

to be sensitive to noise with its fuzzy adherence to edges.

(a) σs = 50 (b) σs = 5

Figure 2.2: Mean-shift example [1]

2.1.3 Automatic Segmentation Summary

If a user wanted to use the types of presented segmentation techniques to perform

foreground extraction, it would be a long arduous process. These segmentation

processes are slow to run because because multiple comparison operations are re-

quired for every single pixel, and that needs to be done multiple times because its

an iterative process. So running the segmentation with different parameters is a

Chapter 2. Automatic 6

long process. Furthermore, since color is the only metric used for separation, dis-

joint parts of the image are considered one segment even if they are from different

objects. These segmentation techniques were not designed to partition out specific

portions of an image, so interactive segmentation tools leverage information from

users to speed up segmentation and have a more accurate extraction of the desired

object.

Chapter 3

Interactive Segmentation Tools

Interactive segmentation tools provides a way for a user to extract out an object

from an image. The underlying algorithm uses user input to try and determine

what region the user wants to extract. This region is labelled as the foreground,

while the discarded region is taken to be background. Most tools allow for editing

of the extraction if portions need to be added or removed.

3.1 Commercial Selection Tools

The most widely used and recognizable user selection tools are included in the

Photoshop tool suite and the GNU Image Manipulation Program (Gimp). These

tools, the Magic Wand, Magnetic Lasso, and Quick Selection, do not have their

algorithms made public, but some details of their inner workings can be inferred.

3.1.1 Magic Wand

The Magic Wand (known as Fuzzy selection in the Gimp image editing program)

is a color based selection tool [8]. Starting off with a point or region, adjacent

points are added to the selected region if it is within a tolerable deviation from

the color based statistics of the originally selected region. The tool works well in

cases where the target selection is of a solid color and objects with clearly defined

edges. Otherwise it might be impossible to get close to the selection you want,

especially if the background has similar color statistics.

7

Chapter 3. Interactive 8

3.1.2 Magnetic Lasso

The Magnetic Lasso (similar to the Intelligent Scissors and Path tool in Gimp)

finds a contour to select around an object [9]. The user selects points around the

edge of the target object by placing nodes around the edge of the object. The

algorithm traces out the object by performing edge detection between nodes and

having the selection follow this detected edge. This tool works very well when the

target object has a well defined edge. Otherwise if the area between two nodes

is highly texturized or noisy it is unlikely that the edge detector will find a path

that follows the contour well.

3.1.3 Quick Selection

Though the algorithm for Photoshop’s Quick Selection tool has not been made

public, there is another tool called Paint Selection [2] that was inspired by Quick

Selection and has the same user interface. In both tools, the user clicks within

the target selection and drags over the object of interest. The points passed over

provides the initial seeding for the learning. The selection region grows from

the initial seeding to encompass what it believes to be the object, as shown in

Figure 3.1. When growing the region snaps to align with strong boundary edges.

The selected foreground is modelled as a color Gaussian Mixture Model (GMM)

with four components. An eight component GMM is learned from the random

sampling from the background. When the selection is dragged to a new region,

the backgound is resampled and recalculated. To actually cut out a foreground

region, a graph-cut is used. The details of graph-cuts will be discussed in the

following section.

3.2 Graph-cut Based Tools

Both the Foreground Selection tool in Gimp and the GrabCut algorithm uses a

form of Graph-cut as the basis for their operation. Both require some kind of

input for the region of interest (rough outline for the Foreground Selection tool

and a bounding box for GrabCut) and the Froeground Selection tool requires some

foreground labelling while GrabCut does not. Both use some form of the following

Graph-cut algorithm to perform its segmentation and extraction.

Chapter 3. Interactive 9

Figure 3.1: Illustration of Paint Selection use [2]

3.2.1 Graph-cut

Given a greyscale image is given as the array z = (z1, . . . , zn, . . . , zN), and that

α = (α1, . . . , αN) for each image pixel to indicate a label for the pixel. For a hard

segmentation (no variable opacity at the edges) αn ∈ {0, 1}, where 0 indicates a

background label and 1 indicates foreground. The parameter θ is a histogram of

grey level values defined as:

θ = {h(z;α), α = 0, 1} (3.1)

one for both background and foreground. The histograms are normalized such

that they sum to 1:
∫
z
h(z, α) = 1. The task is to learn the labels α given the

image z and model θ.

The energy function E is defined so that cutting out the minimum would result

in a good segmentation of the object based on the observations of the foreground

and background. This is written the form of a Gibbs energy function:

E(α, θ, z) = U(α, θ, z) + V (α, z) (3.2)

where U evaluates whether the labels α fits the data z given the histrogram models

from θ. This is defined as:

Chapter 3. Interactive 10

U(α, θ, z) =
∑
n

− log h(zn, : αn) (3.3)

and the smoothness term V is defined as:

V (α, z) = γ
∑

(m,n)εC

dis(m,n)−1[αn 6= αm] exp−β(zm − zn)2 (3.4)

where C is the set of neighboring pixels and dis(•) is the Euclidean distance

between adjacent pixels. This incentivises coherent regions minimizing the possi-

bility of having holes in the segmentation. If the constant β = 0 then smoothness

is encouraged everywhere (to a degree, controlled by the constant γ) and is called

the Ising prior. β is chosen to be:

β = (2〈(zm − zn)2〉)−1 (3.5)

where 〈•〉 is an expectation over an image sample. This value of β ensures that

exponential term in 3.4 switches between high and low contrast. The constant γ

was chosen to be 50 by experimental optimization.

With the energy model in 3.2 the selection is made by:

α̂ = arg min
α

E(α, θ) (3.6)

Several changes are made to build upon this graph-cut to make it into the GrabCut

algorithm.

3.2.2 GrabCut

The GrabCut algorithm is the one of the easiest methods for a user to extract a

foreground object from an image as it requires the least interaction from the user[3].

In many cases, the only input required from the user is to draw a bounding box

around the target object. If the selection is not ideal, the user could provide more

information in form of adding samples to the foreground and background to get a

more optimal cut. There are three main developments made in GrabCut to make

improvements on Graph-cut [3].

Chapter 3. Interactive 11

The first is that the grayscale histogram is replaced with a color Gaussian Mixture

Model (GMM). This takes into account multiple colors expected to be in the

foreground and background. A GMM is a convex combination of Gaussians (a

linear combination that sum to 1 and has non-negative coefficients). Samples from

the image are used as observations to use the expection-maximization algorithm

to learn the parameters of the GMM.

