
THE COOPER UNION
ALBERT NERKEN SCHOOL OF ENGINEERING

Improving Flood Maps by Increasing the
Temporal Resolution of Satellites Using Hybrid
Sensor Fusion - Video Interpolation Networks

by
Yuval Epstain Ofek

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Engineering

December 2021

Professor Sam Keene, Advisor

THE COOPER UNION FOR THE
ADVANCEMENT OF SCIENCE AND ART

ALBERT NERKEN SCHOOL OF ENGINEERING

This thesis was prepared under the direction of the Can-
didate’s Thesis Advisor and has received approval. It was
submitted to the Dean of the School of Engineering and
the full Faculty, and was approved as partial fulfillment of
the requirements for the degree of Master of Engineering.

Dean, School of Engineering Date

Prof. Sam Keene, Thesis Advisor Date

Acknowledgments

To my family, for the endless love, support, and encouragement.

To my advisor, Sam Keene, for the guidance, inspiration, and support during
this work and beyond.

To my friends, at Cooper and beforehand, for shaping me into who I am today
and pushing me forward along my way.

To the team at the University of Arizona and Columbia, for opening their
research to me and sharing their love of such fascinating topics.

To my professors and teachers, for the knowledge they imparted and the spirit
they nurtured within me.

To my mentors, for urging me forward towards better things and showing me
the way when I felt lost.

To my peers, for sharing their journey with me and continuing to challenge
me to be a better version of myself.

To the hours spent together in lectures, classes, labs, and hallways.

To the meals shared, the jokes, and the positive atmosphere we built together.

To The Cooper Union, for the advancement of science and art.

I humbly say thanks to all of you. Words cannot fully encompass my gratitude.
I could not have done it without you, nor would I wish to have done it any
other way.

i

Abstract

Due to the inherent limitations of the satellites used to generate flood inunda-

tion maps, a key tool to mitigate damages and deal with floods, the creation

of high-spatial-high-temporal resolution flood maps is limited. In recent years,

there has been increasing amount of research using satellite sensor fusion to

generate synthetic bands [1–3]. Even more recently, studies using video frame

interpolation across a single/multiple bands have been used to augment inputs

to remote sensing tools [4]. We introduce the synthesis of these two meth-

ods through proposing different pipeline architectures of varying complexities

to half the revisit rate of Landsat 8 imagery, generating high-spatial-high-

temporal imagery through merging insights from the MODIS satellite tools

and past and future Landsat 8 imagery. Experiments on a custom dataset

show that the combination of video frame interpolation and satellite sensor

fusion outperforms standard methods across almost all metrics. Furthermore,

experiments show that pipelines composed of as few as a single model perform

comparably to the top performing pipelines.

ii

Contents

1 Introduction 1

2 Background 6
2.1 Remote Sensing . 6

2.1.1 A Brief History . 6

2.1.2 Electromagnetic Waves 9

2.1.2.1 Electromagnetic Spectrum 10

2.1.3 Image Acquisition . 10

2.1.3.1 Recording Surface 11

2.1.3.2 Lens . 12

2.1.4 Satellites . 13

2.1.4.1 Landsat 8 . 14

2.1.4.2 MODIS . 15

2.1.4.3 Comparison 15

2.2 Digital Video Processing . 16

2.2.1 Terminology . 16

2.2.2 Geometric Image Formation 17

2.2.2.1 Perspective Projection 17

2.2.2.2 Orthographic Projection 19

2.2.3 Photometric Image Formation 20

2.2.3.1 Lambertian Reflectance Model 21

2.2.4 Spatio-Temporal Sampling 21

2.2.4.1 Lattices . 22

2.2.4.2 Sampling on 3-D Structures 23

2.2.5 Optical Flow . 24

2.3 Machine learning . 25

2.3.1 Supervised Learning 26

2.4 Deep Learning . 27

2.4.1 Neural networks operations 27

2.4.1.1 Fully connected neural networks 27

iii

2.4.1.2 Convolutional neural networks 29

2.4.2 Layer operations . 32

2.4.2.1 Max-Pooling 32

2.4.2.2 Batch normalization 32

2.4.2.3 Transposed Convolution 33

2.4.3 Activation functions 34

2.4.3.1 Sigmoid . 34

2.4.3.2 Rectified linear units 35

2.4.3.3 Leaky rectified linear units 35

2.4.4 Higher level architectures 36

2.4.4.1 Residual networks 36

2.4.4.2 Encoder-Decoder Architectures 38

2.4.4.3 U-Net . 39

2.4.4.4 Generative Adversarial Networks 40

2.4.4.5 Conditional Generative Adversarial Nets . . . 40

2.5 Digital Multi-Sensor Temporal-Based Image Synthesis 41

2.5.1 Deep Video Interpolation 44

2.5.1.1 Continuous Output 44

2.5.1.2 Discrete Output 45

2.5.1.3 N-Image Interpolation 46

2.5.1.4 Single Image Interpolation 46

2.5.2 Image Sensor Fusion 47

2.5.2.1 Multi-input image translation 48

2.5.2.2 Single-input image translation 49

3 Related Works 50
3.1 Deep Video Interpolation . 50

3.1.0.1 Phase-based 50

3.1.0.2 Optical flow-based 52

3.1.0.3 Other . 57

3.2 Imagery Sensor Fusion . 58

3.2.0.1 External . 58

iv

3.2.0.2 Remote sensing-based 62

4 Hybrid Video Frame Interpolation - Sensor Fusion Networks 65
4.1 Architectures . 65

4.1.1 Naive . 66

4.1.2 Secondary Fusion . 66

4.1.3 High Spatial Resolution Information Boosting 68

4.1.4 High Temporal Resolution Information Injection 69

4.1.5 Comparisons . 70

5 Experiments 71
5.1 Custom Dataset . 71

5.2 Bench-marking . 72

5.3 Hybrid Models . 73

6 Results and Discussion 74
6.0.1 Test Set Evaluation 74

6.0.2 Predicted Imagery Samples 74

6.0.2.1 Pix2pix . 74

6.0.2.2 FLAVR . 75

6.0.2.3 Naive . 76

6.0.2.4 Secondary Fusion 77

6.0.2.5 HR-Boosting 78

6.0.2.6 HT-Injection (with pix2pix) 79

6.0.2.7 End-to-End HR-Injection 80

7 Conclusion 82

8 Future Work 83

A Electromagnetic Wave Equation 93

B Satellite Band Specifications 94

C Code Sample 97

v

C.1 Pix2pix Modifications . 97

C.1.1 Dataset Loader . 97

C.1.2 Evaluation . 98

C.2 FLAVR Modifications . 101

C.2.1 Dataset Loader . 101

C.2.2 Architecture . 103

C.2.2.1 FLAVR . 103

C.2.2.2 Resnet . 107

C.2.3 Training . 113

C.2.4 Testing . 118

C.2.5 Evaluation . 120

C.3 Naive . 123

C.4 HR Boosting and Secondary Fusion 125

C.4.1 Pairing Images . 125

C.4.2 Dataset Loader . 128

C.4.3 Tuning . 130

C.5 HT Injection . 133

C.5.1 injFLAVR . 133

C.5.2 Tuning . 137

C.6 Overall Testing . 140

vi

List of Figures

1 Issues with low temporal resolution during flood events 3

2 Example of satellite sensor fusion 4

3 Example of video frame interpolation 5

4 Visualization of video interpolation and satellite sensor fusion 6

5 Earliest Surviving Aerial Photo 7

6 Visualization of electromagnetic waves 10

7 CCD and CMOS Sensor Diagrams 12

8 Cross-sectional view of an image passing through a simple con-
vex lens . 12

9 Visualization of white light through a convex lens 13

10 Perspective projection of object onto an image plane through
pinhole f . 18

11 Perspective projection with annotated measurements 18

12 Orthographic projection of an object onto an image plane . . . 19

13 2-D Lattice . 22

14 2-D sampling using a lattice 24

15 Optical flow . 25

16 A graphical representation of an FCNN 29

17 Visualization of various activation functions 37

18 Residual building block . 38

19 Diagram of encoder-decoder networks 38

20 U-Net architecture for 32× 32 sized image 39

21 Outline of generative adversarial networks 40

22 Outline of conditional generative adversarial networks 41

23 multi-sensor temporal-based image synthesis 43

24 Continuous video interpolation for K input time-steps 45

25 Continuous video interpolation for 1 input time step 45

26 Discrete video interpolation for n uneven output time-steps . . 46

27 Discrete video interpolation for n output time-steps 47

28 Example satellite sensor fusion 49

vii

29 PhaseNet Architecture . 51

30 PhaseNet block . 51

31 Super SloMo architecture . 52

32 Pipeline for Deep Voxel Flow 53

33 Network architecture MEMC-Nett and MEMC-Net* 54

34 Pipeline for Quadratic Video Interpolation 55

35 Cycle consistency loss for a triplet of images 56

36 Unsupervised video interpolation to generate sample at any
time t . 57

37 FLAVR Architecture . 58

38 Generator architecture for high-resolution image interpolation 59

39 CycleGAN Architecture and cycle-consistency losses 60

40 DiscoGAN architecture . 61

41 MUNIT architecture . 62

42 StarGAN architecture . 62

43 STFGAN architecture . 63

44 Pix2pix model inputs and output 65

45 FLAVR model inputs and output 65

46 Naive architecture pipeline . 67

47 Secondary fusion pipeline . 67

48 High-resolution information boosting pipeline 68

49 High temporal resolution information injection architecture’s
pipeline, injecting pix2pix predictions 69

50 injFLAVR Architecture . 70

51 End-to-end High temporal resolution information injection ar-
chitecture’s, injecting MODIS imagery 70

52 Sample pix2pix evaluation . 75

53 Sample FLAVR evaluation . 76

54 Sample naive evaluation . 77

55 Sample secondary fusion evaluation 78

56 Sample HR-boosting evaluation 79

57 Sample HT-injection with injected pix2pix evaluation 80

58 Sample end-to-end HT-injection evaluation 81

viii

1 Introduction

Floods are devastating. They are the most destructive natural disaster on our

planet. Floods account for half of the world’s weather-related disasters, force

26 million people into poverty every year, cause $7.5 billion in damages in the

US alone, and lead to economic, urban, and commercial setbacks [5–7].

Understanding floods is the key to helping combat their effects, preventing

them from occurring, and mitigating human, commercial, infrastructural, and

economic losses. One of the tools best suited for tracking and monitoring

floods are flood inundation maps. These maps help understand what areas

were affected by a flood and have become critical in assessing and addressing

flood risk [8].

Traditionally, mapping flood inundation was done by relying on single-sensor

methods. These methods take either optical, radar, or microwave imagery on

a daily, monthly, and yearly basis to produce a flood map. A description of

the advantages and disadvantages of common one-sensor flood mapping types

can be seen in Table 1 [8].

1

Sensor Type Advantages Obstacles Example Sen-
sors

Coarse resolution
optical

High revisit frequency
(twice daily)

Cannot map floods
through clouds or
under vegetation

MODIS

Medium resolu-
tion optical

Identify assets such as
roads, fields, and ma-
jor infrastructure

Cannot map floods
through clouds or
under vegetation, and
3 day revisit for <30m
resolution

Landsat,
Sentinel-2

Very high reso-
lution commercial
(optical or radar)

Identify floods in ur-
ban areas and assets
including homes, cars,
side streets

Cannot map floods
through clouds or
under vegetation,
short history, and data
requires purchase

Planetscope,
Iceye, Terra-
SARX, UAVs

Radar (active) Identify inundation
through clouds, and
assets such as roads,
fields, and major
infrastructure

Difficult to map
flooded vegetation
and water between
tall buildings, short
history, low revisit (>6
days))

Sentinel-
1, ALOS
PALSAR

Passive microwave Identify temporal
pattern of inundation
through clouds over
large areas

Very coarse resolution,
degraded signal in ur-
ban areas

SMAP,
SMOS,
AMSR

Table 1: Common single-sensor flood-mapping categories with advantages/dis-
advantages. Table reproduced from the Tellman NASA THP proposal [8].

One-sensor approaches are inherently limited by the functionalities of the sen-

sor used. Where one sensor exhibits high temporal resolution, its spatial res-

olution limits the resulting map, or vice versa. Limited spatio-temporal reso-

lution is an inherent problem in remote sensing with satellites, as each sensor

design is a trade-off between spatial and temporal resolutions. Specifically

in flood events, which are short-lasting, lack of sufficient temporal resolution

becomes a challenge in generating high-resolution maps. Low temporal res-

olution sensors are susceptible to completely missing flood events, or poten-

tially misattributing multiple floods to a single event, as visualized in Figure

1. Given the need for sufficient temporal resolution to detect floods and the

limited spatio-temporal resolution of satellites, we see that there is a limit to

the spatial resolution of any sensor used to generate flood inundation maps,

2

LT HT

Flood 1

Flood 2

Flood 3

time

Figure 1: Issues with low temporal resolution during flood events. Low tem-
poral resolution (LT) and high temporal resolution (HT) sensors during three
flood events (blue). The LT sensor completely misses Flood 1 and combines
Flood 2 and Flood 3 into one event.

which means that flood inundation maps generated by one-sensor techniques

are limited in spatial resolution. In other words, one-sensor approaches can

only generate flood maps up to a certain spatial resolution.

To combat these limitations, techniques combining multiple sensors have been

introduced as means of improving the output flood mapping and are showing

much promise [8]. Common approaches used for combining sensor inputs to the

mapping system are image-to-image translation, often referred to as sensor-

fusion or alternatively satellite-to-satellite translation in the remote sensing

field, which allows a low spatial resolution image from an alternate sensor to

be converted into the desired sensor’s image. Due to the limitations of satellite

sensors, this becomes the task of mapping a low-resolution image from one sen-

sor to a high-resolution image of another. This is similar to super-resolution,

the task of increasing the spatial resolution of an image, but with the additional

3

?
Sensor Fusion

fpf1

Figure 2: Example of satellite sensor fusion using input from satellite f1 to
predict image in gray for satellite fp

challenge of switching the domains of the image as a consequence of translating

between sensors. While generating images that are temporally consistent with

real-life events, these methods are inherently deficient in generating realistic

high-resolution imagery and are prone to producing artifacts, all due to a lack

of high-resolution inputs.

Another approach is to use video frame interpolation techniques, a method

that has only been introduced into the remote sensing field in the last year

or so. These techniques rely on known future and past images from the high-

resolution sensor and generate an image that ’best’ explains how the image

changed from the past to the future. An example of video frame interpolation

can be seen in Figure 3. It is important to note that as these models rely

on ’future’ images they cannot be run in real-time and need to wait until

the future images are captured, which may take weeks. While this delay is

a problem for floods and real-time response to flood events, these techniques

are still useful for prolonged recovery from floods or when applied to historical

data for better flood-planning. These techniques have also shown promise in

weather prediction [4]. While generating high-resolution images that appear

incredibly accurate, these methods may fail to predict high temporal resolution

events, such as floods, and the predictions are susceptible to not tracking real-

life events as they lack high temporal information to make accurate predictions.

In this work, we have attempted to combine video frame interpolation and

satellite sensor fusion as a means of generating high spatial resolution - high

4

?
Video

Interpolation

fp

time

Figure 3: Example of video frame interpolation using inputs in blue to predict
intermediate frame in gray

temporal (HSHT) resolution imagery. We visualize this combination in Figure

4. We experiment with providing imagery sensor-fusion methods with contex-

tual spatial information to improve spatial accuracy as well as with providing

video interpolation methods with information regarding short-term tempo-

ral events. This additional information enables the generation of high-spatial

high-temporal imagery with greater accuracy, synthesizing useful sensor in-

puts for flood inundation mapping systems which lower the need for further

synthesis of sensors and mitigate spatio-temporal resolution limitations of the

final flood mappings.

5

?
Sensor Fusion

Video
Interpolation

fpf1

time

Figure 4: Visualization of satellite sensor fusion (red) and video interpolation
(blue) for the same output image (gray).

2 Background

2.1 Remote Sensing

Remote sensing is the practice of using imagery of the Earth’s surface to derive

information. Such imagery is obtained through electromagnetic radiation in

one or many spectral regions that is reflected or emitted from the surface.

Besides flood inundation mapping, the field of remote sensing has a sizeable

number of applications including, but not limited to, hydrology, urban studies,

reconnaissance, surveillance, geology, and agriculture [9].

2.1.1 A Brief History

The field of remote sensing could be said to have begun in 1858, when the first

aerial balloon photograph was taken by French photographer Gaspar Félix

6

Tournachon, known also as ’Nadar’. Said photographs have been lost to time

and the earliest surviving photographs are those taken by James Wallace Black

on October 13, 1860 over Boston [10]. One such photo can be seen in Figure

5.

Figure 5: Earliest Surviving Aerial Photo, taken by James Wallace Black in
October 13, 1860 [11]

Photography from powered aircrafts was introduced in 1909 when Wilbur

Wright flew to photograph a military field at Centocelli, Italy [9, 10]. Aerial

photography remained more of an artistic curiosity at the point, lacking a sci-

entific and systematic approach. This all changed with the break of World War

I. With the use of aerial photography for reconnaissance, the importance of the

field became apparent, spurring two decades of rapid development following

the war. New tools and techniques allowed the expansion of the field to include

land surveys, geologic mappings, and rural economic monitoring, helping the

government monitor the U.S. during the worldwide economic depression.

7

World War II marks another milestone in the development of the field. The

electromagnetic spectrum captured using aerial tools expanded from almost

exclusively the visible spectrum to include the infrared and microwave regions.

With wartime training also came many experienced pilots and camera oper-

ators ready to apply their skills to aerial photography and remote sensing,

expanding both the acceptance of remote sensing and developing its uses.

Satellites were introduced into remote sensing at around 1960, during the Cold

War. Some were used for strategic reconnaissance, while others were for civil

purposes, such as climatology and meteorology. This served as the first use of

previously classified military remote sensing instruments for civilian use.

The term remote sensing was coined in 1962 following a need to broaden from

original ’aerial photography’, which did not quite capture the many forms of

imagery collected using radiation.

Landsat 1’s launch in 1972 was the beginning of the era of using Earth-orbiting

satellites to observe Earth’s land areas. Landsat 1 provided routine data in a

digital format, allowing a wider audience and setting the stage for computer-

ized analysis of imagery.

Following contributions to the field include hyperspectral sensors, which en-

abled the collection of over 200 spectral regions and the standardization of

data using the Global Information System (GIS) and Global Positioning Sys-

tem (GPS).

Towards the end of the 20th century, more countries began to launch satellites

for remote sensing. Data became more available and new tools to interact

with this data were introduced. One notable tool built for the wide audience

available on the World Wide Web, is Google Earth. Google Earth serves as

8

a virtual representation of the Earth’s surface created using a composition of

varied digital images [9, 12].

2.1.2 Electromagnetic Waves

Electromagnetic radiation is emitted by all objects (except for those at absolute

zero temperature) [9]. As one example, what we humans see is electromagnetic

radiation, which is a small part of all the electromagnetic radiation around us,

aptly named visible light. The study of remote sensing is based directly on

electromagnetic waves and how objects interact with them.

Electromagnetic waves can be seen as a consequence of Maxwell’s Equations,

which are as follows:

∇× ~E = −∂ ~B

∂t
(1)

∇× ~H = ~J +
∂ ~D

∂t
(2)

∇ · ~D = ρ (3)

∇ · ~B = 0 (4)

We reproduce the derivation of the wave equations from Maxwell’s equations

in Appendix A. Further discussion of the equations is beyond the scope of

this work, yet we present the key finding that electromagnetic radiation con-

sists of paired electric and magnetic fields perpendicular to the direction of

propagation and to each other. These results are visualized in Figure 6.

We also note that in a vacuum, electromagnetic waves obey:

c = λν (5)

where (c) is the speed of light, (λ) is the wavelength, and (ν) is the fre-

quency [9]. The frequency and wavelength of light are incredibly important in

9

Figure 6: Visualization of electromagnetic waves [13]

Division Spectral Range
Gamma rays <0.03 nm
X-rays 0.03 - 300 nm
Ultraviolet radiation 0.30 - 0.38 µm
Visible light 0.38 - 0.72 µm
Infrared region 0.72 - 1000 µm
Microwave region 1 mm - 30 cm
Radio ≥30 cm

Table 2: Electromagnetic spectrum divisions. Table reproduced from Intro-
duction to Remote Sensing, 5th Ed. [9]

remote sensing because different surfaces reflect lights of different frequencies.

Through an analysis of the light reflected we are able to distinguish what is

on the surface we are observing.

2.1.2.1 Electromagnetic Spectrum

The electromagnetic spectrum refers to the range of all types of electromag-

netic radiation. By convention, it is divided into multiple ranges, often referred

to as spectral ranges, based on wavelength/frequency. Some of the more com-

mon divisions can be seen in Table 2 [9].

2.1.3 Image Acquisition

Before data can be used to better understand the land, data needs to be

gathered. We describe the technologies required for taking images, which is

better referred to as image acquisition.

10

Images can be acquired through passive and active sensors. Passive sensors

measure electromagnetic waves that are naturally available, such as waves from

the sun that are reflected by surfaces. An example of passive sensors are hy-

perspectral sensors. Active sensors provide their own energy and measure the

waves that are reflected by the surface and returned to the sensor. An example

of an active sensor is the synthetic aperture radar (SAR) [14]. Henceforth, this

work focuses solely on passive sensors unless specified otherwise.

Technologies for aerial photography, and photography in general, rely on a set

of standard components: (1) a light-sensitive surface to record an image, (2) a

lens to gather and redirect light, (3) a shutter to control the entry of light, and

(4) a camera body to hold the other components together and block external

light. Digital cameras for aerial photography often also include positional and

navigational systems to annotate images [9].

We go into some of the more intricate components described above in more

depth in the following sections.

2.1.3.1 Recording Surface

There are two main techniques for digital image recording: charged-coupled

devices (CCDs) & complementary metal-oxide-semiconductor (CMOS) chips.

CCDs are more common in aerial photography, while CMOS chips are more

common in consumer products [9].

Both technologies rely on a two-dimensional array of sensors that accumulate

charge proportional to local intensity to take pictures. The difference between

the two technologies is that CCDs expose all pixels at a time and read the

values as the next image is taken, while CMO chips expose a single line at

a time and only expose the following line as the data from the previous line

11

Figure 7: CCD and CMOS Sensor Diagrams [15]

Convex Lens

Figure 8: Cross-sectional view of an image passing through a simple convex
lens

is transferred. CCDs further transfer the charge sequentially to convert into

voltage, while CMOS chips do this on a pixel-by-pixel basis [9]. We present a

diagram of the two sensors in Figure 7.

2.1.3.2 Lens

The lens, in its simplest form, is a glass disc with curved faces (see Figure

8). The change in material properties between air and the glass is carefully

designed to refract light, maintaining color balance and minimizing optical

distortions, and direct it to the recording medium.

One of the drawbacks of a single lens design is that they cause chromatic

aberration. When incoming white light, which is a superposition of many

12

Figure 9: Visualization of white light through a convex lens [16]

electromagnetic waves at different frequencies, passes the lens, each frequency

of light has a different focal length. This effect is shown in Figure 9. Most

aerial cameras use compound lenses, which are formed from many separate

lenses of varying sizes, shapes, and optical properties, which aim to, among

other things, eliminate this effect [9].

2.1.4 Satellites

Recently, satellites have become one of the more prominent tools for remote

sensing. They provide an overhead view of the land at fixed intervals called

the revisit rate, based on the time it takes the satellite to orbit the Earth and

return to the same spot.

The output imagery of satellites comes in the form of rasters. The word raster

refers to imagery stored as pixel maps, as opposed to vectors, which are stored

as points and shapes. Typical raster images are size (Imw, Imh, Nbands), where

Imw & Imh correspond to the image dimensions, and Nbands corresponds to

the different frequency radiations, also called bands, the image records (typical

images we are used to have Nbands = 3 for the RGB bands). We opt to call

raster images by the more general imagery henceforth.

13

Another important part of satellite images is the coordinate reference sys-

tem (CRS), which denotes the projection the satellite used to map the 3-D

world onto a 2-D image. Storing the appropriate CRS is critical for consistent

imagery interpretation, as projections have a significant effect on the final im-

age. These days, mathematical libraries such as GDAL [17] and Rasterio [18]

provide tools to transform imagery from one CRS to another.

As noted before, one of the main challenges with satellites is the limited spatio-

temporal resolution: satellites that orbit the Earth faster tend to have lower

spatial resolution and those that orbit slower tend to have higher spatial res-

olution. This forms a trade-off between temporal and spatial resolutions.

We proceed to introduce two satellites catalogs, Landsat 8 and MODIS, which

will be the two satellite catalogs used in this work.

