
Core Java™ Volume II–Advanced Features, Eighth Edition
by Cay S. Horstmann; Gary Cornell

Publisher: Prentice Hall
Pub Date: April 08, 2008
Print ISBN-10: 0-13-235479-9
Print ISBN-13: 978-0-13-235479-0
eText ISBN-10: 0-13-714448-2
eText ISBN-13: 978-0-13-714448-8
Pages: 1056

Table of Contents
| Index

Overview

The revised edition of the classic Core Java™, Volume II—Advanced Features, covers advanced user-
interface programming and the enterprise features of the Java SE 6 platform. Like Volume I (which covers the
core language and library features), this volume has been updated for Java SE 6 and new coverage is
highlighted throughout. All sample programs have been carefully crafted to illustrate the latest programming
techniques, displaying best-practices solutions to the types of real-world problems professional developers
encounter.

Volume II includes new sections on the StAX API, JDBC 4, compiler API, scripting framework, splash screen and
tray APIs, and many other Java SE 6 enhancements. In this book, the authors focus on the more advanced
features of the Java language, including complete coverage of

Streams and Files

Networking

Database programming

XML

JNDI and LDAP

Internationalization

Advanced GUI components

Java 2D and advanced AWT

JavaBeans

Security

Core Java™ Volume II–Advanced Features, Eighth Edition
by Cay S. Horstmann; Gary Cornell

Publisher: Prentice Hall
Pub Date: April 08, 2008
Print ISBN-10: 0-13-235479-9
Print ISBN-13: 978-0-13-235479-0
eText ISBN-10: 0-13-714448-2
eText ISBN-13: 978-0-13-714448-8
Pages: 1056

Table of Contents
| Index

Overview

The revised edition of the classic Core Java™, Volume II—Advanced Features, covers advanced user-
interface programming and the enterprise features of the Java SE 6 platform. Like Volume I (which covers the
core language and library features), this volume has been updated for Java SE 6 and new coverage is
highlighted throughout. All sample programs have been carefully crafted to illustrate the latest programming
techniques, displaying best-practices solutions to the types of real-world problems professional developers
encounter.

Volume II includes new sections on the StAX API, JDBC 4, compiler API, scripting framework, splash screen and
tray APIs, and many other Java SE 6 enhancements. In this book, the authors focus on the more advanced
features of the Java language, including complete coverage of

Streams and Files

Networking

Database programming

XML

JNDI and LDAP

Internationalization

Advanced GUI components

Java 2D and advanced AWT

JavaBeans

Security

RMI and Web services

Collections

Annotations

Native methods

For thorough coverage of Java fundamentals—including interfaces and inner classes, GUI programming with
Swing, exception handling, generics, collections, and concurrency—look for the eighth edition of Core Java™,
Volume I—Fundamentals (ISBN: 978-0-13-235476-9).

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Core Java™ Volume II–Advanced Features, Eighth Edition
by Cay S. Horstmann; Gary Cornell

Publisher: Prentice Hall
Pub Date: April 08, 2008
Print ISBN-10: 0-13-235479-9
Print ISBN-13: 978-0-13-235479-0
eText ISBN-10: 0-13-714448-2
eText ISBN-13: 978-0-13-714448-8
Pages: 1056

Table of Contents
| Index

Copyright
Preface
Acknowledgments
Chapter 1. Streams and Files

Streams
Text Input and Output
Reading and Writing Binary Data
ZIP Archives
Object Streams and Serialization
File Management
New I/O
Regular Expressions

Chapter 2. XML
Introducing XML
Parsing an XML Document
Validating XML Documents
Locating Information with XPath
Using Namespaces
Streaming Parsers
Generating XML Documents
XSL Transformations

Chapter 3. Networking
Connecting to a Server
Implementing Servers
Interruptible Sockets
Sending E-Mail
Making URL Connections

Chapter 4. Database Programming
The Design of JDBC
The Structured Query Language
JDBC Configuration
Executing SQL Statements
Query Execution
Scrollable and Updatable Result Sets
Row Sets
Metadata
Transactions
Connection Management in Web and Enterprise Applications
Introduction to LDAP

Chapter 5. Internationalization
Locales
Number Formats
Date and Time
Collation
Message Formatting
Text Files and Character Sets
Resource Bundles
A Complete Example

Chapter 6. Advanced Swing

Lists
Tables
Trees
Text Components
Progress Indicators
Component Organizers

Chapter 7. Advanced AWT
The Rendering Pipeline
Shapes
Areas
Strokes
Paint
Coordinate Transformations
Clipping
Transparency and Composition
Rendering Hints
Readers and Writers for Images
Image Manipulation
Printing
The Clipboard
Drag and Drop
Platform Integration

Chapter 8. JavaBeans Components
Why Beans?
The Bean-Writing Process
Using Beans to Build an Application
Naming Patterns for Bean Properties and Events
Bean Property Types
BeanInfo Classes
Property Editors
Customizers
JavaBeans Persistence

Chapter 9. Security
Class Loaders
Bytecode Verification
Security Managers and Permissions
User Authentication
Digital Signatures
Code Signing
Encryption

Chapter 10. Distributed Objects
The Roles of Client and Server
Remote Method Calls
The RMI Programming Model
Parameters and Return Values in Remote Methods
Remote Object Activation
Web Services and JAX-WS

Chapter 11. Scripting, Compiling, and Annotation Processing
Scripting for the Java Platform
The Compiler API
Using Annotations
Annotation Syntax
Standard Annotations
Source-Level Annotation Processing
Bytecode Engineering

Chapter 12. Native Methods
Calling a C Function from a Java Program
Numeric Parameters and Return Values
String Parameters
Accessing Fields
Encoding Signatures
Calling Java Methods
Accessing Array Elements
Handling Errors

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Using the Invocation API
A Complete Example: Accessing the Windows Registry

Index

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

Sun Microsystems, Inc., has intellectual property rights relating to implementations of the technology described
in this publication. In particular, and without limitation, these intellectual property rights may include one or
more U.S. patents, foreign patents, or pending applications. Sun, Sun Microsystems, the Sun logo, J2ME,
Solaris, Java, Javadoc, NetBeans, and all Sun and Java based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL
INACCURACIES OR TYPO-GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION
HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC., MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact: U.S. Corporate
and Government Sales, (800) 382-3419, corpsales@pearsontechgroup.com. For sales outside the United States
please contact: International Sales, international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Horstmann, Cay S., 1959-
 Core Java. Volume 1, Fundamentals / Cay S. Horstmann, Gary Cornell. —
8th ed.
 p. cm.
 Includes index.
 ISBN 978-0-13-235476-9 (pbk. : alk. paper) 1. Java (Computer program
language) I. Cornell, Gary. II. Title. III. Title: Fundamentals. IV.
Title: Core Java fundamentals.

QA76.73.J38H6753 2008
005.13'3—dc22
 2007028843

Copyright © 2008 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054 U.S.A.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

likewise. For information regarding permissions, write to: Pearson Education, Inc., Rights and Contracts
Department, 501 Boylston Street, Suite 900, Boston, MA 02116, Fax: 617-671-3447.