The next improvement made is that the one shot minimum energy cut is replaced

with an iterative algorithm that alternately learns parameters and performs seg-

mentation. The third is that the user can give an incomplete labelling; the fore-

ground region does not need to be explicitly labelled.

The new model is a K = 5 component GMM; one for each the foreground

and background. To introduce the GMM into the energy function, a vector

k = {k1 . . . , kn, . . . , kN} is made with kn ∈ {1, . . . , K}. Each pixel has a kn

value that assigns it to one of the mixture components from either the foreground

or background GMM. αn = 0 or 1 determines whether it is a background or

foreground component.

The new updated energy function from 3.2 is now:

E(α,k, θ, z) = U(α,k, θ, z) + V (α, z) (3.7)

with the new U as:

U(α,k, θ, z) =
∑
n

D(αn, kn, θ, zn) (3.8)

where:

D(αn, kn, θ, zn) = − log p(zn|αn, kn, θ)− log π(αn, kn) (3.9)

with p(•) as a Gaussian probability distribution and π(•) are mixture weight

coefficients, so up to a constant:

D(αn, kn, θ, zn) = − log π(αn, kn) +
1

2
log det Σ(αn, kn) (3.10)

+
1

2
[zn − µ(αn, kn)]>Σ(αn, kn)−1[zn − µ(αn, kn)]

Chapter 3. Interactive 12

The smoothness term V is unchanged from equation 3.4.

Figure 3.2: Algorithmic comparison of several tools. Red markings indicates
labelling background while white markings indicates labelling foreground [3]

For the energy minimization, it is done iteratively. The initial labelling is done with

a bounding box with the outside being labelled as background and the inside of the

box labelled as foreground. The initial GMM’s are learned from these regions and

the first segmentation made. After the initial segmentation, the segmented section

is taken as the foreground and the GMM’s recalculated. A new segmentation is

made, and the process is repeated until convergence.

3.2.3 User Interaction with GrabCut

Figure 3.2 shows a comparison of the relative effort needed to use some of the

dicussed tools plus their segmentation results. Effort is shown by how many in-

teractions the user needed to get the desired segmentation. It is difficult to have a

direct comparison of which algorithm provides the best extraction result because

it is very dependant on the skill of the user with the tool and how much user input

is taken. Even so is evident that though GrabCut required the least user input

out of the shown methods and closely matches the extraction results of using a

graph-cut.

Though it works well in many cases, in some, additional input from the user is

sometimes needed to improve the segmentation. Figure 3.3 shows an example

where all that is needed from the user in GrabCut is the bounding box. In this

Chapter 3. Interactive 13

Figure 3.3: Easy extraction example

Figure 3.4: Harder extraction example

Figure 3.5: Harder extraction example with more user imput

Chapter 3. Interactive 14

example the taget object, the flowers, have clearly defined edges and have a sharp

color contrast with the background. In Figure 3.4 using only a bounding box gives

the majority of the target person, but their hair is missing from the selection. It

is understandable that the hair would be labelled as background because the wall

in the background is close in color. To remedy this, further unput from the user

is needed to label the missing hair region as shown in Figure 3.5.

Figure 3.6: Harder extraction example

Figure 3.7: Harder extraction example with more user imput

There are even harder cases where simple user inputs are not enough. As in the

case in Figure 3.6 we might assume its just like the case in Figure 3.4, where we

might be able to add the soldier’s boots and cap into the selection with a little

more labelling from the user. In Figure 3.7 we see that the boot works as we might

Chapter 3. Interactive 15

have though, but it does not work as well for the cap. This is most likely due to

the grid-like texture pattern on the cap. When the model is updating, the newly

labelled parts extend to contours within the texture rather than encompassing the

entire cap. So to compensate for cases such as these we propose to use superpixels

to easily add in those regions.

Chapter 4

Other Approaches Investigated

Before finding a solution for easier refinement, other avenues of trying to get a

better extraction was explored. Though they were not successful, they lead to

finding the current solution.

4.1 Segmentation

The goal in making an improvement over GrabCut is to take regions that are

difficult to easily add or remove and have them grouped together. Whether they

be noisy regions or difficult textures, if they are consolidated into one or more

segments, it would be a simpler task on the user’s part to manipulate them. The

first step in getting these segments is to find a segmentation method that has the

grouping properties we want.

4.1.1 Bag of Words Clustering

To look for something that would give segments that would keep relavent portions

together and make sure to get edges of objects we first turned to a feature normally

used for image classification and object detection, SIFT descriptors [10]. SIFT

stands for Scale-Invariant Feature transform. This feature looks for keypoints, or

points of interest, in the image that gave distinctive information about pieces of

the image. SIFT features are commonly used in image recognition tasks, so it was

believed that the features would be able to group similar regions together.

16

Chapter 4. Approaches 17

Figure 4.1: Difference of Gaussians[4]

To find potential keypoints, the image is blurred at 4 different octaves, or sizes,

with a Gaussian window at 5 different scales of σ, (σ, kσ, . . . , 4kσ). This makes

each pixel a weighed average of its neighbors. The weights are normally distributed

around center of a 2D matrix. The values of σ and k are set as 1.6 and
√

2 respec-

tively which were found to be optimal in [10]. At each octave, after application

of the Gaussian filters, differences of paired filtered images of consecutive σ values

are taken to produce 4 Difference of Gaussians (DoG) at each scale, as shown in

Figure 4.1. The potential keypoints from these DoG come from finding local ex-

trema in space and scale. A point is determined as a local extrema when compared

to its 8 neighboring pixels, and 9 pixels from each the scale before or after it.

After getting potential keypoints, a Taylor series expansion of scale gives a more

accurate location of the extrema, and if the intensity value of the extrema is

less than the threshold (found to be optimally 0.03 [10]), then it is rejected for

being too low contrast. DoG is known to give a very strong response at edges,

so keypoints at the edges are discarded as deteremined by a 2x2 Hessian matrix

that takes a second derivative as a measure of relative contrast. For the keypoints

Chapter 4. Approaches 18

that remain, they are made rotation invariant by assigning an orientation to each

keypoint. These are calculated by looking at a gradient magnitude and a Gaussian-

weighted circular window in an area around the keypoint’s location. From this an

orientation histogram is made and the strongest responses determine the direction

of the keypoint.

For the actual keypoint descriptor, a 16x16 neighborhood around the keypoint is

taken and split into 16 4x4 sub-blocks. Each sub-block has an 8 bin orientation

histogram giving a vector of 128 bin values. This vector is what comprises the

SIFT keypoint descriptor.

