
THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

Fair TCP Channel Access for IEEE 802.11 WLANs

by

Christopher Sang

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Engineering

February 26, 2014

Dr. Sam Keene

Advisor

THE COOPER UNION FOR THE ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Candidate’s Thesis Advisor and

has received approval. It was submitted to the Dean of the School of Engineering

and the full Faculty, and was approved as partial fulfillment of the requirements for

the degree of Master of Engineering.

Dr. Teresa Dahlberg

Dean, School of Engineering

Dr. Sam Keene

Candidate’s Thesis Advisor

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Keene, for all of his hard work teaching

and guiding me through this project. I also want to thank Max Kang for helping me with my

research, particularly on the topic of packet capture. Lastly, I would like to thank my family.

This project would not be possible without all of your support.

i

ABSTRACT

TCP exhibits unfairness in IEEE 802.11 WLANs due to the high rate of channel errors,

frame collisions, and delays associated with wireless transmission. While much existing work

has focused on improving TCP throughput in the presence of random data loss and delays, it

has not completely addressed the problems that occur when TCP segments are involved in colli-

sions. For example, when TCP acknowledgments (ACKs) collide with data segments, the data

almost always survives due to the packet capture effect, while the ACKs cannot be decoded.

Excess ACK errors can create unintended behavior in TCP congestion control algorithms, lead-

ing to slow data rates and unequal throughput distribution across parallel connections. Fair TCP

Channel Access (FTCA) is a comprehensive MAC-layer solution developed to fix these issues.

FTCA prioritizes TCP control packets at the MAC layer using quality-of-service mechanisms

in the 802.11 standard. It reduces TCP ACK delays and prevents collisions between TCP con-

trol packets and data segments that could cause improper protocol operation. FTCA is designed

to be easily deployable in existing networks. Using NS-3 network simulations, we perform a

thorough comparison of FTCA against other algorithms in capture-enabled WLANs. We show

that FTCA significantly improves TCP fairness with minimal throughput overhead.

ii

CONTENTS

Acknowledgments i

Abstract ii

Table of Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

2 Background 2

2.1 The Transmission Control Protocol . 2
2.1.1 Reliable Data Transfer . 3
2.1.2 Connection Setup and Teardown . 4
2.1.3 Congestion Control . 5
2.1.4 TCP Design Considerations . 7

2.2 IEEE 802.11 Infrastructure WLANs . 8
2.2.1 The 802.11 MAC Protocol . 9
2.2.2 Collision Avoidance . 10
2.2.3 Hidden Terminals and RTS/CTS . 11

3 TCP in Wireless Networks 14

3.1 Random Packet Loss Events . 15
3.2 Packet Collisions . 17
3.3 Packet Capture . 19
3.4 ACK Compression . 21
3.5 Forward-Reverse Path Asymmetry . 21

iii

4 Existing Solutions for Wireless TCP 23

4.1 Sender and Receiver-Side TCP Modifications 24
4.2 MAC Layer Modifications . 27
4.3 Multi-Layer and Cross-Layer Approaches . 28

5 Fair TCP Channel Access 33

6 Designing Network Simulations for FTCA 40

6.1 Overview of NS-3 . 40
6.2 Physical Layer Model . 41
6.3 Node Layouts . 42
6.4 Configuration of the Network Stack . 43
6.5 Evaluation Metrics . 44

7 Simulation Results and Analysis 45

7.1 TCP Connections . 45
7.1.1 Star Layout . 45
7.1.2 Grid Layout . 54
7.1.3 Random Disc Layout . 60

7.2 TCP and UDP Connections . 64

8 Conclusions and Recommendations 68

References 69

iv

LIST OF FIGURES

2.1 TCP Header Format . 2
2.2 An Example of Congestion Window Behavior in TCP Tahoe and Reno 7
2.3 802.11 MAC Frame Format . 9
2.4 802.11 MAC Interframe Spacing . 11
2.5 An Example of the Hidden Terminal Problem 13
2.6 NAV Setting due to RTS/CTS Exchange . 13

3.1 Throughput for 8 Parallel TCP Connections in an 802.11 WLAN 14
3.2 Unfair Congestion Window Allocation Among 2 TCP NewReno Senders 16
3.3 Collision Probability Models for Saturated 802.11 WLANs 18
3.4 Four Packet Capture Cases . 18

4.1 TCP CUBIC Congestion Window Function 26
4.2 Frame Exchange in DCF+ . 28
4.3 TCP ACK Agent . 31

5.1 Packet Queueing in 802.11e . 35
5.2 AIFS and other Interframe Spaces . 35
5.3 TCP Uploads without ACK Priority . 38

6.1 Node Layouts for NS-3 Simulation . 42

7.1 Average Fairness for Each System (Star Layout) 45
7.2 Per Node TCP Throughput (Base System, Star, Run A) 47
7.3 Per Node TCP Throughput (Base System, Star, Run B) 47
7.4 TCP Congestion Window (Base System, Star, Run A) 48
7.5 TCP Congestion Window (Base System, Star, Run B) 48
7.6 Per Node TCP Throughput (FTCA, Star Layout) 49
7.7 TCP Congestion Window (FTCA, Star Layout) 49
7.8 Maximum Observed Throughput Difference (Star Layout) 50
7.9 Average TCP System Throughput (Star Layout) 51

v

7.10 Average TCP ACK Error Rate (Star Layout) 52
7.11 Average TCP Data Segment Error Rate (Star Layout) 53
7.12 Average Fairness for Each System (Grid Layout) 54
7.13 Per Node TCP Throughput (Base System, Grid Layout) 55
7.14 TCP Congestion Window (Base System, Grid Layout) 55
7.15 Per Node TCP Throughput (FTCA, Grid Layout) 56
7.16 TCP Congestion Window (FTCA, Grid Layout) 56
7.17 Maximum Observed Throughput Difference (Grid Layout) 58
7.18 Average TCP System Throughput (Grid Layout) 58
7.19 Average TCP ACK Error Rate (Grid Layout) 59
7.20 Average TCP Data Segment Error Rate (Grid Layout) 59
7.21 Average Fairness for Each System (Random Disc Layout) 60
7.22 Maximum Observed Throughput Difference (Random Disc Layout) 61
7.23 Average TCP System Throughput (Random Disc Layout) 62
7.24 Average TCP ACK Error Rate (Random Disc Layout) 63
7.25 Average TCP Data Segment Error Rate (Random Disc Layout) 63
7.26 Average Fairness for Each System (TCP and UDP, Grid) 64
7.27 Maximum Observed Throughput Difference (TCP and UDP, Grid) 65
7.28 Average System Throughput (TCP and UDP, Grid) 66
7.29 Average TCP ACK Error Rate (TCP and UDP, Grid) 67
7.30 Average TCP/UDP Data Error Rate (TCP and UDP, Grid) 67

vi

LIST OF TABLES

5.1 Default 802.11 Access Categories . 35

6.1 NS-3 Physical Layer Simulation Parameters 42

vii

1. INTRODUCTION

The widespread use of Internet-connected electronic devices is placing an increasing

demand on wireless networks. Consumers are accessing the Web through portable devices

including laptops, smartphones, tablets, and e-readers. At the same time, manufacturers are in-

corporating wireless connectivity into non-portable systems such as televisions and game con-

soles. The use of wireless networking is only expected to continue as the electronics industry

experiments with the next-generation of wearable gadgets and home automation technology.

As the number of devices continues to increase, so does the level of Internet traffic generated

by them. Today, the typical user is not only a consumer of data, but a producer as well [1]–[3].

As a result, the end-to-end characteristics of an Internet connection have changed.

While the Internet backbone is still composed of high-speed wired links, homes and busi-

nesses are deploying wireless local area networks (WLANs). Unlike wired connections, these

WLANs have lower data rates. They are subject to external interference, which can lead to

high bit error rates and packet losses. Since the wireless medium is shared between nodes,

packet collisions and transmission delays also occur [4], [5].

The Transmission Control Protocol (TCP), a transport-layer mechanism for ensuring

the reliable delivery of data over a network, is not optimized for use in wireless links. TCP

was introduced before the advent of 802.11 WLANs, and although it has undergone numerous

modifications since then, components of TCP still fail to address the unique challenges of

wireless transmission. These shortcomings are resulting in slow, unreliable connections and

unfair sharing of network resources.

1

2. BACKGROUND

2.1. The Transmission Control Protocol

TCP [6] is a connection-oriented transport layer protocol. A TCP sender receives a

stream of data from the application layer, separates the data into segments, and appends a

header to each segment before passing it down to the network layer for further processing. The

format of the TCP header is depicted in Figure 2.1. The header includes a 32-bit sequence

number, a 32-bit acknowledgment number, a checksum, and a set of flags used to signal ad-

ditional information to the TCP receiver. The options field in the TCP header is usually left

blank, so the typical size of the header is 20 bytes [5].

32 bits

Source Port Destination Port

Sequence Number

Acknowledgment Number
Data Offset

(4 bits) Reserved Flags
(6 bits) Window

Checksum Urgent Pointer

Options (variable length) Padding

Data

Figure 2.1: TCP Header Format

Additionally, a TCP sender may transmit a segment consisting of only the header, and

no data. These segments, known as TCP control packets, are used to report state information

such as the opening and closing of a TCP connection, as well as the successful delivery of

2

a segment. Together, the header information in data segments and control packets is used to

guarantee several critical services including reliable data transfer and congestion control.

2.1.1. Reliable Data Transfer

A TCP sender maintains a 32-bit sequence number for the lifetime of the connection.

Whenever the sender transmits a data segment, it sets the sequence number of the segment to

the current sequence number and then increments the current sequence number by the length of

the data. The sequence numbers are used by the sender and receiver to identify lost, corrupted,

or reordered segments.

When a receiver obtains a data segment (passed up from the network layer), it verifies

the checksum and inspects the sequence number and data length. At this point, one of four

different possibilities may occur: In the first case, the checksum may be invalid. This event

indicates that one or more bits in the segment have been corrupted due to channel errors.

The receiver must drop any bad segments that it encounters. A second possibility is that the

checksum is valid but the sequence number of the segment is less than the sequence number

that the receiver is expecting. This means that the segment is a retransmission of data already

seen by the receiver. The receiver must drop this redundant data. In the third case, the sequence

number of the segment is equal to the expected number. The receiver accepts the segment and

delivers it up to the application layer. The receiver’s next expected sequence number is now

equal to the current expected sequence number plus the length of the accepted data. Finally,

in the fourth case, the sequence number can be greater than the expected value. This indicates

that a valid portion of data has been received but that a previous portion of data in the sequence

has not been seen yet. A simple TCP implementation might drop the segment, treating it as

invalid. More complicated TCP implementations also exist that will buffer the out-of-sequence

packets and wait to fill in the gaps in the data stream [7].

The TCP receiver periodically transmits acknowledgments (ACKs) to notify the sender

about which packets have been received successfully. An ACK is a control packet in which

3

the acknowledgment number is set to the receiver’s next expected sequence number. A TCP

implementation might transmit an ACK for every segment received. However, for performance

reasons, a common strategy is to send an ACK for every two packets, or if the connection has

been idle for a set period of time. If the TCP connection is bidirectional (the receiver has data to

send back to the sender), ACK information can be included in the header for the data segments

and no additional control packets are necessary [5].

Under ideal conditions, the sender receives an ACK segment with an ACK number

that is equal to the sequence number of the next data segment to be transmitted. However,

if a segment has been lost, the ACK number will be lower, indicating that the sender must

retransmit the data segment with that number. Multiple duplicate acknowledgments indicate

that the same segment has been lost several times in a row and must continue to be transmitted

until successful.

Note that it is possible for an ACK to be lost or corrupted in the same way that data

segments can be lost. Also, duplicate ACKs cannot be generated if every data segment in the

stream never arrives at the receiver. Therefore, the TCP sender must also maintain a retransmit

timer as part of its state [8]. If a retransmission timeout (RTO) occurs, the sender retransmits

the data segment corresponding to the last seen ACK number.