ISBN-13: 978-0-13-235479-0

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, April 2008

Preface

To the Reader

The book you have in your hands is the second volume of the eighth edition of Core Java™, fully updated for
Java SE 6. The first volume covers the essential features of the language; this volume covers the advanced
topics that a programmer will need to know for professional software development. Thus, as with the first
volume and the previous editions of this book, we are still targeting programmers who want to put Java
technology to work on real projects.

Please note: If you are an experienced developer who is comfortable with advanced language features such as
inner classes and generics, you need not have read the first volume in order to benefit from this volume. While
we do refer to sections of the previous volume when appropriate (and, of course, hope you will buy or have
bought Volume I), you can find the needed background material in any comprehensive introductory book about
the Java platform.

Finally, when any book is being written, errors and inaccuracies are inevitable. We would very much like to hear
about them should you find any in this book. Of course, we would prefer to hear about them only once. For this
reason, we have put up a web site at http://horstmann.com/corejava with an FAQ, bug fixes, and workarounds.
Strategically placed at the end of the bug report web page (to encourage you to read the previous reports) is a
form that you can use to report bugs or problems and to send suggestions for improvements to future editions.

About This Book

The chapters in this book are, for the most part, independent of each other. You should be able to delve into
whatever topic interests you the most and read the chapters in any order.

The topic of Chapter 1 is input and output handling. In Java, all I/O is handled through so-called streams.
Streams let you deal, in a uniform manner, with communications among various sources of data, such as files,
network connections, or memory blocks. We include detailed coverage of the reader and writer classes, which
make it easy to deal with Unicode. We show you what goes on under the hood when you use the object
serialization mechanism, which makes saving and loading objects easy and convenient. Finally, we cover the
"new I/O" classes (which were new when they were added to Java SE 1.4) that support efficient file operations,
and the regular expression library.

Chapter 2 covers XML. We show you how to parse XML files, how to generate XML, and how to use XSL
transformations. As a useful example, we show you how to specify the layout of a Swing form in XML. This
chapter has been updated to include the XPath API, which makes "finding needles in XML haystacks" much
easier.

Chapter 3 covers the networking API. Java makes it phenomenally easy to do complex network programming.
We show you how to make network connections to servers, how to implement your own servers, and how to
make HTTP connections.

Chapter 4 covers database programming. The main focus is on JDBC, the Java database connectivity API that
lets Java programs connect to relational databases. We show you how to write useful programs to handle
realistic database chores, using a core subset of the JDBC API. (A complete treatment of the JDBC API would
require a book almost as long as this one.) We finish the chapter with a brief introduction into hierarchical
databases and discuss JNDI (the Java Naming and Directory Interface) and LDAP (the Lightweight Directory
Access Protocol).

Chapter 5 discusses a feature that we believe can only grow in importance—internationalization. The Java
programming language is one of the few languages designed from the start to handle Unicode, but the
internationalization support in the Java platform goes much further. As a result, you can internationalize Java
applications so that they not only cross platforms but cross country boundaries as well. For example, we show

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://horstmann.com/corejava

you how to write a retirement calculator applet that uses either English, German, or Chinese
languages—depending on the locale of the browser.

Chapter 6 contains all the Swing material that didn't make it into Volume I, especially the important but
complex tree and table components. We show the basic uses of editor panes, the Java implementation of a
"multiple document" interface, progress indicators that you use in multithreaded programs, and "desktop
integration features" such as splash screens and support for the system tray. Again, we focus on the most
useful constructs that you are likely to encounter in practical programming because an encyclopedic coverage of
the entire Swing library would fill several volumes and would only be of interest to dedicated taxonomists.

Chapter 7 covers the Java 2D API, which you can use to create realistic drawings and special effects. The
chapter also covers some advanced features of the AWT (Abstract Windowing Toolkit) that seemed too
specialized for coverage in Volume I but are, nonetheless, techniques that should be part of every programmer's
toolkit. These features include printing and the APIs for cut-and-paste and drag-and-drop.

Chapter 8 shows you what you need to know about the component API for the Java platform—JavaBeans. We
show you how to write your own beans that other programmers can manipulate in integrated builder
environments. We conclude this chapter by showing you how you can use JavaBeans persistence to store your
own data in a format that—unlike object serialization—is suitable for long-term storage.

Chapter 9 takes up the Java security model. The Java platform was designed from the ground up to be secure,
and this chapter takes you under the hood to see how this design is implemented. We show you how to write
your own class loaders and security managers for special-purpose applications. Then, we take up the security
API that allows for such important features as message and code signing, authorization and authentication, and
encryption. We conclude with examples that use the AES and RSA encryption algorithms.

Chapter 10 covers distributed objects. We cover RMI (Remote Method Invocation) in detail. This API lets you
work with Java objects that are distributed over multiple machines. We then briefly discuss web services and
show you an example in which a Java program communicates with the Amazon Web Service.

Chapter 11 discusses three techniques for processing code. The scripting and compiler APIs, introduced in Java
SE 6, allow your program to call code in scripting languages such as JavaScript or Groovy, and to compile Java
code. Annotations allow you to add arbitrary information (sometimes called metadata) to a Java program. We
show you how annotation processors can harvest these annotations at the source or class file level, and how
annotations can be used to influence the behavior of classes at runtime. Annotations are only useful with tools,
and we hope that our discussion will help you select useful annotation processing tools for your needs.

Chapter 12 takes up native methods, which let you call methods written for a specific machine such as the
Microsoft Windows API. Obviously, this feature is controversial: Use native methods, and the cross-platform
nature of the Java platform vanishes. Nonetheless, every serious programmer writing Java applications for
specific platforms needs to know these techniques. At times, you need to turn to the operating system's API for
your target platform when you interact with a device or service that is not supported by the Java platform. We
illustrate this by showing you how to access the registry API in Windows from a Java program.

As always, all chapters have been completely revised for the latest version of Java. Outdated material has been
removed, and the new APIs of Java SE 6 are covered in detail.

Conventions

As is common in many computer books, we use monospace type to represent computer code.

Note

Notes are tagged with a checkmark button that looks like this.

Tip

Helpful tips are tagged with this exclamation point button.

Caution

Notes that warn of pitfalls or dangerous situations are tagged with an x button.

C++ Note

There are a number of C++ notes that explain the difference between the Java
programming language and C++. You can skip them if you aren't interested in C++.

Application Programming Interface

The Java platform comes with a large programming library or Application
Programming Interface (API). When using an API call for the first time, we add
a short summary description, tagged with an API icon. These descriptions are
a bit more informal but occasionally a little more informative than those in the
official on-line API documentation.

Programs whose source code is included in the companion code for this book
are listed as examples; for instance,

Listing 11.1. ScriptTest.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You can download the companion code from http://horstmann.com/corejava.

http://horstmann.com/corejava

Acknowledgments

Writing a book is always a monumental effort, and rewriting doesn't seem to be much easier, especially with
such a rapid rate of change in Java technology. Making a book a reality takes many dedicated people, and it is
my great pleasure to acknowledge the contributions of the entire Core Java team.