To use the descriptor to try and segment the image, we used a Bag of Words

approach to grouping descriptors. K-means clustering was used, with K = 1000,

to group descriptors into ”bags”. Each is mapped to a color so that the bag of each

point in the image can be displayed. This approach is shown in Figure 4.2. The

only portion from this segmentation is the sky. Though the contours of some of the

objects are visible, it is very evident that using the sift descriptor is not the best

approach to segmenting the image. The next features to be explored for clustering

were color and position which had already been done as SLIC superpixels.

4.1.2 Simple Linear Iterative Clustering

After trying out SIFT descriptors for clustering, we moved on to try to use color

as the clustering feature instead and found that it was already implemented as

Simple Linear Iterative Clustering (SLIC) [5]. SLIC is superpixel algorithm that

is meant to group pixels meaningfully so that it can replace a pixel grid structure.

They are often used in preprocessing steps to reduce the complexity of further

image precessing steps and used to extract features, both of which we hope to use

the superpixels for.

The SLIC method is built upon a K-means clustering approach, much like we were

trying to accomplish using SIFT descriptors. More details on K-means clustering

can be found in Chapter 2. To get superpixels by using K-means, the features

used for the clustering is color information and the position of the pixel in the

image. The user needs to provide the number of desired superpixels. This number

of cluster centers are equally distributed spacially throughout the image. Then

in a 3x3 pixel patch in the neighborhood around the cluster centers the lowest

Chapter 4. Approaches 19

(a) Original Image

(b) Clustered Image

Figure 4.2: SIFT Bag Of Words Clustering

Chapter 4. Approaches 20

gradient position is found and chosen as the new cluster center. This is to prevent

the superpixel from being centered on an edge or seeding with a noisy pixel.

Then pixels are labelled part of the cluster center it is closest to in its feature

space. Unlike a standard K-means clustering, the search for the nearest cluster

center is limited to four times the area of the average superpixel around the point

(twice the length and with of the average superpixel). Limiting the search space

significantly improves the speed of the algorithm. The distance measure to deter-

mine how close a point is to a cluster needs to be a combination of the color and

position information of the pixels. The color is is represented in CIELAB color

space. In CIELAB representation RGB becomes Lab, where L is lightness, a is

the red/green attribute, and b is the blue/yellow attribute. The CIELAB space is

often used because the Euclidean distance between colors approximates a percep-

tually uniform measure for color distances. Simply using the raw x and y pixel

position would inconsistently weigh the position against color information based

on the size of the superpixels and image. The algorithm is summarized as:

where l,a, and b are the colors in CIELAB color space and x and y is the position

within the image.

The distance measure in SLIC normalizes the color and spatial by their maximum

within a cluster. The maximum spatial distance corresponds to the superpixel

size. The maximum color distance is left as a constant that can be set by the

user to control the weights between the color and spatial information. The higher

this normalization value is set, the more grid-like the superpixels become. The

lower the value is, the closer it adheres to edges within the image. With this

Chapter 4. Approaches 21

distance measure, the algorithm iterates by adjusting the cluster centers based on

the means of the color and spatial features within the cluster. A new cluster is

then form based on the new cluster centers. Normally the algorithm would iterate

until change in the cluster centers went below a certain threshold, but in most

cases 10 iterations suffice.

Figure 4.3: SLIC Superpixels

Performing superpixel segmentation on the image from the previous section gives

us the result in Figure 4.3. The the relatively monochromatic sky, the color infor-

mation does not provide much distinction, so the spatial component of the features

force the superpixels into a grid shape. In the busier portions of the image the

superpixels generally do a good job of adhering to the contours of objects. Other

methods for creating superpixels exist, but the SLIC superpixels were used be-

cause they were the fastest at runtime and had the best adherence to boundaries.

We went on to use these superpixels to perform classification on the images to

label superpixels as either foreground or background.

Chapter 4. Approaches 22

4.2 Classification of Superpixels

There are a few challenges in trying to successfully label a foreground region. One

is that forming superpixels decimates the number of data points that can be used

to learn a model for the image. Using pixels alone gives in the neighborhood of

hundreds of thousands of points, but after superpixel segmentation, we are down

to hundreds when using enough superpixels to . Another is that when given a

bounding box for an object, there is a good set of background data from outside

the bounding box, but within the bounding box there are both background and

foreground segments.

A second difficulty is that the training sets are contaminated. We are trying to

perform binary classification when the samples labelled as foreground for training

are both foreground and background samples. Superpixels outside the bounding

box are labelled as background and the ones inside labelled as foreground. For the

superpixels that were on both sides of the bounding box, it was only considered

to be within the bounding box if more than two-thirds of the pixels comprising

the superpixels were within the bounding box. Two-thirds was the ratio chosen

because it was unlikely that a superpixel that was more than halfway outside

the bounding box was part of the foreground. The features extracted from the

superpixels was the RGB mean and standard deviation for each color channel. A

secondary feature set was a 10 bin color histogram for each color channel.

It was not possible to create Gaussian Mixture Models like the ones used in the

GrabCut algorithm because there were too few observations to build more than a

two component GMM, and in some image cases there was not enough observations

even for that. Unable to use a GMM for classification, we turned to common binary

classifiers such as Fishers Linear Discrminant (FLD) and Support Vector Machines

(SVM). These classifiers were trained with the superpixels outside and inside the

bounding box as described and then a binary classification was performed on the

superpixels within the bounding box. The outcomes of these classifications are

compiled with the results of the current solution in Chapter 6. Generally the

accuracy was not terrible, it was close to that of GrabCut. The issue that made it

unfeasible was the near 50% false positive rate. This meant half the background

pixels within the bounding box remained falsely labelled as foreground.

The output of some of the images from the classification is shown in Figure 4.4.

The same images were used as examples for GrabCut in Chapter 3 so a direct

Chapter 4. Approaches 23

comparison can be made. One of the clearly evident issues is that there is nothing

preventing a stray segment not connected to the rest of the extraction from being

included in the foreground. In each of the images in Figure 4.4 there is at least one

background segment extracted that is not adjacent to and of the segments within

the majority of the extraction. Some logical checks could possibly address these

segments. There is also the issue of some of the true foreground segments not be-

ing included in the extraction despite being surrounded by foreground segments.

Furthermore, the high false positive rate would only increase the amount of refine-

ment users would have to do to get a good segmentation rather than simplifying

work for them.

(a) Image

(b) Bounding Box (c) Ground Truth

Figure 4.4: Classification on Superpixels

Chapter 4. Approaches 24

We looked into a few more avenues of classification, but it was evident that they

behaved similarly and creating the models for that background and forground

from just the superpixels was not enough. To deal with the issues of having

too few samples to learn good models, the logical solution would be to just get

more samples. This could be done by using the pixels composing the superpixel

as samples for learning the foreground and background models. After that a

minimum energy cut could be used to try and have connectivity with the segments.