2.1.4.1 Landsat 8

The Landsat program is the longest continuous global record of Earth’s surface

and is funded by NASA. The program includes 9 satellites as of December 2021,

with the latest satellite, Landsat 9, having launched in late September of 2021.

Landsat 8 was launched in February 11, 2013. The satellite orbits the Earth

at around 16-day intervals. The spectral bands of Landsat 8 range from 0.4

µm to 12.5 µm, with resolutions from 15 meters to 100 meters depending on

the bands [19]. The band frequency ranges can be seen in Appendix B Table

6.

Landsat 8 data is available online for free using the Google Earth Engine Data

Catalog [20].

14

2.1.4.2 MODIS

Moderate Resolution Imaging Spectroradiometer (MODIS) is a tool on the

Terra and Aqua satellites ans is also supervised by NASA. MODIS tools are

viewing the entirety of Earth’s surface every 1-2 days with 36 spectral bands

[21]. These spectral bands are between 0.405 and 14.385 µm, and are acquired

at three spatial resolutions – 250m, 500m, and 1,000m, depending on the

band [22]. The band frequency ranges are provided in Appendix B Table 7.

MODIS data is also available online for free using the Earth Engine Data

Catalog [20].

2.1.4.3 Comparison

Landsat 8 and MODIS are two different satellite data catalogs, intentionally

designed for different functionalities. The previous sections described the two

in depth, and we summarize the key differences between the two satellites in

Table 3.

Satellite Spectral Range Spatial Resolution Revisit Rate

Landsat 8 0.435 µm - 12.5 µm 15 m - 100 m ≈ 16 days

MODIS 405 nm - 14.4 µm 250 m - 1,000 m 1 day

Table 3: Comparison of Landsat 8 and MODIS satellites

We emphasize again that a high spatial resolution sensor comes at the cost of

a lower temporal resolution. This can be seen clearly through a comparison

of Landsat 8 and MODIS: whereas Landsat 8 has a high spatial resolution,

roughly 16 times that of MODIS, it also has 16 times lower temporal resolution

by comparison to MODIS.

15

2.2 Digital Video Processing

This work deals with sequences of imagery data, which are a form of video

data. In this section we provide the background and terminology for under-

standing this type of data and describe some video processing concepts that

have been successfully leveraged in state of the art research relating to our

topic of interest.

2.2.1 Terminology

Images are pictorial representations of information, which can be still or time-

varying. A still image refers to an image that is constant through time, while

time-varying images are images that change with time. We denote a time-

varying image as fo(x, y, t) and a still image as fo(x, y), where x and y are

spatial variables while t is temporal. Image sequences are time-varying images

represented by an ordered set of still images, {fo(x, y)ni
| 0 < ni ≤ N,ni ∈ Z}

where N is the length of the sequence and the index within the image sequence

is represented by ni [23].

A continuous time varying image is a function of two spatial dimensions and

time. The observed spatial window is denoted as W and the time interval

is denoted as T . We combine these and denote the spatio-temporal region

W × T as WT . In other words, fo : Wt → RC , where C is the number of

channels/bands of the image (i.e. for RGB images C = 3). The term channel

is used within the context of digital video processing, while the term bands is

an equivalent term used within the remote sensing community. The window,

W , is of size w × h, where w is the picture width and h is the picture height.

Therefore, W ∼ Sw × Sh, where Sm = R/mZ. Similarly, for a time interval of

length k, T ∼ Sk, making WT ∼ Sw × Sh × Sk [24].

16

A video is a representation of information that includes still and time-varying

images. Digital video refers to the electronic representation of video and can

also be viewed as a discretization of video [23].

2.2.2 Geometric Image Formation

The task of image formation is the task of mapping a 4-D, time-varying 3-D

scene, onto a 3-D space, the time-varying image plane [23]. This can be seen

as attempting to define a mathematical formulation for image acquisition, and

is generally formulated as follows:

P : R4 → R3 (6)

(x1, x2, x3, t)→ (x1, x2, t) (7)

In other words, image formation is the process of mapping the 3-dimensional

and time-varying world around us to the 2-dimensional and time-varying ’video’

we see through our eyes. We assume that the time coordinate does not affect

image formation, or rather that at a specific time, image formation is only de-

termined by physical coordinates. Thus, we omit notation of the time domain

and consider:

P : (x1, x2, x3)→ (x1, x2) (8)

2.2.2.1 Perspective Projection

Perspective projection is a mapping based on the reflection of an image using

the optical principles of an ideal pinhole camera as illustrated in Figures 10

and 11.

All the rays from an object pass through the center of projection, called the

focal point, which is also the center of the lens. An algebraic mapping can be

17

Object

Image Plane

f

x
y

z

X

x

Figure 10: Perspective projection of object onto an image plane through pin-
hole f .

Object
Image Plane

X1

x1

X3

f

Figure 11: Perspective projection with annotated measurements

derived from this using triangle similarities, resulting in the following:

x1 = −
fX1

f −X3

(9)

x2 = −
fX2

f −X3

(10)

This is a mapping (X1, X2, X3) → (x1, x2, 0), where Xi corresponds to the

original object, xi to the resulting image, and f to the focal point.

18

An additional simplification can be applied when X3 >> f , when the object

of the image is far away from the focal point, results in the following:

x1 =
fX1

X3

(11)

x2 =
fX2

X3

(12)

As a direct result of the algebraic derivation, perspective projection preserves

relative lengths across surfaces parallel to the image plane (the plane X1×X2)

only [23].

2.2.2.2 Orthographic Projection

Orthographic projection is another mapping, which assumes that all rays from

the 3-D object travel parallel to each other, as seen in Figure 12.

Object

Image Plane

x
y

z

Xx

Figure 12: Orthographic projection of an object onto an image plane

When the image plane is parallel to theX1×X2 plane of the world coordinates,

the orthographic projection can be described in Cartesian coordinates as:

x1 = X1 (13)

x2 = X2 (14)

19

The vector notation of this projection is as follows:

x1

x2

 =

1 0 0

0 1 0



X1

X2

X3

 (15)

xh =

1 0 0

0 1 0

Xh (16)

Where xh denotes the image plane points and Xh denotes the world coordinate

points.

As can be seen from the mapping, the orthographic projection results in the

same image regardless of how far the object is from the camera. This projection

is useful when the scene is much farther than changes in depth of the scene,

as is the case with satellites, and is often preferred over more complicated but

realistic models because of its linearity and computational simplicity [23].

2.2.3 Photometric Image Formation

It is worthwhile to mention the existence of other, non-geometric models for

image formation, a subset of which belonging under the category of Photo-

metric Image Formation. Photometric image formation methods are based

on image intensities being proportional to the amount of light reflected from

the objects in the scene. Scene reflection is assumed to contain Lambertian

and specular components (where light reflects diffusely and specularly, respec-

tively), and together they form the resulting images [23].

These models are more accurate representations of image formation and help

understand some of the specular noise in imagery yet are often more compu-

tationally expensive. This form of image formation is more important when

working with active sensors, as active sensors consider surface effects in more

20

detail. We provide a short description of one such photometric based method,

the Lambertian Reflectance Model, in the following section, though omit many

details for the sake of brevity.

2.2.3.1 Lambertian Reflectance Model

The Lambertian Reflectance Model assumes the imaged scene is composed of

Lambertian surfaces, which when illuminated by a single point-source with

uniform intensity results in image intensities:

fo(x1, x2, t) = ρN(t)~L (17)

where ρ is the fraction of light reflected by the surface, ~L = (L1, L2, L3) is the

unit vector in the mean illuminant direction, and N(t) is the unit surface of

the scene at spatial location (X1, X2, X3(X1, X2)), and at time t. N(t) is given

by:

N(t) =
(−p,−q, 1)
p2 + q2 + 1

1/2

(18)

where p = ∂X3

∂x1
and q = ∂X3

∂x2
[23].

2.2.4 Spatio-Temporal Sampling

The process of taking a time-varying image fo(x, y, t) and recording it digitally

is a form of spatio-temporal sampling. An image can be sampled in one, two,

or three dimensions, where one of the sampled dimensions must be the tempo-

ral dimension. For digital video, which this work involves, three-dimensional

sampling is always used. The subset of R3 that corresponds to the sampled

output image (the finite set of points that are defined in both R3 and in the

final image) is called the sampling structure, denoted as Ψ. We further see

that Ψ ⊂ WT ⊂ R3. We denote the sampled image as fs(x, y, t), and note that

fs(x0, y0, t0) = fo(x0, y0, t0)|x0,y0,t0∈Ψ [24].

21

2.2.4.1 Lattices

A useful mathematical structure for describing sampling of video is the lattice.

A lattice Λ in D dimensions is defined as follows:

Λ = {n1 ~v1 + n2 ~v2 + . . .+ nD ~vD | ni ∈ Z} (19)

Or equivalently:

Λ = {V · n | n ∈ Zd}, V =

(
~v1 ~v2 . . . ~vD

)
(20)

where {~v1, ~v2, . . . , ~vD} is a basis of RD. Through the construction of Λ, we

can immediately see that Λ ∼ ZD. We present an example of a 2-D lattice in

Figure 13.

v1

v2

Figure 13: 2-D Lattice Λ shown in red, for ~v1 = (0.5, 3), ~v2 = (2, 1).

The matrix V = (~v1 | ~v2 | . . . | ~vD) is called the sampling matrix and when

lattice Λ is generated from matrix V we write Λ = LAT(V). We note that

the sampling matrix for a lattice is not unique as there may be cases where

LAT(V) = LAT(U) for V 6= U . One such case is LAT(V) = LAT(V E) where

|det(E)| = 1 and E is an integer matrix.

22

Another useful concept to consider is the unit cell of a lattice. A unit cell of

lattice Λ is a set P ⊂ RD such that:

1. (P + s1) ∩ (P + s2) = ∅ for s1, s2 ∈ Λ, s1 6= s2

2.
⋃

s∈Λ(P + s) = RD

While a unit cell P is not unique for a given lattice Λ, the volume of a unit

cell, d(Λ) = |det(V)| is unique (or in other words, it is the same across any

unit cell of Λ) and its reciprocal denotes the sampling density [24].

2.2.4.2 Sampling on 3-D Structures

In the case of time-varying images, the lattices we deal with are simpler:

Λxyt = {n1v1 + n2v2 + kv3 | n1, n2, k ∈ Z} (21)

Where the subscripts x, y, & t represent the dimensions the lattice is defined

on (two spatial dimensions, x & y, and one temporal dimension, t) and are

indexed by n1, n2, and k respectively.

The sampling structure, which we may consider as the final output of the

sampling, is the sampled observed spatiotemporal window. This is equivalent

to the intersection between WT and a the sampling lattice Λxyt (or the union

of two or more shifted lattices in more complicated cases):

Ψ =WT ∩ Λxyt (22)

We present an example of sampling in Figure 14.

We see that the resulting image, fs, can be written in a number of ways:

fs(x1, x2, t) =


fo(x1, x2, t) , (x1, x2, t) ∈ Λ

0 , (x1, x2, t) /∈ Λ

(23)

23

WT

v1

v2

Figure 14: 2-D sampling using a lattice. Sampling lattice Λ = LAT (V), where
V = (~v1 | ~v2) for ~v1 = (0.5, 3), ~v2 = (2, 1). Spatiotemporal windowWT in gray.
Sampling structure Ψ in blue.

=
∑

(n1,n2,k)∈Λ

fo(n1, n2, k) · δ ((x1, x2, t)− (n1, n2, k)) (24)

=
∑

(n1,n2,k)∈Z3

fo(n1, n2, k) · δ

(x1, x2, t)− V


n1

n2

k


 (25)

2.2.5 Optical Flow

The displacement of the image plane coordinates (x,y) from time t to t‘ is called

the correspondence vector. An optical flow vector is defined as the temporal

rate of change of the image-plane coordinates (vx, vy) = (dx
dt
, dy
dt
)|(x,y,t)∈R3 . An

example of optical flow can be seen in Figure 15.

We note that the optical flow is equal to the limit of the correspondence vector

as ∆t→ 0, for ∆t = t`− t:

Optical Flow = lim
∆t→0

Correspondence (26)

24

Figure 15: Image (left) and corresponding 2-D optical flow (right) of a foot-
baller [25]

The optical flow is also known as the ”apparent 2-D velocity”. It is important

to see how it is different from the actual 2-D velocity [23]. Optical flow has

the following problems:

• It needs color variation for motion detection, so it fails to detect pro-

jected motion;

• It falsely identifies lighting changes as motion.

2.3 Machine learning

Machine learning is the practice of using statistical learning, calculus, and

optimization techniques to let computers analyze data and identify patterns

[26].

Machine learning can be used in a variety of different tasks including, but not

limited to, speech synthesis, image classification, video classification, movie

recommendation, and image super-resolution.

Machine learning has three major disciplines:

1. Supervised learning - deals with input pairs (x, y), with the task of

finding some function f(x) = ŷ such that ŷ ≈ y.

25

2. Unsupervised learning - deals with data X with the task of finding

subsets X1, X2, . . . , XN ⊂ X, with common characteristics.

3. Reinforcement learning - deals with environments, actions, and rewards.

The task of a reinforcement learning algorithm, or agent, is to interact

with the environment to determine an ideal set of actions to maximize

the final reward.

This work focuses on supervised learning, though related works also include

unsupervised learning.

2.3.1 Supervised Learning

As a general example, consider the subset of N input-output pairs drawn from

a larger population P:

S = {(x1, y1), (x2, y2), . . . , (xN , yN)} (27)

S ⊂ P (28)

The xi’s are referred to as the features, or as feature vectors, while the yi’s are

called labels or classes.

A supervised learning algorithm attempts to find mapping f : X → Y , where

X is the input space and Y is the output space.

To find such function, the algorithm attempts to minimize a loss function

`(ŷi, yi), ` : Y × Y → R≥0, which serves as an estimate of how the model will

perform on the population P. Because loss functions are constructed such that

lim
ŷi→yi

l(yi, ŷi) = 0, we see that minimizing the loss is equivalent to making our

prediction ŷi as close to the actual value yi as possible, for all possible points

in our sample set S.

26

2.4 Deep Learning

Deep learning is a subset of machine learning that deals with neural networks.

In recent years, the field has received wide recognition for its ability to outper-

form other machine learning algorithms in tasks relating to computer vision,

natural language processing, graph processing, and more.

Neural networks are trained using gradient descent coupled with the chain

rule, optimizing network parameters to minimize a loss function. Tools like

TensorFlow [27] and PyTorch [28], which allow for automatic differentiation,

make the creation and use of neural networks much easier than ever before,

thus contributing significantly to the volume of works in the field.

2.4.1 Neural networks operations

2.4.1.1 Fully connected neural networks

One of the ways neural networks are constructed is using fully connected neural

networks (FCNN), also referred to as dense layers.

FCNNs are considered networks because they are a composition of different

functions:

fnetwork(x) = f (N)(. . . (f (2)(f (1)(x))) . . .) (29)

Any one of these transformations, f(x), is called a layer. Due to the compo-

sition of linear functions being linear and therefore reducible to a single linear

transformation, to obtain a meaningful formulation f (i) should be nonlinear.

A convenient way to create such nonlinear functions for multidimensional in-

puts is using matrix multiplication by a vector followed by a non-linear trans-

formation. A matrix multiplication of x by a weight matrix W can be formu-

27

lated as:

(·, ·) : Rm×n × Rn → Rm (30)

(W, x)j =
n∑

i=1

wjixi,∀j (31)

With a nonlinear transformation f(·) (known as an activation function) at the

output of the matrix multiply, the functional form is as follows:

y = f(Wn · · · f(W3f(W2f(W1x))) · · ·) (32)

As long as f(·) is differentiable we are able to train the now nonlinear model

through automatic differentiation and gradient based optimization. We note

that the nonlinear transformation may change between layers (i.e. f1() for

layer 1, f2() for layer 2, and so on), but for convenience and clarity of notation

we keep the transformation consistent across layers.

We add that the formulation:flayer = f(Wx) inherently limits the interaction

between input parameters within a layer, due to the matrix multiplication,

but is still expressible enough to capture a wide space of nonlinear functions

once a composition of layers is created.

Finally, we add a bias b so that each transformation in a layer is not con-

strained to intercept zero. Therefore, the full form of a single FCNN layer

is:

y = f (Wx + b) (33)

Figure 16 shows a FCNN with one hidden layer. The outputs of the hidden

layer are called latent variables. Each hidden layer added to the network

increases the complexity of data representations in the latent variables [29].

28

Input
layer

Hidden
layer

Out-
put
layer

x1

x2

x3

Ouput

Figure 16: A graphical representation of an FCNN. Each arrow has a scaling
factor wij associated with it. Each circle, known as a neuron, performs the
operation f(wix + b), where x refers to the layer inputs and wi refer to the
weights associated with the inputs for the given neuron. The transformation
from one layer to the next, as described in Equation 33, is thus represented
locally as inner products.

2.4.1.2 Convolutional neural networks

A convolutional neural network, also known as ConvNet or CNN, is a type of

deep learning architecture specialized at capturing spatial relations between

neighboring pixels. The idea for CNNs comes from filtering multidimensional

signals, which uses convolutions, and what the network essentially does is

sweep a small kernel across an input. Instead of learning a weight matrix

W for every input-output pair, all that is needed is a set of kernels of much

smaller sizes and convolutions.

A convolution of image I and kernel K is defined as follows:

Si,j =
∑
i=m

∑
j=n

I(m,n)K(i−m, j − n) (34)

=
∑
i=m

∑
j=n

I(i−m, j − n)K(m,n) (35)

This is equivalent to element-wise multiplication of a subset of the image with

a flipped kernel, followed by a summation.

29

Because of the application, most implementation omit the flipping of the kernel

in the process called cross-correlation:

Si,j =
∑
i=m

∑
j=n

I(m+ i, n+ j)K(m,n) (36)

The intuition behind this is that there is no need to flip the kernel when

convolving, as we can simply learn the post-flip kernel [29].

Consider an image f , represented by tensor F and with shape c× h×w. The

output of a ’convolution’ of F with kernel K is:

Zi,j,k =
∑
l

∑
m

∑
n

Fl,j+m−1,k+n−1Ki,l,m,n (37)

over all indices l,m, n where the indexing for the summation is valid [29]. The

output map Z has shape do × (h− kh + 1)× (w − kw + 1), where kh × kw are

the height and width of K, respectively.

Now we consider strided convolutions, where we skip over s input features each

time the kernel is moved:

Zi,j,k = c(K,X, s)i,j,k =
∑
l

∑
m

∑
n

Xl,(j−1)×s+m,(k−1)×s+nKi,l,m,n (38)

We see that the output shape is now:

wo = b(wi − kw)/s+ 1c (39)

ho = b(hi − kh)/s+ 1c (40)

Striding a convolution is inherently a trade-off, as it decreases computational

costs at the expense of reducing the output resolution.

Another important concept for CNNs is padding. When a convolution is

padded, the input image I is surrounded by layers of zeros:

30



0 . . . 0 . . . 0

...
. . .

... . .
. ...

0 0 0

0 . . . 0 I 0 . . . 0

0 0 0

... . .
. ...

. . .
...

0 . . . 0 . . . 0



(41)

We note that the bolded 0’s are vectors to match the size of the input image

I.

Typically, a hyper-parameter p is used to denote how many layers of zeros to

pad the input, so for p = 2:



0 0 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 0 0

0 0 0 0 0


(42)

One can immediately see that the added padding effectively increases the image

size by 2p, so the output shape is now:

wo = b(wi − kw + 2p)/s+ 1c (43)

ho = b(hi − kh + 2p)/s+ 1c (44)

31

2.4.2 Layer operations

2.4.2.1 Max-Pooling

The max-pooling operation refers to taking windows of the input, the size

of which is determined by hyper-parameters, and returning the highest value

within the window. The window may have any number of dimensions, again

determined by external hyper-parameters.

2.4.2.2 Batch normalization

Batch normalization was proposed to combat internal covariate shift, which

is when the internal distributions at a layer’s input drift from zero mean, unit

variance. To do this, batch normalization normalizes the input to each layer

at each mini-batch during training and using accumulated statistics from the

training period during inference [30].

The normalization that takes place for mini-batchB during the training period

is as follows:

µB ←
1

m

∑
i∈B

xi (45)

σ2
B ←

1

m

∑
i∈B

(xi − µB)
2 (46)

yi ← γ
xi − µB√
σ2
B + ε

+ β (47)

where γ and β are learnable parameters, and ε is a small constant value for

numerical stability.

At inference time, rather than normalizing using batch mean and variance,

batch normalization uses an average of the mean and variance across all

batches from the training set.

32

2.4.2.3 Transposed Convolution

While traditional upsampling uses zero-insertion or nearest-neighbor to up-

sample an input, transposed convolutions are layers that use convolutions for

up-sampling. What a transposed convolution attempts is to reimagine the

input as being the direct result of the output and the kernel.

For example, take a convolution of an input image I of size 4× 4 and a kernel

K of size 2 × 2. The output image would be of size 3 × 3. A transposed

convolution associated with the described convolution will have an output of

size 4× 4 when applied to an input of size 3× 3.

To do this, a transposed convolution first inserts zeros into the image based

on the stride s, then pads the image based on the padding parameter p, and

finally performs a convolution like a CNN to get the output. It is critical

to note that the parameters used for zero-insertion and padding are not the

parameters s and p as the input.

For an image I, kernel K of size k, stride s, and padding p, the associated

transposed convolution is described by kernel size k′ = k, s′ = 1, and p =

k − p− 1 [31].

We see that for the previous example, p′ = 2− 0− 1 = 1, so the input image

would have an effective size of 5× 5. Therefore, the output of a convolution

with a kernel of size 2× 2 is of size 4× 4 as desired.

The challenge is the zero insertion, as the image-size +2p − k may not be a

multiple of s. If it is, the image used for the input has s − 1 zeros inserted

between each input pixel. Therefore, the output image size is:

wo = b(wi − 1)s+ kw − 2pc (48)

ho = b(hi − 1)s+ kh − 2pc (49)

33

If it is not, in addition to the zero insertion of s− 1 zeros at every pixel, zero

padding is added to the bottom and right sides of the images. The added

number of layers is:

aright = mods(wi − kw + 2p) (50)

abottom = mods(hi − kh + 2p) (51)

This makes the output size:

wo = b(wi − 1)s+ aright + kw − 2pc (52)

ho = b(hi − 1)s+ abottom + kh − 2pc (53)

2.4.3 Activation functions

Here we present several common activation functions, each of which is perti-

nent to the present work. A visualization of each of them can be seen in Figure

17.

2.4.3.1 Sigmoid

The sigmoid activation function is as follows:

σ : R→ (0, 1) (54)

σ(x) =
1

1 + exp(−x)
(55)

and gradient:

σ′(x) : R→ (0, 1/4] (56)

σ′(x) =
exp(x)

(exp(x) + 1)2
(57)

Due to the gradient being < 1 for all inputs, sigmoid-based networks are prone

to having vanishing gradient problems, where the gradients become incredibly

small, slowing or stalling learning.

34

2.4.3.2 Rectified linear units

The rectified linear unit (ReLU) has demonstrated significant performance

increases for network generalization and increased training speed [32,33]. The

ReLU activation is defined as:

ReLU : R→ R≥0 (58)

ReLU(x) = max(0, x) (59)

with gradient:

ReLU′(x) =


1 if x > 0

0 if x < 0

(60)

We see that the gradient of the ReLU is undefined at 0, though this is no

concern in practice.

We note that training may halt if the input to a node is consistently < 0, as

no gradient information will be passed down the network. A node where this

occurs is referred to as a dead ReLU.

2.4.3.3 Leaky rectified linear units

Leaky ReLUs (LReLUs) are a modification to the ReLU designed to have some

non-zero gradient when the input is negative, thus avoiding dead nodes [34].

The LeakyReLU with hyperparameter α > 0 is:

LReLU : R→ R (61)

LReLU(x) =


x if x > 0

αx if x ≤ 0

(62)

with gradient:

LReLU′(x) =


1 if x > 0

α if x ≤ 0

(63)

35

2.4.4 Higher level architectures

2.4.4.1 Residual networks

Residual networks are a class of neural networks developed by He et al. in

2015 [35]. The architecture eases the training of deep neural networks by

intentionally reformulating the network to learn residuals, instead of direct

mappings.

A residual is a value r such that:

x = y + r (64)

where y is the desired output and x is the input.

In learning the residual, the overall network learns mapping F(x) in order to

perform another H(x), related as follows:

H(x) = F(x) + x (65)

A residual building block can be seen in Figure 18. We see that at the begin-

ning of the block the input is sent down two paths: one where it is transformed

by the learned network and the other where it is left untouched. The weighted-

path performs F(·) on the input x and then the output and the untouched

input are added, resulting in mapping H(x) = F(x) + x.