2.1.2. Connection Setup and Teardown

A TCP connection is established when the sender and receiver exchange a series of

three control packets, known as the three-way handshake [5]. First, the sender selects an initial

sequence number (usually at random) and then transmits the sequence number within a SYN

segment, a control packet with the SYN flag set. When the receiver obtains the SYN segment,

it allocates resources for the connection and then replies with a SYNACK segment. Note that

the ACK number of the SYNACK segment is set to the client’s next expected sequence number.

Finally, the sender replies to the SYNACK by transmitting an ACK.

If the sender has transmitted a SYN but does not receive the SYNACK before the RTO,

4

it retransmits the SYN. Similarly, the receiver will retransmit SYNACKs until it receives a

valid ACK. Once the three-way handshake is complete, the sender is aware of which sequence

number to use for its next data segment and the receiver knows which sequence number to ex-

pect, so data losses can easily be detected using the reliable data transfer procedures previously

discussed.

When the data transfer is complete, the sender transmits a FIN control packet to the

receiver. The FIN segment notifies the receiver to deallocate resources for the connection. The

receiver will reply to the FIN by sending an ACK. In addition, the receiver will transmit its own

FIN to notify the sender to deallocate its connection resources. As usual, the FIN exchanges

are protected by timeouts to safeguard against lost ACKs.

2.1.3. Congestion Control

A typical end-to-end connection across the Internet is comprised of several different

links connected by a series of packet switches and routers. These links can have drastically

different capacities based on the type of connection and the current network load, leading to

network bottlenecks. For example, a desktop computer may be connected to a router using

802.3 wired Ethernet [9], with a typical link rate of 1 Gbps. However, the router’s outbound

connection to the Internet service provider may be limited to only 10 Mbps due to hardware

limitations and/or traffic shaping. When a sender on the LAN transmits outgoing data at a rate

greater than 10 Mbps, the router will attempt to buffer the extra packets until it can catch up.

However, if the sender continues to transmit at a high rate, the router will run out of memory

and will be forced to drop packets. Continued transmission would waste resources and place

unnecessary load on network devices [5].

TCP senders attempt to detect network congestion and limit their send rate when it

occurs. A TCP sender maintains a state variable called the congestion window (cwnd) for the

lifetime of the connection. The sender transmits data until the total amount of unacknowledged

data reaches the window size. When the sender obtains ACKs indicating that the data has been

5

received successfully, it is free to transmit more data, but only up to the congestion window

limit.

When the TCP connection is first created, the congestion window is initialized to a low

value. As data is transmitted and ACKs are returned successfully, the window size increases. If

duplicate ACKs occur, indicating that data has been lost, the sender assumes that congestion-

induced buffer overflow is occurring somewhere in the network and the window size decreases.

The exact values by which the congestion window changes is implementation-specific.

However, several guidelines have been established in [10]. Each TCP sender has a maximum

segment size (MSS) which limits the size of individual data transmissions. TCP begins in a

slow start phase where the congestion window increases by at most 1 MSS for every new ACK

that is received. This rule causes the window to increase exponentially with respect to the

transmission round. At some point, the window reaches the slow start threshold (ssthresh).

This causes the TCP sender to exit slow start mode and enter congestion avoidance mode. In

this phase, the window is increased by approximately 1 MSS per round-trip time (RTT), result-

ing in a linear characteristic. In practice, a standard implementation is to apply the following

update after each ACK:

cwnd0 = cwnd +
MSS⇥MSS

cwnd
(2.1)

The slow start threshold represents the TCP sender’s estimate of the current network

capacity. Slow start mode is designed so that the transmission rate begins at a low value, but

then ramps up to the predicted network capacity as quickly as possible. Once the capacity is

reached, congestion avoidance mode allows the TCP sender to gradually probe for a higher

rate without placing too much instantaneous load on the network.

If packet loss events occur, the slow start threshold is set to half of the current cwnd.

The cwnd drops based on the type of loss event. Retransmission timeouts (ACK losses or

complete data losses) are the most severe, resetting cwnd to 1 MSS and causing the sender to

6

return to the slow start phase. Potential data losses, indicated by 3 duplicate ACKs, cause cwnd

to decrease based on the following equation:

cwnd0 =
cwnd

2
+3MSS (2.2)

After updating ssthresh and cwnd in response to the duplicate ACKs, the sender also has the

option to enter a fast retransmit/fast recovery phase. The lost data segment is immediately

retransmitted before the retransmission timer expires. If more duplicate ACKs occur for the

segment, cwnd increases by 1 MSS for each ACK. Once the segment is successfully received,

the sender returns to congestion avoidance mode. Fast recovery is included in TCP implemen-

tations such as Reno and NewReno [11]. It is not present in TCP Tahoe [5]. Figure 2.2 provides

an example of congestion window behavior in these algorithms.

Figure 2.2: An Example of Congestion Window Behavior in TCP Tahoe and Reno [5]

2.1.4. TCP Design Considerations

All TCP congestion control algorithms are designed to ensure fairness. If multiple TCP

connections are active at the same time, all senders should receive an approximately equal share

of the network capacity. An example of a property that helps create fairness is the halving of

the congestion window in response to 3 duplicate ACKs [5]. Suppose that a set of TCP senders

is in congestion avoidance mode. As each sender increases its congestion window past the

7

limits of the network, loss events begin to occur. Senders with larger congestion windows will

drop their window by a higher amount compared to senders with lower congestion windows.

This allows senders with smaller windows to regain a larger share of the network. Over time,

the average congestion window for each node will converge approximately to the same point,

causing each node to transmit data at the same average rate.

TCP algorithms are also designed to maximize system throughput. The total data rate

for all TCP senders should be as high as possible, while still remaining fair. For example, the

use of fast retransmit and fast recovery helps prevent TCP senders from overreacting to sparse

data losses. It allows them to maintain larger, but not unsafe, cwnd values. Other strategies

such as generating a cumulative ACK for every other successful data segment instead of every

single data segment reduce control packet overhead. TCP improvements are constantly being

developed to meet changing network requirements. However, wireless transmission poses a

particularly difficult challenge with its complex channel characteristics and MAC layer behav-

ior [12].

2.2. IEEE 802.11 Infrastructure WLANs

Wireless LANs are governed by the IEEE 802.11 family of standards [4]. Infrastructure

WLANs consist of a set of client nodes, known as stations (STAs), communicating via a central

access point (AP). A STA is defined specifically as the origin and/or destination of a message.

The AP controls which STAs have access to the WLAN, and usually serves as a gateway

to outside resources on wired networks. In common 802.11 infrastructure WLANs, the AP

is placed at a fixed position, and STAs may be stationary or mobile. The range of the AP

is relatively short, and if there are mobile nodes, they move at low velocities. Infrastructure

WLANs are commonly seen in homes, offices, and public locations such as coffee shops. Other

types of WLANs exist, such as ad-hoc networks where STAs communicate directly, mesh

networks where there are multi-hop links, and vehicular networks where STAs are moving at

high speeds. These types of WLANs are outside the scope of this work.

8

2.2.1. The 802.11 MAC Protocol

As with wired LANs, each 802.11 wireless node is assigned a unique MAC address. In

addition, the AP is assigned a human-readable name known as the service set identifier (SSID).

The AP broadcasts beacon frames at regular intervals advertising its SSID, MAC address, and

other link information. STAs looking for information about available APs can perform passive

scanning for these beacon frames, or send out probe requests for immediate feedback. Once

a STA is aware of the AP, it can join the network by exchanging an association request and

response with the AP.

Figure 2.3: 802.11 MAC Frame Format [4]

Frames exchanged between nodes follow the format depicted in Figure 2.3. The frame

control field contains flags that identify the type of frame and any special options. Address

fields identify the source, destination, transmitting STA, and receiving STA, where applicable.

The FCS field contains a 32-bit checksum to detect bit errors. The 802.11 MAC ensures reli-

able data transfer using an acknowledgment mechanism similar to TCP. Therefore, sequence

numbers are included as part of the sequence control field.

Note that the reliable data transfer services provided by TCP and the 802.11 MAC are

not redundant. TCP ensures segment delivery at an end-to-end level, whereas the MAC en-

sures reliability of the link. TCP is required because data can be lost due to router congestion

or bit errors on wired links that do not implement error recovery. At the same time, 802.11

WLANs must include a special error recovery layer because of the high error rates associated

with wireless transmission. Link-layer acknowledgments allow for faster error detection and

retransmission. They can conceal excess errors from TCP which would otherwise cause long

9

timeouts. However, MAC-layer error recovery is not perfect, as limits are placed on retrans-

missions for performance reasons, and some transport layer timeouts can trigger before the

retransmissions occur.

2.2.2. Collision Avoidance

Frame transmission between associated STAs and the AP is governed by the 802.11

Distributed Coordination Function (DCF). The DCF helps prevent nodes from transmitting

frames simultaneously and causing collisions. To determine whether the medium is idle, each

STA performs carrier sensing, analyzing incoming signal energy to detect the activity of other

STAs in the network. Since constant carrier sensing is inefficient, each STA also maintains a

timer called the Network Allocation Vector (NAV), which predicts when the channel is likely

to be busy. The NAV is updated whenever a STA receives a frame and is set based on the

duration specified in the frame header. Use of the NAV can be thought of as “virtual carrier

sensing.”

The 802.11 standard defines specific timing relationships between consecutive frames

including the Short Interframe Space (SIFS) and DCF Interframe Space (DIFS), as shown in

Figure 2.4. The STA can only transmit data after the medium has been idle for at least a DIFS.

Once the receiver decodes a frame successfully, it waits for a SIFS and then transmits an ACK.

Since the value of a SIFS plus the propagation delay is less than a DIFS, STAs that need to

transmit ACK frames are given near-immediate channel access, while other STAs waiting to

transmit data will detect the busy channel. This system prevents collisions between data frames

and ACKs.

If a STA senses that the medium is busy, it enters a random backoff period. The STA

selects a random integer n uniformly from the interval [0,CW]. The contention window CW =

2x � 1, where x is initialized to some low positive integer. Once the medium becomes idle,

instead of transmitting immediately after a DIFS, the STA will wait for an additional n slot

times. If the medium is still idle, the STA is allowed to transmit. However, if it is busy, the

10

value x is incremented and the STA selects a new backoff time n.

If two STAs are contending for medium access, it is likely that they will choose different

backoff times. One STA will begin transmitting before the other one, and the other one will

be able to sense its transmission and avoid a collision. However, if the STAs select the same

backoff time, then a collision is likely to occur. The minimum and maximum values of CW

must be chosen to provide a large enough window to minimize the probability of collisions,

but avoid unnecessary delays in transmission.

Figure 2.4: 802.11 MAC Interframe Spacing [4]

2.2.3. Hidden Terminals and RTS/CTS

Even with the DCF, collisions can occur due to the hidden terminal problem. Consider

the network setup depicted in Figure 2.5. Node B (the access point) is in range of Nodes A and

C. However, Nodes A and C are not in range of each other. They will not be able to sense each

other’s transmissions, so there is a possibility that they will both transmit data at the same time

to Node B.

To mitigate this problem, the 802.11 standard defines an optional system known as

Request-to-Send/Clear-to-Send (RTS/CTS). If a STA wishes to transmit a data frame to a par-

ticular node, it first sends an RTS frame to that node. The duration field of the RTS frame

specifies the amount of time that the data transmission is expected to take. The recipient of

11

the RTS frame broadcasts a CTS frame, which repeats the duration information from the RTS.

Any STA that hears any part of the RTS/CTS exchange must update its NAV with the specified

duration, as illustrated in Figure 2.6. Thus, in Figure 2.5, if Node A has data to send to B, it

will transmit an RTS, causing B to send out a CTS that blocks C from interfering.