With these changes, the algorithm essentially becomes GrabCut. So instead of

implementing our own GrabCut like algorithm, the actual GrabCut algorithm is

used to the learning and initial extraction and superpixels overlays the algorithm

to aid in performing refinements.

Chapter 5

Superpixel Selection Tool Design

Performing foreground extraction with superpixels is divided into two tasks with

different priorities. The first task is to use superpixels to perform foreground

extraction of an object only using a bounding box as input. These bounding

boxes are the same for each extraction method so that extraction results can be

directly compared. This is the basic extraction made before any further user input

to make sure overlaying superpixels on GrabCut does not significantly degrade the

results. The second task is to perform the extraction task and refinements with

superpixels and demonstrate their relative ease of use compared to GrabCut.

5.1 Base Comparison

The basic foreground procedure, the code of which can be found in Appendix A,

first requires a set of images with objects to extract and corresponding bounding

boxes. The GrabCut algorithm is performed to create an initial mask which is

then fed back into the GrabCut algorithm to iterate 10 times to converge the

segmentation. This is extraction result that is the baseline comparison for our

own methods.

The image is then segmented into superpixels with the SLIC algorithm with the

desired number of superpixels set at 1000. Around a thousand superpixels en-

sures for most images that for the most part the superpixels will keep separate

the regions meant for different labels without having to enforce connectivity. The

output of the superpixel algorithm labels each pixel with a value denoting which

25

Chapter 5. Selection Tool Design 26

superpixel it is assigned to. Applying the GrabCut mask onto the superpixel rep-

resentation of the image informs us as to which superpixels contain pixels labelled

as foreground by GrabCut. If more than 75% of a superpixel’s pixels are within

the GrabCut mask, then it is included in the foreground segmentation. The set

of superpixels that pass this criteria is then used as the new mask for foreground

and is used to extract the object for evaluation.

5.2 User Selection Tool

The selection tool builds off of the OpenCV implementation of the GrabCut algo-

rithm [11]. The GrabCut tool implemention code is shown in Appendix A. With

the GrabCut extraction tool, the procedure is to put a bounding box around the

object, let the algorithm iterate a few times and then make any refinements that

are needed. Examples of this done can be found in Chapter 3.

The selection tool operates very much like the GrabCut tool. The user defines a

bounding box around the desired object to extract and lets the algorithm iterate.

In the displayed extration, the superpixels overlay the GrabCut mask and the

superpixels with over 75% of its pixels in the mask is extracted. To refine the

extraction there is a separate window that shows the superpixel representation of

the image, so the user can pick and choose which segments to keep or remove. The

interactions made are kept on the original image to be able to compare the effort

needed to get the desired extraction compared to GrabCut.

Chapter 6

Results and Analysis

To test the automatic segmentation and user selection tools we used a subset of

50 images from the Berkeley Image database [12]. These images have a bounding

box defined for desired object to extract and a ground truth mask. An example

from the dataset is shown in Figure 6.1.

(a) Image (b) Bounding Box (c) Ground Truth

Figure 6.1: Dataset

6.1 Automatic Segmentation

To evaluate how well a method extracts the foreground, two scores are given

to the extraction. The first is accuracy which indicates what percent of ground

truth mask is part of the automatic extraction. The second score is the false

positive what percent of the background within the bounding box was extracted

as foreground. The whole background is not used because nothing outside the

bounding box would be extracted as foreground, so including all of background in

the calculation does not make sense. If all background was included, it would be

impossible to get a 100% false positive rate.

27

Chapter 6. Results and Analysis 28

Method Number of
Superpixels

Features Accuracy False Positive

GrabCut N/A Color GMM 0.963 0.188
Cls S.pix 500 Mean Color and

STD
0.933 0.496

Cls S.pix 1000 Mean Color and
STD

0.956 0.518

Cls S.pix 1000 Color Histogram 0.828 0.740
GC and SP 1000 Color GMM (C

True)
0.957 0.206

GC and SP 1000 Color GMM (C
False)

0.967 0.224

Table 6.1: Automatic Segmentation Results: Cls S.pix = Classify Superpixels,
GC and SP = GrabCut and Superpixels

For the accuracy on a single image, the number of pixels in the intersection between

the ground truth foreground mask and the foreground mask generated by the au-

tomatic segmentation is divided by the total number of pixels in the ground truth

mask. For the false positive rate, the number of pixels extracted as foreground

that are outside the ground truth mask is divided by the number of background

pixels within the bounding box. The accuracy and false positive rates are averaged

over the images to get an overall accuray and false positive scores for an extraction

method.

From the dataset of 50 images, one image was removed because the bounding box

encompassed the entire image so there were no background samples for certain

methods to learn from. The automatic segmentation results are shown in Table

6.1.

As mentioned in Chapter 4, using just the features from the superpixels was not

enough to separate out the data. In Table 6.1 the only classifier result displayed

is for the Fisher Linear Descriminant, but the other classifiers performed com-

parably to it. In the GrabCut and Superpixel cases whether C is true of false

indicates whether connectivity was enforced or not. With connectivity, all points

within a superpixel should be a contiguous group. Without connectiviy enforced,

a superpixel is allowed to be disjoint regions.

Based on the results from the results of the automatic segmentation, GrabCut+Superpixels

performs close enough to GrabCut alone that it would not be a hinderance to use

Chapter 6. Results and Analysis 29

it as an initial step for the user selection tool.

6.2 User Selection Tool

Unfortunately, unlike the automatic segmentation, evaluating the selection tool is

more subjective. What can be compared is the relative number of actions needed

to refine a selection in both the procedures. for this, we will be using the example

previously seen in Figure 3.7. Figure 6.2 Shows what it would take a user to do

to include the missing boots and cap of the soldier in the segmentation. With the

GrabCut procedure, after each additional group of pixels are added to the model,

the user needs to iterate through the updating process to see if the refine given

was enough. While there is some guesswork involved for getting the regions by

Grabcut, if using the superpixels, the user can see how much it would take to add

the desired region by referencing the superpixel boundaries as in Figure 6.3.