Residual networks have been shown to train faster and with higher accuracy

than plain neural networks, and have also allowed for training of very deep

networks of over 1000 layers.

36

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Sigmoid
(x)

d
dx (x)

4 2 0 2 4
x

0

1

2

3

4

5

6

y

ReLU
ReLU(x)
d
dxReLU(x)

4 2 0 2 4
x

0

1

2

3

4

5

6

y

LeakyReLU, = 0.1
LeakyReLU(x)
d
dxLeakyReLU(x)

Figure 17: Visualization of various activation functions

37

Weight layer

Weight layer

x

F(x)

F(x) + x

+

x

Figure 18: Residual building block

2.4.4.2 Encoder-Decoder Architectures

Encoder-decoder architecture is an umbrella term for networks that take an

input, encode it into a latent space of lower dimension, and decode it back

into an output, as seen in Figure 19.

Encoder Decoder
Latent
Values

Input

Output

Figure 19: Diagram of encoder-decoder networks

The intuition behind these networks is like Occam’s razor: simple is better.

This works in the sense that the encoder learns to condense the relevant in-

formation for decoding in an efficient representation, the latent values, which

it then passes to the decoder. Encoder-decoder networks have been used in

38

Figure 20: U-Net architecture for 32 × 32 sized image. Blue boxes denote
feature maps and white boxes denote the copied residual feature maps [43]

a variety of tasks to achieve state of the art results in tasks such as language

translation [36–38] and dance generation [39–42].

2.4.4.3 U-Net

The U-Net was proposed by Ronneberger et al. for biomedical image segmenta-

tion [43]. The architecture combines the ideas of encoder-decoder architectures

and residual networks to produce a U-shaped network befitting the name. An

example network can be seen in Figure 20.

The U-Net architecture can be divided into two parts: the encoder left side

with the max pooling layers and the decoder with the up-convolutions. The U-

Net encoder takes the input images and gradually down-samples it into several

latent spaces, each corresponding to different image size. The smallest sized

latent vector is passed to the decoder to use, followed by the second smallest,

and so on, until the entire set of latent features are passed, and the decoder

produces an output image the size of the input image. In other words, the

encoder provides the decoder information at each image resolution, allowing

39

the decoder to gradually build an output image by incorporating higher and

higher resolution information until the output is produced.

2.4.4.4 Generative Adversarial Networks

Generative Adversarial Networks, or GANs, were proposed by Goodfellow et

al. [44] as a form of generative networks for imagery. A generative adversarial

network aims to model the distribution of the training set using two adver-

sarial networks, called the generator and discriminator. Generator G(·) aims

to create data of the same distribution as the input data-set pdata(x) using a

random input z generated from a user defined distribution pz(z), while dis-

criminator D(·) aims to uncover images created by the generator from a set

of real and fake images. This effectively corresponds to a two-player minimax

game:

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] (66)

This has been proven to create a generator that is able to generate samples

from the training-set distribution when the network converges.

Generator, G(·) Discriminator, D(·)

G(z)

x

D(G(z)) or D(x) ∈ [0, 1]

z (random noise)

Figure 21: Outline of generative adversarial networks

2.4.4.5 Conditional Generative Adversarial Nets

Conditional Generative Adversarial Nets, or Conditional GANs, were proposed

by Mirza et al. [45] as an extension of GANs. The method involves feeding

the generator and discriminator data y to condition them. This corresponds

40

to the two-player minimax game:

min
G

max
D

V (G,D) = Ex∼pdata(x) [logD(x|y)]+Ez∼pz(z) [log(1−D(G(z|y)))] (67)

The network is outlined in Figure 22.

Generator, G(·) Discriminator, D(·)

(G(z), y)

(x, y)

D(G(z|y)) or D(x|y) ∈ [0, 1]

(z, y)

Figure 22: Outline of conditional generative adversarial networks

2.5 Digital Multi-Sensor Temporal-Based Image Syn-
thesis

We generalize imagery sensor-fusion and video interpolation techniques in-

troduced in the introduction and describe what we call digital multi-sensor

temporal-based image synthesis (DMST-IS). To understand what we mean by

that, we begin with a non-digital form, multi-sensor temporal-based image

synthesis (MST-IS). MST-IS is the task of taking a set of input time-varying

images of the same spatial region W and synthesizing another time varying

image based on these inputs. Equivalently, it is a mapping F such that:

{f1(x, y, t), f2(x, y, t), . . . , fD(x, y, t)}
F7−→ fp(x, y, t) (68)

where a number D of input time-varying images defined onWT for T = [t1, tf]

are used to synthesize time-varying image fp. We refer to the set of input

images {f1, f2, . . . , fD} as Finput henceforth. The inputs Finput can be loosely

interpreted as a cross-sensor/band and cross-time window, a window of D

sensors by T time range, though ordering for the sensors is not enforced (we

note the term cross-band as the spatial region of all the images is consistent,

41

permitting the interpretation of different sensors as bands of a single sensor).

A more accurate interpretation is that Finput is a set of D temporal windows

across the same range T .

Due to restrictions of digital processes, we sample the input in time, formu-

lating the task of DMST-IS:

{f1(x, y, t1,1), f1(x, y, t1,2), . . . , f1(x, y, t1,K1),

f2(x, y, t2,1), f2(x, y, t2,2), . . . , f2(x, y, t2,K2), . . . ,

fD(x, y, tD,1), fD(x, y, tD,2), . . . , fD(x, y, tD,KD
)} F7−→

fp(x, y, t) (69)

for t1 ≤ ti,J ≤ tf ,∀i ∈ {1, 2, . . . , D},∀j ∈ {1, 2, . . . , Kj}, where D is the

number of input image sequences and Kj number of images in image sequence

j. In words, it is a mapping of a set of image sequences to a single time-varying

image. We emphasize through the subscript notation that the sampling is not

necessarily performed in the same manner across all input images, nor does

it need to be uniform. It is important to note a subtle difference between

DMST-IS and MST-IS, that in DMST-IS having fp ∈ Finput is a non-trivial

task, whereas in MST-IS it is.

Obtaining a continuous output on purely digital machines is tricky as the

output the user receives must be digital. To work around this, some methods

construct mappings that are able to generate images at any specified time [46].

This can be thought of as a continuous output that is inaccessible due to

limitations of digital systems, yet a user can sample this output to access a

single non-time varying image at any desired time.

When we further enforce constant sampling rate on each input image sequence,

as is often the case with conventional sensors with fixed frame rates, Equation

42

69 reduces to:

{f1(x, y, t1), f1(x, y, t1 +∆t1), . . . , f1(x, y, t1 +K1∆t1),

f2(x, y, t2), f2(x, y, t2 +∆t2), . . . , f2(x, y, t2 +K2∆t2), . . . ,

fD(x, y, tD), fD(x, y, tD +∆tD), . . . , fD(x, y, tD +KD∆tD)}
F7−→

fp(x, y, t) (70)

for time step ∆ti corresponding to the inverse of the sampling rate of image i.

An example of this is shown in Figure 23.

fpf1 f2 fD

. . .

time

Figure 23: Example of multi-sensor temporal-based image synthesisas de-
scribed in Equation 70 with fp ∈ Finput. The black horizontal lines represent
input information and the gray represents the output fp(x, y, t).

We now see that the formulation of video interpolation and satellite sensor

fusion are cases of multi-sensor temporal-based image synthesis. Video inter-

polation is the case when fp ∈ Finput and D = 1 (which consequently forces

fp = f1). Satellite sensor fusion is the case where fp /∈ Finput and t = ti for

some ti ∈ T . We discuss these cases more in depth in the following sections.

43

2.5.1 Deep Video Interpolation

Video interpolation is a form of image-to-image generation tasked with recre-

ating what temporally occurs in between existing images for a single sensor.

Video interpolation is used to overcome the temporal limitations of sensors,

such as through the creation of slow-motion video from existing video.

The task of video interpolation has historically been viewed in different forms,

which led to a variety of sub-tasks within the field. We proceed to justify these

different video interpretation formulations and provide a set of prominent prior

works in the field.

2.5.1.1 Continuous Output

Given a single input sensor, or D = 1, and the restriction that the predicted

images are temporally between the input images, fp ∈ Finput, Equation 69

reduces to:

{f(x, y, t1), f(x, y, t2), . . . , f(x, y, tK)}
F7−→ f(x, y, t) (71)

where t1 < t < tK . This serves as the most general formulation of image

interpolation and is shown in Figure 24.

We make the assumption that image generation only depends on the closest

image neighbors (the images temporally closest to the image being generated),

which allows us to reduce the mapping to predicting the time varying image

between exactly two time-steps:

{f(x, y, t1), f(x, y, t2)}
F7−→ f(x, y, t) (72)

where t1 < t < t2. This is visualized in Figure 25.

44

t1

t2

t3

t4

time
f

Figure 24: Visualization of video interpolation as described in Equation
71 for K = 4. The black horizontal lines represent known information
{f(x, y, t1), f(x, y, t2), . . . , f(x, y, t4)} whereas the gray represents the output
f(x, y, t).

t1

t2

time
f

Figure 25: Visualization of video interpolation as described in Equation 72.
The black horizontal lines represent known information {f(x, y, t1), f(x, y, t2)}
whereas the gray represents the output f(x, y, t).

2.5.1.2 Discrete Output

Additional assumptions allow us to simplify our formulation further. If we

choose to predict a fixed number n of output images, equivalent to sampling

the output image at some time points between the times of the input images,

Equation 73 reduces to:

{f(x, y, t1), f(x, y, t2)}
F7−→ { f(x, y, ti), f(x, y, ti+1), . . . , f(x, y, ti+n)} (73)

where t1 < ti, ti+n < t2. An example of this is shown in Figure 26.

45

ti
ti+1

ti+2

t1

t2

time
f

Figure 26: Example of video interpolation as described in Equa-
tion 73. The black horizontal lines represent known information
{f(x, y, t1), f(x, y, t2)} whereas the gray lines represents the outputs
{f(x, y, ti), f(x, y, ti+1), f(x, y, ti+2)}.

2.5.1.3 N-Image Interpolation

When we further choose to predict these n images at fixed time-steps, as one

would get from a fixed frame rate camera, we get:

{f(x, y, t1), f(x, y, t2)}
F7−→

{f(x, y, t1 +∆t), f(x, y, t1 + 2∆t), . . . , f(x, y, t1 + n∆t)} (74)

where ∆t = t2−t1
n+1

is the video time-step for an output of n images (see that

t1 + n∆t = t2 − ∆t). This is called n-image interpolation. An example of

n-image interpolation is shown in Figure 27.

2.5.1.4 Single Image Interpolation

When we set n = 1, we get single image interpolation:

F : {f(x, y, t1), f(x, y, t2)} 7−→ f1(x, y, t 1
2
) (75)

where t 1
2
= t2−t1

2
.

Though this last formulation may appear lacking compared to the prior formu-

lations, one must consider iteratively applying single image interpolation using

the generated images. After one iteration we generate 1 intermediate image,

46

t1 + 1∆t

t1 + 2∆t

t1 + 3∆t

t1 + 4∆t

t1

t2

∆t

∆t

∆t

∆t

∆t

time
f

Figure 27: Example of n-image interpolation as described in Equation 74
with n = 4. The black horizontal lines represent known information
{f(x, y, t1), f(x, y, t2)} whereas the gray lines represents the outputs.

after 2 iterations we generate 3 images, and after 3 iterations we generate 7

images. After n iterations we generate we generate 2n−1 more intermediate im-

ages than iteration n-1, thus allowing us to create many intermediate images

with relative ease. On the other hand, a critical drawback from this approach

is the accumulation of error at each successive iteration.

2.5.2 Image Sensor Fusion

Satellite sensor fusion, in remote sensing, is the task of taking in input images

from differing satellites at time ti to generate a realistic prediction of what

a different satellite output would look like at the same time. Such a task is

useful for recovering sensor information due to sensor failure or when sensor

information is not available.

The term sensor fusion may be deceiving for those not in the field, as it tra-

ditionally encompasses much more than the description above. Sensor fusion

refers to all tasks taking a group of sensors, procuring any type of data, and

using them together to synthesize information, which is not necessarily the

output of any sensor. We see that even with the restriction of the pre-pended

47

word ’satellite’ this does not directly result in the description we proposed

above. The reasons for the use of this term are historical, as prior works in the

field were more in line with the general definition [47, 48], and the term has

stuck to this day. The terms image translation and image-to-image generation

are perhaps more accurate representations of our task, though are typically

limited to having a single image sequence/satellite as an input, and are the

terms used for similar objective as ours in fields outside of remote sensing. We

use this terminology interchangeably.

We proceed to introduce multi- and single-input image translation formula-

tions, though this work focuses on single-input image translation.

2.5.2.1 Multi-input image translation

Given the conditions described, we see that Equation 68 reduces to:

{f1(x, y, ti), f2(x, y, ti), . . . , fD(x, y, ti)}
F7−→ fp(x, y, ti),∀ti ∈ T (76)

or

{f1(x, y), f2(x, y), . . . , fD(x, y)}
F7−→ fp(x, y) (77)

where T is the period of time the mapping is valid, D is the number of in-

put sensors, and fp denotes a sensor different from the input sensors (fp /∈

{f1, f2, . . . , fD}). We present a visualization of sensor fusion for D input sen-

sors in Figure 28.

Due to the discrepancy in sampling rates of the different input sensors and the

lacking benefit from adding more inputs, imagery sensor fusion is often done

with one input sensor mapping to a single output one.

48

fpf1 f2 fD

. . .

time

Figure 28: Example satellite sensor fusion for D inputs across multiple time
steps. The black horizontal lines at each time point represent input information
and the red represents the output fp(x, y, t). See that at some time points not
all inputs are used in generating the prediction.

2.5.2.2 Single-input image translation

When there is a single input image sequence, the problem reduces to single-

input image synthesis, also known as image-to-image generation and image

translation. The numerical formulation is as follows:

f1(x, y, ti)
F7−→ fp(x, y, ti),∀ti ∈ T (78)

We henceforth refer to single-input image translation wherever we mention

sensor fusion, unless otherwise specified.

49

3 Related Works

3.1 Deep Video Interpolation

Work for image interpolation is varied, namely due to the variety of tasks that

the title encompasses and the various techniques that have shown promise in

producing accurate results. We divide prior work into phase-based, which

characterized early works in the field, optical flow-based, which contain a

majority of recent state of the art work, and other, which includes works that

do not fit the prior categories.

3.1.0.1 Phase-based

One of the early methods for video frame interpolation is to use phases [49,50].

In general, these techniques use per-pixel phase-shift predictions to create an

output image. Meyer et al. [49] proposed a method that uses phase informa-

tion across a multi-scale pyramid coupled with a phase-based synthesis as a

means of image interpolation, without using deep learning. First, wavelet-like

pyramids are used to decompose the input images into several frequency bands

and phase is extracted. The amplitude of the input images is also extracted.

Using the phase difference between the inputs the phase is corrected at each

scale of the pyramid, and the final output is used to adjust the phase differ-

ence found earlier. This adjusted value is used to interpolate the phase of the

intermediate image, which is then combined with the blended amplitudes from

the input images to generate the intermediate image. PhaseNet [50] extends

this into a neural network using PhaseNet blocks composed of convolutional

layers. The system takes the decomposition of two consecutive frames is ob-

tained by applying the steerable pyramid filters (Ψ), resulting in R1 and R2,

as the inputs to PhaseNet. The number of layers and their dimensions within

50

Figure 29: PhaseNet Architecture with only the first frame decomposition is
displayed to avoid cluttering the image [50].

Figure 30: PhaseNet block. Each block of the PhaseNet takes the decomposi-
tions of the input frames at current level (shown in blue and green), performs
two successive convolutions with batch normalization and ReLU, and predicts
the response (amplitude and phase) with a convolutional layer with a hyper-
bolic tangent activation function [50].

the network mirror the input frame decompositions (i.e. is determined by Ψ).

Each layer is composed of PhaseNet blocks, where each block takes the de-

composition values from the corresponding level as input. The predicted filter

responses (R̂) are then used to reconstruct the middle frame. The overall ar-

chitecture of PhaseNet is shown in Figure 29 and a PhaseNet block is shown

in Figure 30.

51

Figure 31: Super SloMo architecture [51].

3.1.0.2 Optical flow-based

The most common technique for image interpolation is to use optical flow.

Image interpolation using optical flow typically has a mechanism of predicting

optical flow between the input images and proceeds to warp the input im-

ages using the optical flow and combine them to synthesize the intermediate

image/s.

Super SloMo [51] is one of the most prevalent optical flow models and was

proposed to perform the task outlined in Equation 73, n-image prediction

at variable times. Super SloMo uses bi-directional optical flows (one going

forward in time and another backward) between the input images generated

using a U-Net. The flows are linearly combined at each time step and passed

to a second U-Net to refine the flow and predict a visibility map, the latter

of which gives the model information on occlusion. Finally, the two images

are warped using the refined optical flow, the visibility map is applied, and

the results are linearly fused to form the output image(s). The architecture

of Super SloMo is shown in Figure 31. The approach produces an arbitrary

number of intermediate images as none of the network parameters are time-

dependent.

52

Figure 32: Pipeline for Deep Voxel Flow [54].

Vandal et al. [4] proposed the use of the Super SloMo architecture in remote

sensing for weather tracking. The process involves the creation of task-specific

Super SloMo networks for each spectral channel. The work shows the effective-

ness of using task-specific optical flow for interpolating high-temporal weather

events, and specifically for precipitation.

Some architectures propose creating an end-to-end system based on optical

flow. Niklaus et al. [52] proposed a method that combines the estimation of

optical flow and synthesis of the intermediate image using local convolutions

for single image interpolation. Due to the large kernels of the prior method,

Niklaus et al. [53] further proposed a similar method using 1D kernels, signif-

icantly reducing the number of parameters. Liu et al. [54] proposed another

method, called Deep Voxel Flow, which uses voxel layers to predict interme-

diate images. Voxel layers are per-pixel, 3D optical flow vectors across time

and space, which is like optical flow yet is only used as intermediate values.

Due to this latter fact, the correctness of the voxel flow is never evaluated and

thus requires no supervision. The voxel layers provide an intermediate optical

flow-like information to the network, allowing it to predict intermediate frames

using solely image triplets. The pipeline of Deep Voxel Flow can be seen in

Figure 32.

Another approach is to extract additional information from images on top of

optical flow. Niklaus et al. [55] proposed a method for using context-aware

53

Figure 33: Network architecture MEMC-Nett and MEMC-Net*. The context
extraction module and its generatedcontextual features and warped contextual
features are for MEMC-Net* [57].

synthesis. The method used a pre-trained neural network to extract per-pixel

context maps, which was then used during warping to inject local context in-

formation during synthesis. Giving the network context information allows it

to better handle challenging scenarios such as occlusion and motion. Bao et

al. [56] proposed a method of using depth information, which can explicitly

detect occlusion. In the proposed network, depth was used to refine optical

flow predictions and as an input to the frame synthesis network, thus inject-

ing information on occlusion into the model. Another similarly themed work,

proposed by Bao et al. [57] is MEMC-Net, which combines motion estimation

(ME) and motion compensation (MC). MEMC-Net extracts occlusion masks,

optical flow, and interpolation kernels from each input and uses them together

in a novel adaptive warping layer to obtain intermediate images. An addi-

tional network, called MEMC-Net* also uses context features. Both network

architectures can be seen in Figure 33.

Additional methods attempt to remove assumptions on flow progression. Most

state-of-the-art video interpolation methods assume uniform motion between

frames, yet assumption does not necessarily hold [58]. One extremely common

example of a scenario where the assumption fails is acceleration. To combat

54

Figure 34: Pipeline for Quadratic Video Interpolation [58].

this, Xu et al. proposed quadratic video interpolation (QVI) [58]. It uses four

input images (I−1, I0, I1, I2) to predict a single intermediate image. First, the

network extracts forward and backward optical flow from images I0 and I1,

and then it uses flow prediction with quadratic coefficients to obtain forward

flow from I0 to the intermediate image and backward flow from I1 to the

intermediate image. The flows are then reversed using a custom flow reversal

layer and the intermediate image is synthesized. The pipeline for QVI is shown

in Figure 34. Liu et al. [59] expand on this idea and introduce enhanced

quadratic video interpolation (EQVI) to combat artifacts, inaccurate motion,

and ghosting. This network uses the same input but generates three flow

maps to estimate the quadratic model. It also relies on residual contextual

synthesis. In this case, this means that spatially down-sampled images are

fed into the network in conjunction with the original images, and then the

low-resolution outputs are upsampled and joined with the original size using a

multi-scale fusion network. The last improvement proposed is the multi-scale

fusion network itself, which is used to create a pixel-weighted map for the low-

and high-resolution inputs and then combines the two.

Other methods adapt techniques used in other fields to the image interpolation

domain. Liu et al. [60] propose a method using cycle consistency loss, a loss

typically used in unsupervised methods when mapping between domains. In

general, cycle consistency loss is calculated using a known value and the result

55

Figure 35: Cycle consistency loss for a triplet of images [60].

of mapping values to the desired domain (of which no information is available)

and then back to the known domain to compare the predictions to known

information. In this network, the cycle-consistency loss can be summarized

as follows: take a triplet of input frames (I0, I1, I2), pair them off into pairs

((I0, I1) and (I1, I2)), generate intermediate frames Î0.5 and Î1.5, and finally

generate predicted frame Î1 from the pair of predictions. The final prediction

Î1 is compared with known value I1 to calculate the loss. This is visualized

in Figure 35. Instead of generating images, the proposed network generates

optical flow at each time step and uses warping to obtain the intermediate

images. It also compares the flow from I0 to I2 to the flow from Î0.5 to Î1.5 as

an additional loss term.

It is valuable to note that work in the field is not limited to supervised learning

and extends to unsupervised machine learning. Reda et al. [46] proposed

an unsupervised video interpolation technique using cycle consistency. The

network trains on triplets of consecutive frames and can predict an arbitrary

number of intermediate frames, as outlined in Equation 73. The network first

predicts intermediate images Ît and Î1+t from image pairs (I0, I1) and (I1, I2),

respectively. Then it uses the predicted pair (Ît, Î1+t) to generate image Î1.

This is visualized in Figure 36. The resulting prediction Î1 is then compared

56

Figure 36: Unsupervised video interpolation to generate sample at any time
t [46].

with the true value I1 to produce the final loss. If frames It and I1+t are known,

the network also includes loss terms comparing Ît to It and Î1+t to I1+t. In

the background the network uses Super SloMo [51] to approximate flows and

generate intermediate images.

3.1.0.3 Other

Where a lot of contributions to the field have used optical flow, recent work

shows that this is not a necessity. FLAVR, by Kalluri et al. [61], is a model

that does not use optical flow. It uses 3D space-time convolutions to efficiently

learn to reason about non-linear motion, occlusion, and temporal abstractions,

without the need to deliberately extract values from the input. The model,

seen in Figure 37, is a composition of U-Net and residual network architectures

and is trained using only L1 loss. This design allows FLAVR to predict mul-

tiple frames in one inference forward pass. The model produces high accuracy

inferences at a much faster speed than prior models with comparable or higher

accuracy to optical flow models.

57

Figure 37: FLAVR Architecture. FLAVR is U-Net style architecture with 3D
space-time convolutions (orange blocks) and deconvolutions (yellow blocks).
It uses channel gating after all (de-)convolution layers (blue blocks). The final
prediction layer (the purple block) is implemented as a convolution layer to
project the 3D feature maps into (k−1) frame predictions [61].

3.2 Imagery Sensor Fusion

Satellite, or imagery, sensor fusion is a topic relevant to several different fields,

thus prior work in the field is varied. For convenience, we divide prior works

into those outside the field of remote sensing (external) and those within.

3.2.0.1 External

One of the critical advances in image-to-image generation is the advent of the

conditional GANs [45]. Based on this work, Isola et al. [62] proposed pix2pix,

a conditional image-to-image generator which conditions on an input image

from one domain to generate an image from a different domain. Some domain

examples include street view maps to labels for autonomous vehicles, black and

white images to color, and aerial imagery to maps. The network architecture

is strongly based on U-Net [43].

Another supervised method for image-to-image generation is proposed by

Wang et al. [63]. The system generates realistic high-resolution images us-

ing a novel adversarial loss. The loss improves upon existing GAN loss by

58

Figure 38: Generator architecture proposed by Wang et al. [63]. Generator is
trained in parts, first G1, then G1 appended with G2 and finally the entire
network together.

incorporating a feature matching loss, where features are extracted in mul-

tiple layers of the discriminator. The work also proposes a new generator

architecture, shown in Figure 38.