With RTS/CTS in place, collisions will still happen if STAs transmit RTS frames at the

same time. However, since RTS frames are very small compared to data frames, the cost of

an RTS-RTS collision is low. The disadvantage of using RTS/CTS is the delay it introduces

to data transmission. The RTS/CTS exchange introduces an overhead of two control packet

lengths plus 1 RTT to every data packet. For packets such as TCP ACKs, this overhead can

be problematic. As a result, a standard practice is to enable RTS/CTS only when transmitting

frames above a specified length [4]. When used for large packets, RTS/CTS significantly im-

proves saturation throughput and network efficiency, especially when there is a high number of

contending nodes [13].

12

Figure 2.5: An example of the hidden terminal problem. The shaded regions depict the trans-
mission range of each node.

Figure 2.6: NAV Setting due to RTS/CTS Exchange [4]

13

3. TCP IN WIRELESS NETWORKS

While TCP provides a dependable mechanism for reliable data transport and congestion

control in wired networks, it has been shown to perform poorly in wireless links. For example,

Figure 3.1 shows the average throughput attained by 8 parallel TCP connections in a simula-

tion of a standard 802.11 WLAN. All STAs are in range of the AP and establish TCP upload

connections. The connections achieve wildly different data rates. One TCP sender transmits

at 3.4 Mbps while another is limited to only 0.54 Mbps. TCP senders are experiencing low

throughput and unfair network access. To understand why these problems occur, we need to

examine the core assumptions that TCP implementations make, and how wireless networks

violate these assumptions.

Figure 3.1: Throughput for 8 Parallel TCP Connections in an 802.11 WLAN

14

3.1. Random Packet Loss Events

Wireless networks are subject to higher bit error rates than wired networks due to fac-

tors such as random noise, path loss, and external interference. The loss of TCP segments to

these errors disrupts congestion control algorithms. When TCP data segments are randomly

lost, the receiver will detect gaps in the sequence numbers and return duplicate ACKs to the

sender. The duplicate ACKs cause the sender to decrease its congestion window and slow

start threshold. The sender decreases its rate because it assumes that packet losses are due

to network congestion. However, in wireless networks, random packet losses and network

congestion are two independent problems.

Decreasing the congestion window causes an instantaneous drop in the TCP through-

put, while decreasing the slow start threshold prevents the TCP sender from recovering from

random loss events. If the slow start threshold is too low, the TCP sender will spend too much

time in congestion avoidance mode. The window will increase too slowly, and the throughput

will take much longer to return to the optimal value, just below the actual capacity of the net-

work. Since the time spent in congestion avoidance is longer, the probability that the sender

experiences a second loss event before reaching the optimal throughput also increases. As a

result, one random loss event can trigger improper congestion control behavior which persists

for the lifetime of the TCP connection. Unfairness can occur if some TCP senders experience

their first random loss event sooner than others.

Figure 3.2 provides an example of this problem. Within the first 5 seconds, Node 1

experiences a loss event that causes its throughput to drop. This frees up the channel for

Node 2, which begins to dominate the network. Meanwhile, Node 1 spends over 25 seconds

attempting to recover from the loss, but cannot do so effectively because it is in congestion

avoidance mode. Finally, its recovery is stopped by a second loss event. Over the entire life of

the connection, Node 1 has an average throughput of 1.93 Mbps, but Node 2 has an average

throughput of 2.65 Mbps.

15

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time (s)

C
W

N
D

 (
K

iB
)

Node 1

Node 2

Figure 3.2: Unfair Congestion Window Allocation Among 2 TCP NewReno Senders

These problems are even more severe if TCP control packets are randomly lost. TCP

senders maintain an internal retransmission timer to detect lost ACKs. After transmitting a

data segment, it takes at least 1 RTT until the sender receives the corresponding ACK. The

actual time is influenced by random network delays. Therefore, the retransmission timeout

must be significantly greater than the RTT. For each valid data-ACK exchange, the TCP sender

records the RTT and then combines the RTT measurements to create a smoothed estimate of

the average RTT (SRTT) and the variation in the RTT (RTTVAR) [8]:

RT T = tACK � tDATA (3.1)

SRT T 0 = (1�a)SRT T +a RT T (3.2)

RT TVAR0 = (1�b)RT TVAR+b |SRT T �RT T | (3.3)

Then, the retransmission timeout is set using:

RTO0 = max{1s, SRT T 0+4 RT TVAR0} (3.4)

16

The minimum RTO is 1 second and can be much greater, especially if the network experiences

a high degree of latency or jitter. Therefore, random ACK loss will force the sender to block

for long periods of time. When the timeout finally occurs, the sender will reduce its congestion

window and slow start threshold, causing the same problems that occur when data segments

are lost. Furthermore, the sender may be retransmitting valid data, since ACK loss does not

necessarily signal the presence of data segment errors.

The loss of SYN or SYNACK segments is the most costly, since it causes delays in

connection setup. The TCP sender will not be able to send any data until it can complete the

three-way handshake. This can pose problems for applications that send out many requests

using TCP or rely on real-time traffic.

3.2. Packet Collisions

Channel conditions are not the only cause of loss events in wireless networks. The

wireless medium is shared between nodes, and errors will occur when transmissions from

multiple senders overlap or collide. There are two possible locations where frame collisions

may occur. A transmitter-side collision takes place when a frame arrives at a STA at the same

time that the STA is transmitting a frame. These collisions can occur frequently with TCP

connections since they generate two-way traffic. In a transmitter-side collision, the incoming

frame can never be detected or received. Wireless links are half-duplex, meaning that STAs

cannot transmit and receive at the same time. Designing hardware that allows for simultaneous

transmission and reception is prohibitive due to the differences in power between the outgoing

and incoming signals and they way that they interfere with each other [5].

In a receiver-side collision, two frames arrive at a receiver within the same time interval,

such that the signals overlap and sum. The probability of these collisions is extremely high in

saturated WLANs, as shown in Figure 3.3. Simple models of wireless networks assume that

when receiver-side collisions occur, both frames are completely lost. However, recent research

shows that it is possible for an 802.11 receiver to recover one of the frames due to a process

17

Figure 3.3: Collision Probability Models for Saturated 802.11 WLANs [14]

Figure 3.4: Four Packet Capture Cases [15]

18

known as packet capture. This process tends to favor certain nodes over others, leading to

excess unfairness in TCP, as will be shown.

3.3. Packet Capture

Packet capture occurs in 802.11 radio modems supporting message in message (MIM)

mode ⇤ [15], [16]. When an 802.11 frame arrives at a receiver, the receiver performs detection

and synchronization based on training symbols in the preamble [4]. If the preamble is decoded

successfully, the receiver begins to decode the remainder of the frame, including the MAC

layer header and the payload. The receiver verifies the checksum and passes the frame to the

next layer. However, the arrival of a new frame during the reception process will interrupt

the decoding of the current frame. The MIM-enabled receiver measures the incoming signal

energy due to the new frame and compares it to the energy of the current frame. If the difference

is greater than a specified message retraining threshold, gMR, the receiver discards the current

frame and begins synchronizing to the new frame [16]. Now, the new frame must be decoded,

treating the previous frame as interference.

Packet capture can be divided into 4 cases based on the timing of the incoming frames

[15]. These scenarios are illustrated in Figure 3.4. In sender first (SF) capture, the desired

frame arrives before the interferer. According to [15], the sender’s frame is almost always

decoded correctly as long as the sender’s signal is stronger than the interference (SIR > 0 dB).

This occurs because the interferer does not overlap the sender’s preamble enough to cause

synchronization errors. The sender’s payload and checksum do suffer from interference, but

these errors are usually concealed by mechanisms such as forward error correction [4].

In sender last capture with interferer’s clear frame (SLC), the desired frame arrives after

the interferer. The modem initially synchronizes to the interferer, and then must resynchronize

to the desired frame in MIM mode. The required threshold for reliable decoding of the desired

⇤Modern chipsets such as Atheros are believed to implement MIM, based on experimental evidence. However,
the exact details of the implementation are unknown due to their proprietary nature.

19

frame is approximately 10 dB [15]. The probability of successful packet capture is highest

when the desired frame arrives after the preamble of the interferer.

In sender last capture with interferer’s garbled frame (SLG), the interfering frame can-

not be synchronized with or decoded. This situation occurs when the SINR of the interferer is

too low, or when the preamble of the frame is corrupted due to the presence of a third frame.

SLG occurs frequently and makes capture of the desired frame more difficult. The receiver

will continuously attempt to synchronize to the interferer, even though every attempt will fail.

These synchronization failures prevent the receiver from detecting the preamble of the desired

frame, unless the difference in signal energy is very high—at least 15 to 25 dB [15].

In all cases, the probability of packet capture is an increasing function of SIR. Small

differences in signal energy will cause SF capture to occur, while larger differences result in

SLC and SLG. This characteristic introduces unfairness in wireless networks because of the

way signal strength varies within a WLAN service area. Path loss causes signal strength to de-

crease exponentially with distance [17], so STAs that are farther from the AP will capture fewer

packets compared to STAs that are closer. Walls and windows also introduce constant partition

losses in the range of 1 to 30 dB [17], covering all possible capture thresholds. Therefore, some

STAs will experience higher rates of TCP segment loss simply due to their location. They will

scale back their congestion window too often, allowing other senders to gain excessive control

of the channel.

Packet capture experiments also suggest that TCP ACKs are more vulnerable to capture

failures due to their small size. When a TCP ACK and a TCP data segment collide, the ACK is

usually overlapped completely. Meanwhile, the preamble of the TCP data frame is likely to re-

main intact, increasing its probability of capture. As with random bit error, the disproportionate

loss of TCP ACKs to capture causes excess delays and retransmissions for all nodes.

20

3.4. ACK Compression

Even if TCP clients do not experience loss events, transmission delays at the MAC

layer will interfere with TCP congestion control and packet timing. Wireless links experience

burst errors due to time-varying channel conditions such as multipath fading [17]. When burst

errors occur, the MAC layer will attempt to retransmit the lost packets to conceal the errors (up

to a limit), while queueing any new packets sent down from the network layer. Once channel

conditions improve, multiple packets will be transmitted in quick succession. For TCP ACKs,

this is known as the ACK compression effect [12]. When several ACKs are received within a

short period of time, the amount of unacknowledged data in flight decreases sharply, and the

sender must transmit new data to fill the gap. At the same time, there is a sudden increase in the

sender’s congestion window. As a result, the sender tends to transmit too many data segments

at once, causing network congestion.

3.5. Forward-Reverse Path Asymmetry

Another related issue is the difference in capacity between the forward path that carries

data segments to the TCP receiver and reverse path that returns ACKs to the sender. In general,

path asymmetry results from differences in hardware capabilities, traffic shaping, and current

network utilization [12]. Since STAs are typically portable, battery-operated devices, they may

operate at a lower transmission power compared to APs, reducing the reliability of upstream

channel. Internet service providers also limit the capacity of upstream links since consumers

tend to download content more often. For the same reason, downstream links might experience

more congestion than upstream links.

TCP uploads are also subject to a specific type of MAC layer path asymmetry. Consider

a WLAN with n STAs and 1 AP. The 802.11 DCF is designed with fairness in mind, so each

node in the WLAN will have a 1/(n+1) share of all the opportunities to transmit. If all STAs

perform TCP uploads, the total fraction of the transmission opportunities used up by TCP data

segments is n/(n+ 1). However, the fraction of the transmission opportunities available for

21

TCP ACKs is the AP’s share, 1/(n+ 1) [18], [19]. This difference causes MAC layer packet

queueing at the AP and excess delays for TCP ACKs. TCP senders will mistakenly interpret

reverse path congestion for forward path congestion, causing them to reduce their congestion

window and underutilize the channel [12].

22

4. EXISTING SOLUTIONS FOR WIRELESS TCP

Numerous attempts have been made to improve TCP performance for connections

where the first and/or last hop is wireless. These approaches can be classified based on their

scope and modification requirements. TCP-only approaches focus on developing better algo-

rithms for acknowledgments, retransmissions, and congestion control. Areas of interest include

selective acknowledgments, fast recovery, and smoother congestion window functions. Al-

though the complexity of these algorithms can vary significantly, deployment of these systems

is straightforward, involving software patches at each TCP sender.