Chapter 6. Results and Analysis 30

(a) GrabCut Refinement

(b) CrabCut and Superpixel Automatic

(c) Superpixel Refinement

Figure 6.2: Comparing Refinement Methods

Chapter 6. Results and Analysis 31

Figure 6.3: Reference Boundaries

Chapter 7

Conclusions and

Recommendations

Adding superpixels on top of the GrabCut process did not degrade the segmen-

tation results significantly, but did provide a convenient procedure to refine the

segmentation. Having a superpixel segmentation on hand allowed a way to in-

clude portions of the image in the foreground without the previous porcedure of

guessing at how much to add to the foreground model and hoping it was enough

to learn the new region. There is a few downsides in speed because the superpixel

segmentation takes a few seconds to perform, and it is inconvenient to edit the

superpixel parameters because of the time it would take to reprocess. For a better

metric for the ease of use, it would have been prudent to have multiple users to

evaluate the user experience of the tool.

There were a few area of inquiry left to explore to further see the possibilities

in making segmentation improvements using superpixels. One is that the pixels

contained within the superpixels could be used within the iterations GrabCut uses

to automatically refine the segmentation. This would also mean that when you

add a superpixel to the foreground you add all the pixels within the superpixel

into the foreground color model. Another avenue left unexplored is using texture

features from the superpixels for classification. Though using pixels for learning

models provides a lot of data points to draw from, more complex features cannot

be drawn from pixels. On the other hand, it is possible to get texture information

from a superpixel patch and could possibly aid in classifcation. The difficulty

arises from extracting features from irregularly shaped superpixels. Usually to get

32

Chapter 7. Conclusions and Recommendations 33

texture features a filter is used or a patch of the image is compared to a template.

This might be possible to do if a rectangular portion of the superpixel was used

for the feature calculation.

There is a lot more that could have possibly been done to fully explore potential

for using superpixels in foreground extraction and there is still work to be done to

have a more concrete evaluation of the GrabCut+Superpixel procedure. For dis-

semination, the GrabCut+Superpixel tool is planned to be submitted as a module

for Gimp.

Appendix A

Foreground Extraction Code

A.1 GrabCut

GrabCut implementation from OpenCV [11].

#!/ usr/bin/env python

’’’

===

Interactive Image Segmentation using GrabCut algorithm.

This sample shows interactive image segmentation using grabcut algorithm.

USAGE:

python grabcut.py <filename >

README FIRST:

Two windows will show up , one for input and one for output.

At first , in input window , draw a rectangle around the object using

mouse right button. Then press ’n’ to segment the object (once or a few times)

For any finer touch -ups , you can press any of the keys below and draw lines on

the areas you want. Then again press ’n’ for updating the output.

Key ’0’ - To select areas of sure background

Key ’1’ - To select areas of sure foreground

Key ’2’ - To select areas of probable background

Key ’3’ - To select areas of probable foreground

Key ’n’ - To update the segmentation

Key ’r’ - To reset the setup

Key ’s’ - To save the results

===

’’’

34

Appendix A. Code 35

import numpy as np

import cv2

import sys

BLUE = [255,0,0] # rectangle color

RED = [0,0,255] # PR BG

GREEN = [0,255 ,0] # PR FG

BLACK = [0,0,0] # sure BG

WHITE = [255 ,255 ,255] # sure FG

DRAW_BG = {’color ’ : BLACK , ’val ’ : 0}

DRAW_FG = {’color ’ : WHITE , ’val ’ : 1}

DRAW_PR_FG = {’color ’ : GREEN , ’val ’ : 3}

DRAW_PR_BG = {’color ’ : RED , ’val ’ : 2}

setting up flags

rect = (0,0,1,1)

drawing = False # flag for drawing curves

rectangle = False # flag for drawing rect

rect_over = False # flag to check if rect drawn

rect_or_mask = 100 # flag for selecting rect or mask mode

value = DRAW_FG # drawing initialized to FG

thickness = 3 # brush thickness

def onmouse(event ,x,y,flags ,param):

global img ,img2 ,drawing ,value ,mask ,rectangle ,rect ,rect_or_mask ,ix,iy,rect_over

Draw Rectangle

if event == cv2.EVENT_RBUTTONDOWN:

rectangle = True

ix,iy = x,y

elif event == cv2.EVENT_MOUSEMOVE:

if rectangle == True:

img = img2.copy()

cv2.rectangle(img ,(ix,iy),(x,y),BLUE ,2)

rect = (min(ix ,x),min(iy,y),abs(ix-x),abs(iy-y))

rect_or_mask = 0

elif event == cv2.EVENT_RBUTTONUP:

rectangle = False

rect_over = True

cv2.rectangle(img ,(ix,iy),(x,y),BLUE ,2)

rect = (min(ix ,x),min(iy,y),abs(ix-x),abs(iy-y))

rect_or_mask = 0

print " Now press the key ’n’ a few times until no further change \n"

draw touchup curves

if event == cv2.EVENT_LBUTTONDOWN:

if rect_over == False:

print "first draw rectangle \n"

else:

drawing = True

cv2.circle(img ,(x,y),thickness ,value[’color ’],-1)

Appendix A. Code 36

cv2.circle(mask ,(x,y),thickness ,value[’val ’],-1)

elif event == cv2.EVENT_MOUSEMOVE:

if drawing == True:

cv2.circle(img ,(x,y),thickness ,value[’color ’],-1)

cv2.circle(mask ,(x,y),thickness ,value[’val ’],-1)

elif event == cv2.EVENT_LBUTTONUP:

if drawing == True:

drawing = False

cv2.circle(img ,(x,y),thickness ,value[’color ’],-1)

cv2.circle(mask ,(x,y),thickness ,value[’val ’],-1)

print documentation

print __doc__

Loading images

if len(sys.argv) == 2:

filename = sys.argv [1] # for drawing purposes

else:

print "No input image given , so loading default image , lena.jpg \n"

print "Correct Usage: python grabcut.py <filename > \n"

filename = ’C:/Users/arahman/Pictures/fuji.jpg ’

img = cv2.imread(filename)

img2 = img.copy() # a copy of original image

mask = np.zeros(img.shape [:2], dtype = np.uint8) # mask initialized to PR_BG

output = np.zeros(img.shape ,np.uint8) # output image to be shown

input and output windows

cv2.namedWindow(’output ’)

cv2.namedWindow(’input ’)

cv2.setMouseCallback(’input ’,onmouse)

cv2.moveWindow(’input ’,img.shape [1]+10 ,90)

print " Instructions: \n"

print " Draw a rectangle around the object using right mouse button \n"

cv2.imwrite(’M:/ CIED_CDWS/segmenting/badroad.bmp ’,img)

while (1):

cv2.imshow(’output ’,output)

cv2.imshow(’input ’,img)

k = 0xFF & cv2.waitKey (1)