A large number of individuals at Prentice Hall and Sun Microsystems Press provided valuable assistance, but
they managed to stay behind the scenes. I'd like them all to know how much I appreciate their efforts. As
always, my warm thanks go to my editor, Greg Doench of Prentice Hall, for steering the book through the
writing and production process, and for allowing me to be blissfully unaware of the existence of all those folks
behind the scenes. I am grateful to Vanessa Moore for the excellent production support. My thanks also to my
coauthor of earlier editions, Gary Cornell, who has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors and made lots of thoughtful
suggestions for improvement. I am particularly grateful to the excellent reviewing team that went over the
manuscript with an amazing eye for detail and saved me from many more embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Contributing Editor, C/C++ Users Journal), Lance
Anderson (Sun Microsystems), Alec Beaton (PointBase, Inc.), Cliff Berg (iSavvix Corporation), Joshua Bloch (Sun
Microsystems), David Brown, Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution), Dr.
Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), Robert Evans (Senior Staff, The Johns
Hopkins University Applied Physics Lab), David Geary (Sabreware), Brian Goetz (Principal Consultant, Quiotix
Corp.), Angela Gordon (Sun Microsystems), Dan Gordon (Sun Microsystems), Rob Gordon, John Gray
(University of Hartford), Cameron Gregory (olabs.com), Marty Hall (The Johns Hopkins University Applied
Physics Lab), Vincent Hardy (Sun Microsystems), Dan Harkey (San Jose State University), William Higgins
(IBM), Vladimir Ivanovic (PointBase), Jerry Jackson (ChannelPoint Software), Tim Kimmet (Preview Systems),
Chris Laffra, Charlie Lai (Sun Microsystems), Angelika Langer, Doug Langston, Hang Lau (McGill University),
Mark Lawrence, Doug Lea (SUNY Oswego), Gregory Longshore, Bob Lynch (Lynch Associates), Philip Milne
(consultant), Mark Morrissey (The Oregon Graduate Institute), Mahesh Neelakanta (Florida Atlantic University),
Hao Pham, Paul Philion, Blake Ragsdell, Ylber Ramadani (Ryerson University), Stuart Reges (University of
Arizona), Rich Rosen (Interactive Data Corporation), Peter Sanders (ESSI University, Nice, France), Dr. Paul
Sanghera (San Jose State University and Brooks College), Paul Sevinc (Teamup AG), Devang Shah (Sun
Microsystems), Richard Slywczak (NASA/Glenn Research Center), Bradley A. Smith, Steven Stelting (Sun
Microsystems), Christopher Taylor, Luke Taylor (Valtech), George Thiruvathukal, Kim Topley (author of Core
JFC), Janet Traub, Paul Tyma (consultant), Peter van der Linden (Sun Microsystems), and Burt Walsh.

Cay Horstmann
San Francisco, 2008

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 1. Streams and Files

STREAMS

TEXT INPUT AND OUTPUT

READING AND WRITING BINARY DATA

ZIP ARCHIVES

OBJECT STREAMS AND SERIALIZATION

FILE MANAGEMENT

NEW I/O

REGULAR EXPRESSIONS

In this chapter, we cover the Java application programming interfaces (APIs) for input and output. You will learn
how to access files and directories and how to read and write data in binary and text format. This chapter also
shows you the object serialization mechanism that lets you store objects as easily as you can store text or
numeric data. Next, we turn to several improvements that were made in the "new I/O" package java.nio,

introduced in Java SE 1.4. We finish the chapter with a discussion of regular expressions, even though they are
not actually related to streams and files. We couldn't find a better place to handle that topic, and apparently
neither could the Java team—the regular expression API specification was attached to the specification request
for the "new I/O" features of Java SE 1.4.

Streams

In the Java API, an object from which we can read a sequence of bytes is called an input stream. An object to
which we can write a sequence of bytes is called an output stream. These sources and destinations of byte
sequences can be—and often are—files, but they can also be network connections and even blocks of memory.
The abstract classes InputStream and OutputStream form the basis for a hierarchy of input/output (I/O)

classes.

Because byte-oriented streams are inconvenient for processing information stored in Unicode (recall that

Unicode uses multiple bytes per character), there is a separate hierarchy of classes for processing Unicode
characters that inherit from the abstract Reader and Writer classes. These classes have read and write

operations that are based on two-byte Unicode code units rather than on single-byte characters.

Reading and Writing Bytes

The InputStream class has an abstract method:

abstract int read()

This method reads one byte and returns the byte that was read, or -1 if it encounters the end of the input
source. The designer of a concrete input stream class overrides this method to provide useful functionality. For
example, in the FileInputStream class, this method reads one byte from a file. System.in is a predefined

object of a subclass of InputStream that allows you to read information from the keyboard.

The InputStream class also has nonabstract methods to read an array of bytes or to skip a number of bytes.

These methods call the abstract read method, so subclasses need to override only one method.

Similarly, the OutputStream class defines the abstract method

abstract void write(int b)

which writes one byte to an output location.

Both the read and write methods block until the bytes are actually read or written. This means that if the

stream cannot immediately be accessed (usually because of a busy network connection), the current thread
blocks. This gives other threads the chance to do useful work while the method is waiting for the stream to
again become available.

The available method lets you check the number of bytes that are currently available for reading. This means

a fragment like the following is unlikely to block:

int bytesAvailable = in.available();

if (bytesAvailable > 0)

{

 byte[] data = new byte[bytesAvailable];
 in.read(data);

}

When you have finished reading or writing to a stream, close it by calling the close method. This call frees up

operating system resources that are in limited supply. If an application opens too many streams without closing
them, system resources can become depleted. Closing an output stream also flushes the buffer used for the
output stream: any characters that were temporarily placed in a buffer so that they could be delivered as a
larger packet are sent off. In particular, if you do not close a file, the last packet of bytes might never be
delivered. You can also manually flush the output with the flush method.

Even if a stream class provides concrete methods to work with the raw read and write functions, application

programmers rarely use them. The data that you are interested in probably contain numbers, strings, and
objects, not raw bytes.

Java gives you many stream classes derived from the basic InputStream and OutputStream classes that let you

work with data in the forms that you usually use rather than at the byte level.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.io.InputStream 1.0

abstract int read()

reads a byte of data and returns the byte read. The read method returns a -1 at the end of

the stream.

int read(byte[] b)

reads into an array of bytes and returns the actual number of bytes read, or -1 at the end of
the stream. The read method reads at most b.length bytes.

int read(byte[] b, int off, int len)

reads into an array of bytes. The read method returns the actual number of bytes read, or -1

at the end of the stream.

Parameters: b The array into which the data is read

 off The offset into b where the first bytes should be placed

 len The maximum number of bytes to read

long skip(long n)

skips n bytes in the input stream. Returns the actual number of bytes skipped (which may be

less than n if the end of the stream was encountered).

int available()

returns the number of bytes available without blocking. (Recall that blocking means that the
current thread loses its turn.)

void close()

closes the input stream.

void mark(int readlimit)

puts a marker at the current position in the input stream. (Not all streams support this
feature.) If more than readlimit bytes have been read from the input stream, then the

stream is allowed to forget the marker.

void reset()

returns to the last marker. Subsequent calls to read reread the bytes. If there is no current

marker, then the stream is not reset.

boolean markSupported()

returns true if the stream supports marking.

java.io.OutputStream 1.0

abstract void write(int n)

writes a byte of data.

void write(byte[] b)

void write(byte[] b, int off, int len)

writes all bytes or a range of bytes in the array b.