MAC layer approaches can address the problems of hidden terminals, DCF unfairness,

and packet capture. Important issues include when to use RTS/CTS, and how to influence

capture probabilities through power and rate adaptation. MAC layer modifications are often

developed using open systems such as MadWifi [20] or custom wireless testbeds that allow

many MAC layer parameters to be adjusted in software. In real systems, however, MAC layer

algorithms are difficult to deploy since they require changes to access point hardware, drivers,

and firmware.

In cross-layer systems, the wireless MAC layer performs deep packet inspection to

determine whether a data stream consists of any TCP segments. The MAC layer can treat these

TCP segments differently from other types of data. For example, it can place TCP ACKs into a

separate queue, increase retransmission limits, and employ different error correction strategies.

The MAC layer can also inform the TCP sender of wireless link conditions by setting special

flags in the TCP header. Cross-layer approaches offer the most flexibility but are more difficult

to validate and deploy. They require changes at multiple layers in the network stack and break

the principle of isolation between the layers.

23

4.1. Sender and Receiver-Side TCP Modifications

A standard for TCP selective acknowledgments (TCP SACK) is defined in [7]. TCP

SACK addresses a common problem with cumulative ACKs and retransmissions in ordinary

TCP: Suppose a sender transmits a group of TCP data segments, and that the first segment in

the group is lost due to unfavorable channel conditions. Upon receiving the next segments, the

receiver will generate duplicate ACKs and drop the out-of-sequence data. The sender will need

to restart transmission of the entire group of data, causing it to send redundant information.

TCP SACK allows the receiver to specify the byte offsets of each correctly received out-

of-sequence block using the options field in the TCP ACK header. When the sender processes

the special ACK, it identifies and retransmits only the failed segments. This system reduces

the cost of a lost ACK, but does have some limitations. It requires additional buffering and

processing at the receiver. The options field in the TCP header has a maximum length of

40 bytes which might be too small to specify complex patterns of losses. Most importantly,

SACK is a reactive strategy and does nothing to prevent congestion in the first place [12], [21].

However, it can be used in conjunction with other congestion control algorithms.

TCP Vegas [22] is a proactive congestion control algorithm that estimates and limits

the amount of “extra” segments transmitted which are above the link capacity. If there are too

many extra segments, router buffers will overflow and network congestion will ensue. How-

ever, it is beneficial to maintain a small amount of extra segments so that the network can

respond to short-term fluctuations in bandwidth. To accomplish this goal, TCP Vegas com-

putes the expected and actual throughput of the connection based on data size and recorded

RTTs. It linearly adjusts the sending rate so that the total amount of extra data falls within an

empirically determined range of 1–3 buffer lengths. TCP Vegas also defines a more conserva-

tive slow start period, which performs exponential increase in the sending rate once every other

RTT. Through these mechanisms, TCP Vegas maintains a more accurate and stable congestion

window compared to TCP Tahoe and Reno.

TCP Veno [23] estimates router backlogs using the same strategies derived in TCP

24

Vegas. However, instead of interpreting the queue backlog as an way to set the optimal rate, it

uses it as an indicator of packet loss. While the backlog is small, TCP Veno assumes that all

losses are due to random bit error and avoids drastic reductions in ssthresh and cwnd. If the

backlog is large, then TCP Veno assumes that congestion is occurring, and follows the normal

behavior of TCP Reno.

TCP Westwood [24] estimates the available capacity of a connection through statistical

analysis on ACKs. The bandwidth estimate is used to improve settings of the congestion win-

dow and slow start threshold. For each received ACK, TCP Westwood obtains a sample of the

current bandwidth:

bk =
dk

tk � tk�1
(4.1)

where dk is the size of the data segment and tk � tk�1 represents the elapsed time since the pre-

vious ACK. Since there can be significant fluctuations in consecutive samples, TCP Westwood

applies a low-pass filter to obtain a estimate of the long term average bandwidth, BWE. Special

care is taken to ensure that duplicate ACKs and delayed ACKs do not skew the estimate. When

congestion occurs, as indicated by a set number of duplicate ACKs or a timeout, the receiver

resets the slow start threshold to BWE ⇥RT Tmin. Duplicate ACKs will cause the congestion

window to reset to ssthresh, while timeouts reset the congestion window to 1. TCP Westwood

recovers from loss events more quickly than TCP Tahoe and Reno, which reset ssthresh and

cwnd based on fixed ratios.

TCP CUBIC [25], a refinement of TCP BIC [26], is in widespread use on modern

Internet servers. It is the default TCP implementation in Linux kernels since version 2.6.13.

CUBIC is designed for high speed, high RTT networks. Although not specifically targeted at

wireless applications, CUBIC incorporates features that could improve wireless performance

compared to previous standards.

25

Figure 4.1: TCP CUBIC Congestion Window Function [25]

As the name suggests, TCP CUBIC employs the following cubic polynomial conges-

tion window function, which is also plotted in Figure 4.1:

W (t) =C(t �K)3 +Wmax (4.2)

This function is dependent on the elapsed time t since the last congestion event, and is inde-

pendent of RTT. This reduces some of the issues associated with ACK compression and path

asymmetry. Wmax represents the window size at the previous loss event, and can be viewed as

the sender’s share of the network under steady state. When a loss occurs, the congestion win-

dow recovers quickly, minimizing the cost of that loss event. As the window size approaches

Wmax, it changes more slowly to maximize network stability. The time for the congestion win-

dow to reach steady state is given by

K =
3

r
Wmaxb

C
(4.3)

where b and C are tunable parameters that represent a tradeoff between convergence rate and

congestion avoidance. After reaching Wmax, the sender will probe for a greater share of the

channel, but will start off slowly to maintain network stability. Then, if the sender succeeds at

probing for additional bandwidth, it will begin to increase its congestion window more rapidly,

to minimize the time spent in congestion avoidance mode. Thus, TCP CUBIC can recover more

26

quickly from incorrect values of Wmax than TCP Tahoe or Reno can recover from incorrect

values of ssthresh. Overall, TCP CUBIC achieves high RTT-fairness and TCP-friendliness

compared to many other algorithms.

4.2. MAC Layer Modifications

The authors of [27] develop a system that exploits packet capture to provide MAC

layer quality of service (QoS) differentiation. In this system, high priority STAs transmit at a

higher power level than low priority STAs. Since packet capture is a function of SIR, frames

originating from the high priority STAs will have a greater probability of capture. The overall

result is fewer retransmissions and higher throughput.

The authors show that the power levels required to achieve adequate QoS are fairly

low. In one typical setup, a power increase of 10 mW changed throughput by over a factor of

3. These findings are supported by various packet capture experiments including those in [15],

which indicate that even a small increase in SIR will cause sender-first capture. This is a

practical result, as it means that implementing capture-based QoS will not place a large strain

on wireless hardware.

From the TCP perspective, QoS differentiation provides a way to avoid forward-reverse

path asymmetry and reduce the ACK error rate. If there are only TCP uploads, prioritizing the

AP will improve system throughput. However, this scheme might not scale well to larger

networks where there are multiple protocols and connections active simultaneously. There

are only two levels of QoS, and adding more power levels could cause the system to exceed

the range supported by hardware. It might be possible to set transmit power on a per-packet

basis, but this approach would require cross-layer design and place additional strain on wireless

transmitters.

DCF+ [28] modifies the 802.11 Distributed Coordination Function to handle two-way

traffic more reliably. It uses CTS frames as well as duration/NAV settings on outgoing data

frames to reserve the channel for any incoming responses. Figure 4.2 illustrates the typical

27

operation of this system. The initial data frame (DATA1) sets the NAV of all STAs within

range and protects the receiver’s MAC ACK from collisions. If the receiver has its own data to

return back to the sender (DATA2), it sets another NAV as part of this ACK. The ACK behaves

like an RTS frame and causes the sender to reply with a CTS. At this point, the receiver can

transmit its data without contention from other STAs.

Figure 4.2: Frame Exchange in DCF+ [28]

In the case of TCP traffic, DCF+ allows TCP ACKs to be returned quickly and with

fewer errors. DCF+ requires modification of the MAC layer at all wireless nodes. The extra

CTS frame introduces a small overhead, but this overhead may be worthwhile, given the cost

of a lost or delayed TCP ACK.

4.3. Multi-Layer and Cross-Layer Approaches

Explicit Congestion Notification (ECN) [29] is a standard modification to TCP and IP

that allows routers to communicate congestion information to TCP senders and receivers. At

the network layer, the IP sender announces ECN support by setting a 2-bit ECN-Capable Trans-

port (ECT) codepoint in the IP header of outgoing packets. ECN-compliant routers implement

Active Queue Management (AQM), which involves the use of Random Early Detection (RED)

28

instead of a tail-drop queue. As a router queue nears full capacity, random packets in the queue

are marked with a 2-bit Congestion Experienced (CE) codepoint. The CE marking provides an

early warning of network congestion to the IP receiver before buffer overflow occurs.

The receiver echoes the congestion warning back to the sender so that the sender can

reduce its rate. When the receiver obtains a CE-marked packet, it passes the warning up to the

transport layer. The TCP receiver prepares an ACK with the ECN-Echo (ECE) flag set in the

header. When the TCP sender obtains the ACK, it reduces its congestion window accordingly,

and reports the window reduction by setting the Congestion Window Reduced (CWR) flag in

the following data segment.

ECN is a proactive approach that allows the sender to reduce its rate before any packet

loss takes place. It can also be used to differentiate between the different types of losses expe-

rienced in a wireless link. For example, if a TCP sender receives duplicate ACKs without ECE

markings, it should assume that the losses are due to bit errors and not reduce its congestion

window.

ECN requires changes to the transport and network layers at the sender and receiver

side, as well as network layer changes to all intermediate routers. Despite these requirements,

ECN is not a full cross-layer system, as the intermediate routers are not concerned with the

TCP header and do not need to perform intrusive techniques such as deep packet inspection.

Instead, ECN can be viewed as a multi-layer approach for improving wireless TCP.

TCP Jersey [30] implements proactive congestion control by combining ECN with

bandwidth estimation. It uses the same header formats as the ECN standard, but makes an

important change to the IP queue management policy. When the queue length reaches a con-

gestion threshold, instead of marking random packets in the queue with the CE codepoint, all

outgoing packets are marked. According to the developers of TCP Jersey, RED queues are

highly sensitive to parameter settings, and improper settings for the packet marking probability

will have a negative effect on TCP performance. Probabilistic packet marking also reduces the

reliability of ECN information for loss differentiation. Therefore, TCP Jersey simplifies the

29

decisions that must be made by the intermediate routers and makes the TCP sender responsible

for deciding which congestion warnings are relevant.

Bandwidth estimation in TCP Jersey is based on the approach in TCP Westwood. How-

ever, instead of applying a low-pass filter to the instantaneous bandwidth measurements, TCP

Jersey uses a time-sliding window estimator which has fewer parameters and is simpler to

implement:

Rn =
RT T ⇥Rn�1 +Ln

(tn � tn�1)+RT T
(4.4)

where Rn is the estimated bandwidth for the nth ACK, Ln is the length of the data segment,

and tn is the ACK arrival time. When congestion warnings are detected, TCP Jersey will adjust

its congestion window based on the optimum value, RT T ⇥Rn. TCP Jersey achieves high

throughput in wireless links having moderate error rates, but requires proper implementation

of ECN at all intermediate routers.

Two-phase loss differentiation algorithm (TP-LDA) is a comprehensive technique that

discriminates between three different causes of packet loss: random bit error, packet colli-

sion, and congestion-related buffer overflow. [31] applies this algorithm to TCP-Friendly Rate

Control [32], [33], but the same strategies can work in TCP. In the first phase of TP-LDA, con-

gestion losses are separated from link losses. The sender measures the relative one-way trip

time (ROTT) of the connection, which is proven to be highly correlated with the buffer over-

flow rate. Specifically, there is a large spike in overflow rate as the ROTT approaches a certain

threshold. Data losses experienced during a high ROTT period are interpreted as congestion

and cause the sender to reduce its congestion window.