key bindings

if k == 27: # esc to exit

break

elif k == ord(’0’): # BG drawing

print " mark background regions with left mouse button \n"

value = DRAW_BG

elif k == ord(’1’): # FG drawing

print " mark foreground regions with left mouse button \n"

value = DRAW_FG

elif k == ord(’2’): # PR_BG drawing

value = DRAW_PR_BG

Appendix A. Code 37

elif k == ord(’3’): # PR_FG drawing

value = DRAW_PR_FG

elif k == ord(’s’): # save image

bar = np.zeros ((img.shape [0],5,3),np.uint8)

res = np.hstack ((img2 ,bar ,img ,bar ,output))

cv2.imwrite(’grabcut_output.png ’,res)

print " Result saved as image \n"

elif k == ord(’r’): # reset everything

print "resetting \n"

rect = (0,0,1,1)

drawing = False

rectangle = False

rect_or_mask = 100

rect_over = False

value = DRAW_FG

img = img2.copy()

mask = np.zeros(img.shape [:2], dtype = np.uint8) # mask initialized to PR_BG

output = np.zeros(img.shape ,np.uint8) # output image to be shown

elif k == ord(’n’): # segment the image

print """ For finer touchups , mark foreground and background after pressing keys 0-3

and again press ’n’ \n"""

if (rect_or_mask == 0): # grabcut with rect

bgdmodel = np.zeros ((1,65),np.float64)

fgdmodel = np.zeros ((1,65),np.float64)

cv2.grabCut(img2 ,mask ,rect ,bgdmodel ,fgdmodel ,1,cv2.GC_INIT_WITH_RECT)

rect_or_mask = 1

elif rect_or_mask == 1: # grabcut with mask

bgdmodel = np.zeros ((1,65),np.float64)

fgdmodel = np.zeros ((1,65),np.float64)

cv2.grabCut(img2 ,mask ,rect ,bgdmodel ,fgdmodel ,1,cv2.GC_INIT_WITH_MASK)

mask2 = np.where((mask ==1) + (mask ==3) ,255 ,0). astype(’uint8 ’)

output = cv2.bitwise_and(img2 ,img2 ,mask=mask2)

cv2.imwrite(’M:/ CIED_CDWS/segmenting/badroadmask.bmp ’,output)

cv2.destroyAllWindows ()

A.2 Superpixel Refinement

Implemention of refinement of GrabCut using superpixels.

Abrar Rahman: Superpixel Refinemment

import numpy as np

import cv2

from skimage import segmentation

import os

import sys

Appendix A. Code 38

BLUE = [255,0,0] # rectangle color

RED = [0,0,255] # PR BG

GREEN = [0,255 ,0] # PR FG

BLACK = [0,0,0] # sure BG

WHITE = [255 ,255 ,255] # sure FG

DRAW_BG = {’color ’ : BLACK , ’val ’ : 0}

DRAW_FG = {’color ’ : WHITE , ’val ’ : 1}

DRAW_PR_FG = {’color ’ : GREEN , ’val ’ : 3}

DRAW_PR_BG = {’color ’ : RED , ’val ’ : 2}

setting up flags

rect = (0,0,1,1)

drawing = False # flag for drawing curves

rectangle = False # flag for drawing rect

rect_over = False # flag to check if rect drawn

rect_or_mask = 100 # flag for selecting rect or mask mode

value = DRAW_FG # drawing initialized to FG

thickness = 3 # brush thickness

include = [] # manually added segments

exclude = [] # manually removed segments

threshold = 0.75 # overlap of segment with grabcut needed to be included

def onmouse(event ,x,y,flags ,param):

global img ,img2 ,drawing ,value ,mask ,rectangle ,rect ,rect_or_mask ,ix,iy,rect_over ,outline ,include ,exclude

Draw Rectangle

if event == cv2.EVENT_RBUTTONDOWN:

rectangle = True

ix,iy = x,y

elif event == cv2.EVENT_MOUSEMOVE:

if rectangle == True:

img = img2.copy()

cv2.rectangle(img ,(ix,iy),(x,y),BLUE ,2)

rect = (min(ix ,x),min(iy,y),abs(ix-x),abs(iy-y))

rect_or_mask = 0

elif event == cv2.EVENT_RBUTTONUP:

rectangle = False

rect_over = True

cv2.rectangle(img ,(ix,iy),(x,y),BLUE ,2)

rect = (min(ix ,x),min(iy,y),abs(ix-x),abs(iy-y))

rect_or_mask = 0

print " Now press the key ’n’ a few times until no further change \n"

draw touchup curves

if event == cv2.EVENT_LBUTTONDOWN:

if rect_over == False:

print "first draw rectangle \n"

else:

drawing = True

Appendix A. Code 39

cv2.circle(img ,(x,y),thickness ,value[’color ’],-1)

cv2.circle(mask ,(x,y),thickness ,value[’val ’],-1)

modify(outline[y,x],value[’val ’])

elif event == cv2.EVENT_MOUSEMOVE:

if drawing == True:

cv2.circle(img ,(x,y),thickness ,value[’color ’],-1)

cv2.circle(mask ,(x,y),thickness ,value[’val ’],-1)

modify(outline[y,x],value[’val ’])

elif event == cv2.EVENT_LBUTTONUP:

if drawing == True:

drawing = False

cv2.circle(img ,(x,y),thickness ,value[’color ’],-1)

cv2.circle(mask ,(x,y),thickness ,value[’val ’],-1)

modify(outline[y,x],value[’val ’])

def modify(v,mode):

if mode:

if v not in include:

include.append(v)

if v in exclude:

exclude.remove(v)

else:

if v in include:

include.remove(v)

if v not in exclude:

exclude.append(v)

if len(sys.argv) == 3:

filename = sys.argv [1] # for drawing purposes

seg = int(sys.argv [2])

else:

print "No input image given , so loading default image , lena.jpg \n"

print "Correct Usage: python supercut.py <filename > \n"

filename = ’C:/Users/Rafi/Dropbox/data/images /376043.jpg ’

seg = 1000

img = cv2.imread(filename)

img2 = img.copy() # a copy of original image

mask = np.zeros(img.shape [:2], dtype = np.uint8) # mask initialized to PR_BG

stain = np.zeros(img.shape ,dtype = np.uint8) # mask initialized to PR_BG

output = np.zeros(img.shape ,np.uint8) # output image to be shown

segmenting

outline = segmentation.slic(img2 ,sigma=1, n_segments=seg ,enforce_connectivity=False ,compactness =10)

segments = np.unique(outline)

boundaries = segmentation.mark_boundaries(img2 ,outline)

cv2.namedWindow(’output ’)

cv2.namedWindow(’input ’)

cv2.namedWindow(’boundaries ’)

cv2.setMouseCallback(’input ’,onmouse)

cv2.setMouseCallback(’boundaries ’,onmouse)