A significant portion of work in this field is in unsupervised learning, justi-

fied by the difficulty of having accurate labels across domains. Taigman et al.

proposed the Domain Transfer Network (DTN) [64] as a means of asymmet-

ric unsupervised domain transfer from one domain to the other. The model

employs a compound loss functions to encourage a GAN to sample from the

desired output domain. The compound loss involves a GAN loss, a loss to

minimize the difference between generated images with inputs from the out-

put domain and the actual inputs (|f(x)− f(G(x))|), and a loss to encourage

the mapping to be an identity mapping. Zhu et al. proposed CycleGAN [65], a

cycle consistent adversarial network, as a means of unsupervised bi-directional

image-to-image generation. CycleGAN is a system composed of a pair of con-

ditional GANs mapping between input domains (one from domain X to domain

Y and the other from domain Y to domain X) and a pair of discriminators,

one for each domain. During training, the system maps an input from one

domain to the other, uses the latter domain’s discriminator to generate a loss,

and then remaps the generated image back to its original domain to compose

a cycle-consistency loss. The two cycle consistency losses capture the intuition

59

Figure 39: (a) CycleGAN architecture. (b) forward cycle-consistency
loss: x→G(x)→F (G(x)) ≈ x, and (c) backward cycle-consistency loss :
y→F (y)→G(F (y)) ≈ y [65].

that translating from one domain to the other and back again should result

with the original input. CycleGAN and the cycle-consistency losses are visual-

ized in Figure 39. The architecture is based on the pix2pix model. Discovery

GAN, dubbed DiscoGAN, by Kim et al. [66] learns the cross-domain relations

across unpaired data. The model follows a similar procedure as CycleGAN.

For one, the loss construction is different, CycleGAN provides a hyperparam-

eter to tune the contribution of the cycle-consistency loss whereas DiscoGAN

uses a simple sum. DiscoGAN also uses a slightly different generator architec-

ture. The big difference is that DiscoGAN couples the generators, GAB and

GBA share parameters. An overview of this model can be seen in Figure 40.

Multimodal image-to-image translation is also important to mention, as it

aims to diversify the domains of the network outputs [67–69]. Zhu et al. [67]

proposed a method for modeling a distribution of possible outputs, distilling

ambiguity, and also encouraged the inevitable transformation, thus encourag-

ing more diverse outputs. Huang et al. [68] proposed Multimodal Unsupervised

Image-to-image Translation (MUNIT) to address failure prior methods to gen-

erate a diverse set of outputs. The framework breaks inputs into content and

style and recombines the content with a random style to produce an output.

By doing this, MUNIT forces output images to have a diverse content, thus

varying the resulting images. We present a more detailed overview of MU-

60

Figure 40: DiscoGAN architecture [66].

NIT architecture in Figure 41.Choi et al. [69] propose StarGAN, a generative

network that can perform image-to-image translations from multiple domains

using a single model. The model uses several different datasets while training,

which makes the labels incomplete (where one dataset may label emotions it

might not label gender and vice versa). To deal with this, the model ignores

the unknown labels using a mask. To generate images, StarGAN employs a

generator - discriminator pair. The discriminator is tasked with distinguish-

ing between real and fake images, as well as with classifying the real images

to the right domain. The generator takes an input image and a label of the

target domain, generates a new fake image, and proceeds to use that image as

an input to re-generate the input image with a label of the original domain.

A visualization of how StarGAN performs image-to-image translation can be

seen in Figure 42.

61

Figure 41: MUNIT architecture [68].

Figure 42: StarGAN architecture [69].

3.2.0.2 Remote sensing-based

Techniques from image-to-image translation have been used successfully in a

remote sensing context.

Recent work by Vandal et al. [2] investigated the use of Variational Autoen-

coder GANs (VAE-GANs) for spectral satellite to satellite translation. The

term variational autoencoder refers to the generator design in this work. Au-

toencoders are machine learning systems tasked with reducing the input into

an encoding, or a latent space, and the term variational refers to how the

encoding is constructed, a composition of means and standard of deviation

metrics for the input, characterizing a set of normal distributions [70]. The

work focused on generating synthetic bands for existing satellites using skip

62

Figure 43: STFGAN architecture [3].

connections, a shared latent space, and a compound loss term composed of

cycle-consistency, spectral reconstruction, and GAN loss terms.

STFGAN, proposed by Zhang et al. [3], introduces a GAN-based system for

spatiotemporal fusion between MODIS and Landsat. The network first super-

resolves MODIS images and combines the results with high frequency features

from Landsat to generate Landsat-like images. The generator for this model

uses a sequence of overlapping residual blocks as a means of creating accurate

predictions. The model architecture can be seen in Figure 43.

CycleGAN-STF, by Chen et al. [1], combines synthesized images from high-

resolution sensors and information from low-resolution sensors to generate

higher accuracy synthesized images. In more detail, the model used Cycle-

GAN to predict images both forward and backward in time. These predicted

63

images are compared with low-resolution images for accuracy and enhanced us-

ing wavelets. The resulting images from this are then passed into the Flexible

Spatiotemporal Data Fusion framework to improve the fusion performance.

64

4 Hybrid Video Frame Interpolation - Sensor
Fusion Networks

4.1 Architectures

We attempt to improve the accuracy of synthesized imagery using a combina-

tion of image-to-image and video frame interpolation networks. To simplify

the process, we base our work on two existing architectures, FLAVR [61] and

pix2pix [62], and attempt to create meaningful methods for synthesis, as op-

posed to designing complete architectures from scratch. FLAVR was selected

due to its simplicity, outstanding overall performance, and ability to work with

noise. Pix2pix was selected because it is a widely referenced supervised learn-

ing model. Henceforth we refer to these two models as our base models. The

outputs and inputs of these two base models within the context of this work

are visualized in Figures 44 and 45.

?

Landsat 8MODIS

ti

Figure 44: Pix2pix model inputs and output

?

Landsat 8
time

Figure 45: FLAVR model inputs and output

65

We propose four architectures for fusing these video frame interpolation and

image-to-image translation networks:

1. Naive - averaging the outputs of the image translation and video inter-

polation models.

2. Secondary sensor-fusion - use the outputs of the image interpolation

and satellite sensor fusion networks as inputs to a secondary sensor

fusion network.

3. High-resolution information boosting - feeding the output of the video

interpolation to the image translation model to boost its understanding

of the high-resolution space.

4. High-temporal information injection - injecting low-resolution high tem-

poral information to the video interpolation model.

We proceed to go into more depth into each of these hybrid architectures.

4.1.1 Naive

Since the predictions of both models at a given time step correspond to the

same output image, a simple approach to combine the two networks is to train

the networks independently and take an average of their predictions at each

time step. This serves as a form of model ensemble, though the inputs for

each of the models are different. We visualize the pipeline to conduct a naive

prediction, within the context of this work, in Figure 46.

4.1.2 Secondary Fusion

A step beyond a simple average is to train a separate network to produce

a more accurate synthesis of the two predictions. This thus serves as our

66

MODIS current imagery

Pix2pix prediction

Landsat 8 priors & futures

FLAVR predictions?

Evaluation Step 1
pix2pix FLAVR

Figure 46: Naive architecture pipeline

next model, where both predictions are concatenated together into a 2-channel

input and fed into an image-to-image network, specifically another instance of

pix2pix. The pipeline for secondary fusion is shown in Figure 47.

MODIS current imagery Landsat 8 priors & futures

FLAVR predictionsPix2pix prediction

?

Evaluation Step 1

Evaluation Step 2

Concatenate

2nd pix2pix

Figure 47: Secondary fusion pipeline

We then ask if there is a need to train three separate networks, which is

inherently an expensive process. The following two architectures attempt to

take raw inputs from one sensors and predictions from model to synthesize

images, thus reducing the number of models trained to two.

67

4.1.3 High Spatial Resolution Information Boosting

One of the main challenges with image-to-image translation between MODIS

and Landsat 8 is the difference in resolution. The high spatial resolution

information boosting (HR-boosting) architecture attempts to take interpolated

images from FLAVR and feed them into pix2pix alongside the original MODIS

imagery to give pix2pix high-resolution information about the landscape. We

do this similarly to the secondary fusion method, by concatenating the two

images and training a 2-to-1 pix2pix model, though this serves to replace the

original pix2pix model used for the secondary fusion architecture. We visualize

the inputs and outputs for this model in Figure 48.

Landsat 8 priors & futures

FLAVR predictionsMODIS current imagery

?

Evaluation Step 1

Evaluation Step 2

Concatenate

pix2pix

Figure 48: High-resolution information boosting pipeline

We provide a more physical interpretation of this architecture. Since MODIS

imagery is taken in the current time step and over the same place, the action of

concatenating the FLAVR prediction and the MODIS imagery is like adding

bands to either image. Through this we add a high temporally accurate, low-

68

MODIS current imagery

Pix2pix prediction

Landsat 8 priors & futures

?

Evaluation Step 1

Evaluation Step 2

pix2pix

injFLAVR

Figure 49: High temporal resolution information injection architecture’s
pipeline, injecting pix2pix predictions

resolution band to the predicted imagery from FLAVR or equivalently a high

spatial resolution mapping of the area (that is somewhat temporally accurate)

to the MODIS imagery. Through the following pix2pix model we combine the

high spatial and high temporal information to synthesize the final image.

4.1.4 High Temporal Resolution Information Injection

The main concern with video frame interpolation techniques is the lack of

high temporal information while generating imagery, permitting the model to

veer off and not accurately track real-time events. We propose an architecture

feeding a low-resolution version of the pix2pix prediction after the FLAVR en-

coder, thus injecting high-temporal resolution information during evaluation,

and aptly call this method High Temporal Resolution Information Injection

(HT-injection). We visualize the pipeline of the architecture in Figure 49 and

further display the modified FLAVR architecture to allow for the injection of

low spatial resolution high temporal information inputs, dubbed injFLAVR,

in Figure 50.

69

Figure 50: injFLAVR Architecture

MODIS current imagery

Landsat 8 priors & futures

?

Evaluation Step 1
injFLAVR

Figure 51: End-to-end High temporal resolution information injection archi-
tecture’s, injecting MODIS imagery

We also ascertain how injFLAVR performs as an end-to-end method. This

corresponds to the pipeline shown in Figure 51.

4.1.5 Comparisons

We provide a table to summarize the differences of the four proposed archi-

tectures:

Architecture Trained Models Evaluation steps
Naive 1 pix2pix & 1 FLAVR 1

Secondary Fusion 2 pix2pix & 1 FLAVR 2
HR-Boosting 1 pix2pix & 1 FLAVR 2
HT-Injection 1 pix2pix & 1 injFLAVR / 1 injFLAVR 2/1

70

We see that secondary fusion is the most expensive method to train due to

the number of models it needs. We also note that the HT-injection, if using

MODIS and Landsat 8 imagery only, requires the least amount of models.

We further see that naive & HT-injection (with MODIS inputs) need a single

evaluation step while the secondary fusion, HR-boosting, & HT-injection (with

pix2pix predictions as inputs) need 2 evaluation steps. This metric can give

us an estimation of how long it will take to evaluate an input given to each of

these methodologies.

5 Experiments

5.1 Custom Dataset

Due to not finding public datasets that include both video frame interpola-

tion and satellite sensor fusion, we gathered a custom MODIS and Landsat 8

dataset using Google Earth Engine [20]. The dataset was taken at one spatial

location over Las Vegas from 2015 to 2020. We chose to focus on a single

location as opposed to many locations to simplify the data gathering process,

reduce the complexity of the code, and decrease the storage costs of the data.

We note that a drawback of this is that the models may not generalize well

to other locations, yet as a proof of concept the choice of a single location

suffices.

The data was downloaded with a consistent spatial resolution of 15 meters

across all bands and sensors, at the highest temporal resolution available for

each satellite tool. For simplicity and due to time constraints, we chose to run

experiments on a single band, band 1 from MODIS and band 1 from Landsat 8.

The dataset was then split temporally using an 80-20% split into training and

testing sets, respectively, without randomization. The lack of randomization

71

is justified by the need for temporal windows for the input of video frame

interpolation and the desire to not have the model introduced to the test set

in any way.

Clouds were ignored throughout the experimentation. Images with clouds

were left in the dataset as their removal will directly influence the temporal

resolution of the inputs (making it inconsistent) and as the video interpolation

model used is said to work well with noise [61]. To accommodate for this, Las

Vegas was picked for a location to reduce the number of cloudy days. We

further note that by achieving good results with the clouds as part of the

dataset we create more robust models.

5.2 Bench-marking

Due to using a custom dataset, the performance of FLAVR and pix2pix needs

to be evaluated on the newly created datasets to serve as a benchmark for

the proposed architectures. The FLAVR model was trained on triplets of

images from the high-resolution Landsat 8 data, taking the first and last frames

to predict the intermediate frame, corresponding to the task of single image

interpolation. Pix2pix was trained using pairs of MODIS and Landsat 8 data

to predict Landsat 8 imagery from MODIS imagery.

We validated both models throughout training. For the FLAVR model, we run

a 3-image window across the training set, index the resulting image sequences,

and randomly separate the indices into training and validation sets. The

pix2pix model is validated by randomly selecting image pairs from the two

sensors.

72

5.3 Hybrid Models

Once we understood the benchmark level of accuracy, we proceeded to test the

hybrid models. Due to the need of the base model predictions in multiple mod-

els, we first generated synthesized image datasets using each of the two base

models and then used a combination of synthesized and non-synthesized im-

agery to train each of the hybrid architectures, as described in Section 4.1. We

used Optuna [71] to tune model hyperparameters for each of the hybrid models

but the naive architecture (which does not have additional hyperparameters)

based on PSNR. The tuning was performed without data augmentation, as

data augmentation is expensive and would significantly prolong the duration

of tuning. Finally, we evaluated how similar the predictions of each of the ar-

chitectures are to the true values on the test set. Testing employed the use of

the Sewar package [72] and scikit-image metrics [73] for different image quality

assessments. We used the metrics PSNR, MSE, SSIM, and PSNR-B [74] to

evaluate our results. For HR-boosting, the highest PSNR network when fully

tuned and trained had a significantly low performance and did not resemble

the true images at all when trained with augmentation, so the second highest

PSNR model based on the tuning was used instead.

73

6 Results and Discussion

6.0.1 Test Set Evaluation

We present the results of our benchmark and hybrid model tests in Table 5.

Architecture PSNR MSE SSIM PSNR-B
Pix2pix 17.655 0.024 0.404 1.97
FLAVR 14.202 0.052 0.623 13.69
Naive 13.380 0.056 0.435 1.50

Secondary Fusion 20.868 0.014 0.441 24.01
HR-boosting 21.0469 0.020 0.493 21.725

HT-injection (with pix2pix) 21.501 0.015 0.564 22.75
End-to-end HT-injection 20.618 0.022 0.510 22.08

Table 5: Model results on test set

We see that all the hybrid methods but the naive architecture outperformed

the base models across all metrics but SSIM and that the hybrid models had

relatively similar performance (again except the naive architecture). The naive

approach was the lowest performer across all metrics,

6.0.2 Predicted Imagery Samples

We further provide sample predictions from each of the base and hybrid mod-

els.

6.0.2.1 Pix2pix

We see that the pix2pix model had a hard time predicting high resolution

imagery, as noted previously to be the challenge with satellite sensor fusion.

The model was not able to learn how to accurately synthesize high resolution

74

imagery and the predictions are visually similar to the MODIS data instead

of the Landsat 8 data.

(a) Input image (b) Predicted image

(c) True image

Figure 52: Sample pix2pix evaluation

6.0.2.2 FLAVR

The FLAVR base model also had difficulty in generating crisp imagery, but

we see that its prediction is much more visually similar to the true value in

comparison to the pix2pix, which is supports the results from Table 5. We

further notice artifacts on the edges of the predicted image in the form of light

highlights.

75

(a) Prior image (b) Future image

(c) Predicted image (d) True image

Figure 53: Sample FLAVR evaluation

6.0.2.3 Naive

The naive approach is a simple combination of the base models. Its prediction

is like that of the pix2pix model, but with an additional blur from the FLAVR

prediction. We see that the averaging of the two methods did not create clearer

images than either base method.

76

(a) Predicted image (b) True image

Figure 54: Sample naive evaluation

6.0.2.4 Secondary Fusion

The prediction from the secondary model is surprising in that it does not really

resemble anything seen so far. The images are blurry, somewhat pixelated, and

have light and dark blotches on them. These justify the relatively low SSIM

performance for the model in comparison to the other ones.

77

(a) Input image, where each sub-
image is a channel (b) Predicted image

(c) True image

Figure 55: Sample secondary fusion evaluation

6.0.2.5 HR-Boosting

The predictions of the HR-boosting model exhibit similar blurring and pixe-

lation to the secondary fusion method. The images are less patchy then the

secondary fusion and have rough outlines of like the structures in the true

image.

78

(a) Input image, where each sub-
image is a channel (b) Predicted image

(c) True image

Figure 56: Sample HR-boosting evaluation

6.0.2.6 HT-Injection (with pix2pix)

Images from the HT-Injection with the pix2pix prediction used as the injected

input resemble a blurry image that seems to resemble the underlying physi-

cality of the land well. They are less blurry than the FLAVR predictions, yet

the predictions appear much darker than the true images.

79

(a) Prior image (b) Future image (c) Injected image

(d) Predicted image (e) True image

Figure 57: Sample HT-injection with injected pix2pix evaluation

6.0.2.7 End-to-End HR-Injection

Images from the End-to-End HT-Injection that injected MODIS imagery into

the injFLAVR resulted in what appears to be the combination of the Secondary

fusion method and the HT-Injection with the pix2pix prediction injected, we

see an outline of the land and physical structures as well as white blobs and

dark areas.

80

(a) Prior image (b) Future image (c) Injected image

(d) Predicted image (e) True image

Figure 58: Sample end-to-end HT-injection evaluation

81

7 Conclusion

Current remote sensing is in dire need of high spatial and high temporal res-

olution imagery to generate flood inundation maps with sufficient spatial and

temporal resolution. The field mainly utilizes two methodologies for synthe-

sizing such imagery, satellite sensor fusion and video frame interpolation. We

have presented a variety of architectures to combine the two methodologies

and demonstrated the benefits of simultaneously using both temporal and

cross-sensor information while synthesizing satellite imagery. Furthermore, we

have made progress in reducing the complexity of such combined architectures,

showing that pipelines with as few as a single model achieve comparable re-

sults to pipelines that separately perform video frame interpolation, satellite

sensor fusion, and the synthesis of the predictions of the two.

82

8 Future Work

We propose several approaches to extend this work:

• Use within a flood-inundation mapping tool - while this work has shown

promise in synthesizing high spatial high temporal satellite imagery, the

overall aim is the production of high accuracy flood inundation maps.

The predictions from the model are meant to be used as an input to a

flood-mapping tool.

• Expand the custom dataset to incorporate more spatial regions - this

will enable models to generalize better to new environments and provide

more robust predictions.

• Remove clouds - while leaving clouds within the dataset allows for the

creation of models that are less susceptible to clouds, doing so also

effectively adds noise to the data and may reduce the effectiveness of

models trained using it.

• Evaluate different normalization techniques - while this work used the

division of an image by its maximum value for normalization, other

techniques could be better suited for remote sensing. Clouds and other

noise may influence the maximum value of the image and thus the re-

sulting normalized image. We hypothesize that using a form of clipping

by percentile to remove outlier pixel values followed by a normalization

technique may result in better performance.

• Test out different architectures for the base models - while the choices

for baselines were justified, the references for the justifications lie in

the domain of 3-band (RGB) images as opposed to multi-spectral im-

83

ages. It is possible that some of the methods that performed worse

on RGB images would perform better on multi-spectral images, so an

investigation should be performed to evaluate that.

• Tune base models more - we approached the composition of the hybrid

models with little tuning to the hyperparameters of the base models.

More comprehensive tuning of these models will improve the quality of

the inputs to some of the hybrid architectures (all models but the end-

to-end injFLAVR) and may improve the overall performance of these

hybrid architectures.

• Use more of the capabilities of the FLAVR model - in this work we

focused on single image interpolation, while FLAVR can do much more.

It could be worthwhile to use FLAVR with different window sizes to

get more images per evaluation, though this could potentially lead to

interesting challenges with the current injection technique.

• Swap the base models with unsupervised learning-based models - the

field of image-to-image translation has a large count of unsupervised

learning-based methods [64–66]. Since multi-sensor temporal-based im-

age synthesisis a similar task, there is high potential for unsupervised

learning in multi-sensor temporal-based image synthesisas well.

• Add a GAN loss to the injFLAVR - it is well known that GANs do

extremely well in creating imagery that is visually similar to the training

set. Due to the artifacts in the injFLAVR predictions, we hypothesize

that the addition of a GAN loss may further improve predictions.

• Perform satellite sensor fusion from MODIS to Landsat 8 at low res-

olution and inject the result into injFLAVR - we showed promising

84

results for injecting high temporal resolution imagery into injFLAVR,

and specifically when these images have been first transformed into

the correct context (as the pix2pix model does). Since the injFLAVR

first downsamples the injected images, there is no benefit to training

a pix2pix model to generate high spatial resolution Landsat 8 images,

low spatial resolution images should suffice.

85

References

[1] J. Chen, L. Wang, R. Feng, P. Liu, W. Han, and X. Chen,
“Cyclegan-stf: Spatiotemporal fusion via cyclegan-based image
generation,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 59, no. 7, pp. 5851–5865, 2021.

[2] T. Vandal, D. McDuff, W. Wang, A. Michaelis, and R. Nemani,
“Spectral synthesis for satellite-to-satellite translation,” 2020.

[3] H. Zhang, Y. Song, C. Han, and L. Zhang, “Remote sensing image
spatiotemporal fusion using a generative adversarial network,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, pp.
4273–4286, 2021.

[4] T. Vandal and R. Nemani, “Temporal interpolation of geostationary
satellite imagery with task specific optical flow,” 2020.

[5] UNISDR, “The human cost of weather related disasters 1995-2015,”
https://www.unisdr.org/2015/docs/climatechange/COP21_
WeatherDisastersReport_2015_FINAL.pdf, 2015, accessed: 2021-08-17.

[6] A. V.-S. M. B. Hallegatte, S. and J. Rozenberg, Unbreakable: Building
the Resilience of the Poor in the Face of Natural Disasters. The World
Bank, 2016.

[7] N. G. Society, “flood,” Oct 2012. [Online]. Available:
https://www.nationalgeographic.org/encyclopedia/flood/

[8] B. Tellmab, “Nasa thp,” accessed: 2021-08-18.

[9] J. B. Campbell and R. H. Wynne, Introduction to Remote Sensing, 5th
Ed., 2011.

[10] “Bird’s eye viewfinder: 160 years of aerial photography,”
https://airandspace.si.edu/stories/editorial/
birds-eye-viewfinder-160-years-aerial-photography, accessed:
2021-07-27.

[11] J. W. Black, “Boston, as the eagle and the wild goose see it,” 1860,
[Online; accessed Oct 1, 2021]. [Online]. Available: https://collectionapi.
metmuseum.org/api/collection/v1/iiif/283189/604165/main-image

86

https://www.unisdr.org/2015/docs/climatechange/COP21_WeatherDisastersReport_2015_FINAL.pdf
https://www.unisdr.org/2015/docs/climatechange/COP21_WeatherDisastersReport_2015_FINAL.pdf
https://www.nationalgeographic.org/encyclopedia/flood/
https://airandspace.si.edu/stories/editorial/birds-eye-viewfinder-160-years-aerial-photography
https://airandspace.si.edu/stories/editorial/birds-eye-viewfinder-160-years-aerial-photography
https://collectionapi.metmuseum.org/api/collection/v1/iiif/283189/604165/main-image
https://collectionapi.metmuseum.org/api/collection/v1/iiif/283189/604165/main-image

[12] “Milestones in the history of remote sensing,” https:
//nature.berkeley.edu/~penggong/textbook/chapter1/html/sect12.htm,
accessed: 2021-07-30.

[13] “Lesson : The electromagnetic spectrum.” [Online]. Available:
https://dashboard.dublinschools.net/lessons/?id=
d00226c67d475300b9afc56a5ff7a9fc&v=1

[14] N. R. Canada, “Government of canada,” Nov 2015. [Online]. Available:
https://www.nrcan.gc.ca/maps-tools-publications/
satellite-imagery-air-photos/remote-sensing-tutorials/introduction/
passive-vs-active-sensing/14639

[15] M. Stefano, “Active pixel sensor vs ccd. who is the clear winner?”
[Online]. Available:
https://meroli.web.cern.ch/lecture_cmos_vs_ccd_pixel_sensor.html

[16] “Vision and optical instruments,”
https://courses.lumenlearning.com/physics/chapter/26-6-aberrations/,
accessed: 2021-08-10.