Parameters: b The array from which to write the data

 off The offset into b to the first byte that will be written

 len The number of bytes to write

void close()

flushes and closes the output stream.

void flush()

flushes the output stream; that is, sends any buffered data to its destination.

The Complete Stream Zoo

Unlike C, which gets by just fine with a single type FILE*, Java has a whole zoo of more than 60 (!) different

stream types (see Figures 1-1 and 1-2).

Figure 1-1. Input and output stream hierarchy

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Figure 1-2. Reader and writer hierarchy

[View full size image]

Let us divide the animals in the stream class zoo by how they are used. There are separate hierarchies for
classes that process bytes and characters. As you saw, the InputStream and OutputStream classes let you read

and write individual bytes and arrays of bytes. These classes form the basis of the hiearchy shown in Figure 1-1.
To read and write strings and numbers, you need more capable subclasses. For example, DataInputStream and

DataOutputStream let you read and write all the primitive Java types in binary format. Finally, there are

streams that do useful stuff; for example, the ZipInputStream and ZipOutputStream that let you read and

write files in the familiar ZIP compression format.

For Unicode text, on the other hand, you use subclasses of the abstract classes Reader and Writer (see Figure

1-2). The basic methods of the Reader and Writer classes are similar to the ones for InputStream and
OutputStream.

abstract int read()

abstract void write(int c)

The read method returns either a Unicode code unit (as an integer between 0 and 65535) or -1 when you have

reached the end of the file. The write method is called with a Unicode code unit. (See Volume I, Chapter 3 for a

discussion of Unicode code units.)

Java SE 5.0 introduced four additional interfaces: Closeable, Flushable, Readable, and Appendable (see

Figure 1-3). The first two interfaces are very simple, with methods

void close() throws IOException

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

and

void flush()

respectively. The classes InputStream, OutputStream, Reader, and Writer all implement the Closeable

interface. OutputStream and Writer implement the Flushable interface.

Figure 1-3. The Closeable, Flushable, Readable, and Appendable interfaces

[View full size image]

The Readable interface has a single method

int read(CharBuffer cb)

The CharBuffer class has methods for sequential and random read/write access. It represents an in-memory
buffer or a memory-mapped file. (See "The Buffer Data Structure" on page 72 for details.)

The Appendable interface has two methods for appending single characters and character sequences:

Appendable append(char c)
Appendable append(CharSequence s)

The CharSequence interface describes basic properties of a sequence of char values. It is implemented by

String, CharBuffer, StringBuilder, and StringBuffer.

Of the stream zoo classes, only Writer implements Appendable.

java.io.Closeable 5.0

void close()

closes this Closeable. This method may throw an IOException.

java.io.Flushable 5.0

void flush()

flushes this Flushable.

java.lang.Readable 5.0

int read(CharBuffer cb)

attempts to read as many char values into cb as it can hold. Returns the

number of values read, or -1 if no further values are available from this
Readable.

java.lang.Appendable 5.0

Appendable append(char c)

Appendable append(CharSequence cs)

appends the given code unit, or all code units in the given sequence, to
this Appendable; returns this.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.lang.CharSequence 1.4

char charAt(int index)

returns the code unit at the given index.

int length()

returns the number of code units in this sequence.

CharSequence subSequence(int startIndex, int endIndex)

returns a CharSequence consisting of the code units stored at index

startIndex to endIndex - 1.

String toString()

returns a string consisting of the code units of this sequence.

Combining Stream Filters

FileInputStream and FileOutputStream give you input and output streams attached to a disk file. You give

the file name or full path name of the file in the constructor. For example,

FileInputStream fin = new FileInputStream("employee.dat");

looks in the user directory for a file named "employee.dat".

Tip

Because all the classes in java.io interpret relative path names as starting with the

user's working directory, you may want to know this directory. You can get at this
information by a call to System.getProperty("user.dir").

Like the abstract InputStream and OutputStream classes, these classes support only reading and writing on the

byte level. That is, we can only read bytes and byte arrays from the object fin.

byte b = (byte) fin.read();

As you will see in the next section, if we just had a DataInputStream, then we could read numeric types:

DataInputStream din = . . .;

double s = din.readDouble();

But just as the FileInputStream has no methods to read numeric types, the DataInputStream has no method

to get data from a file.

Java uses a clever mechanism to separate two kinds of responsibilities. Some streams (such as the
FileInputStream and the input stream returned by the openStream method of the URL class) can retrieve

bytes from files and other more exotic locations. Other streams (such as the DataInputStream and the

PrintWriter) can assemble bytes into more useful data types. The Java programmer has to combine the two.

For example, to be able to read numbers from a file, first create a FileInputStream and then pass it to the

constructor of a DataInputStream.

FileInputStream fin = new FileInputStream("employee.dat");

DataInputStream din = new DataInputStream(fin);

double s = din.readDouble();

If you look at Figure 1-1 again, you can see the classes FilterInputStream and FilterOutputStream. The

subclasses of these files are used to add capabilities to raw byte streams.

You can add multiple capabilities by nesting the filters. For example, by default, streams are not buffered. That
is, every call to read asks the operating system to dole out yet another byte. It is more efficient to request

blocks of data instead and put them in a buffer. If you want buffering and the data input methods for a file, you
need to use the following rather monstrous sequence of constructors:

DataInputStream din = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat")));

Notice that we put the DataInputStream last in the chain of constructors because we want to use the
DataInputStream methods, and we want them to use the buffered read method.

Sometimes you'll need to keep track of the intermediate streams when chaining them together. For example,
when reading input, you often need to peek at the next byte to see if it is the value that you expect. Java
provides the PushbackInputStream for this purpose.

PushbackInputStream pbin = new PushbackInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat")));

Now you can speculatively read the next byte

int b = pbin.read();

and throw it back if it isn't what you wanted.

if (b != '<') pbin.unread(b);

But reading and unreading are the only methods that apply to the pushback input stream. If you want to look
ahead and also read numbers, then you need both a pushback input stream and a data input stream reference.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

DataInputStream din = new DataInputStream(

 pbin = new PushbackInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat"))));

Of course, in the stream libraries of other programming languages, niceties such as buffering and lookahead are
automatically taken care of, so it is a bit of a hassle in Java that one has to resort to combining stream filters in
these cases. But the ability to mix and match filter classes to construct truly useful sequences of streams does
give you an immense amount of flexibility. For example, you can read numbers from a compressed ZIP file by
using the following sequence of streams (see Figure 1-4):

Code View:
ZipInputStream zin = new ZipInputStream(new FileInputStream("employee.zip"));

DataInputStream din = new DataInputStream(zin);

Figure 1-4. A sequence of filtered streams

[View full size image]

(See "ZIP Archives" on page 32 for more on Java's ability to handle ZIP files.)

java.io.FileInputStream 1.0

FileInputStream(String name)