In the second phase, the remaining link errors are classified as either packet collisions

or losses due to random bit error. TP-LDA uses the error rate of IEEE 802.11 beacon frames

as an indicator of the packet collision rate. Beacon frames are sent at regular intervals by the

WLAN AP. Since they have short durations and are transmitted at the lowest bit rate, they

30

have very low error probabilities. However, beacon frames are subject to the same delays and

collisions as data frames. If beacon loss and data loss occur within a short time, the network

is experiencing congestion and the sender must reduce its rate. Link error differentiation gives

TP-LDA a significant advantage over previous loss differentiation algorithms, which treat all

link errors as random bit errors. However, it requires many cross-layer modifications to the

wireless nodes.

[34] defines a system where TCP ACKs are not forwarded over the wireless part of the

connection. Instead, 802.11 MAC layer ACKs are enough to guarantee reliable data transport.

A TCP ACK agent is installed at the AP and the STA. Figure 4.3 shows the setup for TCP

downloads.

Figure 4.3: TCP ACK Agent [34]

The agent at the AP monitors all TCP data segments being forwarded out the wireless

link. As MAC layer ACKs are received for each data packet, the agent generates a TCP ACK

to return to the TCP data sender. The ACK information is set so that it appears to come from

the TCP data receiver, thus making the system invisible to the end nodes. Meanwhile, the

agent at the STA silently drops the real TCP ACKs from the TCP data receiver. The removal

31

of TCP ACKs from the wireless link reduces network load and lowers the possibility of frame

collisions. It mitigates forward-reverse path asymmetry. One possible limitation of this system

is that it does not address congestion on the data path. The use of the TCP ACK agent also

requires significant modification to the WLAN interfaces and places more computational load

on them.

Finally, a more extreme cross-layer solution is to split the TCP connection at the wire-

less AP into two separate connections [12], [35]. Regular TCP systems such as Tahoe or Reno

are used over the wired part, while special TCP systems are deployed for the wireless link.

Split TCP is useful for cellular networks, where end-to-end TCP is not enough to handle chal-

lenges such as mobile handoff and long disconnections. The base station conceals the presence

of the wireless hop from senders on the wired backbone.

Split TCP introduces major design challenges because it extends the role of base sta-

tions/access points and completely violates the end-to-end semantics of the TCP connection.

For each TCP connection, the base station must now maintain two transport layer sockets and

implement all of the buffers and congestion control parameters associated with these sockets.

Furthermore, the receipt of a TCP ACK no longer guarantees the successful delivery of the

corresponding data segment to the intended receiver. It only indicates that the base station has

intercepted the data, buffered it, and will forward it at a later time. To address this concern,

the base station can delay the ACK until it receives the ACK on the second interface [35].

However, this method will introduce additional overhead. The demand exists for simpler TCP

and MAC layer algorithms that improve wireless performance without imposing additional

complexity on network devices.

32

5. FAIR TCP CHANNEL ACCESS

We propose a new MAC layer solution, Fair TCP Channel Access (FTCA), to more

completely address the challenges of TCP over 802.11 WLANs without incurring the overhead

and implementation difficulties of current systems. FTCA works by prioritizing TCP control

packets at the MAC layer, giving them faster access to the wireless channel and reducing col-

lisions between ACKs and data segments. By reducing the TCP ACK collision rate, FTCA

prevents unfair packet capture, ACK delays, and ACK compression. It avoids the retransmis-

sion timeouts and congestion window backoffs that occur when ACKs are lost. Control packet

prioritization also compensates for forward-reverse path asymmetry in TCP uploads. The fast

return of ACKs ensures that more TCP senders are actively transmitting data instead of be-

coming blocked by MAC layer delays. As a result, FTCA improves TCP fairness without a

significant loss in saturation throughput.

We develop FTCA using the MAC layer QoS capabilities that were first introduced

in 802.11e [36] and are now incorporated into the 802.11 standard [4]. The standard defines

four access categories (ACs), listed in Table 5.1, which are used to classify frames based on

priority. Each AC maintains a separate transmit queue and gains access to the wireless channel

using the Enhanced Distributed Channel Access (EDCA) mechanism, as depicted in Figure 5.1.

Instead of transmitting after a DIFS, frames are transmitted after the Arbitration Interframe

Space (AIFS) corresponding to their priority. High priority ACs have a shorter AIFS than low

priority ACs. Therefore, when multiple STAs contend for the channel, STAs with high priority

frames tend to gain access first, while STAs with low priority frames will defer transmission.

If contention between ACs occurs within a STA, the high priority frames always obtain access,

while low priority frames enter a backoff period. The AIFS is set for each AC as a multiple of

33

the slot time:

AIFS(AC) = AIFSN(AC)⇥SlotTime+SIFS (5.1)

The minimum AIFSN is 2, so that the shortest possible AIFS is equal to the DIFS. Figure 5.2

shows the relationship between the AIFS and the other types of interframe spaces.

ACs are also prioritized by setting different ranges for the contention window. High

priority ACs have smaller allowable values for the contention window compared to low priority

ACs. Therefore, if collisions occur, high priority frames experience shorter backoff times.

FTCA assigns all TCP control packets to the highest AC and assumes that all other

packets fall into the lower ACs. For example, we may give all control packets the AC_VO

designation and allow data segments to have the AC_BK, AC_BE, and AC_VI designations.

Alternatively, if data packets need four levels of QoS differentiation, TCP control packets will

need to be separated into a fifth AC. We study the former case as it is closer to the 802.11

standard, but note that our results are equally valid in cases where there are additional data

ACs. The only requirement of FTCA is that control packets and data packets are kept in

separate queues to prevent them from contending and colliding.

The use of AIFS for prioritizing traffic and enhancing network fairness has already been

the subject of a few studies. [37] evaluates per-station AIFS as a solution for capture unfairness

in 802.11b networks. The authors compare AIFS to other techniques including transmission

power control and MAC retransmissions. Like [27], they show that changes to the transmit

power have a significant effect on throughput. However, their experiments also reveal situations

where power control is not enough to restore fairness. If there is sufficient network asymmetry,

differences in received signal strength (and therefore capture probability) can exceed the range

of transmit powers permitted by hardware. Furthermore, existing hardware does not have a

high enough resolution of power levels and does not support per-packet power adaptation.

Increasing the MAC retransmission limit can be used to protect important packets such

34

Table 5.1: Default 802.11 Access Categories

Access Category Designation AIFSN CWmin CWmax Sample Applications

AC_BK Background 7 15 1023 FTP
AC_BE Best Effort 3 15 1023 HTTP, normal data
AC_VI Video 2 7 15 Video streaming
AC_VO Voice 2 3 7 VOIP, control packets

Figure 5.1: Packet Queueing in 802.11e [4]

Figure 5.2: AIFS and other Interframe Spaces [4]

35

as TCP ACKs from loss. The MAC layer automatically recovers from bit errors or colli-

sions and conceals these losses from the transport layer. Unfortunately, this modification could

worsen MAC layer delays and queue length. If the MAC retransmission limit was decreased,

weaker STAs will waste less time resending corrupted frames, causing UDP throughput to in-

crease. However, the higher error rate will cause TCP performance to suffer. Overall, changing

the MAC retransmission limit from its default setting is not advised.

AIFS provides sufficient adjustment granularity and range to compensate for capture

unfairness. Decreasing the AIFS value (for all ACs) for weaker senders prioritizes their traffic

and prevents collisions with stronger senders that result in unfair capture. Reducing the number

of collisions also improves total throughput and reduces delay by a small amount. Our system

is based on these concepts, but sets AIFS on a per packet basis instead of a per station basis to

focus specifically on protecting the TCP ACKs.

The use of 802.11e for TCP control packet prioritization has also been investigated

in [18]. This study attempts to solve the problem of forward-reverse path asymmetry. Recall

that for TCP uploads, the AP has a smaller share of transmission opportunities compared to the

STAs due to the station-level fairness enforced by the DCF. This results in excess queueing of

TCP ACKs at the MAC layer. Prioritizing the ACKs using AIFS allows them to regain a higher

share of the transmission opportunities from data segments. This restores path symmetry and

increases system throughput, especially when there are a large number of contending nodes in

the network.

The authors of this study propose a specific prioritization scheme where the TCP ACKs

are assigned to the same AC as their corresponding data segments. Their argument is based on

the assumption that the data traffic is spread out across all available queues, which operate at

saturation, and that these queues are also shared with the TCP ACKs. Under this assumption, if

all TCP ACKs were given the highest priority, they would still contend and collide with the high

priority data segments. The low priority ACs would experience less contention, causing them

to achieve higher throughput than the high priority ACs, which violates the QoS requirements

36

of the network. Spreading the ACK traffic across the queues maintains QoS for each data class

while preventing excess contention within a particular queue.

However, we argue that [18] is still not an good solution because it maximizes the total

throughput across all ACs by compromising fairness within each AC. Consider one of the four

queues, AC_BE. All frames in this queue contend and collide with high priority frames from

AC_VI and AC_VO. This contention applies equally to all AC_BE frames, and is a normal part

of 802.11e. However, within AC_BE, TCP ACK and data segments also contend and collide

with each other because they have equal priority. This contention is not normal, and it violates

the TCP assumption [12] of low ACK error rates. It is equivalent to the contention seen in

ordinary networks without QoS, and results in the same unfairness problems. TCP senders ex-

periencing ACK loss will retransmit and decrease their congestion window excessively. Over

time, the high rate of ACK loss causes continued retransmission failures that result in these

senders backing off more often than others. The total throughput of AC_BE will still be rel-

atively high compared to AC_BK, but it will be dominated by a small subset of nodes. We

resolve this issue by requiring TCP ACKs to have their own exclusive queue, removing the

possibility of any ACK collisions that could introduce unfairness.

In [19], the authors conduct a study that demonstrates the extent of TCP upload un-

fairness in networks without proper ACK prioritization. Figure 5.3 shows the result of one

particular simulation. The authors set up ten TCP uploads over an 802.11b WLAN. The TCP

SACK option is enabled. Two TCP senders achieve disproportionately high throughput while

four of the senders cannot even access the channel. Note the similarity between these results

and our simulations.

The authors address this problem by prioritizing TCP ACKs based on AIFS and min-

imum contention window size. Their approach is quite similar to ours, but focuses on trans-

mission opportunities and EDCA timing relationships rather than the effect of collisions. By

giving TCP ACKs nearly unrestricted access to the channel, the ACK rate is regulated by the

transport layer instead of the MAC layer, which is the intended behavior of TCP. The ratio of

37

Figure 5.3: TCP Uploads without ACK Priority [19]

transmission opportunities obtained by ACKs compared to data segments is proportional to the

ratio of CWmin between their ACs. The authors derive an analytic model to predict the through-

put of each sender based on AIFS and CWmin, assuming that ACK prioritization eliminates all

ACK-data collisions. We take a more complete approach and treat ACK-data collision avoid-

ance as one of the main goals of FTCA. In doing so, we validate the authors’ assumptions and

obtain some new insights into TCP behavior.

The TCP ACK Priority (TAP) system [38] offers a different way of eliminating forward-

reverse path asymmetry and ACK delays for TCP uploads. TAP allows the AP to transmit up

to n ACKs in one transmission opportunity using multi-destination frame aggregation, another

feature in 802.11e [4], [36]. In this system, the first ACK is transmitted immediately after a

DIFS. If the AP has additional ACKs in the queue, up to n� 1 ACKs are sent out in quick

succession, separated only by a SIFS or a RIFS (Reduced Interframe Space). Appropriate

values of n, determined through simulation, are 4 for basic access and 8 for RTS/CTS. TAP

restores path symmetry and ensures that all TCP senders are actively transmitting data instead

of waiting for ACKs. However, it is a system that is restricted to TCP uploads. TCP downloads

may still encounter collision problems, because TAP cannot prioritize ACKs sent from the

STAs to the AP.