[17] GDAL/OGR contributors, GDAL/OGR Geospatial Data Abstraction
software Library, Open Source Geospatial Foundation, 2021. [Online].
Available: https://gdal.org

[18] S. Gillies et al., “Rasterio: geospatial raster i/o for Python
programmers,” Mapbox, 2013–. [Online]. Available:
https://github.com/mapbox/rasterio

[19] “Landsat science,” https://landsat.gsfc.nasa.gov/, accessed: 2021-08-17.

[20] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore, “Google earth engine: Planetary-scale geospatial analysis for
everyone,” Remote Sensing of Environment, 2017. [Online]. Available:
https://doi.org/10.1016/j.rse.2017.06.031

[21] “Modis about,” https://modis.gsfc.nasa.gov/about/, accessed:
2021-08-09.

[22] “Modis data,” https://modis.gsfc.nasa.gov/data/, accessed: 2021-08-09.

[23] A. M. Tekalp, Digital Video Processing, 1995.

[24] E. Dubois, “Video sampling and interpolation,”
https://www.site.uottawa.ca/~edubois/courses/ELG5378/interp.pdf,
accessed: 2021-08-10.

87

https://nature.berkeley.edu/~penggong/textbook/chapter1/html/sect12.htm
https://nature.berkeley.edu/~penggong/textbook/chapter1/html/sect12.htm
https://dashboard.dublinschools.net/lessons/?id=d00226c67d475300b9afc56a5ff7a9fc&v=1
https://dashboard.dublinschools.net/lessons/?id=d00226c67d475300b9afc56a5ff7a9fc&v=1
https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/introduction/passive-vs-active-sensing/14639
https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/introduction/passive-vs-active-sensing/14639
https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/introduction/passive-vs-active-sensing/14639
https://meroli.web.cern.ch/lecture_cmos_vs_ccd_pixel_sensor.html
https://courses.lumenlearning.com/physics/chapter/26-6-aberrations/
https://gdal.org
https://github.com/mapbox/rasterio
https://landsat.gsfc.nasa.gov/
https://doi.org/10.1016/j.rse.2017.06.031
https://modis.gsfc.nasa.gov/about/
https://modis.gsfc.nasa.gov/data/
https://www.site.uottawa.ca/~edubois/courses/ELG5378/interp.pdf

[25] M. Khoury, “A fuzzy probabilistic inference methodology for
constrained 3d human motion classification,” 01 2010.

[26] D. M. Tamir, “What is machine learning?”
https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/,
2015, accessed: 2021-08-23.

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran
Associates, Inc., 2019, pp. 8024–8035. [Online]. Available:
http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[29] I. G. Y. Bengio and A. Courville, “Deep learning,” 2016, book in
preparation for MIT Press. [Online]. Available:
http://www.deeplearningbook.org

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[31] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” 2018.

[32] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier networks,”
in Proceedings of the 14th International Conference on Artificial

88

https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/
https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.deeplearningbook.org
http://arxiv.org/abs/1502.03167

Intelligence and Statistics. JMLR W&CP Volume, vol. 15, 2011, pp.
315–323.

[33] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural
networks for lvcsr using rectified linear units and dropout,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 8609–8613.

[34] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, vol. 30, no. 1,
2013.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[36] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
2014.

[37] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[38] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” 2014.

[39] Z. Ye, H. Wu, J. Jia, Y. Bu, W. Chen, F. Meng, and Y. Wang,
“Choreonet: Towards music to dance synthesis with choreographic
action unit,” Proceedings of the 28th ACM International Conference on
Multimedia, Oct 2020. [Online]. Available:
http://dx.doi.org/10.1145/3394171.3414005

[40] Y. Duan, T. Shi, Z. Zou, J. Qin, Y. Zhao, Y. Yuan, J. Hou, X. Wen, and
C. Fan, “Semi-supervised learning for in-game expert-level
music-to-dance translation,” 2020.

[41] N. Yalta, S. Watanabe, K. Nakadai, and T. Ogata, “Weakly supervised
deep recurrent neural networks for basic dance step generation,” 2019.

[42] J. Lee, S. Kim, and K. Lee, “Listen to dance: Music-driven
choreography generation using autoregressive encoder-decoder network,”
ArXiv, vol. abs/1811.00818, 2018.

89

http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1145/3394171.3414005

[43] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” 2015.

[44] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” 2014.

[45] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014.

[46] F. A. Reda, D. Sun, A. Dundar, M. Shoeybi, G. Liu, K. J. Shih, A. Tao,
J. Kautz, and B. Catanzaro, “Unsupervised video interpolation using
cycle consistency,” 2021.

[47] �Moreno–Martínez, M. Moneta, G. C. Valls, L. Martino, N. Robinson,
B. Allred, and S. W. Running, “Interpolation and gap filling of landsat
reflectance time series,” in IGARSS 2018 - 2018 IEEE International
Geoscience and Remote Sensing Symposium, 2018, pp. 349–352.

[48] F. Gao, J. Masek, M. Schwaller, and F. Hall, “On the blending of the
landsat and modis surface reflectance: predicting daily landsat surface
reflectance,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 44, no. 8, pp. 2207–2218, 2006.

[49] S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-Hornung,
“Phase-based frame interpolation for video,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
1410–1418.

[50] S. Meyer, A. Djelouah, B. McWilliams, A. Sorkine-Hornung, M. Gross,
and C. Schroers, “Phasenet for video frame interpolation,” 2018.

[51] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz, “Super slomo: High quality estimation of multiple
intermediate frames for video interpolation,” 2018.

[52] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
convolution,” 2017.

[53] ——, “Video frame interpolation via adaptive separable convolution,”
2017.

[54] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame
synthesis using deep voxel flow,” 2017.

90

[55] S. Niklaus and F. Liu, “Context-aware synthesis for video frame
interpolation,” 2018.

[56] W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao, and M.-H. Yang,
“Depth-aware video frame interpolation,” 2019.

[57] W. Bao, W.-S. Lai, X. Zhang, Z. Gao, and M.-H. Yang, “Memc-net:
Motion estimation and motion compensation driven neural network for
video interpolation and enhancement,” 2019.

[58] X. Xu, L. Siyao, W. Sun, Q. Yin, and M.-H. Yang, “Quadratic video
interpolation,” 2019.

[59] Y. Liu, L. Xie, L. Siyao, W. Sun, Y. Qiao, and C. Dong, “Enhanced
quadratic video interpolation,” 2020.

[60] Y.-L. Liu, Y.-T. Liao, Y.-Y. Lin, and Y.-Y. Chuang, “Deep video frame
interpolation using cyclic frame generation,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, pp. 8794–8802, Jul.
2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/4905

[61] T. Kalluri, D. Pathak, M. Chandraker, and D. Tran, “Flavr:
Flow-agnostic video representations for fast frame interpolation,” 2021.

[62] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” 2018.

[63] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with
conditional gans,” 2018.

[64] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised cross-domain image
generation,” 2016.

[65] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” 2020.

[66] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover
cross-domain relations with generative adversarial networks,” 2017.

[67] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and
E. Shechtman, “Toward multimodal image-to-image translation,” 2018.

[68] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal
unsupervised image-to-image translation,” 2018.

91

https://ojs.aaai.org/index.php/AAAI/article/view/4905

[69] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan:
Unified generative adversarial networks for multi-domain
image-to-image translation,” 2018.

[70] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther,
“Autoencoding beyond pixels using a learned similarity metric,” 2016.

[71] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
next-generation hyperparameter optimization framework,” in
Proceedings of the 25rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

[72] A. Khalel, “Sewar,” https://github.com/andrewekhalel/sewar, 2021.

[73] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D.
Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image
contributors, “scikit-image: image processing in Python,” PeerJ, vol. 2,
p. e453, 6 2014. [Online]. Available: https://doi.org/10.7717/peerj.453

[74] C. Yim and A. C. Bovik, “Quality assessment of deblocked images,”
IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 88–98, 2011.

[75] F. Fontaine, “Lecture notes: Waves and phasors,” January 2020.

[76] “Modis specifications,”
https://modis.gsfc.nasa.gov/about/specifications.php#1, accessed:
2021-08-09.

92

https://github.com/andrewekhalel/sewar
https://doi.org/10.7717/peerj.453
https://modis.gsfc.nasa.gov/about/specifications.php#1

A Electromagnetic Wave Equation

To obtain wave equations from Maxwell’s equations, we follow [75] and first

assume linear homogeneous isotropic material, of permeability µ and permit-

tivity ε. This implies:

~D = ε ~E, ~B = µ ~H (79)

Using this with Equations 1 - 4 results in the following:

∇× ~E = −µ∂
~H

∂t
(80)

∇× ~H = ~J + ε
∂ ~E

∂t
(81)

∇ · ~E = ρ/ε (82)

∇ · ~H = 0 (83)

Then:

∇×(∇× ~E) = −µ ∂

∂t
∇× ~H

Applying identities leads to:

∇ · (∇ · ~E)− (∇2 ~E) = −µ ∂

∂t
∇× ~H

Substituting Equation 81 for ∇× ~H and Equation 82 for ∇ · ~E leads to:

∇ρ/ε− (∇2 ~E) = −µ∂
~J

∂t
− µε

∂2 ~E

∂t2

Rearranging the equation and with v = 1√
µε

we get an inhomogeneous wave

equation:

∇2 ~E − 1

v2
∂2 ~E

∂t2
= ∇ρ/ε− µ

∂ ~J

∂t
(84)

We note that similar derivation using equation 81 leads to another wave equa-

tion:

∇2 ~H − 1

v2
∂2 ~H

∂t2
= −∇× ~J (85)

93

With the additional assumption that there are no sources (namely ρ = 0 and

~J = 0) we get homogeneous wave equations:

∇2 ~E − 1

v2
∂2 ~E

∂t2
= 0 (86)

∇2 ~H − 1

v2
∂2 ~H

∂t2
= 0 (87)

B Satellite Band Specifications

The following pages contain the band specifications for the satellites used

throughout this work.

Band Bandwidth

1 0.435-0.451 µm

2 0.452-0.512 µm

3 0.533-0.590 µm

4 0.636-0.673 µm

5 0.851-0.879 µm

6 1.566-1.651 µm

7 2.107-2.294 µm

8 0.500–0.680 µm

9 1.360–1.390 µm

10 10.6-11.2 µm

11 11.5-12.5 µm

Table 6: Landsat 8 Band Specifications [19]

Band Bandwidth

1 620 - 670 nm

2 841 - 876 nm

94

Band Bandwidth

3 459 - 479 nm

4 545 - 565 nm

5 1230 - 1250 nm

6 1628 - 1652 nm

7 2105 - 2155 nm

8 405 - 420 nm

9 438 - 448 nm

10 483 - 493 nm

11 526 - 536 nm

12 546 - 556 nm

13 662 - 672 nm

14 673 - 683 nm

15 743 - 753 nm

16 862 - 877 nm

17 890 - 920 nm

18 931 - 941 nm

19 915 - 965 nm

20 3.660 - 3.840 µm

21 3.929 - 3.989 µm

22 3.929 - 3.989 µm

23 4.020 - 4.080 µm

24 4.433 - 4.498 µm

25 4.482 - 4.549 µm

26 1.360 - 1.390 µm

27 6.535 - 6.895 µm

28 7.175 - 7.475 µm

95

Band Bandwidth

29 8.400 - 8.700 µm

30 9.580 - 9.880 µm

31 10.780 - 11.280 µm

32 11.770 - 12.270 µm

33 13.185 - 13.485 µm

34 13.485 - 13.785 µm

35 13.785 - 14.085 µm

36 14.085 - 14.385 µm

Table 7: MODIS Band Specifications [76]

96

C Code Sample

The remaining pages contain a representative sample of the code used for

the presented experiments. We note that this work is extensively based on

two open-sourced implementations of the base models. These were https://

github.com/junyanz/pytorch-CycleGAN-and-pix2pix and https://github.

com/tarun005/FLAVR for pix2pix and FLAVR respectively. We further em-

phasize our extensive use rasterio [18] to modify these implementations to

accept .tiff files, the format used to store the satellite imagery.

C.1 Pix2pix Modifications

C.1.1 Dataset Loader

1 import os
2 from data.base_dataset import BaseDataset , get_params ,

get_transform
3 from data.image_folder import make_dataset
4 from PIL import Image
5 import rasterio
6 import torch
7 import numpy as np
8 from torchvision import transforms
9 import random

10

11 class AlignedDataset(BaseDataset):
12 """A dataset class for paired image dataset.
13

14 It assumes that the directory '/path/to/data/train' contains
image pairs in the form of {A,B}.

15 During test time, you need to prepare a directory '/path/to/
data/test'.

16 """
17

18 def __init__(self, opt):
19 """Initialize this dataset class.
20

21 Parameters:
22 opt (Option class) -- stores all the experiment flags;

needs to be a subclass of BaseOptions
23 """
24 BaseDataset.__init__(self, opt)
25 self.dir_AB = os.path.join(opt.dataroot, opt.phase) # get

the image directory

97

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/tarun005/FLAVR
https://github.com/tarun005/FLAVR

26 self.AB_paths = sorted(make_dataset(self.dir_AB, opt.
max_dataset_size)) # get image paths

27 assert(self.opt.load_size >= self.opt.crop_size) #
crop_size should be smaller than the size of loaded image

28 self.input_nc = self.opt.output_nc if self.opt.direction
== 'BtoA' else self.opt.input_nc

29 self.output_nc = self.opt.input_nc if self.opt.direction
== 'BtoA' else self.opt.output_nc

30

31 def __getitem__(self, index):
32 """Return a data point and its metadata information.
33

34 Parameters:
35 index - - a random integer for data indexing
36

37 Returns a dictionary that contains A, B, A_paths and
B_paths

38 A (tensor) - - an image in the input domain
39 B (tensor) - - its corresponding image in the target

domain
40 A_paths (str) - - image paths
41 B_paths (str) - - image paths (same as A_paths)
42 """
43 # read a image given a random integer index
44 AB_path = self.AB_paths[index]
45 with rasterio.open(AB_path) as src:
46 AB = src.read()
47

48 # split AB image into A and B
49 c, h, w = AB.shape
50 w2 = int(w / 2)
51 A = AB[:, :, :w2]
52 B = AB[:, :, w2:]
53

54 A = torch.from_numpy(A.copy()).type(torch.FloatTensor)
55 B = torch.from_numpy(B.copy()).type(torch.FloatTensor)
56

57 return {'A': A, 'B': B,
58 'A_paths': AB_path, 'B_paths': AB_path}
59

60 def __len__(self):
61 """Return the total number of images in the dataset."""
62 return len(self.AB_paths)

C.1.2 Evaluation

1 """General-purpose test script for image-to-image translation.
2

3 Once you have trained your model with train.py, you can use this
script to test the model.

4 It will load a saved model from '--checkpoints_dir' and save the
results to '--results_dir'.

5

98

6 It first creates model and dataset given the option. It will hard-
code some parameters.

7 It then runs inference for '--num_test' images and save results to
an HTML file.

8

9 Example (You need to train models first or download pre-trained
models from our website):

10 Test a CycleGAN model (both sides):
11 python test.py --dataroot ./datasets/maps --name

maps_cyclegan --model cycle_gan
12

13 Test a CycleGAN model (one side only):
14 python test.py --dataroot datasets/horse2zebra/testA --

name horse2zebra_pretrained --model test --no_dropout
15

16 The option '--model test' is used for generating CycleGAN
results only for one side.

17 This option will automatically set '--dataset_mode single',
which only loads the images from one set.

18 On the contrary , using '--model cycle_gan' requires loading
and generating results in both directions ,

19 which is sometimes unnecessary. The results will be saved at
./results/.

20 Use '--results_dir <directory_path_to_save_result >' to specify
the results directory.

21

22 Test a pix2pix model:
23 python test.py --dataroot ./datasets/facades --name

facades_pix2pix --model pix2pix --direction BtoA
24

25 See options/base_options.py and options/test_options.py for more
test options.

26 See training and test tips at: https://github.com/junyanz/pytorch-
CycleGAN -and-pix2pix/blob/master/docs/tips.md

27 See frequently asked questions at: https://github.com/junyanz/
pytorch-CycleGAN -and-pix2pix/blob/master/docs/qa.md

28 """
29 import os
30 import rasterio
31 from options.test_options import TestOptions
32 from data import create_dataset
33 from models import create_model
34 from util.visualizer import save_images
35 from util import html
36

37

38 def main():
39 opt = TestOptions().parse() # get test options
40 # hard-code some parameters for test
41 opt.num_threads = 0 # test code only supports num_threads =

0
42 opt.batch_size = 1 # test code only supports batch_size = 1
43 opt.serial_batches = True # disable data shuffling; comment

this line if results on randomly chosen images are needed.

99

44 opt.no_flip = True # no flip; comment this line if results
on flipped images are needed.

45 opt.display_id = -1 # no visdom display; the test code saves
the results to a HTML file.

46 opt.eval = True
47 dataset = create_dataset(opt) # create a dataset given opt.

dataset_mode and other options
48 model = create_model(opt) # create a model given opt.

model and other options
49 model.setup(opt) # regular setup: load and print

networks; create schedulers
50 if opt.load_iter > 0: # load_iter is 0 by default
51 web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter)
52 # test with eval mode. This only affects layers like batchnorm

and dropout.
53 # For [pix2pix]: we use batchnorm and dropout in the original

pix2pix. You can experiment it with and without eval() mode.
54 # For [CycleGAN]: It should not affect CycleGAN as CycleGAN

uses instancenorm without dropout.
55 if opt.eval:
56 model.eval()
57 for i, data in enumerate(dataset):
58 model.set_input(data) # unpack data from data loader
59 model.test() # run inference
60 visuals = model.get_current_visuals() # get image results
61 img_path = model.get_image_paths() # get image paths
62

63 # save images
64 for idx, image in enumerate(model.real_B):
65 img = image.cpu().numpy()
66 # print(img.shape)
67 with rasterio.open(f'./output/set{i:03}_true{idx}.tif'

,'w', driver='GTiff', height=img.shape[1],
68 width=img.shape[2], count=img.

shape[0], dtype=img.dtype) as dst:
69 dst.write(img)
70 for idx, image in enumerate(model.fake_B):
71 img = image.cpu().numpy()
72 with rasterio.open(f'./output/set{i:03}_pred{idx}.tif'

,'w', driver='GTiff', height=img.shape[1],
73 width=img.shape[2], count=img.

shape[0], dtype=img.dtype) as dst:
74 dst.write(img)
75 for idx, image in enumerate(model.real_A):
76 img = image.cpu().numpy()
77 with rasterio.open(f'./output/set{i:03}_img{idx}.tif',

'w', driver='GTiff', height=img.shape[1],
78 width=img.shape[2], count=img.

shape[0], dtype=img.dtype) as dst:
79 dst.write(img)
80

81

82 if __name__ == '__main__':
83 main()

100

C.2 FLAVR Modifications

C.2.1 Dataset Loader

1 import os
2 import numpy as np
3 import torch
4 from torch.utils.data import Dataset, DataLoader
5 from torchvision import transforms
6 from PIL import Image
7 import random
8 import rasterio
9 from sklearn.model_selection import train_test_split

10

11 im_size = 128
12

13 def get_loc_paths(loc_dir:str, ic=None)-> list:
14 loc_paths = list()
15 for date in sorted(os.listdir(loc_dir)):
16 date_path = os.path.join(loc_dir, date)
17

18 if not os.path.isdir(date_path):
19 continue
20 date_images = list()
21 for image in os.listdir(date_path):
22 # if specified a single ic & if the name of the image

matches the ic desired
23 if ic is not None:
24 if ic in image:
25 date_images.append(os.path.join(date_path , image))
26 else:
27 # if we want all ics
28 date_images.append(os.path.join(date_path ,image))
29 loc_paths.append(date_images)
30 # remove empty parts
31 loc_paths = [paths for paths in loc_paths if len(paths)!=0]
32 return loc_paths
33

34 def get_train_test(data_root , set_length , test_frac=0.2, ic='modis
', random_state=None, shuffle=True):

35 paths = get_loc_paths(data_root , ic)
36 test_frac= test_frac*0.01 if test_frac >=1 else test_frac
37 test_size = int(test_frac*len(paths))
38 tr_idx, test_idx = train_test_split(list(range(len(paths)-

set_length)), # all idx but last set_length -1
39 test_size=test_size ,
40 random_state=random_state ,
41 shuffle=shuffle)
42 return paths, tr_idx, test_idx
43

44 class SatelliteLoader(Dataset):
45 def __init__(self, paths, idx, is_training , inter_frames=3,

n_inputs=4, channels=None):

101

46 """
47 Creates a Vimeo Septuplet object.
48 Inputs.
49 data_root: Root path for the Vimeo dataset containing

the sep tuples.
50 is_training: Train/Test.
51 """
52 super().__init__()
53 self.paths = paths
54 self.idx = idx
55 self.training = is_training
56 self.channels = channels
57

58 self.inter_frames = inter_frames
59 self.n_inputs = n_inputs
60 self.set_length = (n_inputs -1)*(inter_frames+1)+1 ## We

require these many frames in total for interpolating `
interFrames ` number of

61 ## intermediate
frames with `n_input` input frames.