FileInputStream(File file)

creates a new file input stream, using the file whose path name is
specified by the name string or the file object. (The File class is

described at the end of this chapter.) Path names that are not absolute
are resolved relative to the working directory that was set when the VM
started.

java.io.FileOutputStream 1.0

FileOutputStream(String name)

FileOutputStream(String name, boolean append)

FileOutputStream(File file)

FileOutputStream(File file, boolean append)

creates a new file output stream specified by the name string or the file

object. (The File class is described at the end of this chapter.) If the
append parameter is true, then data are added at the end of the file. An

existing file with the same name will not be deleted. Otherwise, this
method deletes any existing file with the same name.

java.io.BufferedInputStream 1.0

BufferedInputStream(InputStream in)

creates a buffered stream. A buffered input stream reads characters
from a stream without causing a device access every time. When the
buffer is empty, a new block of data is read into the buffer.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.io.BufferedOutputStream 1.0

BufferedOutputStream(OutputStream out)

creates a buffered stream. A buffered output stream collects characters
to be written without causing a device access every time. When the
buffer fills up or when the stream is flushed, the data are written.

java.io.PushbackInputStream 1.0

PushbackInputStream(InputStream in)

PushbackInputStream(InputStream in, int size)

constructs a stream with one-byte lookahead or a pushback buffer of specified size.

void unread(int b)

pushes back a byte, which is retrieved again by the next call to read.

Parameters: b The byte to be read again

Chapter 1. Streams and Files

STREAMS

TEXT INPUT AND OUTPUT

READING AND WRITING BINARY DATA

ZIP ARCHIVES

OBJECT STREAMS AND SERIALIZATION

FILE MANAGEMENT

NEW I/O

REGULAR EXPRESSIONS

In this chapter, we cover the Java application programming interfaces (APIs) for input and output. You will learn
how to access files and directories and how to read and write data in binary and text format. This chapter also
shows you the object serialization mechanism that lets you store objects as easily as you can store text or
numeric data. Next, we turn to several improvements that were made in the "new I/O" package java.nio,

introduced in Java SE 1.4. We finish the chapter with a discussion of regular expressions, even though they are
not actually related to streams and files. We couldn't find a better place to handle that topic, and apparently
neither could the Java team—the regular expression API specification was attached to the specification request
for the "new I/O" features of Java SE 1.4.

Streams

In the Java API, an object from which we can read a sequence of bytes is called an input stream. An object to
which we can write a sequence of bytes is called an output stream. These sources and destinations of byte
sequences can be—and often are—files, but they can also be network connections and even blocks of memory.
The abstract classes InputStream and OutputStream form the basis for a hierarchy of input/output (I/O)

classes.

Because byte-oriented streams are inconvenient for processing information stored in Unicode (recall that

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Unicode uses multiple bytes per character), there is a separate hierarchy of classes for processing Unicode
characters that inherit from the abstract Reader and Writer classes. These classes have read and write

operations that are based on two-byte Unicode code units rather than on single-byte characters.

Reading and Writing Bytes

The InputStream class has an abstract method:

abstract int read()

This method reads one byte and returns the byte that was read, or -1 if it encounters the end of the input
source. The designer of a concrete input stream class overrides this method to provide useful functionality. For
example, in the FileInputStream class, this method reads one byte from a file. System.in is a predefined

object of a subclass of InputStream that allows you to read information from the keyboard.

The InputStream class also has nonabstract methods to read an array of bytes or to skip a number of bytes.

These methods call the abstract read method, so subclasses need to override only one method.

Similarly, the OutputStream class defines the abstract method

abstract void write(int b)

which writes one byte to an output location.

Both the read and write methods block until the bytes are actually read or written. This means that if the

stream cannot immediately be accessed (usually because of a busy network connection), the current thread
blocks. This gives other threads the chance to do useful work while the method is waiting for the stream to
again become available.

The available method lets you check the number of bytes that are currently available for reading. This means

a fragment like the following is unlikely to block:

int bytesAvailable = in.available();

if (bytesAvailable > 0)

{

 byte[] data = new byte[bytesAvailable];
 in.read(data);

}

When you have finished reading or writing to a stream, close it by calling the close method. This call frees up

operating system resources that are in limited supply. If an application opens too many streams without closing
them, system resources can become depleted. Closing an output stream also flushes the buffer used for the
output stream: any characters that were temporarily placed in a buffer so that they could be delivered as a
larger packet are sent off. In particular, if you do not close a file, the last packet of bytes might never be
delivered. You can also manually flush the output with the flush method.

Even if a stream class provides concrete methods to work with the raw read and write functions, application

programmers rarely use them. The data that you are interested in probably contain numbers, strings, and
objects, not raw bytes.

Java gives you many stream classes derived from the basic InputStream and OutputStream classes that let you

work with data in the forms that you usually use rather than at the byte level.

java.io.InputStream 1.0

abstract int read()

reads a byte of data and returns the byte read. The read method returns a -1 at the end of

the stream.

int read(byte[] b)

reads into an array of bytes and returns the actual number of bytes read, or -1 at the end of
the stream. The read method reads at most b.length bytes.

int read(byte[] b, int off, int len)

reads into an array of bytes. The read method returns the actual number of bytes read, or -1

at the end of the stream.

Parameters: b The array into which the data is read

 off The offset into b where the first bytes should be placed

 len The maximum number of bytes to read

long skip(long n)

skips n bytes in the input stream. Returns the actual number of bytes skipped (which may be

less than n if the end of the stream was encountered).

int available()

returns the number of bytes available without blocking. (Recall that blocking means that the
current thread loses its turn.)

void close()

closes the input stream.

void mark(int readlimit)

puts a marker at the current position in the input stream. (Not all streams support this
feature.) If more than readlimit bytes have been read from the input stream, then the

stream is allowed to forget the marker.

void reset()

returns to the last marker. Subsequent calls to read reread the bytes. If there is no current

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

marker, then the stream is not reset.

boolean markSupported()

returns true if the stream supports marking.

java.io.OutputStream 1.0

abstract void write(int n)

writes a byte of data.

void write(byte[] b)

void write(byte[] b, int off, int len)

writes all bytes or a range of bytes in the array b.

Parameters: b The array from which to write the data

 off The offset into b to the first byte that will be written

 len The number of bytes to write

void close()

flushes and closes the output stream.

void flush()

flushes the output stream; that is, sends any buffered data to its destination.

The Complete Stream Zoo

Unlike C, which gets by just fine with a single type FILE*, Java has a whole zoo of more than 60 (!) different

stream types (see Figures 1-1 and 1-2).

Figure 1-1. Input and output stream hierarchy

[View full size image]

Figure 1-2. Reader and writer hierarchy

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Let us divide the animals in the stream class zoo by how they are used. There are separate hierarchies for
classes that process bytes and characters. As you saw, the InputStream and OutputStream classes let you read

and write individual bytes and arrays of bytes. These classes form the basis of the hiearchy shown in Figure 1-1.
To read and write strings and numbers, you need more capable subclasses. For example, DataInputStream and

DataOutputStream let you read and write all the primitive Java types in binary format. Finally, there are

streams that do useful stuff; for example, the ZipInputStream and ZipOutputStream that let you read and

write files in the familiar ZIP compression format.