Appendix A. Code 40

while (1):

cv2.imshow(’output ’,output)

cv2.imshow(’input ’,img)

cv2.imshow(’boundaries ’,boundaries)

k = 0xFF & cv2.waitKey (1)

key bindings

if k == 27: # esc to exit

break

elif k == ord(’0’): # BG drawing , not used currently

print " mark background regions with left mouse button \n"

value = DRAW_BG

elif k == ord(’1’): # FG drawing

print " mark foreground regions with left mouse button \n"

value = DRAW_FG

elif k == ord(’s’): # save image

bar = np.zeros ((img.shape [0],5,3),np.uint8)

res = np.hstack ((img2 ,bar ,img ,bar ,output))

cv2.imwrite(’supercut_output.png ’,res)

print " Result saved as image \n"

elif k == ord(’r’): # reset everything

print "resetting \n"

rect = (0,0,1,1)

drawing = False

rectangle = False

rect_or_mask = 100

rect_over = False

value = DRAW_FG

img = img2.copy()

mask = np.zeros(img.shape [:2], dtype = np.uint8) # mask initialized to PR_BG

output = np.zeros(img.shape ,np.uint8) # output image to be shown

elif k == ord(’n’): # segment the image

print """ For finer touchups , mark foreground and background after pressing keys 0-3

and again press ’n’ \n"""

if (rect_or_mask == 0): # grabcut with rect

bgdmodel = np.zeros ((1,65),np.float64)

fgdmodel = np.zeros ((1,65),np.float64)

cv2.grabCut(img2 ,mask ,rect ,bgdmodel ,fgdmodel ,1,cv2.GC_INIT_WITH_RECT)

rect_or_mask = 1

elif rect_or_mask == 1: # grabcut with mask

bgdmodel = np.zeros ((1,65),np.float64)

fgdmodel = np.zeros ((1,65),np.float64)

cv2.grabCut(img2 ,mask ,rect ,bgdmodel ,fgdmodel ,1,cv2.GC_INIT_WITH_MASK)

sections from grabcut

grab_mask = np.where((mask ==2)|(mask ==0) ,0 ,1). astype(’uint8 ’)

regions = outline*grab_mask

segmented = np.unique(regions)

segmented = segmented [1:len(segmented)]

manual segments

for i in include:

if i not in segmented:

Appendix A. Code 41

segmented = np.append(segmented ,i)

pxtotal = np.bincount(outline.flatten ())

pxseg = np.bincount(regions.flatten(), minlength=len(segments))

seg_mask = np.zeros(img.shape [:2],np.uint8)

label = (pxseg[segmented]/ pxtotal[segmented]. astype(float))<.75

for i in include:

label[segmented ==i] = 0

for i in exclude:

label[segmented ==i] = 1

for j in range(0,len(label)):

if label[j] == 0:

temp = (outline == segmented[j])

seg_mask = seg_mask+temp

fin_mask = seg_mask >0

mask2 = np.where((fin_mask ==1) ,255 ,0). astype(’uint8 ’)

output = cv2.bitwise_and(img2 ,img2 ,mask=mask2)

cv2.destroyAllWindows ()

A.3 Automatic Foreground Extraction

Performing foreground extraction with a given bounding box.

import cv2

import os

import numpy as np

from skimage import segmentation

base_dir = "C:/Users/Rafi/Dropbox/data/"

img_dir = base_dir + "images /"

box_dir = base_dir + "boxes/"

img_files = os.listdir(img_dir)

box_files = os.listdir(box_dir)

n = 1000 # approximate number of superpixels

for i in range(0,len(img_files)):

for i in range (0,2):

img = cv2.imread(img_dir + img_files[i])

Appendix A. Code 42

mask = np.zeros(img.shape [:2],np.uint8)

bgdModel = np.zeros ((1,65),np.float64)

fgdModel = np.zeros ((1,65),np.float64)

read bounding box data

f = open(box_dir + box_files[i])

points = f.read()

f.close()

points = points.split()

rect0 = (int(float(points [0])),int(float(points [1])) ,int(float(points [2])), int(float(points [3])))

rect = (rect0[0], rect0[1], rect0[2]- rect0[0], rect0[3]-rect0 [1])

output = np.zeros(img.shape ,np.uint8) # output image to be shown

outline = segmentation.slic(img ,n_segments=n,enforce_connectivity=False)

outline = segmentation.quickshift(img)

perform GrabCut

cv2.grabCut(img ,mask ,rect ,bgdModel ,fgdModel ,1,cv2.GC_INIT_WITH_RECT)

cv2.grabCut(img ,mask ,rect ,bgdModel ,fgdModel ,10,cv2.GC_INIT_WITH_MASK)

use GrabCut mask on superpixels

grab_mask = np.where((mask ==2)|(mask ==0) ,0 ,1). astype(’uint8 ’)

regions = outline*grab_mask

segmented = np.unique(regions)

segmented = segmented [1:len(segmented)]

pxtotal = np.bincount(outline.flatten ())

pxseg = np.bincount(regions.flatten ())

determine which superpixels to include

seg_mask = np.zeros(img.shape [:2],np.uint8)

label = (pxseg[segmented]/ pxtotal[segmented]. astype(float))<.75

for j in range(0,len(label)):

if label[j] == 0:

temp = (outline == segmented[j])

seg_mask = seg_mask+temp

mask = seg_mask >0

mask2 = np.where((mask ==1) ,255 ,0). astype(’uint8 ’)

output = cv2.bitwise_and(img ,img ,mask=mask2)

cv2.imwrite(base_dir+str(n)+"/ cut2 /"+ img_files[i][0: -4]+ ’.jpg ’,output)

A.4 Evaluation Code

Get evaluation score as described in Chapter 6.

import cv2

Appendix A. Code 43

import os

import numpy as np

base_dir = "C:/Users/Rafi/Dropbox/data/"

img_dir = base_dir + "images /"

segment_dir = base_dir + "segment /"

box_dir = base_dir + "boxes/"

img_files = os.listdir(img_dir)

segment_files = os.listdir(segment_dir)

box_files = os.listdir(box_dir)

back_score = 0

fore_score = 0

for i in range(0,len(img_files)):

img = cv2.imread(img_dir + img_files[i])

mask = np.zeros(img.shape [:2],np.uint8)

bgdModel = np.zeros ((1,65),np.float64)

fgdModel = np.zeros ((1,65),np.float64)

f = open(box_dir + box_files[i])

points = f.read()

f.close()

points = points.split()

rect0 = (int(float(points [0])),int(float(points [1])) ,int(float(points [2])), int(float(points [3])))

rect = (rect0[0], rect0[1], rect0[2]- rect0[0], rect0[3]-rect0 [1])