62 self.transforms = None
63 if self.training:
64 self.transforms = transforms.Compose([
65 transforms.RandomHorizontalFlip(0.5),
66 transforms.RandomVerticalFlip(0.5),
67 transforms.CenterCrop(im_size)
68 #transforms.ColorJitter(0.05, 0.05, 0.05, 0.05),
69 #transforms.ToTensor()
70])
71

72 else:
73 self.transforms = transforms.CenterCrop(im_size) #256
74

75 def __getitem__(self, index):
76 # get the paths corresponding to the images needed from

the index
77 img_paths = [self.paths[i+self.idx[index]] for i in range(

self.set_length)]
78

79 # Load images as tensors
80 images = list()
81 for pth in img_paths:
82 with rasterio.open(pth[0]) as src:
83 img = torch.from_numpy(src.read(out_dtype='float')[:

self.channels]).type(torch.FloatTensor)
84 img = img/img.max()
85 images.append(img)
86

87 # apply transformations if training
88 seed = random.randint(0, 2**32)
89 images_ = []
90 if self.training:
91 for img_ in images:

102

92 # Apply the same transformation by using the same
seed

93 random.seed(seed)
94 images_.append(self.transforms(img_))
95 # Random Temporal Flip
96 if random.random() >= 0.5:
97 images_ = images_[::-1]
98 else:
99 # ensure sizes match with a crop

100 for img_ in images:
101 # Apply the same transformation by using the same

seed
102 random.seed(seed)
103 images_.append(self.transforms(img_))
104 images = images_
105 # pick out every inter_frame+1 images as inputs
106 inp_images = [images[idx] for idx in range(0, self.

set_length , self.inter_frames+1)]
107 rem = self.inter_frames%2
108 gt_images = [images[idx] for idx in range(self.set_length

//2-self.inter_frames//2 , self.set_length//2+self.
inter_frames//2+rem)]

109 return inp_images , gt_images
110

111 def __len__(self):
112 return len(self.idx)
113

114 def get_loader(paths, idx, batch_size , shuffle, num_workers ,
is_training=True, inter_frames=3, n_inputs=4, channels=3):

115 dataset = SatelliteLoader(paths, idx , is_training ,
inter_frames=inter_frames , n_inputs=n_inputs, channels=
channels)

116 return DataLoader(dataset, batch_size=batch_size , shuffle=
shuffle, num_workers=num_workers , pin_memory=True, drop_last=
True)

C.2.2 Architecture

C.2.2.1 FLAVR

1 import math
2 import numpy as np
3 import importlib
4

5 import torch
6 import torch.nn as nn
7 import torch.nn.functional as F
8 from .resnet_3D import SEGating
9

10 channels = 3
11 def joinTensors(X1 , X2 , type="concat"):
12

13 if type == "concat":

103

14 return torch.cat([X1 , X2] , dim=1)
15 elif type == "add":
16 return X1 + X2
17 else:
18 return X1
19

20

21 class Conv_2d(nn.Module):
22

23 def __init__(self, in_ch, out_ch, kernel_size , stride=1,
padding=0, bias=False, batchnorm=False):

24

25 super().__init__()
26 self.conv = [nn.Conv2d(in_ch, out_ch, kernel_size=

kernel_size , stride=stride, padding=padding, bias=bias)]
27

28 if batchnorm:
29 self.conv += [nn.BatchNorm2d(out_ch)]
30

31 self.conv = nn.Sequential(*self.conv)
32

33 def forward(self, x):
34

35 return self.conv(x)
36

37 class upConv3D(nn.Module):
38

39 def __init__(self, in_ch, out_ch, kernel_size , stride, padding
, upmode="transpose" , batchnorm=False):

40

41 super().__init__()
42

43 self.upmode = upmode
44

45 if self.upmode=="transpose":
46 self.upconv = nn.ModuleList(
47 [nn.ConvTranspose3d(in_ch, out_ch, kernel_size=

kernel_size , stride=stride, padding=padding),
48 SEGating(out_ch)
49]
50)
51

52 else:
53 self.upconv = nn.ModuleList(
54 [nn.Upsample(mode='trilinear', scale_factor

=(1,2,2), align_corners=False),
55 nn.Conv3d(in_ch, out_ch , kernel_size=1 , stride

=1),
56 SEGating(out_ch)
57]
58)
59

60 if batchnorm:
61 self.upconv += [nn.BatchNorm3d(out_ch)]

104

62

63 self.upconv = nn.Sequential(*self.upconv)
64

65 def forward(self, x):
66

67 return self.upconv(x)
68

69 class Conv_3d(nn.Module):
70

71 def __init__(self, in_ch, out_ch, kernel_size , stride=1,
padding=0, bias=True, batchnorm=False):

72

73 super().__init__()
74 self.conv = [nn.Conv3d(in_ch, out_ch, kernel_size=

kernel_size , stride=stride, padding=padding, bias=bias),
75 SEGating(out_ch)
76]
77

78 if batchnorm:
79 self.conv += [nn.BatchNorm3d(out_ch)]
80

81 self.conv = nn.Sequential(*self.conv)
82

83 def forward(self, x):
84

85 return self.conv(x)
86

87 class upConv2D(nn.Module):
88

89 def __init__(self, in_ch, out_ch, kernel_size , stride, padding
, upmode="transpose" , batchnorm=False):

90

91 super().__init__()
92

93 self.upmode = upmode
94

95 if self.upmode=="transpose":
96 self.upconv = [nn.ConvTranspose2d(in_ch, out_ch,

kernel_size=kernel_size , stride=stride, padding=padding)]
97

98 else:
99 self.upconv = [

100 nn.Upsample(mode='bilinear', scale_factor=2,
align_corners=False),

101 nn.Conv2d(in_ch, out_ch , kernel_size=1 , stride
=1)

102]
103

104 if batchnorm:
105 self.upconv += [nn.BatchNorm2d(out_ch)]
106

107 self.upconv = nn.Sequential(*self.upconv)
108

109 def forward(self, x):

105

110

111 return self.upconv(x)
112

113

114 class UNet_3D_3D(nn.Module):
115 def __init__(self, block , n_inputs , n_outputs , batchnorm=

False , joinType="concat" , upmode="transpose", channels=3):
116 super().__init__()
117 nf = [512 , 256 , 128 , 64]
118 out_channels = channels*n_outputs
119 self.joinType = joinType
120 self.n_outputs = n_outputs
121 self.channels = channels
122

123 growth = 2 if joinType == "concat" else 1
124 self.lrelu = nn.LeakyReLU(0.2, True)
125

126 unet_3D = importlib.import_module(".resnet_3D_2" , "model"
)

127 unet_3D.channels = channels
128 if n_outputs > 1:
129 unet_3D.useBias = True
130 self.encoder = getattr(unet_3D , block)(pretrained=False ,

bn=batchnorm)
131

132 self.decoder = nn.Sequential(
133 Conv_3d(nf[0], nf[1] , kernel_size=3, padding=1, bias=

True, batchnorm=batchnorm),
134 upConv3D(nf[1]*growth, nf[2], kernel_size=(3,4,4),

stride=(1,2,2), padding=(1,1,1) , upmode=upmode, batchnorm=
batchnorm),

135 upConv3D(nf[2]*growth, nf[3], kernel_size=(3,4,4),
stride=(1,2,2), padding=(1,1,1) , upmode=upmode, batchnorm=
batchnorm),

136 Conv_3d(nf[3]*growth, nf[3] , kernel_size=3, padding
=1, bias=True, batchnorm=batchnorm),

137 upConv3D(nf[3]*growth , nf[3], kernel_size=(3,4,4),
stride=(1,2,2), padding=(1,1,1) , upmode=upmode, batchnorm=
batchnorm)

138)
139

140 self.feature_fuse = Conv_2d(nf[3]*n_inputs , nf[3] ,
kernel_size=1 , stride=1, batchnorm=batchnorm)

141

142 self.outconv = nn.Sequential(
143 nn.ReflectionPad2d(3),
144 nn.Conv2d(nf[3], out_channels , kernel_size=7 , stride

=1, padding=0)
145)
146

147 def forward(self, images):
148

149 images = torch.stack(images , dim=2)
150

106

151 ## Batch mean normalization works slightly better than
global mean normalization , thanks to https://github.com/
myungsub/CAIN

152 mean_ = images.mean(2, keepdim=True).mean(3, keepdim=True)
.mean(4,keepdim=True)

153 images = images-mean_
154

155 x_0 , x_1 , x_2 , x_3 , x_4 = self.encoder(images)
156

157 dx_3 = self.lrelu(self.decoder[0](x_4))
158 dx_3 = joinTensors(dx_3 , x_3 , type=self.joinType)
159

160 dx_2 = self.lrelu(self.decoder[1](dx_3))
161 dx_2 = joinTensors(dx_2 , x_2 , type=self.joinType)
162

163 dx_1 = self.lrelu(self.decoder[2](dx_2))
164 dx_1 = joinTensors(dx_1 , x_1 , type=self.joinType)
165

166 dx_0 = self.lrelu(self.decoder[3](dx_1))
167 dx_0 = joinTensors(dx_0 , x_0 , type=self.joinType)
168

169 dx_out = self.lrelu(self.decoder[4](dx_0))
170 dx_out = torch.cat(torch.unbind(dx_out , 2) , 1)
171

172 out = self.lrelu(self.feature_fuse(dx_out))
173 out = self.outconv(out)
174

175 out = torch.split(out, dim=1, split_size_or_sections=self.
channels)

176 mean_ = mean_.squeeze(2)
177 out = [o+mean_ for o in out]
178

179 return out

C.2.2.2 Resnet

1 # Modified from https://github.com/pytorch/vision/tree/master/
torchvision/models/video

2

3 import torch
4 import torch.nn as nn
5

6 __all__ = ['unet_18', 'unet_34']
7

8 useBias = False
9 channels = 3

10

11 class identity(nn.Module):
12

13 def __init__(self , *args , **kwargs):
14 super().__init__()
15

16 def forward(self , x):
17 return x

107

18

19 class Conv3DSimple(nn.Conv3d):
20 def __init__(self,
21 in_planes ,
22 out_planes ,
23 midplanes=None,
24 stride=1,
25 padding=1):
26

27 super(Conv3DSimple , self).__init__(
28 in_channels=in_planes ,
29 out_channels=out_planes ,
30 kernel_size=(3, 3, 3),
31 stride=stride,
32 padding=padding,
33 bias=useBias)
34

35 @staticmethod
36 def get_downsample_stride(stride , temporal_stride):
37 if temporal_stride:
38 return (temporal_stride , stride, stride)
39 else:
40 return (stride , stride , stride)
41

42 class BasicStem(nn.Sequential):
43 """The default conv-batchnorm -relu stem
44 """
45 def __init__(self):
46 super().__init__(
47 nn.Conv3d(channels, 64, kernel_size=(channels, 7, 7),

stride=(1, 2, 2),
48 padding=(channels//2, 3, 3), bias=useBias),
49 batchnorm(64),
50 nn.ReLU(inplace=False))
51

52

53 class Conv2Plus1D(nn.Sequential):
54

55 def __init__(self,
56 in_planes ,
57 out_planes ,
58 midplanes ,
59 stride=1,
60 padding=1):
61 if not isinstance(stride , int):
62 temporal_stride , stride , stride = stride
63 else:
64 temporal_stride = stride
65

66 super(Conv2Plus1D , self).__init__(
67 nn.Conv3d(in_planes , midplanes , kernel_size=(channels

//2, 3, 3),
68 stride=(1, stride, stride), padding=(0,

padding, padding),

108

69 bias=False),
70 # batchnorm(midplanes),
71 nn.ReLU(inplace=True),
72 nn.Conv3d(midplanes , out_planes , kernel_size=(channels

, 1, 1),
73 stride=(temporal_stride , 1, 1), padding=(

padding, 0, 0),
74 bias=False))
75

76 @staticmethod
77 def get_downsample_stride(stride , temporal_stride):
78 if temporal_stride:
79 return (temporal_stride , stride, stride)
80 else:
81 return (stride , stride , stride)
82

83 class R2Plus1dStem(nn.Sequential):
84 """R(2+1)D stem is different than the default one as it uses

separated 3D convolution
85 """
86 def __init__(self):
87 super().__init__(
88 nn.Conv3d(channels, 45, kernel_size=(1, 7, 7),
89 stride=(1, 2, 2), padding=(0, 3, 3),
90 bias=False),
91 batchnorm(45),
92 nn.ReLU(inplace=True),
93 nn.Conv3d(45, 64, kernel_size=(channels, 1, 1),
94 stride=(1, 1, 1), padding=(1, 0, 0),
95 bias=False),
96 batchnorm(64),
97 nn.ReLU(inplace=True))
98

99

100 class SEGating(nn.Module):
101

102 def __init__(self , inplanes , reduction=16):
103

104 super().__init__()
105

106 self.pool = nn.AdaptiveAvgPool3d(1)
107 self.attn_layer = nn.Sequential(
108 nn.Conv3d(inplanes , inplanes , kernel_size=1 , stride

=1 , bias=True),
109 nn.Sigmoid()
110)
111

112 def forward(self , x):
113

114 out = self.pool(x)
115 y = self.attn_layer(out)
116 return x * y
117

118 class BasicBlock(nn.Module):

109

119

120 expansion = 1
121

122 def __init__(self, inplanes , planes, conv_builder , stride=1,
downsample=None):

123 midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes *
3 * 3 + 3 * planes)

124

125 super(BasicBlock , self).__init__()
126 self.conv1 = nn.Sequential(
127 conv_builder(inplanes , planes, midplanes , stride),
128 batchnorm(planes),
129 nn.ReLU(inplace=True)
130)
131 self.conv2 = nn.Sequential(
132 conv_builder(planes, planes, midplanes),
133 batchnorm(planes)
134)
135 self.fg = SEGating(planes) ## Feature Gating
136 self.relu = nn.ReLU(inplace=True)
137 self.downsample = downsample
138 self.stride = stride
139

140 def forward(self, x):
141 residual = x
142 out = self.conv1(x)
143 out = self.conv2(out)
144 out = self.fg(out)
145 if self.downsample is not None:
146 residual = self.downsample(x)
147

148 out += residual
149 out = self.relu(out)
150

151 return out
152

153 class VideoResNet(nn.Module):
154

155 def __init__(self, block, conv_makers , layers,
156 stem, zero_init_residual=False):
157 """Generic resnet video generator.
158

159 Args:
160 block (nn.Module): resnet building block
161 conv_makers (list(functions)): generator function for

each layer
162 layers (List[int]): number of blocks per layer
163 stem (nn.Module, optional): Resnet stem, if None,

defaults to conv-bn-relu. Defaults to None.
164 """
165 super(VideoResNet , self).__init__()
166 self.inplanes = 64
167

168 self.stem = stem()

110

169

170 self.layer1 = self._make_layer(block, conv_makers[0], 64,
layers[0], stride=1)

171 self.layer2 = self._make_layer(block, conv_makers[1], 128,
layers[1], stride=2 , temporal_stride=1)

172 self.layer3 = self._make_layer(block, conv_makers[2], 256,
layers[2], stride=2 , temporal_stride=1)

173 self.layer4 = self._make_layer(block, conv_makers[3], 512,
layers[3], stride=1, temporal_stride=1)

174

175 # init weights
176 self._initialize_weights()
177

178 if zero_init_residual:
179 for m in self.modules():
180 if isinstance(m, Bottleneck):
181 nn.init.constant_(m.bn3.weight, 0)
182

183 def forward(self, x):
184 x_0 = self.stem(x)
185 x_1 = self.layer1(x_0)
186 x_2 = self.layer2(x_1)
187 x_3 = self.layer3(x_2)
188 x_4 = self.layer4(x_3)
189 return x_0 , x_1 , x_2 , x_3 , x_4
190

191 def _make_layer(self, block, conv_builder , planes, blocks,
stride=1, temporal_stride=None):

192 downsample = None
193

194 if stride != 1 or self.inplanes != planes * block.
expansion:

195 ds_stride = conv_builder.get_downsample_stride(stride
, temporal_stride)

196 downsample = nn.Sequential(
197 nn.Conv3d(self.inplanes, planes * block.expansion ,
198 kernel_size=1, stride=ds_stride , bias=

False),
199 batchnorm(planes * block.expansion)
200)
201 stride = ds_stride
202

203 layers = []
204 layers.append(block(self.inplanes , planes, conv_builder ,

stride, downsample))
205

206 self.inplanes = planes * block.expansion
207 for i in range(1, blocks):
208 layers.append(block(self.inplanes , planes,

conv_builder))
209

210 return nn.Sequential(*layers)
211

212 def _initialize_weights(self):

111

213 for m in self.modules():
214 if isinstance(m, nn.Conv3d):
215 nn.init.kaiming_normal_(m.weight, mode='fan_out',
216 nonlinearity='relu')
217 if m.bias is not None:
218 nn.init.constant_(m.bias, 0)
219 elif isinstance(m, nn.BatchNorm3d):
220 nn.init.constant_(m.weight, 1)
221 nn.init.constant_(m.bias, 0)
222 elif isinstance(m, nn.Linear):
223 nn.init.normal_(m.weight, 0, 0.01)
224 nn.init.constant_(m.bias, 0)
225

226

227 def _video_resnet(arch, pretrained=False, progress=True, **kwargs)
:

228 model = VideoResNet(**kwargs)
229 ## TODO: Other 3D resnet models, like S3D, r(2+1)D.
230

231 if pretrained:
232 state_dict = load_state_dict_from_url(model_urls[arch],
233 progress=progress)
234 model.load_state_dict(state_dict)
235 return model
236

237

238 def unet_18(pretrained=False, bn=False, progress=True, **kwargs):
239 """
240 Construct 18 layer Unet3D model as in
241 https://arxiv.org/abs/1711.11248
242

243 Args:
244 pretrained (bool): If True, returns a model pre-trained on

Kinetics -400
245 progress (bool): If True, displays a progress bar of the

download to stderr
246

247 Returns:
248 nn.Module: R3D-18 encoder
249 """
250 global batchnorm
251 if bn:
252 batchnorm = nn.BatchNorm3d
253 else:
254 batchnorm = identity
255

256 return _video_resnet('r3d_18',
257 pretrained , progress ,
258 block=BasicBlock ,
259 conv_makers=[Conv3DSimple] * 4,
260 layers=[2, 2, 2, 2],
261 stem=BasicStem , **kwargs)
262

263 def unet_34(pretrained=False, bn=False, progress=True, **kwargs):

112

264 """
265 Construct 34 layer Unet3D model as in
266 https://arxiv.org/abs/1711.11248
267

268 Args:
269 pretrained (bool): If True, returns a model pre-trained on

Kinetics -400
270 progress (bool): If True, displays a progress bar of the

download to stderr
271

272 Returns:
273 nn.Module: R3D-18 encoder
274 """
275 global batchnorm
276 # bn = False
277 if bn:
278 batchnorm = nn.BatchNorm3d
279 else:
280 batchnorm = identity
281

282

283 return _video_resnet('r3d_34',
284 pretrained , progress ,
285 block=BasicBlock ,
286 conv_makers=[Conv3DSimple] * 4,
287 layers=[3, 4, 6, 3],
288 stem=BasicStem , **kwargs)

C.2.3 Training

1 import os
2 import sys
3 import time
4

5 import torch
6 import numpy as np
7 from tqdm import tqdm
8 from torch.utils.tensorboard import SummaryWriter
9

10 import config
11 import myutils
12 from loss import Loss
13 from torch.utils.data import DataLoader
14

15 def load_checkpoint(args, model, optimizer , path):
16 print("loading checkpoint %s" % path)
17 checkpoint = torch.load(path)
18 args.start_epoch = checkpoint['epoch'] + 1
19 model.load_state_dict(checkpoint['state_dict'])
20 optimizer.load_state_dict(checkpoint['optimizer'])
21 lr = checkpoint.get("lr" , args.lr)
22 for param_group in optimizer.param_groups:
23 param_group['lr'] = lr
24

113

25

26 ##### Parse CmdLine Arguments #####
27 args, unparsed = config.get_args()
28 cwd = os.getcwd()
29 print(args)
30

31 save_loc = os.path.join(args.checkpoint_dir , "saved_models_final"
, args.dataset , args.exp_name)

32 if not os.path.exists(save_loc):
33 os.makedirs(save_loc)
34 opts_file = os.path.join(save_loc , "opts.txt")
35 with open(opts_file , "w") as fh:
36 fh.write(str(args))
37

38

39 ##### TensorBoard & Misc Setup #####
40 writer_loc = os.path.join(args.checkpoint_dir , 'tensorboard_logs_

%s_final/%s' % (args.dataset , args.exp_name))
41 writer = SummaryWriter(writer_loc)
42

43 device = torch.device('cuda' if args.cuda else 'cpu')
44 torch.backends.cudnn.enabled = True
45 torch.backends.cudnn.benchmark = True
46

47 torch.manual_seed(args.random_seed)
48 if args.cuda:
49 torch.cuda.manual_seed(args.random_seed)
50

51 if args.dataset == "vimeo90K_septuplet":
52 from dataset.vimeo90k_septuplet import get_loader
53 train_loader = get_loader('train', args.data_root , args.

batch_size , shuffle=True, num_workers=args.num_workers)
54 test_loader = get_loader('test', args.data_root , args.

test_batch_size , shuffle=False, num_workers=args.num_workers)
55 elif args.dataset == "gopro":
56 from dataset.GoPro import get_loader
57 train_loader = get_loader(args.data_root , args.batch_size ,

shuffle=True, num_workers=args.num_workers , test_mode=False,
interFrames=args.n_outputs , n_inputs=args.nbr_frame)

58 test_loader = get_loader(args.data_root , args.batch_size ,
shuffle=False, num_workers=args.num_workers , test_mode=True,
interFrames=args.n_outputs , n_inputs=args.nbr_frame)

59 elif args.dataset == "satellite":
60 from dataset.Satellite_normalize import get_loader ,

get_train_test
61 set_length = (args.nbr_frame -1)*(args.n_outputs+1)+1
62 paths, tr_idx, test_idx = get_train_test(args.data_root ,

set_length , random_state=214, ic=args.ic)
63 train_loader = get_loader(paths, tr_idx, args.batch_size ,

shuffle=True, num_workers=args.num_workers , is_training=True,
inter_frames=args.n_outputs , n_inputs=args.nbr_frame , channels
=args.channels)

64 test_loader = get_loader(paths, test_idx, args.batch_size ,
shuffle=False, num_workers=args.num_workers , is_training=False

114

, inter_frames=args.n_outputs , n_inputs=args.nbr_frame ,
channels=args.channels)

65 else:
66 raise NotImplementedError
67

68

69 from model.FLAVR_arch_2 import UNet_3D_3D
70 print("Building model: %s"%args.model.lower())
71 model = UNet_3D_3D(args.model.lower() , n_inputs=args.nbr_frame ,

n_outputs=args.n_outputs , joinType=args.joinType , upmode=args.
upmode, channels=args.channels)

72 model = torch.nn.DataParallel(model).to(device)
73

74 ##### Define Loss & Optimizer #####
75 criterion = Loss(args)
76

77 ## ToDo: Different learning rate schemes for different parameters
78 from torch.optim import Adam
79 optimizer = Adam(model.parameters(), lr=args.lr, betas=(args.beta1

, args.beta2))
80 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer ,

mode='min', factor=0.5, patience=5, verbose=True)
81

82 def train(args, epoch):
83 losses, psnrs, ssims = myutils.init_meters(args.loss)
84 model.train()
85 criterion.train()
86

87 t = time.time()
88 for i, (images, gt_image) in enumerate(train_loader):
89

90 # Build input batch
91 images = [img_.cuda() for img_ in images]
92 gt = [gt_.cuda() for gt_ in gt_image]
93

94 # Forward
95 optimizer.zero_grad()
96 out = model(images)
97

98 out = torch.cat(out)
99 gt = torch.cat(gt)

100

101 loss, loss_specific = criterion(out, gt)
102

103 # Save loss values
104 for k, v in losses.items():
105 if k != 'total':
106 v.update(loss_specific[k].item())
107 losses['total'].update(loss.item())
108

109 loss.backward()
110 optimizer.step()
111

112 # Calc metrics & print logs

115

113 if i % args.log_iter == 0:
114 myutils.eval_metrics(out, gt, psnrs, ssims)
115

116 print('Train Epoch: {} [{}/{}]\tLoss: {:.6f}\tPSNR:
{:.4f}'.format(

117 epoch, i, len(train_loader), losses['total'].avg,
psnrs.avg , flush=True))

118

119 # Log to TensorBoard
120 timestep = epoch * len(train_loader) + i
121 writer.add_scalar('Loss/train', loss.data.item(),

timestep)
122 writer.add_scalar('PSNR/train', psnrs.avg, timestep)
123 writer.add_scalar('SSIM/train', ssims.avg, timestep)
124 writer.add_scalar('lr', optimizer.param_groups[-1]['lr

'], timestep)
125

126 # Reset metrics
127 losses, psnrs, ssims = myutils.init_meters(args.loss)
128 t = time.time()
129

130

131 def test(args, epoch):
132 print('Evaluating for epoch = %d' % epoch)
133 losses, psnrs, ssims = myutils.init_meters(args.loss)
134 model.eval()
135 criterion.eval()
136

137 t = time.time()
138 with torch.no_grad():
139 for i, (images, gt_image) in enumerate(test_loader):
140

141 images = [img_.cuda() for img_ in images]
142 gt = [gt_.cuda() for gt_ in gt_image]
143

144 out = model(images) ## images is a list of neighboring
frames

145 out = torch.cat(out)
146 gt = torch.cat(gt)
147

148 # Save loss values
149 loss, loss_specific = criterion(out, gt)
150 for k, v in losses.items():
151 if k != 'total':
152 v.update(loss_specific[k].item())
153 losses['total'].update(loss.item())
154

155 # Evaluate metrics
156 myutils.eval_metrics(out, gt, psnrs, ssims)
157

158 # Print progress
159 print("Loss: %f, PSNR: %f, SSIM: %f\n" %
160 (losses['total'].avg, psnrs.avg, ssims.avg))
161

116

162 # Save psnr & ssim
163 save_fn = os.path.join(save_loc , 'results.txt')
164 with open(save_fn, 'a') as f:
165 f.write('For epoch=%d\t' % epoch)
166 f.write("PSNR: %f, SSIM: %f\n" %
167 (psnrs.avg, ssims.avg))
168

169 # Log to TensorBoard
170 timestep = epoch +1
171 writer.add_scalar('Loss/test', loss.data.item(), timestep)
172 writer.add_scalar('PSNR/test', psnrs.avg, timestep)
173 writer.add_scalar('SSIM/test', ssims.avg, timestep)
174

175 return losses['total'].avg, psnrs.avg, ssims.avg
176

177

178 """ Entry Point """
179 def main(args):
180

181 if args.pretrained:
182 ## For low data, it is better to load from a supervised

pretrained model
183 loadStateDict = torch.load(args.pretrained)['state_dict']
184 modelStateDict = model.state_dict()
185

186 for k,v in loadStateDict.items():
187 if v.shape == modelStateDict[k].shape:
188 print("Loading " , k)
189 modelStateDict[k] = v
190 else:
191 print("Not loading" , k)
192

193 model.load_state_dict(modelStateDict)
194 print('Beginning to train:')
195 best_psnr = 0
196 for epoch in range(args.start_epoch , args.max_epoch):
197 train(args, epoch)
198

199 test_loss , psnr, _ = test(args, epoch)
200

201 # save checkpoint
202 is_best = psnr > best_psnr
203 best_psnr = max(psnr, best_psnr)
204 myutils.save_checkpoint({
205 'epoch': epoch,
206 'state_dict': model.state_dict(),
207 'optimizer': optimizer.state_dict(),
208 'best_psnr': best_psnr ,
209 'lr' : optimizer.param_groups[-1]['lr']
210 }, save_loc , is_best, args.exp_name)
211

212 # update optimizer policy
213 scheduler.step(test_loss)
214

117

215 if __name__ == "__main__":
216 main(args)