For Unicode text, on the other hand, you use subclasses of the abstract classes Reader and Writer (see Figure

1-2). The basic methods of the Reader and Writer classes are similar to the ones for InputStream and
OutputStream.

abstract int read()

abstract void write(int c)

The read method returns either a Unicode code unit (as an integer between 0 and 65535) or -1 when you have

reached the end of the file. The write method is called with a Unicode code unit. (See Volume I, Chapter 3 for a

discussion of Unicode code units.)

Java SE 5.0 introduced four additional interfaces: Closeable, Flushable, Readable, and Appendable (see

Figure 1-3). The first two interfaces are very simple, with methods

void close() throws IOException

and

void flush()

respectively. The classes InputStream, OutputStream, Reader, and Writer all implement the Closeable

interface. OutputStream and Writer implement the Flushable interface.

Figure 1-3. The Closeable, Flushable, Readable, and Appendable interfaces

[View full size image]

The Readable interface has a single method

int read(CharBuffer cb)

The CharBuffer class has methods for sequential and random read/write access. It represents an in-memory
buffer or a memory-mapped file. (See "The Buffer Data Structure" on page 72 for details.)

The Appendable interface has two methods for appending single characters and character sequences:

Appendable append(char c)
Appendable append(CharSequence s)

The CharSequence interface describes basic properties of a sequence of char values. It is implemented by

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

String, CharBuffer, StringBuilder, and StringBuffer.

Of the stream zoo classes, only Writer implements Appendable.

java.io.Closeable 5.0

void close()

closes this Closeable. This method may throw an IOException.

java.io.Flushable 5.0

void flush()

flushes this Flushable.

java.lang.Readable 5.0

int read(CharBuffer cb)

attempts to read as many char values into cb as it can hold. Returns the

number of values read, or -1 if no further values are available from this
Readable.

java.lang.Appendable 5.0

Appendable append(char c)

Appendable append(CharSequence cs)

appends the given code unit, or all code units in the given sequence, to
this Appendable; returns this.

java.lang.CharSequence 1.4

char charAt(int index)

returns the code unit at the given index.

int length()

returns the number of code units in this sequence.

CharSequence subSequence(int startIndex, int endIndex)

returns a CharSequence consisting of the code units stored at index

startIndex to endIndex - 1.

String toString()

returns a string consisting of the code units of this sequence.

Combining Stream Filters

FileInputStream and FileOutputStream give you input and output streams attached to a disk file. You give

the file name or full path name of the file in the constructor. For example,

FileInputStream fin = new FileInputStream("employee.dat");

looks in the user directory for a file named "employee.dat".

Tip

Because all the classes in java.io interpret relative path names as starting with the

user's working directory, you may want to know this directory. You can get at this
information by a call to System.getProperty("user.dir").

Like the abstract InputStream and OutputStream classes, these classes support only reading and writing on the

byte level. That is, we can only read bytes and byte arrays from the object fin.

byte b = (byte) fin.read();

As you will see in the next section, if we just had a DataInputStream, then we could read numeric types:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

DataInputStream din = . . .;

double s = din.readDouble();

But just as the FileInputStream has no methods to read numeric types, the DataInputStream has no method

to get data from a file.

Java uses a clever mechanism to separate two kinds of responsibilities. Some streams (such as the
FileInputStream and the input stream returned by the openStream method of the URL class) can retrieve

bytes from files and other more exotic locations. Other streams (such as the DataInputStream and the

PrintWriter) can assemble bytes into more useful data types. The Java programmer has to combine the two.

For example, to be able to read numbers from a file, first create a FileInputStream and then pass it to the

constructor of a DataInputStream.

FileInputStream fin = new FileInputStream("employee.dat");

DataInputStream din = new DataInputStream(fin);

double s = din.readDouble();

If you look at Figure 1-1 again, you can see the classes FilterInputStream and FilterOutputStream. The

subclasses of these files are used to add capabilities to raw byte streams.

You can add multiple capabilities by nesting the filters. For example, by default, streams are not buffered. That
is, every call to read asks the operating system to dole out yet another byte. It is more efficient to request

blocks of data instead and put them in a buffer. If you want buffering and the data input methods for a file, you
need to use the following rather monstrous sequence of constructors:

DataInputStream din = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat")));

Notice that we put the DataInputStream last in the chain of constructors because we want to use the
DataInputStream methods, and we want them to use the buffered read method.

Sometimes you'll need to keep track of the intermediate streams when chaining them together. For example,
when reading input, you often need to peek at the next byte to see if it is the value that you expect. Java
provides the PushbackInputStream for this purpose.

PushbackInputStream pbin = new PushbackInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat")));

Now you can speculatively read the next byte

int b = pbin.read();

and throw it back if it isn't what you wanted.

if (b != '<') pbin.unread(b);

But reading and unreading are the only methods that apply to the pushback input stream. If you want to look
ahead and also read numbers, then you need both a pushback input stream and a data input stream reference.

DataInputStream din = new DataInputStream(

 pbin = new PushbackInputStream(

 new BufferedInputStream(

 new FileInputStream("employee.dat"))));

Of course, in the stream libraries of other programming languages, niceties such as buffering and lookahead are
automatically taken care of, so it is a bit of a hassle in Java that one has to resort to combining stream filters in
these cases. But the ability to mix and match filter classes to construct truly useful sequences of streams does
give you an immense amount of flexibility. For example, you can read numbers from a compressed ZIP file by
using the following sequence of streams (see Figure 1-4):

Code View:
ZipInputStream zin = new ZipInputStream(new FileInputStream("employee.zip"));

DataInputStream din = new DataInputStream(zin);

Figure 1-4. A sequence of filtered streams

[View full size image]

(See "ZIP Archives" on page 32 for more on Java's ability to handle ZIP files.)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.io.FileInputStream 1.0

FileInputStream(String name)

FileInputStream(File file)

creates a new file input stream, using the file whose path name is
specified by the name string or the file object. (The File class is

described at the end of this chapter.) Path names that are not absolute
are resolved relative to the working directory that was set when the VM
started.

java.io.FileOutputStream 1.0

FileOutputStream(String name)

FileOutputStream(String name, boolean append)

FileOutputStream(File file)

FileOutputStream(File file, boolean append)

creates a new file output stream specified by the name string or the file

object. (The File class is described at the end of this chapter.) If the
append parameter is true, then data are added at the end of the file. An

existing file with the same name will not be deleted. Otherwise, this
method deletes any existing file with the same name.

java.io.BufferedInputStream 1.0

BufferedInputStream(InputStream in)

creates a buffered stream. A buffered input stream reads characters
from a stream without causing a device access every time. When the
buffer is empty, a new block of data is read into the buffer.

java.io.BufferedOutputStream 1.0

BufferedOutputStream(OutputStream out)

creates a buffered stream. A buffered output stream collects characters
to be written without causing a device access every time. When the
buffer fills up or when the stream is flushed, the data are written.

java.io.PushbackInputStream 1.0

PushbackInputStream(InputStream in)

PushbackInputStream(InputStream in, int size)

constructs a stream with one-byte lookahead or a pushback buffer of specified size.

void unread(int b)

pushes back a byte, which is retrieved again by the next call to read.