Most of these existing solutions also suffer from another limitation—the failure to con-

38

sider TCP SYN and SYNACK segments. These control packets, used in TCP connection setup,

are just as vital to fair protocol operation as ACKs are. Suppose that a STA is attempting to

create a new TCP connection in a heavily congested WLAN. There is a high probability that

the initial SYN or SYNACK segment will be lost due to collisions or delays, causing the sender

to enter a backoff period. The instantaneous fairness impact of SYN or SYNACK loss is more

severe than that caused by ACK loss. SYN or SYNACK loss completely prevents the TCP

sender from transmitting data, while ACK loss causes a TCP rate reduction. Therefore, FTCA

prioritizes all TCP control packets, not only ACKs.

39

6. DESIGNING NETWORK SIMULATIONS FOR

FTCA

6.1. Overview of NS-3

We implement and evaluate FTCA in NS-3 [39], a discrete-event network simulator.

NS-3 contains a set of C++ modules that implement the layers of a typical network stack,

including TCP, IP, and the 802.11 MAC. Nodes can be set up according to various layouts and

mobility models. Then, traffic-generating applications are installed and run on them. During

simulations, all packets passing through the network are logged in Wireshark-style [40] packet

capture (pcap) files. Trace sources throughout the code output statistics such as packet error

counts, and record important events such as changes to the TCP congestion window.

NS-3 contains a basic implementation of a wireless channel in the YansWifiPhy mod-

ule. This component provides a coarse approximation of frame transmission and reception

events based on SINR. Transmitters send out frames at a constant power level. When these

frames arrive at a receiver, the average SINR for the entire frame is computed based on simple

path loss, interference, and noise functions. If the average SINR is above a threshold, the entire

frame is received successfully. Otherwise, the entire frame is dropped.

The YansWifiPhy model averages out signal-level effects on frames, emphasizing

computational efficiency at the cost of simulation accuracy. This is an acceptable tradeoff for

simulations that focus on higher processes of the network stack, such as IP routing or queue-

ing. However, YansWifiPhy is not detailed enough to analyze packet collisions and capture.

Therefore, we have decided to replace YansWifiPhy with PhySimWifiPhy [41], a complete

model of the 802.11 physical layer (PHY).

40

PhySimWifiPhy mimics the behavior of actual 802.11 radio modems. It performs

orthogonal frequency division multiplexing (OFDM) modulation/demodulation, interleaving,

and forward error correction. Received frames are processed in proper order: First the preamble

must be detected in the presence of random noise vectors and interfering signals. Then the sig-

nal header is decoded, followed by the payload. PhySimWifiPhy supports MIM mode/packet

capture. Unfortunately, this system comes with an extremely high computational cost. Sim-

ulations involving PhySimWifiPhy are up to 1000 or 10000 times slower than those using

YansWifiPhy.

6.2. Physical Layer Model

In PhySimWifiPhy, we set up a standard 802.11a 5 GHz indoor wireless channel

model. All nodes transmit at a constant power Pt . A simplified log-distance path loss model

[17] is implemented, where the received power Pr is given by

Pr = PtK


d0

d

�g
(6.1)

or, in decibels,

Pr,dB = Pt,dB +KdB �10g log10


d
d0

�
(6.2)

This model is valid for all transmission distances d > d0 and is shown to conform well with

real-world channel measurements. For indoor environments, a typical value for the reference

distance is d0 = 1m. The corresponding reference loss at this distance is set to the free space

path gain

KdB = 20log10
l

4pd0
(6.3)

41

which results in a value of K =�46.67dB for a center frequency of 5.15 GHz. For the path loss

exponent, we use g = 3.5, corresponding to a typical home or office environment. Table 6.1

provides a complete listing of these, and other physical layer simulation parameters.

Table 6.1: NS-3 Physical Layer Simulation Parameters

Parameter Description Value

Pt Transmit Power 18 dBm
d0 Reference Distance 1 m
K Reference Loss �46.67 dB
g Path Loss Exponent 3.5
Pn Noise Floor �99 dBm
gMR MIM/Capture Threshold 8 dB

(a) 6-Node Star (b) 3⇥3 Grid (c) 8-Node Random Disc

Figure 6.1: Node Layouts for NS-3 Simulation

6.3. Node Layouts

For our simulations, we define three different node layouts: star, grid, and random disc.

Examples of these layouts are shown in Figure 6.1. Each layout consists of an AP and a set of

STAs. All nodes remain at fixed positions throughout the simulations; cases involving mobility

are not considered.

42

In the star layout, n STAs are evenly spaced on a circle of radius r with the AP at

the center. This layout is a highly symmetric configuration that does not reflect real-world

situations. However, it is useful for obtaining an upper bound on network performance under

fair conditions.

The grid layout consists of a set of STAs evenly spaced d units apart on an m⇥ p grid.

The AP is located at the center of the grid. This layout is common in office environments, where

desks/workstations are spaced at even intervals. Grid layouts are also common in hardware

testbeds, allowing for easier comparison of results.

In the random disc layout, n STAs are allocated within a circle of radius r, according to

a uniform random distribution. The AP is placed at the center. This layout corresponds most

accurately with real-world conditions.

Specific parameters for these layouts are chosen so that all nodes are in range of each

other: For the star layout we have 6 nodes located at a radius of 5 m from the AP. The grid is

3⇥3, with a spacing of 5 m. The random disc layout has 8 nodes within a 10 m radius of the

AP. Packet error rates for single connections at these distances are small but non-negligible—

on the order of 1%.

6.4. Configuration of the Network Stack

Each node contains an instance of the default NS-3 network stack, which includes an

implementation of TCP NewReno, IPv4, and an 802.11a OFDM MAC/PHY layer with added

QoS support. A BulkSendApplication is installed on each STA, which establishes a TCP

upload connection with the AP. Data segments are given AC_BE priority and TCP control

packets are assigned to AC_VO. The TCP maximum segment size is 536 bytes. All TCP

connections operate at saturation. There are no high-level constraints placed on data rate or

amount, other than what is already provided by the TCP congestion control algorithm.

Rate adaptation at the MAC layer is disabled. Since all nodes are in range of each

other, data frames are transmitted at 54 Mbps, the highest 802.11a supported rate. RTS/CTS

43

and ACK frames are transmitted at 6 Mbps, the lowest possible rate. When RTS/CTS is used,

it is enabled for data packets only.

6.5. Evaluation Metrics

For each scenario, 5 to 8 simulation runs are conducted for 30 seconds each, and the

results of the simulation runs are averaged. For each TCP connection i, we measure the overall

throughput xi for TCP data packets arriving at the receiver. The system throughput is defined

simply as the sum of the individual throughput values:

x =
n

Â
i=1

xi (6.4)

Fairness is measured using Jain’s Fairness Index (JFI) [42], defined as:

JFI =
(Ân

i=1 xi)2

nÂn
i=1 x2

i
(6.5)

JFI values close to 1 indicate network fairness, while values lower than 1 indicate unfairness.

Collisions involving TCP segments are tracked. A data-ACK collision is defined as the

loss of a TCP data segment due to interference by an overlapping TCP ACK (the ACK may or

may not have been captured). An ACK-data collision is defined as the loss of an ACK due to

interference by a data segment. Data-data and ACK-ACK collisions are defined similarly.

44

7. SIMULATION RESULTS AND ANALYSIS

7.1. TCP Connections

7.1.1. Star Layout

Figure 7.1: Average Fairness for Each System (Star Layout)

Figure 7.1 shows the average fairness observed for simulations of a 6-node star layout.

(Error bars in the graph depict the 95% confidence interval.) Due to the symmetry of the

layout, the base system without TCP ACK prioritization already achieves a high degree of

overall fairness. The average JFI is approximately 0.95. However, a closer inspection of some

of the individual simulation runs shows that the fairness is still less than ideal. Figure 7.2

shows the per-node throughput for one particular simulation run. Node 5 attains a throughput

of 3.0 Mbps, while Node 6 attains a throughput of 1.8 Mbps. The throughput values for the

other four nodes fall in between these extremes. In another case, depicted in Figure 7.3, there is

45

a good degree of fairness among Nodes 2–5, which all have a throughput of around 2.8 Mbps.

However, Node 1 has a 1.5 Mbps throughput and Node 6 has a 0.65 Mbps throughput. These

differences are quite significant, even though they still translate to relatively high JFI values.

Figures 7.4 and 7.5 show the evolution of the TCP congestion window for each node

in these simulation runs. For 0  t < 2, there are no active TCP connections. (This part of the

simulation was a setup phase.) At t = 2 seconds, the TCP senders are enabled and the slow start

phase begins. All senders increase their congestion window rapidly and transition to congestion

avoidance mode at around t = 2.5. However, some nodes experience loss events early on and

momentarily end up with lower slow start thresholds. By t = 5, it becomes apparent that these

nodes are obtaining a much lower share of the network throughput.

The unfair distribution of the congestion window size and the throughput continues

for the life of the connection. Nodes with small slow start thresholds cannot quickly recover

from loss events brought on by wireless link conditions. The first loss event also triggers

subsequent loss events for these nodes. Meanwhile, the dominant nodes detect little or no

network problems, so they continue to increase their congestion window without bound. As a

result, the TCP congestion control process does not properly converge.

Enabling FTCA leads to a near-perfect average JFI of 0.9996, and analysis of the in-

dividual simulation runs confirms its improvement over the base system. Figure 7.6 depicts a

typical situation where all nodes have a throughput of around 2.3 Mbps. The TCP congestion

window for each node is plotted in Figure 7.7. Some unfairness is present for the first 5–10

seconds of the connection. This time, however, the dominant nodes experience loss events and

the congestion windows converge to a relatively stable point.

Next, we examine the performance of FTCA when it is used in conjunction with

RTS/CTS instead of the 802.11 basic access mechanism. Enabling RTS/CTS alone leads to

an average fairness of 0.93, comparable with the base system. Using FTCA with RTS/CTS im-

proves the fairness to 0.9995. The per-node throughput and congestion window relationships

are similar to those for basic access.

46

Figure 7.2: Per Node TCP Throughput (Base System, Star, Run A)

Figure 7.3: Per Node TCP Throughput (Base System, Star, Run B)

47

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time (s)

C
W

N
D

 (
K

iB
)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

Figure 7.4: TCP Congestion Window (Base System, Star, Run A)

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time (s)

C
W

N
D

 (
K

iB
)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

Figure 7.5: TCP Congestion Window (Base System, Star, Run B)

48

Figure 7.6: Per Node TCP Throughput (FTCA, Star Layout)

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time (s)

C
W

N
D

 (
K

iB
)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

Figure 7.7: TCP Congestion Window (FTCA, Star Layout)

49

It is also useful to compare what performance gains are achievable through limited

changes to the TCP parameters. ACK-1 refers to a simple TCP modification where receivers

send out ACKs immediately for every single data segment instead of for every other segment

(ACK-2). This strategy reduces the cost of lost TCP ACKs and addresses some of the problems

that arise from cumulative acknowledging and delayed acknowledging. From Figure 7.1, it

can be seen that ACK-1 improves slightly on the base system, increasing fairness to 0.97. With

RTS/CTS enabled, the fairness is 0.98. These performance gains are still less than those for

FTCA, however.

To evaluate the reliability of all systems and obtain a lower bound on their performance,

we record the highest throughput difference between nodes for each system across all simu-

lation runs. These results are presented in Figure 7.8. Here, the base system has a maximum

throughput difference of 2.22 Mbps, compared to the 0.19 Mbps for FTCA. Even though the

base system performs adequately overall, it sometimes exhibits high unfairness. FTCA not

only outperforms the base system on average, but it is also more consistent. Note that ACK-1

with RTS/CTS performs well too, with a worst-case throughput difference of 0.65 Mbps.

Figure 7.8: Maximum Observed Throughput Difference (Star Layout)

50

Figure 7.9 shows the average system throughput for each approach. For the base sys-

tem, the total throughput is 13.57 Mbps. FTCA actually improves the throughput slightly to

13.76 Mbps. This result is important because it means that FTCA increases overall fairness

without introducing significant throughput overhead. In contrast, other collision avoidance

strategies such as RTS/CTS incur a heavy throughput penalty. The system throughput under

RTS/CTS is 10.17 Mbps, which increases to 10.24 Mbps with FTCA. The ACK-1 strategy also

has some overhead, since the extra ACKs take up some transmission opportunities. ACK-1 has

a system throughput of 12.9 Mbps with basic access and 9.7 Mbps with RTS/CTS.