C.2.4 Testing

1 import os
2 import sys
3 import time
4 import copy
5 import shutil
6 import random
7 import pdb
8

9 import torch
10 import numpy as np
11 from tqdm import tqdm
12 import rasterio
13 import config
14 import myutils
15

16 from torch.utils.data import DataLoader
17

18 ##### Parse CmdLine Arguments #####
19 #os.environ["CUDA_VISIBLE_DEVICES"]='7'
20 args, unparsed = config.get_args()
21 cwd = os.getcwd()
22

23 print(f'Using cuda: {args.cuda}')
24 device = torch.device('cuda' if args.cuda else 'cpu')
25

26 torch.manual_seed(args.random_seed)
27 if args.cuda:
28 torch.cuda.manual_seed(args.random_seed)
29

30 if args.dataset == "vimeo90K_septuplet":
31 from dataset.vimeo90k_septuplet import get_loader
32 test_loader = get_loader('test', args.data_root , args.

test_batch_size , shuffle=False, num_workers=args.num_workers)
33 elif args.dataset == "ucf101":
34 from dataset.ucf101_test import get_loader
35 test_loader = get_loader(args.data_root , args.test_batch_size ,

shuffle=False, num_workers=args.num_workers)
36 elif args.dataset == "gopro":
37 from dataset.GoPro import get_loader
38 test_loader = get_loader(args.data_root , args.test_batch_size ,

shuffle=False, num_workers=args.num_workers , test_mode=True,
interFrames=args.n_outputs)

39 elif args.dataset == "satellite":
40 from dataset.Satellite_normalize import get_loader ,

get_train_test
41 set_length = (args.nbr_frame -1)*(args.n_outputs+1)+1
42 print(f'Loading {args.ic} image collection')
43 paths, tr_idx, test_idx = get_train_test(args.data_root ,

set_length , random_state=214, ic=args.ic)

118

44 print(f'Number of validation samples: {len(test_idx)}')
45 train_loader = get_loader(paths, tr_idx, args.batch_size ,

shuffle=True, num_workers=args.num_workers , is_training=True,
inter_frames=args.n_outputs , n_inputs=args.nbr_frame , channels
=args.channels)

46 test_loader = get_loader(paths, test_idx, args.batch_size ,
shuffle=False, num_workers=args.num_workers , is_training=False
, inter_frames=args.n_outputs , n_inputs=args.nbr_frame ,
channels=args.channels)

47 else:
48 raise NotImplementedError
49

50

51 from model.FLAVR_arch_2 import UNet_3D_3D
52 print("Building model: %s"%args.model.lower())
53 model = UNet_3D_3D(args.model.lower() , n_inputs=args.nbr_frame ,

n_outputs=args.n_outputs , joinType=args.joinType , upmode=args.
upmode, channels=args.channels)

54

55 model = torch.nn.DataParallel(model).to(device)
56 print("#params" , sum([p.numel() for p in model.parameters()]))
57

58

59 def test(args):
60 print(f'Saving image every {args.test_im_freq} images')
61 time_taken = []
62 losses, psnrs, ssims = myutils.init_meters(args.loss)
63 model.eval()
64 psnr_list = []
65 with torch.no_grad():
66 for i, (images, gt_image) in enumerate(tqdm(test_loader))

:
67 images = [img_.cuda() for img_ in images]
68 gt = [g_.cuda() for g_ in gt_image]
69

70 torch.cuda.synchronize()
71 start_time = time.time()
72 out = model(images)
73 # save images
74

75 if i%int(args.test_im_freq) == 0:
76 for idx, image in enumerate(images):
77 img = image.cpu().numpy()[0]
78 with rasterio.open(f'./output/set{i:03}_img{

idx}.tif','w', driver='GTiff', height=img.shape[1],
79 width=img.shape[2], count=

img.shape[0], dtype=img.dtype) as dst:
80 dst.write(img)
81 for idx, image in enumerate(gt):
82 img = image.cpu().numpy()[0]
83 with rasterio.open(f'./output/set{i:03}_true{

idx}.tif','w', driver='GTiff', height=img.shape[1],
84 width=img.shape[2], count=

img.shape[0], dtype=img.dtype) as dst:

119

85 dst.write(img)
86 for idx, image in enumerate(out):
87 img = image.cpu().numpy()[0]
88 with rasterio.open(f'./output/set{i:03}_pred{

idx}.tif','w', driver='GTiff', height=img.shape[1],
89 width=img.shape[2], count=

img.shape[0], dtype=img.dtype) as dst:
90 dst.write(img)
91

92 out = torch.cat(out)
93 gt = torch.cat(gt)
94

95 torch.cuda.synchronize()
96 time_taken.append(time.time() - start_time)
97

98 myutils.eval_metrics(out, gt, psnrs, ssims)
99

100 print("PSNR: %f, SSIM: %fn" %(psnrs.avg, ssims.avg))
101 print("Average Time, " , sum(time_taken)/len(time_taken))
102

103 return psnrs.avg
104

105

106 """ Entry Point """
107 def main(args):
108

109 assert args.load_from is not None
110

111 model_dict = model.state_dict()
112 model.load_state_dict(torch.load(args.load_from)["state_dict"]

, strict=True)
113 test(args)
114

115

116 if __name__ == "__main__":
117 main(args)

C.2.5 Evaluation

1 import os
2 import sys
3 import time
4 import copy
5 import shutil
6 import random
7 import pdb
8

9 import torch
10 import numpy as np
11 from tqdm import tqdm
12 import rasterio
13 import config
14 import myutils
15

120

16 from torch.utils.data import DataLoader
17

18 ##### Parse CmdLine Arguments #####
19 #os.environ["CUDA_VISIBLE_DEVICES"]='7'
20 args, unparsed = config.get_args()
21 cwd = os.getcwd()
22

23 print(f'Using cuda: {args.cuda}')
24 device = torch.device('cuda' if args.cuda else 'cpu')
25

26 torch.manual_seed(args.random_seed)
27 if args.cuda:
28 torch.cuda.manual_seed(args.random_seed)
29

30 if args.dataset == "vimeo90K_septuplet":
31 from dataset.vimeo90k_septuplet import get_loader
32 test_loader = get_loader('test', args.data_root , args.

test_batch_size , shuffle=False, num_workers=args.num_workers)
33 elif args.dataset == "ucf101":
34 from dataset.ucf101_test import get_loader
35 test_loader = get_loader(args.data_root , args.test_batch_size ,

shuffle=False, num_workers=args.num_workers)
36 elif args.dataset == "gopro":
37 from dataset.GoPro import get_loader
38 test_loader = get_loader(args.data_root , args.test_batch_size ,

shuffle=False, num_workers=args.num_workers , test_mode=True,
interFrames=args.n_outputs)

39 elif args.dataset == "satellite":
40 from dataset.Satellite_normalize import get_loader ,

get_train_test
41 set_length = (args.nbr_frame -1)*(args.n_outputs+1)+1
42 print(f'Loading {args.ic} image collection')
43 paths, tr_idx, test_idx = get_train_test(args.data_root ,

set_length , random_state=214, ic=args.ic, shuffle=False)
44 all_idx = tr_idx + test_idx
45 print(f'Number of validation samples: {len(all_idx)}')
46 all_loader = get_loader(paths, all_idx, args.batch_size ,

shuffle=False, num_workers=args.num_workers , is_training=False
, inter_frames=args.n_outputs , n_inputs=args.nbr_frame ,
channels=args.channels)

47 #test_loader = get_loader(paths, test_idx , args.batch_size ,
shuffle=False, num_workers=args.num_workers , is_training=False
, inter_frames=args.n_outputs , n_inputs=args.nbr_frame ,
channels=args.channels)

48 else:
49 raise NotImplementedError
50

51

52 from model.FLAVR_arch_2 import UNet_3D_3D
53 print("Building model: %s"%args.model.lower())
54 model = UNet_3D_3D(args.model.lower() , n_inputs=args.nbr_frame ,

n_outputs=args.n_outputs , joinType=args.joinType , upmode=args.
upmode, channels=args.channels)

55

121

56 model = torch.nn.DataParallel(model).to(device)
57 print("#params" , sum([p.numel() for p in model.parameters()]))
58

59

60 def evaluate(args):
61 print(f'Saving image every {args.test_im_freq} images')
62 #time_taken = []
63 losses, psnrs, ssims = myutils.init_meters(args.loss)
64 model.eval()
65 psnr_list = []
66 with torch.no_grad():
67 for i, (images, gt_image) in enumerate(tqdm(all_loader)):
68 images = [img_.cuda() for img_ in images]
69 gt = [g_.cuda() for g_ in gt_image]
70

71 torch.cuda.synchronize()
72 #start_time = time.time()
73 out = model(images)
74 # save images
75

76 for idx, image in enumerate(images):
77 img = image.cpu().numpy()[0]
78 with rasterio.open(f'./output/set{i:03}_img{idx}.

tif','w', driver='GTiff', height=img.shape[1],
79 width=img.shape[2], count=img.shape

[0], dtype=img.dtype) as dst:
80 dst.write(img)
81 for idx, image in enumerate(gt):
82 img = image.cpu().numpy()[0]
83 with rasterio.open(f'./output/set{i:03}_true{idx}.

tif','w', driver='GTiff', height=img.shape[1],
84 width=img.shape[2], count=img.shape

[0], dtype=img.dtype) as dst:
85 dst.write(img)
86 for idx, image in enumerate(out):
87 img = image.cpu().numpy()[0]
88 with rasterio.open(f'./output/set{i:03}_pred{idx}.

tif','w', driver='GTiff', height=img.shape[1],
89 width=img.shape[2], count=img.shape

[0], dtype=img.dtype) as dst:
90 dst.write(img)
91

92 out = torch.cat(out)
93 gt = torch.cat(gt)
94

95 #torch.cuda.synchronize()
96 #time_taken.append(time.time() - start_time)
97

98 myutils.eval_metrics(out, gt, psnrs, ssims)
99

100 print("PSNR: %f, SSIM: %fn" %(psnrs.avg, ssims.avg))
101 #print("Average Time, " , sum(time_taken)/len(time_taken))
102 print('Images saved')
103 return

122

104

105

106 """ Entry Point """
107 def main(args):
108

109 assert args.load_from is not None
110

111 model_dict = model.state_dict()
112 model.load_state_dict(torch.load(args.load_from)["state_dict"]

, strict=True)
113 evaluate(args)
114

115

116 if __name__ == "__main__":
117 main(args)

C.3 Naive

1 import rasterio
2 import numpy as np
3 import os
4 import concurrent.futures as cp
5 import re
6 import argparse
7

8 import myutils
9 parser = argparse.ArgumentParser()

10 parser.add_argument('--dir1', type=str, help='Input dir 1')
11 parser.add_argument('--dir2', type=str, help='Input dir 2')
12 parser.add_argument('--out_dir', type=str, default='./average',

help='Name of output dir')
13 parser.add_argument('--weight', type=float, default=0.5, help='

dir1 image:dir2 image ratio in final average')
14 parser.add_argument('--key_word1', type=str, default='', help='Key

word to select only some images from dir1')
15 parser.add_argument('--key_word2', type=str, default='', help='Key

word to select only some images from dir2')
16 parser.add_argument('--normalize', action='store_true', help='

Match normalized images')
17 parser.add_argument('--set_delta', type=int, help='Offset in set

indices between the two directories', default=1)
18

19 args = parser.parse_args()
20

21 losses, psnrs, ssims = myutils.init_meters('1*L1')
22 ## Match the two datasets
23 with cp.ProcessPoolExecutor() as ex:
24 for image in sorted(os.listdir(args.dir1)):
25 if args.key_word1 not in image:
26 continue
27 image_path = os.path.join(args.dir1, image)
28 with rasterio.open(image_path , 'r') as src:
29 img = src.read()

123

30 if args.normalize:
31 img=img/img.max()
32 image_set = re.findall('\d+', image.split('_')[0])
33

34 # get true image
35 true_key = image_set[0]
36 print('true key', true_key)
37 current_set = [image for image in os.listdir(args.dir1) if

true_key in image]
38 true_path = [image for image in current_set if 'true' in image

][0]
39 with rasterio.open(os.path.join(args.dir1, true_path), 'r') as

src:
40 true = src.read()
41 if args.normalize:
42 true=true/true.max()
43

44 # recover name for other directory
45 paired_set = int(image_set[0])+args.set_delta
46 pair_key = f'set{paired_set:03}'
47 print('paired key', pair_key)
48

49 matching_set = [image for image in os.listdir(args.dir2) if
pair_key in image]

50 matching_image = [image for image in matching_set if args.
key_word2 in image][0]

51 with rasterio.open(os.path.join(args.dir2, matching_image), 'r
') as src:

52 img2 = src.read()
53 if args.normalize:
54 img2=img2/img2.max()
55

56 out_img = args.weight*img + (1-args.weight)*img2
57 out_img = out_img/out_img.max()
58

59 # myutils.eval_metrics(true, out_img, psnrs, ssims)
60

61 print(os.path.join(args.out_dir, image))
62 if not os.path.exists(args.out_dir):
63 os.makedirs(args.out_dir)
64 with rasterio.open(os.path.join(args.out_dir, true_key+'pred')

,'w', driver='GTiff',
65 height=out_img.shape[1],width=out_img.shape

[2], count=out_img.shape[0], dtype=out_img.dtype) as dst:
66 dst.write(out_img)
67 with rasterio.open(os.path.join(args.out_dir, true_key+'true')

,'w', driver='GTiff',
68 height=true.shape[1],width=true.shape[2],

count=true.shape[0], dtype=true.dtype) as dst:
69 dst.write(true)
70

71 print(f'psnr: {psnrs.avg}, ssim: {ssims.avg}')

124

C.4 HR Boosting and Secondary Fusion

C.4.1 Pairing Images

1 import os
2 import numpy as np
3 import argparse
4 import rasterio
5 from concurrent.futures import ThreadPoolExecutor
6

7 def parse_args():
8 parser = argparse.ArgumentParser('create image pairs')
9 parser.add_argument('--inputA_dir', help='input directory for

image A', type=str, default='../dataset/inputA')
10 parser.add_argument('--inputB_dir', help='input directory for

image B', type=str, default='../dataset/inputB')
11 parser.add_argument('--inputA_keyword', help='input keyword

selector for dir A', type=str, default='pred')
12 parser.add_argument('--inputB_keyword', help='input keyword

selector for dir B', type=str, default='pred')
13 parser.add_argument('--inputB_dropN', help='number of inputs to

drop from B to match lengths', type=int, default=1)
14 parser.add_argument('--out_dir', help='output directory', type=

str, default='../dataset/test_AB')
15 parser.add_argument('--bands', help='number of bands to save',

type=int, default=1)
16 parser.add_argument('--im_size', help='size of each image', type

=int, default=128)
17 parser.add_argument('--split_val', action='store_true', help='

create a validation dir')
18 parser.add_argument('--normalize', action='store_true', help='

normalize images first')
19 args = parser.parse_args()
20 return args
21

22 def center_crop(im, im_size):
23 """
24 Center crop image to im_size
25 """
26 im_size = im_size//2
27 return im[:,(im.shape[1]//2-im_size):(im.shape[1]//2+im_size),(

im.shape[2]//2-im_size):(im.shape[2]//2+im_size)]
28

29 def load_image(path, bands, size):
30 """
31 Use rastrio to open up tif file, extract the desired number of

bands, and center crop to right size
32 """
33 with rasterio.open(path) as src:
34 im = src.read()[:bands]
35 im = center_crop(im, size)
36 return im
37

125

38 def image_write(path_A, path_B, path_AB, bands=1, im_size=128,
normalize=True):

39 """
40 Get the images, concatenate them together , and save in the

correct format
41 """
42 # get images
43 im_A = load_image(path_A, bands, im_size)
44 im_B = load_image(path_B, bands, im_size)
45

46 if normalize:
47 im_A = im_A/im_A.max()
48 im_B = im_B/im_B.max()
49

50 # concat and save
51 im_AB = np.concatenate([im_A, im_B])
52 save_image(im_AB, path_AB)
53

54 def save_image(array, path):
55 """
56 Save a numpy array as a tif file at a specified path
57 """
58 with rasterio.open(path, mode='w', driver='GTiff',
59 height=array.shape[1], width=array.shape

[2],
60 count=array.shape[0], dtype=array.dtype) as

src:
61 src.write(array)
62

63 def read_write_image(inp_path , out_path , bands, im_size, normalize
):

64 im = load_image(inp_path, bands, im_size)
65 if normalize:
66 im = im/im.max()
67 save_image(im, out_path)
68

69 def get_train_test(paths, test_frac=0.2, random_state=12345,
shuffle=True):

70 """
71 Returns the training and validation paths
72 :param data_root: root directory for images
73 :param test_frac: fraction to make into a validation set
74 :param random_state: random state
75 :param shuffle: whether to shuffle the input paths
76 :return: training paths, test paths (lists)
77 """
78 from sklearn.model_selection import train_test_split
79

80 test_frac = test_frac * 0.01 if test_frac >= 1 else test_frac
81 test_size = int(test_frac * len(paths))
82 tr_paths, test_paths = train_test_split(paths,
83 test_size=test_size ,
84 random_state=

random_state ,

126

85 shuffle=shuffle)
86 return tr_paths, test_paths
87

88

89

90

91 def main():
92 args = parse_args()
93 for arg in vars(args):
94 print('[%s] = ' % arg, getattr(args, arg))
95

96 # Get full paths to images in the directories
97 trA = sorted([os.path.join(args.inputA_dir , path) for path in os

.listdir(args.inputA_dir) if args.inputA_keyword in path])
98 trB = sorted([os.path.join(args.inputB_dir , path) for path in os

.listdir(args.inputB_dir) if args.inputB_keyword in path])
99 trB = trB[args.inputB_dropN:]

100

101 true = sorted([os.path.join(args.inputA_dir , path) for path in
os.listdir(args.inputA_dir) if 'true' in path])

102

103 if args.split_val:
104 trA, valA = get_train_test(trA)
105 trB, valB = get_train_test(trB)
106 true, true_val = get_train_test(true)
107

108 if not os.path.exists(args.out_dir+'/trainA'):
109 print('Making train dir')
110 os.makedirs(os.path.join(args.out_dir, 'trainA'))
111 os.makedirs(os.path.join(args.out_dir, 'trainB'))
112

113 path_pairs = [os.path.join(os.path.join(args.out_dir,'trainA'),
f'sample{i:03}.tif') for i in range(len(trA))]

114 path_true = [os.path.join(os.path.join(args.out_dir,'trainB'),
f'sample{i:03}.tif') for i in range(len(trA))]

115 with ThreadPoolExecutor() as e:
116 print('making trainA')
117 for i, pth in enumerate(zip(trA, trB)):
118 e.submit(image_write , pth[0], pth[1], path_pairs[i], bands=

args.bands, im_size=args.im_size, normalize=args.normalize)
119 print('making trainB')
120 for pth, pth_true in zip(true, path_true):
121 e.submit(read_write_image , pth, pth_true , bands=args.bands,

im_size=args.im_size, normalize=args.normalize)
122

123 if args.split_val:
124 if not os.path.exists(args.out_dir+'/valA'):
125 print('Making validation dir')
126 os.mkdir(os.path.join(args.out_dir, 'valA'))
127 os.mkdir(os.path.join(args.out_dir, 'valB'))
128

129 path_pairs = [os.path.join(os.path.join(args.out_dir,'valA'),
f'sample{i:03}.tif') for i in range(len(valA))]

127

130 path_true = [os.path.join(os.path.join(args.out_dir,'valB'), f
'sample{i:03}.tif') for i in range(len(valA))]

131 with ThreadPoolExecutor() as e:
132 for i, pth in enumerate(zip(valA, valB)):
133 e.submit(image_write , pth[0], pth[1], path_pairs[i], bands

=args.bands, im_size=args.im_size, normalize=args.normalize)
134 for pth, pth_true in zip(true_val , path_true):
135 e.submit(read_write_image , pth, pth_true , bands=args.bands

, im_size=args.im_size, normalize=args.normalize)
136

137 if __name__ == "__main__":
138 main()

C.4.2 Dataset Loader

1 import os
2 from data.base_dataset import BaseDataset , get_transform
3 from data.image_folder import make_dataset
4 #from PIL import Image
5 import numpy as np
6 import random
7 import rasterio
8

9 class UnalignedDataset(BaseDataset):
10 """
11 This dataset class can load unaligned/unpaired datasets.
12

13 It requires two directories to host training images from
domain A '/path/to/data/trainA'

14 and from domain B '/path/to/data/trainB' respectively.
15 You can train the model with the dataset flag '--dataroot /

path/to/data'.
16 Similarly , you need to prepare two directories:
17 '/path/to/data/testA' and '/path/to/data/testB' during test

time.
18 """
19

20 def __init__(self, opt):
21 """Initialize this dataset class.
22

23 Parameters:
24 opt (Option class) -- stores all the experiment flags;

needs to be a subclass of BaseOptions
25 """
26 BaseDataset.__init__(self, opt)
27 self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A')

create a path '/path/to/data/trainA'
28 self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B')

create a path '/path/to/data/trainB'
29

30 self.A_paths = sorted(make_dataset(self.dir_A, opt.
max_dataset_size)) # load images from '/path/to/data/trainA'

128

31 self.B_paths = sorted(make_dataset(self.dir_B, opt.
max_dataset_size)) # load images from '/path/to/data/trainB
'

32 #self.A_paths = sorted([path for path in self.A_paths if
opt.keywordA in path])

33 #self.B_paths = sorted([path for path in self.A_paths if
opt.keywordB in path])

34 self.A_size = len(self.A_paths) # get the size of dataset
A

35 self.B_size = len(self.B_paths) # get the size of dataset
B

36 btoA = self.opt.direction == 'BtoA'
37 input_nc = self.opt.output_nc if btoA else self.opt.

input_nc # get the number of channels of input image
38 output_nc = self.opt.input_nc if btoA else self.opt.

output_nc # get the number of channels of output image
39 self.transform_A = get_transform(self.opt, grayscale=(

input_nc == 1))
40 self.transform_B = get_transform(self.opt, grayscale=(

output_nc == 1))
41 self.eval = opt.eval
42

43 def __getitem__(self, index):
44 """Return a data point and its metadata information.
45

46 Parameters:
47 index (int) -- a random integer for data indexing
48

49 Returns a dictionary that contains A, B, A_paths and
B_paths

50 A (tensor) -- an image in the input domain
51 B (tensor) -- its corresponding image in the

target domain
52 A_paths (str) -- image paths
53 B_paths (str) -- image paths
54 """
55 A_path = self.A_paths[index % self.A_size] # make sure

index is within then range
56 if self.opt.serial_batches: # make sure index is within

then range
57 index_B = index % self.B_size
58 else: # randomize the index for domain B to avoid fixed

pairs.
59 index_B = random.randint(0, self.B_size - 1)
60 B_path = self.B_paths[index_B]
61 with rasterio.open(A_path) as src:
62 A = src.read()
63 with rasterio.open(B_path) as src:
64 B = src.read()
65

66 # apply transformations if training
67 if not self.eval:
68 if np.random.uniform() < 0.5:
69 A = np.fliplr(A)

129

70 B = np.fliplr(B)
71 if np.random.uniform() < 0.5:
72 A = np.flip(A, axis=2)
73 B = np.flip(B, axis=2)
74 A = A.copy()
75 B = B.copy()
76

77 return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths':
B_path}

78

79 def __len__(self):
80 """Return the total number of images in the dataset.
81

82 As we have two datasets with potentially different number
of images,

83 we take a maximum of
84 """
85 return max(self.A_size, self.B_size)

C.4.3 Tuning

1 """General-purpose training script for image-to-image translation.
2

3 This script works for various models (with option '--model': e.g.,
pix2pix, cyclegan , colorization) and

4 different datasets (with option '--dataset_mode': e.g., aligned,
unaligned , single, colorization).

5 You need to specify the dataset ('--dataroot'), experiment name
('--name'), and model ('--model').

6

7 It first creates model, dataset, and visualizer given the option.
8 It then does standard network training. During the training , it

also visualize/save the images, print/save the loss plot, and
save models.