Parameters: b The byte to be read again

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Text Input and Output

When saving data, you have the choice between binary and text format. For example, if the integer 1234 is
saved in binary, it is written as the sequence of bytes 00 00 04 D2 (in hexadecimal notation). In text format, it

is saved as the string "1234". Although binary I/O is fast and efficient, it is not easily readable by humans. We

first discuss text I/O and cover binary I/O in the section "Reading and Writing Binary Data" on page 23.

When saving text strings, you need to consider the character encoding. In the UTF-16 encoding, the string
"1234" is encoded as 00 31 00 32 00 33 00 34 (in hex). However, many programs expect that text files are

encoded in a different encoding. In ISO 8859-1, the encoding most commonly used in the United States and
Western Europe, the string would be written as 31 32 33 34, without the zero bytes.

The OutputStreamWriter class turns a stream of Unicode characters into a stream of bytes, using a chosen
character encoding. Conversely, the InputStreamReader class turns an input stream that contains bytes

(specifying characters in some character encoding) into a reader that emits Unicode characters.

For example, here is how you make an input reader that reads keystrokes from the console and converts them
to Unicode:

InputStreamReader in = new InputStreamReader(System.in);

This input stream reader assumes the default character encoding used by the host system, such as the ISO
8859-1 encoding in Western Europe. You can choose a different encoding by specifying it in the constructor for
the InputStreamReader, for example,

Code View:
InputStreamReader in = new InputStreamReader(new FileInputStream("kremlin.dat"), "ISO8859_5");

See "Character Sets" on page 19 for more information on character encodings.

Because it is so common to attach a reader or writer to a file, a pair of convenience classes, FileReader and

FileWriter, is provided for this purpose. For example, the writer definition

FileWriter out = new FileWriter("output.txt");

is equivalent to

FileWriter out = new FileWriter(new FileOutputStream("output.txt"));

How to Write Text Output

For text output, you want to use a PrintWriter. That class has methods to print strings and numbers in text

format. There is even a convenience constructor to link a PrintWriter with a FileWriter. The statement

PrintWriter out = new PrintWriter("employee.txt");

is equivalent to

PrintWriter out = new PrintWriter(new FileWriter("employee.txt"));

To write to a print writer, you use the same print, println, and printf methods that you used with

System.out. You can use these methods to print numbers (int, short, long, float, double), characters,

boolean values, strings, and objects.

For example, consider this code:

String name = "Harry Hacker";

double salary = 75000;

out.print(name);

out.print(' ');

out.println(salary);

This writes the characters

Harry Hacker 75000.0

to the writer out. The characters are then converted to bytes and end up in the file employee.txt.

The println method adds the correct end-of-line character for the target system ("\r\n" on Windows, "\n" on
UNIX) to the line. This is the string obtained by the call System.getProperty("line.separator").

If the writer is set to autoflush mode, then all characters in the buffer are sent to their destination whenever
println is called. (Print writers are always buffered.) By default, autoflushing is not enabled. You can enable or

disable autoflushing by using the PrintWriter(Writer out, boolean autoFlush) constructor:

Code View:
PrintWriter out = new PrintWriter(new FileWriter("employee.txt"), true); // autoflush

The print methods don't throw exceptions. You can call the checkError method to see if something went

wrong with the stream.

Note

Java veterans might wonder whatever happened to the PrintStream class and to

System.out. In Java 1.0, the PrintStream class simply truncated all Unicode

characters to ASCII characters by dropping the top byte. Clearly, that was not a
clean or portable approach, and it was fixed with the introduction of readers and
writers in Java 1.1. For compatibility with existing code, System.in, System.out,

and System.err are still streams, not readers and writers. But now the

PrintStream class internally converts Unicode characters to the default host

encoding in the same way as the PrintWriter does. Objects of type PrintStream

act exactly like print writers when you use the print and println methods, but

unlike print writers, they allow you to output raw bytes with the write(int) and

write(byte[]) methods.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.io.PrintWriter 1.1

PrintWriter(Writer out)

PrintWriter(Writer out, boolean autoFlush)

creates a new PrintWriter.

Parameters: out A character-output writer

 autoflush If true, the println methods will flush the output buffer

(default: false)

PrintWriter(OutputStream out)

PrintWriter(OutputStream out, boolean autoflush)

creates a new PrintWriter from an existing OutputStream by creating the necessary
intermediate OutputStreamWriter.

PrintWriter(String filename)

PrintWriter(File file)

creates a new PrintWriter that writes to the given file by creating the necessary

intermediate FileWriter.

void print(Object obj)

prints an object by printing the string resulting from toString.

Parameters: obj The object to be printed

void print(String s)

prints a Unicode string.

void println(String s)

prints a string followed by a line terminator. Flushes the stream if the stream is in autoflush

mode.

void print(char[] s)

prints all Unicode characters in the given array.

void print(char c)

prints a Unicode character.

void print(int i)

void print(long l)

void print(float f)

void print(double d)

void print(boolean b)

prints the given value in text format.

void printf(String format, Object... args)

prints the given values, as specified by the format string. See Volume I, Chapter 3 for the
specification of the format string.

boolean checkError()

returns true if a formatting or output error occurred. Once the stream has encountered an

error, it is tainted and all calls to checkError return true.

How to Read Text Input

As you know:

To write data in binary format, you use a DataOutputStream.

To write in text format, you use a PrintWriter.

Therefore, you might expect that there is an analog to the DataInputStream that lets you read data in text

format. The closest analog is the Scanner class that we used extensively in Volume I. However, before Java SE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

5.0, the only game in town for processing text input was the BufferedReader class—it has a method, readLine,

that lets you read a line of text. You need to combine a buffered reader with an input source.

BufferedReader in = new BufferedReader(new FileReader("employee.txt"));

The readLine method returns null when no more input is available. A typical input loop, therefore, looks like

this:

String line;

while ((line = in.readLine()) != null)

{

 do something with line

}

However, a BufferedReader has no methods for reading numbers. We suggest that you use a Scanner for

reading text input.

Saving Objects in Text Format

In this section, we walk you through an example program that stores an array of Employee records in a text file.

Each record is stored in a separate line. Instance fields are separated from each other by delimiters. We use a
vertical bar (|) as our delimiter. (A colon (:) is another popular choice. Part of the fun is that everyone uses a

different delimiter.) Naturally, we punt on the issue of what might happen if a | actually occurred in one of the

strings we save.