Figure 7.9: Average TCP System Throughput (Star Layout)

One of the main reasons why FTCA restores TCP fairness is that it reduces the proba-

bility that TCP ACKs will collide with data segments. Figure 7.10 shows the average error rate

for TCP ACKs under each system. Without FTCA, 15.8% of TCP ACKs are lost. The primary

cause of ACK loss is ACK-data collisions. Approximately 12.4% of the ACKs are corrupted

due to collisions with data segments. Other ACKs have been lost due to noise and unavoidable

issues such as transmitter-side collisions. The rate of ACK-ACK collisions is negligible (less

than 0.01%). In this case, ACK-ACK collisions are rare because for TCP uploads, nearly all

51

ACKs originate from the AP, which cannot transmit multiple frames at once. ACKs are also

very small compared to data segments, reducing the probability and extent of any overlap.

Figure 7.10: Average TCP ACK Error Rate (Star Layout)

With FTCA, the ACK error rate is reduced to 0.24% and the ACK-data collision rate

is lowered to 0.06%. These packet error rates are much closer to what the TCP sender can

tolerate from the channel.

RTS/CTS does not improve TCP fairness because it does not significantly reduce the

ACK error rate. Although ACK-data collisions have been eliminated, they have been replaced

with ACK-RTS collisions. Since the TCP ACKs are not protected with RTS/CTS due to their

small size, they are contending with the RTS frames from STAs preparing to transmit TCP

data segments. In theory, enabling RTS/CTS for TCP ACKs would prevent these collisions.

However, the reduction in ACK error rate will be outweighed by the extra delay required for

the RTS-CTS exchanges. Using FTCA with RTS/CTS prioritizes the TCP ACKs over the RTS

frames. The ACK error rate is reduced from 14.7% to 0.3%.

Interestingly, the ACK-1 method does lead to a slight reduction in the ACK error rate

compared to the base system, which may account for its small improvement in TCP fairness.

52

With basic access the error rate is 13%, and with RTS/CTS the error rate is 12.5%. Unfortu-

nately, these error rates still break the core assumptions required for normal TCP operation.

A side effect of ACK error reduction is an increase in the data error rate. Figure 7.11

shows the average error rate for TCP data segments under each system with basic access.

Collisions between two data segments account for most of these errors. The remainder of the

errors come from random noise and transmitter-side collisions. Data-ACK collisions are rare,

and even when they occur, the data packets are almost always captured successfully. Under

the base system, the data error rate is 21.2% and the data-data collision rate is 13.4%. FTCA

increases these values to 31.9% and 31.8%, respectively.

Figure 7.11: Average TCP Data Segment Error Rate (Star Layout)

The high data error rate does not have a negative impact on TCP fairness or throughput.

Instead, it coincides with normal protocol operation. Since ACK prioritization reduces the time

that it takes for TCP senders to receive an ACK, more senders are ready to transmit their next

data segment at any given time. Therefore, more STAs are actively contending for the channel.

The data error rates for FTCA are consistent with analytical models of collision probability in

saturated networks [14]. TCP senders can tolerate this error because it occurs on the forward

path of the connection.

53

7.1.2. Grid Layout

Figure 7.12: Average Fairness for Each System (Grid Layout)

In the grid layout, all systems experience a lower average fairness than in the star layout,

as shown in Figure 7.12. For the base system, the average JFI is 0.84. Analysis of the individual

simulation runs shows that the throughput is typically dominated by the STAs that are located

closest to the AP. Some of this behavior is expected because transmissions from the closer STAs

have a higher power at the receiver and thus a higher packet capture probability. However, there

are cases where nodes that are equidistant from the AP still have extremely different throughput

values due to improper TCP operation. For example, in Figure 7.13, STAs 2, 4, 5, and 7 are

all located 5 meters from the AP. Node 7 has a throughput of 3.14 Mbps but Node 4 has a

throughput of 0.97 Mbps.

The corresponding congestion window plot in Figure 7.14 confirms that the TCP con-

gestion control algorithm is misbehaving. Node 7 experiences only one loss event near the

beginning of the simulation. Afterwards, its congestion window increases without bound. The

other nodes experience varying degrees of loss and cannot properly recover from them.

54

Figure 7.13: Per Node TCP Throughput (Base System, Grid Layout)

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time (s)

C
W

N
D

 (
K

iB
)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8

Figure 7.14: TCP Congestion Window (Base System, Grid Layout)

55

Figure 7.15: Per Node TCP Throughput (FTCA, Grid Layout)

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time (s)

C
W

N
D

 (
K

iB
)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8

Figure 7.16: TCP Congestion Window (FTCA, Grid Layout)

56

With FTCA, there are still per-node throughput differences, but they are much less

severe. Figure 7.15 depicts a typical simulation run where the strongest node has a throughput

of 1.91 Mbps and the weakest node has a throughput of 1.23 Mbps. Groups of STAs that are

the same distance from the AP have almost equal throughput values. The congestion window

for each node, shown in Figure 7.16, converges properly. Overall, FTCA increases the average

fairness to 0.97.

The ACK-1 strategy does not lead to a statistically significant improvement in fair-

ness over the base system. The average fairness for ACK-1 is 0.85 but the JFI for individual

simulation runs has varied wildly from 0.76 up to 0.92.

With RTS/CTS enabled, the average fairness is also not very different from that of the

base system. It is interesting to note that unlike with the star layout, using FTCA alongside

RTS/CTS in the grid layout does not improve fairness significantly. Due to the overhead of

RTS/CTS and its limited impact on fairness, it is probably best to stay with the basic access

mechanism unless there is a known issue with hidden nodes in the network.

Figure 7.17 shows the worst-case throughput difference observed for each system. The

base system exhibits extremely inconsistent performance, with a maximum throughput dif-

ference of 3.0 Mbps. Similar problems occur for ACK-1 and RTS/CTS. The worst observed

throughput difference for FTCA is 0.80 Mbps, a much more acceptable value.

Figure 7.18 shows the average system throughput and gives an indicator of protocol

overhead. In the ideal star layout, FTCA has led to a slight increase in throughput, but in the

grid layout, it causes the throughput to decline slightly. The base system has an average sys-

tem throughput of 13.06 Mbps, while FTCA has an average system throughput of 12.80 Mbps.

Therefore, it is apparent that FTCA will introduce some overhead in regular WLANs. Nev-

ertheless, this throughput overhead is still small compared to the overhead associated with

RTS/CTS, which has a system throughput of around 10.22 Mbps.

There is no significant difference between the star layout and the grid layout in terms

of packet error and collision characteristics. The only notable trend is an increase in the overall

57

Figure 7.17: Maximum Observed Throughput Difference (Grid Layout)

Figure 7.18: Average TCP System Throughput (Grid Layout)

58

Figure 7.19: Average TCP ACK Error Rate (Grid Layout)

Figure 7.20: Average TCP Data Segment Error Rate (Grid Layout)

59

collision rate because the grid layout has 2 additional TCP senders compared to the star layout.

For TCP ACKs, Figure 7.19 shows that the base system has a high error rate which is dominated

by ACK-data collisions. ACK-1 reduces the error rate by a small amount, but FTCA almost

entirely solves the collision problem. With FTCA, the ACK-data collision rate is 0.13% and

the error rate is 0.35%. RTS/CTS also eliminates ACK-data collisions, but the ACK error rate

is still high due to ACK-RTS collisions.

FTCA still increases the collision rate for TCP data segments, as indicated in Fig-

ure 7.20. The base system has a data error rate of 27.3% and a data-data collision rate of 19.9%.

FTCA has a data error rate of 40.8% and a data-data collision rate of 40.7%. Fortunately, the

collision probability for FTCA still follows analytical models for 8-node WLANs [14], and the

high collision rate does not have a negative impact on TCP performance.

7.1.3. Random Disc Layout

Figure 7.21: Average Fairness for Each System (Random Disc Layout)

The random disc layout exhibits the lowest overall fairness compared to the highly

symmetric star and grid layouts. Distance-based packet capture unfairness is a major problem

60

which FTCA cannot completely address. Still, for the base system, there are cases where nodes

that are close to the AP have unexpectedly low throughput due to improper TCP behavior.

FTCA cannot restore perfect fairness, but it does correct these problems and lead to a significant

improvement over the base system.

Figure 7.21 shows the average fairness for each system. The data are less precise than

those for the previous simulations due to the randomness involved here. The base system

has an average JFI of 0.72. FTCA has an average JFI of 0.89, and its improvement over the

base system is statistically significant. The other systems are harder to compare. ACK-1 and

RTS/CTS do not significantly change the fairness. Using FTCA together with RTS/CTS might

cause a slight decrease in fairness, but more data is required to confirm this.

Figure 7.22 shows the maximum recorded throughput difference for each system. The

worst-case behavior of FTCA is less than that of the base system, as expected. ACK-1 and

RTS/CTS also have satisfactory worst-case behavior. However, FTCA is subject to occasional

fairness problems when used alongside RTS/CTS. Based on these simulation results, as well

as the results for the grid layout, it is apparent that RTS/CTS does not have a positive effect on

TCP fairness.

Figure 7.22: Maximum Observed Throughput Difference (Random Disc Layout)

61

The average system throughput is shown in Figure 7.23. The results are mostly similar

to those for the star and grid layouts. FTCA introduces a small amount of throughput overhead,

while RTS/CTS and ACK-1 introduce larger degrees of overhead.

Figure 7.23: Average TCP System Throughput (Random Disc Layout)

Figure 7.24 shows the TCP ACK error rates and frame collision rates. Unlike in the

star and grid layouts, FTCA does not perfectly eliminate ACK-data collisions. Under the base

system, the ACK-data collision rate is 14.5% and the total ACK error rate is 18%. With FTCA,

the collision rate is 0.9% and the total error rate is 2%. These error rates are still high enough

to introduce some TCP unfairness, though at a much lower degree than in the base system.

Error statistics for data segments are summarized in Figure 7.25. The results here are

very similar to those for the grid layout. Data error rates in the base system are around 24%.

FTCA increases the error rate to around 40%, but the frame collision rate is not abnormal.

62

Figure 7.24: Average TCP ACK Error Rate (Random Disc Layout)

Figure 7.25: Average TCP Data Segment Error Rate (Random Disc Layout)

63

7.2. TCP and UDP Connections

Figure 7.26: Average Fairness for Each System (TCP and UDP, Grid)

FTCA also improves the performance of TCP connections when there are other UDP

senders in the network. In the base system, TCP data segments, TCP ACKs, and UDP packets

all contend for transmission opportunities. Since UDP has no rate control mechanisms, it

can crowd out the TCP flows. FTCA does not stop UDP packets from interfering with TCP

data segments, but it will prevent them from colliding with TCP ACKs and causing excess

retransmission timeouts.

We set up the same grid layout used in the previous simulations, but with STAs 5–8

establishing UDP upload connections instead of TCP connections. Each UDP sender transmits

a continuous stream of 1-KiB packets at 1 ms intervals. The UDP packets have the same QoS

priority as the TCP data segments (AC_BE).

Figure 7.26 compares the average fairness for each system. The base system has an

average JFI of 0.911. FTCA improves the fairness to 0.956. Surprisingly, the ACK-1 method

has an average JFI of only 0.73. ACK-1 has performed well in the previous grid setup where

there are only TCP connections. In this scenario, it seems that the extra ACKs are placing too

64

much strain on the network and are worsening the already high levels of congestion created

by introducing the UDP flows. As a result, ACK-1 may not be suitable for use in real-world

networks where there are many different types of traffic that may or may not have flow control.

RTS/CTS also leads to poor levels of fairness. The base system with RTS/CTS has an

average JFI of 0.73. FTCA slightly improves the average JFI to 0.75. The overall JFI drops to

0.59 when ACK-1 is enabled. RTS/CTS should perform better in networks with hidden nodes,

but here it is not a good solution.