9 The script supports continue/resume training. Use '--
continue_train' to resume your previous training.

10

11 Example:
12 Train a CycleGAN model:
13 python train.py --dataroot ./datasets/maps --name

maps_cyclegan --model cycle_gan
14 Train a pix2pix model:
15 python train.py --dataroot ./datasets/facades --name

facades_pix2pix --model pix2pix --direction BtoA
16

17 See options/base_options.py and options/train_options.py for more
training options.

18 See training and test tips at: https://github.com/junyanz/pytorch-
CycleGAN -and-pix2pix/blob/master/docs/tips.md

19 See frequently asked questions at: https://github.com/junyanz/
pytorch-CycleGAN -and-pix2pix/blob/master/docs/qa.md

20 """
21 import time
22 from options.train_options import TrainOptions

130

23 from data import create_dataset
24 from models import create_model
25 from util.visualizer import Visualizer
26 import myutils
27

28 import optuna
29

30 def test(model, test_ds):
31 # test with eval mode. This only affects layers like batchnorm

and dropout.
32 model.eval()
33 #initialize metrics
34 losses, psnrs, ssims = myutils.init_meters('1*L1')
35 for i, data in enumerate(test_ds):
36 model.set_input(data) # unpack data from data loader
37 model.test() # run inference
38 visuals = model.get_current_visuals() # get image results
39 img_path = model.get_image_paths() # get image paths
40 myutils.eval_metrics(model.real_B, model.fake_B, psnrs,

ssims)
41 model.train()
42 return [val.avg for val in losses.values()][0], psnrs.avg,

ssims.avg
43

44 def objective(trial):
45 opt = TrainOptions().parse() # get training options
46

47 ### Define Optuna parameters
48 opt.n_layers_D = trial.suggest_int('n_layers_D', 3, 5)
49 opt.lr = trial.suggest_float('lr', 1e-6, 1e-3)
50 opt.gan_mode = trial.suggest_categorical('gan_mode', ['vanilla

', 'lsgan'])
51 opt.lr_policy = trial.suggest_categorical('lr_policy', ['

linear', 'step', 'cosine', 'plateau'])
52 opt.lr_decay_iters = trial.suggest_int('lr_decay_iters', 40,

70)
53 opt.beta1 = trial.suggest_float('beta1', 1-1e-3, 1-1e-5)
54 opt.batch_size = trial.suggest_categorical('batch_size', [1,

2, 4, 8])
55 print('trial paramaters: ', trial.params)
56

57 # create datasets
58 dataset = create_dataset(opt) # create a dataset given opt.

dataset_mode and other options
59 dataset_size = len(dataset) # get the number of images in

the dataset.
60 #print('The number of training images = %d' % dataset_size)
61

62 opt.isTraining = False
63 opt.num_threads = 0 # test code only supports num_threads =

0
64 opt.batch_size = 1 # test code only supports batch_size = 1
65 opt.serial_batches = True # disable data shuffling; comment

this line if results on randomly chosen images are needed.

131

66 opt.no_flip = True # no flip; comment this line if results
on flipped images are needed.

67 opt.display_id = -1 # no visdom display; the test code saves
the results to a HTML file.

68 opt.phase = 'val'
69 test_ds = create_dataset(opt) # create a dataset given opt.

dataset_mode and other options
70

71 model = create_model(opt) # create a model given opt.
model and other options

72 model.setup(opt) # regular setup: load and print
networks; create schedulers

73 total_iters = 0 # the total number of training
iterations

74

75 for epoch in range(opt.epoch_count , opt.n_epochs + opt.
n_epochs_decay + 1): # outer loop for different epochs; we
save the model by <epoch_count >, <epoch_count >+<
save_latest_freq >

76 epoch_start_time = time.time() # timer for entire epoch
77 iter_data_time = time.time() # timer for data loading

per iteration
78 epoch_iter = 0 # the number of training

iterations in current epoch, reset to 0 every epoch
79 model.update_learning_rate() # update learning rates in

the beginning of every epoch.
80 model.epoch_loss_G = 0
81 model.epoch_loss_D = 0
82 for i, data in enumerate(dataset): # inner loop within

one epoch
83

84 total_iters += opt.batch_size
85 epoch_iter += opt.batch_size
86 model.set_input(data) # unpack data from

dataset and apply preprocessing
87 model.optimize_parameters() # calculate loss

functions , get gradients , update network weights
88

89 l1, psnr, ssim = test(model, test_ds)
90 #print(f'l1: {l1}, psnr {psnr}, ssim {ssim}')
91

92 loss_G = model.epoch_loss_G/len(dataset)
93 loss_D = model.epoch_loss_D/len(dataset)
94 #print(f'Loss G: {loss_G}')
95 #print(f'Loss D: {loss_D}')
96 #print('End of epoch %d / %d \t Time Taken: %d sec' % (

epoch, opt.n_epochs + opt.n_epochs_decay , time.time() -
epoch_start_time))

97 return psnr, ssim
98

99 def main():
100 study = optuna.create_study(study_name='Pix2pixSecondary',

directions=['maximize', 'minimize'])
101 study.optimize(objective , n_trials=30)

132

102 print('Best Parameters: ', study.best_trial.value)
103

104 if __name__ == '__main__':
105 main()

C.5 HT Injection

C.5.1 injFLAVR

1 import math
2 import numpy as np
3 import importlib
4

5 import torch
6 import torch.nn as nn
7 import torch.nn.functional as F
8 from .resnet_3D import SEGating
9

10 channels = 3
11 def joinTensors(X1 , X2 , type="concat"):
12

13 if type == "concat":
14 return torch.cat([X1 , X2] , dim=1)
15 elif type == "add":
16 return X1 + X2
17 else:
18 return X1
19

20

21 class Conv_2d(nn.Module):
22

23 def __init__(self, in_ch, out_ch, kernel_size , stride=1,
padding=0, bias=False, batchnorm=False):

24

25 super().__init__()
26 self.conv = [nn.Conv2d(in_ch, out_ch, kernel_size=

kernel_size , stride=stride, padding=padding, bias=bias)]
27

28 if batchnorm:
29 self.conv += [nn.BatchNorm2d(out_ch)]
30

31 self.conv = nn.Sequential(*self.conv)
32

33 def forward(self, x):
34

35 return self.conv(x)
36

37 class upConv3D(nn.Module):
38

39 def __init__(self, in_ch, out_ch, kernel_size , stride, padding
, upmode="transpose" , batchnorm=False):

40

41 super().__init__()

133

42

43 self.upmode = upmode
44

45 if self.upmode=="transpose":
46 self.upconv = nn.ModuleList(
47 [nn.ConvTranspose3d(in_ch, out_ch, kernel_size=

kernel_size , stride=stride, padding=padding),
48 SEGating(out_ch)
49]
50)
51

52 else:
53 self.upconv = nn.ModuleList(
54 [nn.Upsample(mode='trilinear', scale_factor

=(1,2,2), align_corners=False),
55 nn.Conv3d(in_ch, out_ch , kernel_size=1 , stride

=1),
56 SEGating(out_ch)
57]
58)
59

60 if batchnorm:
61 self.upconv += [nn.BatchNorm3d(out_ch)]
62

63 self.upconv = nn.Sequential(*self.upconv)
64

65 def forward(self, x):
66

67 return self.upconv(x)
68

69 class Conv_3d(nn.Module):
70

71 def __init__(self, in_ch, out_ch, kernel_size , stride=1,
padding=0, bias=True, batchnorm=False):

72

73 super().__init__()
74 self.conv = [nn.Conv3d(in_ch, out_ch, kernel_size=

kernel_size , stride=stride, padding=padding, bias=bias),
75 SEGating(out_ch)
76]
77

78 if batchnorm:
79 self.conv += [nn.BatchNorm3d(out_ch)]
80

81 self.conv = nn.Sequential(*self.conv)
82

83 def forward(self, x):
84

85 return self.conv(x)
86

87 class upConv2D(nn.Module):
88

89 def __init__(self, in_ch, out_ch, kernel_size , stride, padding
, upmode="transpose" , batchnorm=False):

134

90

91 super().__init__()
92

93 self.upmode = upmode
94

95 if self.upmode=="transpose":
96 self.upconv = [nn.ConvTranspose2d(in_ch, out_ch,

kernel_size=kernel_size , stride=stride, padding=padding)]
97

98 else:
99 self.upconv = [

100 nn.Upsample(mode='bilinear', scale_factor=2,
align_corners=False),

101 nn.Conv2d(in_ch, out_ch , kernel_size=1 , stride
=1)

102]
103

104 if batchnorm:
105 self.upconv += [nn.BatchNorm2d(out_ch)]
106

107 self.upconv = nn.Sequential(*self.upconv)
108

109 def forward(self, x):
110

111 return self.upconv(x)
112

113

114 class UNet_3D_3D(nn.Module):
115 def __init__(self, block , n_inputs , n_outputs , batchnorm=

False , joinType="concat" , upmode="transpose", channels=3):
116 super().__init__()
117 nf = [512 , 256 , 128 , 64]
118 out_channels = channels*n_outputs
119 self.joinType = joinType
120 self.n_outputs = n_outputs
121 self.channels = channels
122

123 growth = 2 if joinType == "concat" else 1
124 self.lrelu = nn.LeakyReLU(0.2, True)
125

126 unet_3D = importlib.import_module(".resnet_3D_2" , "model"
)

127 unet_3D.channels = channels
128 if n_outputs > 1:
129 unet_3D.useBias = True
130 self.encoder = getattr(unet_3D , block)(pretrained=False ,

bn=batchnorm)
131

132 self.decoder = nn.Sequential(
133 Conv_3d(nf[0]+1, nf[1] , kernel_size=3, padding=1,

bias=True, batchnorm=batchnorm),
134 upConv3D(nf[1]*growth, nf[2], kernel_size=(3,4,4),

stride=(1,2,2), padding=(1,1,1) , upmode=upmode, batchnorm=
batchnorm),

135

135 upConv3D(nf[2]*growth, nf[3], kernel_size=(3,4,4),
stride=(1,2,2), padding=(1,1,1) , upmode=upmode, batchnorm=
batchnorm),

136 Conv_3d(nf[3]*growth, nf[3] , kernel_size=3, padding
=1, bias=True, batchnorm=batchnorm),

137 upConv3D(nf[3]*growth , nf[3], kernel_size=(3,4,4),
stride=(1,2,2), padding=(1,1,1) , upmode=upmode, batchnorm=
batchnorm)

138)
139

140 self.feature_fuse = Conv_2d(nf[3]*n_inputs , nf[3] ,
kernel_size=1 , stride=1, batchnorm=batchnorm)

141

142 self.outconv = nn.Sequential(
143 nn.ReflectionPad2d(3),
144 nn.Conv2d(nf[3], out_channels , kernel_size=7 , stride

=1, padding=0)
145)
146

147 self.lr_injection = nn.MaxPool2d((8, 8))
148

149 def forward(self, images, injection):
150

151 images = torch.stack(images , dim=2)
152 injection = torch.stack(injection)
153

154 ## Batch mean normalization works slightly better than
global mean normalization , thanks to https://github.com/
myungsub/CAIN

155 mean_ = images.mean(2, keepdim=True).mean(3, keepdim=True)
.mean(4,keepdim=True)

156 images = images-mean_
157

158 x_0 , x_1 , x_2 , x_3 , x_4 = self.encoder(images)
159

160 # downscale injection and append as channel to x_4 ->
lowest dim result of the encoder

161 inj = torch.unsqueeze(self.lr_injection(injection), dim=1)
162 x_4 = torch.cat((x_4, inj.repeat(1,1,2,1,1)), dim=1)
163

164 dx_3 = self.lrelu(self.decoder[0](x_4))
165 dx_3 = joinTensors(dx_3 , x_3 , type=self.joinType)
166

167 dx_2 = self.lrelu(self.decoder[1](dx_3))
168 dx_2 = joinTensors(dx_2 , x_2 , type=self.joinType)
169

170 dx_1 = self.lrelu(self.decoder[2](dx_2))
171 dx_1 = joinTensors(dx_1 , x_1 , type=self.joinType)
172

173 dx_0 = self.lrelu(self.decoder[3](dx_1))
174 dx_0 = joinTensors(dx_0 , x_0 , type=self.joinType)
175

176 dx_out = self.lrelu(self.decoder[4](dx_0))
177 dx_out = torch.cat(torch.unbind(dx_out , 2) , 1)

136

178

179 out = self.lrelu(self.feature_fuse(dx_out))
180 out = self.outconv(out)
181

182 out = torch.split(out, dim=1, split_size_or_sections=self.
channels)

183 mean_ = mean_.squeeze(2)
184 out = [o+mean_ for o in out]
185

186 return out

C.5.2 Tuning

1 import os
2 import sys
3 import time
4

5 import torch
6 import numpy as np
7 from tqdm import tqdm
8 from torch.utils.tensorboard import SummaryWriter
9 from torch.optim import Adam

10

11

12 import config
13 import myutils
14 from loss import Loss
15 from torch.utils.data import DataLoader
16

17 import optuna
18

19 from dataset.set_n import get_loader , get_train_test
20 from model.FLAVR_arch_2 import UNet_3D_3D
21

22

23 def load_checkpoint(args, model, optimizer , path):
24 print("loading checkpoint %s" % path)
25 checkpoint = torch.load(path)
26 args.start_epoch = checkpoint['epoch'] + 1
27 model.load_state_dict(checkpoint['state_dict'])
28 optimizer.load_state_dict(checkpoint['optimizer'])
29 lr = checkpoint.get("lr" , args.lr)
30 for param_group in optimizer.param_groups:
31 param_group['lr'] = lr
32

33

34 def train(args, epoch, model, criterion , optimizer , train_loader):
35 losses, psnrs, ssims = myutils.init_meters(args.loss)
36 model.train()
37 criterion.train()
38

39 t = time.time()
40 for i, (images, gt_image, inj) in enumerate(train_loader):
41

137

42 # Build input batch
43 inj = [inj_.cuda() for inj_ in inj]
44 images = [img_.cuda() for img_ in images]
45 gt = [gt_.cuda() for gt_ in gt_image]
46

47 # Forward
48 optimizer.zero_grad()
49 out = model(images, inj)
50

51 out = torch.cat(out)
52 gt = torch.cat(gt)
53

54 loss, loss_specific = criterion(out, gt)
55

56 # Save loss values
57 for k, v in losses.items():
58 if k != 'total':
59 v.update(loss_specific[k].item())
60 losses['total'].update(loss.item())
61

62 loss.backward()
63 optimizer.step()
64

65

66 def test(args, epoch, model, criterion , test_loader):
67 #print('Evaluating for epoch = %d' % epoch)
68 losses, psnrs, ssims = myutils.init_meters(args.loss)
69 model.eval()
70 criterion.eval()
71

72 t = time.time()
73 with torch.no_grad():
74 for i, (images, gt_image, inj) in enumerate(test_loader):
75

76 images = [img_.cuda() for img_ in images]
77 gt = [gt_.cuda() for gt_ in gt_image]
78 inj = [inj_.cuda() for inj_ in inj]
79

80 out = model(images, inj) ## images is a list of
neighboring frames

81 out = torch.cat(out)
82 gt = torch.cat(gt)
83

84 # Save loss values
85 loss, loss_specific = criterion(out, gt)
86 for k, v in losses.items():
87 if k != 'total':
88 v.update(loss_specific[k].item())
89 losses['total'].update(loss.item())
90

91 # Evaluate metrics
92 myutils.eval_metrics(out, gt, psnrs, ssims)
93

94 # Print progress

138

95 # print("Loss: %f, PSNR: %f, SSIM: %f\n" %
96 # (losses['total'].avg, psnrs.avg, ssims.avg))
97 return losses['total'].avg, psnrs.avg, ssims.avg
98

99

100 """ Entry Point """
101 def objective(trial):
102 ##### Parse CmdLine Arguments #####
103 args, unparsed = config.get_args()
104

105 # set optuna trials
106 args.lr = trial.suggest_float('lr', 1e-5, 1e-3, log=True)
107 args.upmode = trial.suggest_categorical('upmode', ['transpose'

, 'upsample'])
108 args.batch_size = trial.suggest_categorical('batch_size', [1,

2, 4, 8])
109

110 cwd = os.getcwd()
111 print(args)
112

113 ##### TensorBoard & Misc Setup #####
114 device = torch.device('cuda' if args.cuda else 'cpu')
115 torch.backends.cudnn.enabled = True
116 torch.backends.cudnn.benchmark = True
117

118 torch.manual_seed(args.random_seed)
119 if args.cuda:
120 torch.cuda.manual_seed(args.random_seed)
121

122 paths, tr_idx, test_idx = get_train_test(args.data_root ,
random_state=214, ic=args.ic)

123 train_loader = get_loader(paths, tr_idx, args.batch_size ,
shuffle=True, num_workers=args.num_workers , is_training=True,
inter_frames=args.n_outputs , n_inputs=args.nbr_frame , channels
=args.channels)

124 test_loader = get_loader(paths, test_idx, args.batch_size ,
shuffle=False, num_workers=args.num_workers , is_training=False
, inter_frames=args.n_outputs , n_inputs=args.nbr_frame ,
channels=args.channels)

125

126 print("Building model: %s"%args.model.lower())
127 model = UNet_3D_3D(args.model.lower() , n_inputs=args.

nbr_frame , n_outputs=args.n_outputs , joinType=args.joinType ,
upmode=args.upmode, channels=args.channels)

128 model = torch.nn.DataParallel(model).to(device)
129

130 ##### Define Loss & Optimizer #####
131 criterion = Loss(args)
132

133 ## ToDo: Different learning rate schemes for different
parameters

134 optimizer = Adam(model.parameters(), lr=args.lr, betas=(args.
beta1, args.beta2))

139

135 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer , mode='min', factor=0.5, patience=5, verbose=True)

136

137 print('Beginning to train:')
138

139 for epoch in range(args.start_epoch , args.max_epoch):
140 train(args, epoch, model, criterion , optimizer ,

train_loader)
141

142 test_loss , psnr, ssim = test(args, epoch, model, criterion
, test_loader)

143 #print(f'Test loss: {test_loss} PSNR: {psnr}, SSIM {ssim
}')

144

145 # update optimizer policy
146 scheduler.step(test_loss)
147

148 return psnr, ssim
149

150 def main():
151 study = optuna.create_study(study_name='injFLAVRTune',

directions=['maximize', 'minimize'])
152 study.optimize(objective , n_trials=30)
153 print(study.best_trial.value)
154

155 if __name__ == "__main__":
156 main()

C.6 Overall Testing

The following was used as a jupyter notebook and converted to a .py file for

formatting purposes.
1 # -*- coding: utf-8 -*-
2 """testing.ipynb
3

4 Automatically generated by Colaboratory.
5

6 Original file is located at
7 https://colab.research.google.com/drive/1mnwx5jEHfbPZgf9 -

LLzdS7trKsT61Pxc
8 """
9

10 #!pip install rasterio
11 #!pip install sewar
12 #!pip install scikit-image
13

14 import rasterio
15 import matplotlib.pyplot as plt
16 import numpy as np
17 import zipfile
18 import os

140

19 import sewar
20

21 def show_imgs(dir, name):
22 for image in sorted(os.listdir(dir)):
23 if name in image:
24 path = os.path.join(dir, image)
25 if '.ipynb' in path:
26 continue
27 with rasterio.open(path, 'r') as src:
28 img = src.read()
29

30

31

32 print(path)
33 print(f'Number of bands: {img.shape[0]}')
34 fig, ax = plt.subplots(1, img.shape[0], figsize= (5, 5))
35 img = img/img.max()
36 for i, band in enumerate(img):
37 if img.shape[0] == 1:
38 ax.imshow(band, cmap='gray')
39 ax.set_xticks([])
40 ax.set_yticks([])
41 else:
42 ax[i].imshow(band, cmap='gray')
43 ax[i].set_xticks([])
44 ax[i].set_yticks([])
45 im = image.split('.')[0]
46 plt.savefig(f'/content/{im}.png')
47

48 #plt.show()
49

50 ZIP_PATH = '/content/predictions.zip'
51 with zipfile.ZipFile(ZIP_PATH, 'r') as zip_ref:
52 zip_ref.extractall()
53 print('Zip extracted')
54

55 show_imgs('/content/predictions/2nd_fusion_pred', '')
56

57 # clean all of the images
58 dir = '/content/'
59 for img in os.listdir(dir):
60 if '0' in img:
61 try:
62 os.remove(os.path.join(dir, img))
63 except:
64 None
65

66 """Evaluating metrics"""
67

68 from sewar import mse, rmse, psnr, uqi, ergas, scc, rase, sam,
vifp, psnrb

69 from skimage.metrics import structural_similarity as ssim
70

71 import os

141

72 import rasterio
73 import argparse
74 from collections import defaultdict
75 import concurrent.futures as cp
76 import numpy as np
77

78

79

80 # max obtained from google earth engine
81 def psnr_(x,y):
82 return 10*np.log10(1/np.mean((x-y)**2))
83

84 def ssim_(x,y):
85 return ssim(x[0],y[0],data_range=1)
86

87

88 tests= [mse, rmse, psnr_, uqi, ssim_, ergas, scc, rase, sam, vifp,
psnrb]

89 def evaluate(test_dir, verbose=False):
90 global tests
91

92 # get image paths
93 pred_pths = [os.path.join(test_dir ,im) for im in sorted(os.

listdir(test_dir)) if 'pred' in im]
94 true_pths = [os.path.join(test_dir ,im) for im in sorted(os.

listdir(test_dir)) if 'true' in im]
95 assert len(pred_pths) == len(true_pths)
96

97 # run through the images in pairs
98 results= defaultdict(lambda: 0)
99 for i, (pred, true) in enumerate(zip(pred_pths , true_pths)):

100 # read in the images
101 with rasterio.open(pred, 'r') as src:
102 pred_im = src.read()
103 with rasterio.open(true, 'r') as src:
104 true_im = src.read()
105

106 # for test the images using each of the tests
107 for test in tests:
108 try:
109 result = test(true_im, pred_im)
110 if verbose:
111 print(f'Iteration {i} - test: {test.__name__} = {result}

')
112 if not np.isnan(result):
113 results[test.__name__] += result
114 except:
115 if verbose:
116 print(f'Iteration {i} - test: {test.__name__} Failed')
117

118 # average results across all images
119 results = {key: val/len(true_pths) for key, val in results.items

()}
120 return results

142

121

122 test_dirs = ['p2p_pred', 'flavr_pred', 'naive_pred', '2
nd_fusion_pred', 'hr_pred', 'injflavr_pred', '
injflavr_e2e_pred']

123

124 #for dir in test_dirs:
125 #path = os.path.join('/content/predictions', dir)
126 path = '/content/o10'
127 print(dir, evaluate(path))

143

	Introduction
	Background
	Remote Sensing
	A Brief History
	Electromagnetic Waves
	Electromagnetic Spectrum

	Image Acquisition
	Recording Surface
	Lens

	Satellites
	Landsat 8
	MODIS
	Comparison

	Digital Video Processing
	Terminology
	Geometric Image Formation
	Perspective Projection
	Orthographic Projection

	Photometric Image Formation
	Lambertian Reflectance Model

	Spatio-Temporal Sampling
	Lattices
	Sampling on 3-D Structures

	Optical Flow

	Machine learning
	Supervised Learning

	Deep Learning
	Neural networks operations
	Fully connected neural networks
	Convolutional neural networks

	Layer operations
	Max-Pooling
	Batch normalization
	Transposed Convolution

	Activation functions
	Sigmoid
	Rectified linear units
	Leaky rectified linear units

	Higher level architectures
	Residual networks
	Encoder-Decoder Architectures
	U-Net
	Generative Adversarial Networks
	Conditional Generative Adversarial Nets

	Digital Multi-Sensor Temporal-Based Image Synthesis
	Deep Video Interpolation
	Continuous Output
	Discrete Output
	N-Image Interpolation
	Single Image Interpolation

	Image Sensor Fusion
	Multi-input image translation
	Single-input image translation

	Related Works
	Deep Video Interpolation
	Phase-based
	Optical flow-based
	Other

	Imagery Sensor Fusion
	External
	Remote sensing-based

	Hybrid Video Frame Interpolation - Sensor Fusion Networks
	Architectures
	Naive
	Secondary Fusion
	High Spatial Resolution Information Boosting
	High Temporal Resolution Information Injection
	Comparisons

	Experiments
	Custom Dataset
	Bench-marking
	Hybrid Models

	Results and Discussion
	Test Set Evaluation
	Predicted Imagery Samples
	Pix2pix
	FLAVR
	Naive
	Secondary Fusion
	HR-Boosting
	HT-Injection (with pix2pix)
	End-to-End HR-Injection

	Conclusion
	Future Work
	Electromagnetic Wave Equation
	Satellite Band Specifications
	Code Sample
	Pix2pix Modifications
	Dataset Loader
	Evaluation

	FLAVR Modifications
	Dataset Loader
	Architecture
	FLAVR
	Resnet

	Training
	Testing
	Evaluation

	Naive
	HR Boosting and Secondary Fusion
	Pairing Images
	Dataset Loader
	Tuning

	HT Injection
	injFLAVR
	Tuning

	Overall Testing