Performing GrabCut

cv2.grabCut(img ,mask ,rect ,bgdModel ,fgdModel ,1,cv2.GC_INIT_WITH_RECT)

cv2.grabCut(img ,mask ,rect ,bgdModel ,fgdModel ,10,cv2.GC_INIT_WITH_MASK)

#

mask2 = np.where ((mask ==2)|(mask ==0) ,0 ,1). astype(’uint8 ’)

img = img*mask2[:,:,np.newaxis]

#

pt2 = (rect [2]+ rect[0],rect [3]+ rect [1])

#

cv2.rectangle(img , (rect[0],rect [1]), pt2 ,BLUE ,2)

#

cv2.imwrite(base_dir + ’grabcut_ ’ +img_files[i],img)

Extract Segmented Image

img = cv2.imread(base_dir + ’grab_results/grabcut_ ’ +img_files[i])

img = cv2.imread(base_dir + ’1000/ out_base/’ +img_files[i][0: -4]+ ’.jpg ’)

img = cv2.imread(base_dir + ’1000/ out/’ +img_files[i])

Appendix A. Code 44

segment = cv2.imread(segment_dir + segment_files[i])

bg = 0

bg0 = 0

fg = 0

fg0 = 0

for j in range(rect0[1],rect0 [3]):

for k in range(rect0[0],rect0 [2]):

if (segment[j][k] == 0).all ():

bg +=1

if (img[j][k] == 0).all ():

bg0 += 1

if ((segment[j][k] == 255) + (segment[j][k] == 128)). all():

fg += 1

if (img[j][k] == 0).all ():

fg0 += 1

back_score += (1-bg0/float(bg))/ len(img_files)

fore_score += (1-fg0/float(fg))/ len(img_files)

print fore_score

print back_score

Bibliography

[1] Dingding Liu, Bilge Soran, Gregg Petrie, and Linda Shapiro. A review of

computer vision segmentation algorithms, 2012. URL https://courses.cs.

washington.edu/courses/cse576/12sp/notes/remote.pdf.

[2] Jiangyu Liu, Jian Sun, and Heung-Yeung Shum. Paint selec-

tion. ACM Transactions on Graphics, 28, August 2009. URL

http://research.microsoft.com/en-us/um/people/jiansun/papers/

PaintSelection_SIGGRAPH09.pdf.

[3] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Inter-

active foreground extraction using iterated graph cuts. ACM Transactions

on Graphics, 23:309–314, August 2004. URL http://research.microsoft.

com/pubs/67890/siggraph04-grabcut.pdf.

[4] Opencv 3.0.0 documentation: Introduction to sift (scale-invariant fea-

ture transform), 2014. URL http://docs.opencv.org/trunk/doc/py_

tutorials/py_feature2d/py_sift_intro/py_sift_intro.html.

[5] R. Achanta, A Shaji, K. Smith, A Lucchi, P. Fua, and S. Susstrunk. Slic

superpixels compared to state-of-the-art superpixel methods. Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on, 34(11):2274–2282, Nov

2012. ISSN 0162-8828. doi: 10.1109/TPAMI.2012.120.

[6] J.B MacQueen. Some methods for classification and analysis of multivari-

ate observations. In Processings of 5th Berkeley Mathematical Statistics and

Probability, pages 281–297. University of California Press, 1967.

[7] D. Comaniciu and P. Meer. Mean shift analysis and applications. IEEE

International Conference on Computer Vision, pages 1197–1203, 1999.

45

https://courses.cs.washington.edu/courses/cse576/12sp/notes/remote.pdf
https://courses.cs.washington.edu/courses/cse576/12sp/notes/remote.pdf
http://research.microsoft.com/en-us/um/people/jiansun/papers/PaintSelection_SIGGRAPH09.pdf
http://research.microsoft.com/en-us/um/people/jiansun/papers/PaintSelection_SIGGRAPH09.pdf
http://research.microsoft.com/pubs/67890/siggraph04-grabcut.pdf
http://research.microsoft.com/pubs/67890/siggraph04-grabcut.pdf
http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html

Bibliography 46

[8] Gnu image manipulation program user manual: 2.5. fuzzy selection (magic

wand), 2014. URL http://docs.gimp.org/en/gimp-tool-fuzzy-select.

html.

[9] Gnu image manipulation program user manual: 2.7. intelligent scissors, 2014.

URL http://docs.gimp.org/en/gimp-tool-iscissors.html.

[10] David G. Lowe. Distinctive image features from scale-invariant keypoints.

Int. J. Comput. Vision, 60(2):91–110, November 2004. ISSN 0920-5691. doi:

10.1023/B:VISI.0000029664.99615.94. URL http://dx.doi.org/10.1023/

B:VISI.0000029664.99615.94.

[11] G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools, 2000.

[12] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision,

volume 2, pages 416–423, July 2001.

http://docs.gimp.org/en/gimp-tool-fuzzy-select.html
http://docs.gimp.org/en/gimp-tool-fuzzy-select.html
http://docs.gimp.org/en/gimp-tool-iscissors.html
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Automatic Segmentation
	2.1 Segmentation Techniques
	2.1.1 K-means Clustering
	2.1.2 Mean-shift Clustering
	2.1.3 Automatic Segmentation Summary

	3 Interactive Segmentation Tools
	3.1 Commercial Selection Tools
	3.1.1 Magic Wand
	3.1.2 Magnetic Lasso
	3.1.3 Quick Selection

	3.2 Graph-cut Based Tools
	3.2.1 Graph-cut
	3.2.2 GrabCut
	3.2.3 User Interaction with GrabCut

	4 Other Approaches Investigated
	4.1 Segmentation
	4.1.1 Bag of Words Clustering
	4.1.2 Simple Linear Iterative Clustering

	4.2 Classification of Superpixels

	5 Superpixel Selection Tool Design
	5.1 Base Comparison
	5.2 User Selection Tool

	6 Results and Analysis
	6.1 Automatic Segmentation
	6.2 User Selection Tool

	7 Conclusions and Recommendations
	A Foreground Extraction Code
	A.1 GrabCut
	A.2 Superpixel Refinement
	A.3 Automatic Foreground Extraction
	A.4 Evaluation Code

	Bibliography