Figure 7.27 shows the worst-case throughput difference for each system. The maximum

throughput differences across all systems are already somewhat large since the UDP senders

achieve higher overall rates compared to the TCP senders. Still, FTCA has better worst-case

behavior compared to the other approaches.

Figure 7.27: Maximum Observed Throughput Difference (TCP and UDP, Grid)

The average system throughput for each approach is shown in Figure 7.28. UDP traffic

accounts for a large portion of the throughput. The base system has a throughput of 16.7 Mbps.

FTCA introduces a minimal amount of overhead, causing the throughput to drop to 16.5 Mbps.

ACK-1 causes the throughput to increase to 17.7 Mbps, but the network is dominated by a small

65

subset of nodes. RTS/CTS introduces a significant amount of throughput overhead compared

to basic access.

Figure 7.28: Average System Throughput (TCP and UDP, Grid)

The packet error statistics are summarized in Figures 7.29 and 7.30. FTCA significantly

reduces the number of collisions between TCP ACKs and TCP or UDP data packets. ACK-1

places too much load on the network and actually increases the ACK-data collision rate. Once

again, RTS/CTS eliminates ACK-data collisions but replaces them with ACK-RTS collisions

that are still harmful to the TCP senders. Data-data collision rates are high in all cases when

basic access is used. However, the collision rates still conform to analytical models [14], and

do not have a significant effect on fairness or throughput.

66

Figure 7.29: Average TCP ACK Error Rate (TCP and UDP, Grid)

Figure 7.30: Average TCP/UDP Data Error Rate (TCP and UDP, Grid)

67

8. CONCLUSIONS AND RECOMMENDATIONS

TCP exhibits poor performance in wireless networks due to the high probability of

random channel errors, frame collisions, packet capture, and delays. Packet loss events in

wireless networks can trigger improper behavior in TCP congestion control algorithms, which

leads to unfair throughput allocation across parallel connections. We have devised a new MAC-

layer solution, Fair TCP Channel Access, to address these problems. FTCA prioritizes TCP

ACKs at the MAC layer using standard QoS mechanisms in 802.11. Unlike typical MAC-layer

and cross-layer approaches for wireless TCP, FTCA requires no hardware modifications and is

easy to deploy in existing WLANs. Since FTCA works independently from the transport layer,

it is compatible with almost any TCP implementation, including NewReno and CUBIC.

Simulations in NS-3 show that FTCA consistently improves TCP fairness in a variety

of network layouts. It reduces collisions between TCP ACKs and TCP data segments, and

restores proper congestion control operation. It also improves TCP performance in situations

where there are contending UDP flows. The throughput overhead of FTCA is minimal. FTCA

may exhibit some performance issues when used alongside RTS/CTS, so it should be used with

basic access unless there are specific problems with hidden nodes in the network.

Overall, FTCA demonstrates an effective application of QoS systems in the 802.11

standard. Prioritizing TCP control packets at the wireless MAC layer protects them from ex-

traneous losses and improves network reliability. Further research should be conducted to test

whether the concepts developed here may be applied to other network protocols that also rely

on control packets to establish and regulate connections. QoS will become an increasingly

important component of modern wireless networks as they continue to expand.

68

REFERENCES

[1] A. Hepburn. (2013, Oct.) Infographic: 2013 mobile growth statistics. [Online]. Available:

http://www.digitalbuzzblog.com/infographic-2013-mobile-growth-statistics/

[2] M. Fidelman. (2012, May) The latest infographics: Mobile business statistics for

2012. Forbes. [Online]. Available: http://www.forbes.com/sites/markfidelman/2012/05/

02/the-latest-infographics-mobile-business-statistics-for-2012/

[3] Pew Research Center. (2013, May) Device ownership. [Online]. Available: http://www.

pewinternet.org/Static-Pages/Trend-Data-%28Adults%29/Device-Ownership.aspx

[4] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,

IEEE Std. 802.11, 2012.

[5] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 5th ed.

New York: Addison-Wesley, 2010.

[6] “Transmission control protocol,” RFC 793, Sep. 1981. [Online]. Available: http:

//tools.ietf.org/html/rfc793

[7] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective acknowledgment

options,” RFC 2018, Oct. 1996. [Online]. Available: http://tools.ietf.org/html/rfc2018

[8] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s retransmission

timer,” RFC 6298, Jun. 2011. [Online]. Available: http://tools.ietf.org/html/rfc6298

[9] IEEE Standard for Ethernet, IEEE Std. 802.3, 2012.

69

http://www.digitalbuzzblog.com/infographic-2013-mobile-growth-statistics/
http://www.forbes.com/sites/markfidelman/2012/05/02/the-latest-infographics-mobile-business-statistics-for-2012/
http://www.forbes.com/sites/markfidelman/2012/05/02/the-latest-infographics-mobile-business-statistics-for-2012/
http://www.pewinternet.org/Static-Pages/Trend-Data-%28Adults%29/Device-Ownership.aspx
http://www.pewinternet.org/Static-Pages/Trend-Data-%28Adults%29/Device-Ownership.aspx
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc2018
http://tools.ietf.org/html/rfc6298

[10] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC 5681, Sep. 2009.

[Online]. Available: http://tools.ietf.org/html/rfc5681

[11] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno modification

to TCP’s fast recovery algorithm,” RFC 6582, Apr. 2012. [Online]. Available:

http://tools.ietf.org/html/rfc6582

[12] Y. Tian, K. Xu, and N. Ansari, “TCP in wireless environments: Problems and solutions,”

IEEE Commun. Mag., vol. 43, no. 3, pp. S27–S32, Mar. 2005.

[13] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,”

IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535–547, Mar. 2000.

[14] H. L. Vu and T. Sakurai, “Collision probability in saturated IEEE 802.11 networks,” in

Proc. ATNAC ’06, Dec. 2006.

[15] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi, “An experimental study

on the capture effect in 802.11a networks,” in Proc. ACM WiNTECH ’07, Sep. 2007, pp.

19–26.

[16] C. Ware, J. Chicharo, and T. Wysocki, “Simulation of capture behavior in IEEE 802.11

radio modems,” in Proc. IEEE VTC ’01, vol. 3, Oct. 2001, pp. 1393–1397.

[17] A. Goldsmith, Wireless Communications. New York: Cambridge Univ. Press, 2005.

[18] A. Thangaraj, Q.-A. Zeng, and X. Li, “Performance analysis of the IEEE 802.11e wireless

networks with TCP ACK prioritization,” in Proc. IEEE ICCCN ’08, Aug. 2008, pp. 1–6.

[19] D. Leith and P. Clifford, “Using the 802.11e EDCF to achieve TCP upload fairness over

WLAN links,” in Proc. IEEE WIOPT ’05, Apr. 2005, pp. 109–118.

[20] The MadWifi project. [Online]. Available: http://madwifi-project.org/

70

http://tools.ietf.org/html/rfc5681
http://tools.ietf.org/html/rfc6582
http://madwifi-project.org/

[21] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A comparison of mech-

anisms for improving TCP performance over wireless links,” IEEE/ACM Trans. Netw.,

vol. 5, no. 6, pp. 756–769, Dec. 1997.

[22] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion avoidance on a

global Internet,” IEEE J. Sel. Areas Commun., vol. 13, no. 8, pp. 1465–1480, Oct. 1995.

[23] C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for transmission over wireless

access networks,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 216–228, Feb. 2003.

[24] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP Westwood: Band-

width estimation for enhanced transport over wireless links,” in Proc. ACM SIGMOBILE

’01, Jul. 2001, pp. 287–297.

[25] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP variant,” ACM

SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul. 2008.

[26] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control (BIC) for fast long-

distance networks,” in Proc. IEEE INFOCOM ’04, vol. 4, Mar. 2004, pp. 2514–2524.

[27] A. Nyandoro, L. Libman, , and M. Hassan, “Service differentiation using the capture

effect in 802.11 wireless LANs,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2961–

2971, Aug. 2007.

[28] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of reliable transport proto-

col over IEEE 802.11 wireless LAN: Analysis and enhancement,” in Proc. IEEE INFO-

COM ’02, vol. 2, 2002, pp. 599–607.

[29] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit congestion

notification (ECN) to IP,” RFC 3168, Sep. 2001. [Online]. Available: http:

//tools.ietf.org/html/rfc3168

71

http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3168

[30] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP communications,” IEEE J.

Sel. Areas Commun., vol. 22, no. 4, pp. 747–756, May 2004.

[31] S. Park, X. Shen, J. W. Mark, and L. Cai, “A two-phase loss differentiation algorithm for

improving TFRC performance in IEEE 802.11 WLANs,” IEEE Trans. Wireless Commun.,

vol. 6, no. 11, pp. 4164–4175, Nov. 2007.

[32] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for

unicast applications,” in Proc. ACM SIGCOMM ’00, 2000, pp. 43–56.

[33] ——, “TCP friendly rate control (TFRC): Protocol specification,” RFC 5348, Sep. 2008.

[Online]. Available: http://tools.ietf.org/html/rfc5348

[34] Q. Pang, S. C. Liew, and V. C. M. Leung, “Performance improvement of 802.11 wireless

access network with TCP ACK agent and auto-zoom backoff algorithm,” in Proc. IEEE

VTC ’05, vol. 3, May 2005, pp. 2046–2050.

[35] G. Xylomenos, G. C. Polyzos, P. Mähönen, and M. Saaranen, “TCP perfomance issues

over wireless links,” IEEE Commun. Mag., vol. 39, no. 4, pp. 52–58, Apr. 2001.

[36] Medium Access Control (MAC) Quality of Service Enhancements, IEEE Std. 802.11e,

2005.

[37] S. Ganu, K. Ramachandran, M. Gruteser, I. Seskar, and J. Deng, “Methods for restoring

MAC layer fairness in IEEE 802.11 networks with physical layer capture,” in Proc. ACM

REALMAN ’06, May 2006, pp. 7–14.

[38] N. Choi, J. Ryu, Y. Seok, T. Kwon, and Y. Choi, “Optimizing aggregate throughput of

upstream TCP flows over IEEE 802.11 wireless LANs,” in Proc. IEEE PIMRC ’07, Sep.

2007, pp. 1–5.

[39] ns-3. [Online]. Available: http://www.nsnam.org/

72

http://tools.ietf.org/html/rfc5348
http://www.nsnam.org/

[40] Wireshark. [Online]. Available: http://www.wireshark.org/

[41] J. Mittag and S. Papanastasiou. PhySimWiFi for NS-3. DSN Research Group, Karlsruhe

Inst. of Tech. [Online]. Available: http://dsn.tm.kit.edu/english/ns3-physim.php

[42] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness and

discrimination for resource allocation in shared computer systems,” Digital Equipment

Corp., Tech. Rep. DEC-TR-301, Sep. 1984.

73

http://www.wireshark.org/
http://dsn.tm.kit.edu/english/ns3-physim.php

	Title Page
	Signature Page
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	The Transmission Control Protocol
	Reliable Data Transfer
	Connection Setup and Teardown
	Congestion Control
	TCP Design Considerations

	IEEE 802.11 Infrastructure WLANs
	The 802.11 MAC Protocol
	Collision Avoidance
	Hidden Terminals and RTS/CTS

	TCP in Wireless Networks
	Random Packet Loss Events
	Packet Collisions
	Packet Capture
	ACK Compression
	Forward-Reverse Path Asymmetry

	Existing Solutions for Wireless TCP
	Sender and Receiver-Side TCP Modifications
	MAC Layer Modifications
	Multi-Layer and Cross-Layer Approaches

	Fair TCP Channel Access
	Designing Network Simulations for FTCA
	Overview of NS-3
	Physical Layer Model
	Node Layouts
	Configuration of the Network Stack
	Evaluation Metrics

	Simulation Results and Analysis
	TCP Connections
	Star Layout
	Grid Layout
	Random Disc Layout

	TCP and UDP Connections

	Conclusions and Recommendations
	References