Here is a sample set of records:

Harry Hacker|35500|1989|10|1

Carl Cracker|75000|1987|12|15

Tony Tester|38000|1990|3|15

Writing records is simple. Because we write to a text file, we use the PrintWriter class. We simply write all

fields, followed by either a | or, for the last field, a \n. This work is done in the following writeData method
that we add to our Employee class.

public void writeData(PrintWriter out) throws IOException

{

 GregorianCalendar calendar = new GregorianCalendar();

 calendar.setTime(hireDay);

 out.println(name + "|"

 + salary + "|"

 + calendar.get(Calendar.YEAR) + "|"

 + (calendar.get(Calendar.MONTH) + 1) + "|"
 + calendar.get(Calendar.DAY_OF_MONTH));

}

To read records, we read in a line at a time and separate the fields. We use a scanner to read each line and then
split the line into tokens with the String.split method.

public void readData(Scanner in)

{

 String line = in.nextLine();

 String[] tokens = line.split("\\|");

 name = tokens[0];

 salary = Double.parseDouble(tokens[1]);
 int y = Integer.parseInt(tokens[2]);

 int m = Integer.parseInt(tokens[3]);

 int d = Integer.parseInt(tokens[4]);

 GregorianCalendar calendar = new GregorianCalendar(y, m - 1, d);

 hireDay = calendar.getTime();

}

The parameter of the split method is a regular expression describing the separator. We discuss regular

expressions in more detail at the end of this chapter. As it happens, the vertical bar character has a special
meaning in regular expressions, so it needs to be escaped with a \ character. That character needs to be

escaped by another \, yielding the "\\|" expression.

The complete program is in Listing 1-1. The static method

void writeData(Employee[] e, PrintWriter out)

first writes the length of the array, then writes each record. The static method

Employee[] readData(BufferedReader in)

first reads in the length of the array, then reads in each record. This turns out to be a bit tricky:

int n = in.nextInt();

in.nextLine(); // consume newline

Employee[] employees = new Employee[n];

for (int i = 0; i < n; i++)

{

 employees[i] = new Employee();
 employees[i].readData(in);

}

The call to nextInt reads the array length but not the trailing newline character. We must consume the newline

so that the readData method can get the next input line when it calls the nextLine method.

Listing 1-1. TextFileTest.java

Code View:
 1. import java.io.*;

 2. import java.util.*;

 3.

 4. /**

 5. * @version 1.12 2007-06-22

 6. * @author Cay Horstmann

 7. */

 8. public class TextFileTest

 9. {

 10. public static void main(String[] args)

 11. {

 12. Employee[] staff = new Employee[3];

 13.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 14. staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);

 15. staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

 16. staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

 17.

 18. try

 19. {

 20. // save all employee records to the file employee.dat

 21. PrintWriter out = new PrintWriter("employee.dat");

 22. writeData(staff, out);

 23. out.close();

 24.

 25. // retrieve all records into a new array

 26. Scanner in = new Scanner(new FileReader("employee.dat"));

 27. Employee[] newStaff = readData(in);

 28. in.close();

 29.

 30. // print the newly read employee records

 31. for (Employee e : newStaff)

 32. System.out.println(e);

 33. }

 34. catch (IOException exception)

 35. {

 36. exception.printStackTrace();

 37. }

 38. }

 39.

 40. /**

 41. * Writes all employees in an array to a print writer

 42. * @param employees an array of employees

 43. * @param out a print writer

 44. */

 45. private static void writeData(Employee[] employees, PrintWriter out) throws IOException

 46. {

 47. // write number of employees

 48. out.println(employees.length);

 49.

 50. for (Employee e : employees)

 51. e.writeData(out);

 52. }

 53. /**

 54. * Reads an array of employees from a scanner

 55. * @param in the scanner

 56. * @return the array of employees

 57. */

 58. private static Employee[] readData(Scanner in)

 59. {

 60. // retrieve the array size

 61. int n = in.nextInt();

 62. in.nextLine(); // consume newline

 63.

 64. Employee[] employees = new Employee[n];

 65. for (int i = 0; i < n; i++)

 66. {

 67. employees[i] = new Employee();

 68. employees[i].readData(in);

 69. }

 70. return employees;

 71. }

 72. }

 73.

 74. class Employee

 75. {

 76. public Employee()

 77. {

 78. }

 79.

 80. public Employee(String n, double s, int year, int month, int day)

 81. {

 82. name = n;

 83. salary = s;

 84. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);

 85. hireDay = calendar.getTime();

 86. }

 87.

 88. public String getName()

 89. {

 90. return name;

 91. }

 92.

 93. public double getSalary()

 94. {

 95. return salary;

 96. }

 97.

 98. public Date getHireDay()

 99. {

100. return hireDay;

101. }

102.

103. public void raiseSalary(double byPercent)

104. {

105. double raise = salary * byPercent / 100;

106. salary += raise;

107. }

108.

109. public String toString()

110. {

111. return getClass().getName() + "[name=" + name + ",salary=" + salary + ",hireDay="

112. + hireDay + "]";

113. }

114.

115. /**

116. * Writes employee data to a print writer

117. * @param out the print writer

118. */

119. public void writeData(PrintWriter out)

120. {

121. GregorianCalendar calendar = new GregorianCalendar();

122. calendar.setTime(hireDay);

123. out.println(name + "|" + salary + "|" + calendar.get(Calendar.YEAR) + "|"

124. + (calendar.get(Calendar.MONTH) + 1) + "|" + calendar.get(Calendar.DAY_OF_MONTH));

125. }

126.

127. /**

128. * Reads employee data from a buffered reader

129. * @param in the scanner

130. */

131. public void readData(Scanner in)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

132. {

133. String line = in.nextLine();

134. String[] tokens = line.split("\\|");

135. name = tokens[0];

136. salary = Double.parseDouble(tokens[1]);

137. int y = Integer.parseInt(tokens[2]);

138. int m = Integer.parseInt(tokens[3]);

139. int d = Integer.parseInt(tokens[4]);

140. GregorianCalendar calendar = new GregorianCalendar(y, m - 1, d);

141. hireDay = calendar.getTime();

142. }

143.

144. private String name;

145. private double salary;

146. private Date hireDay;

147. }

Character Sets

In the past, international character sets have been handled rather unsystematically throughout the Java library.
The java.nio package—introduced in Java SE 1.4—unifies character set conversion with the introduction of the
Charset class. (Note that the s is lower case.)

A character set maps between sequences of two-byte Unicode code units and byte sequences used in a local
character encoding. One of the most popular character encodings is ISO-8859-1, a single-byte encoding of the
first 256 Unicode characters. Gaining in importance is ISO-8859-15, which replaces some of the less useful
characters of ISO-8859-1 with accented letters used in French and Finnish, and, more important, replaces the
"international currency" character ¤ with the Euro symbol (€) in code point 0xA4. Other examples for character

encodings are the variable-byte encodings commonly used for Japanese and Chinese.

The Charset class uses the character set names standardized in the IANA Character Set Registry
(http://www.iana.org/assignments/character-sets). These names differ slightly from those used in previous
versions. For example, the "official" name of ISO-8859-1 is now "ISO-8859-1" and no longer "ISO8859_1",

which was the preferred name up to Java SE 1.3.

Note

An excellent reference for the "ISO 8859 alphabet soup" is
http://czyborra.com/charsets/iso8859.html.

You obtain a Charset by calling the static forName method with either the official name or one of its aliases:

Charset cset = Charset.forName("ISO-8859-1");

http://www.iana.org/assignments/character-sets
http://czyborra.com/charsets/iso8859.html

Character set names are case insensitive.

For compatibility with other naming conventions, each character set can have a number of aliases. For example,
ISO-8859-1 has aliases

ISO8859-1

ISO_8859_1

ISO8859_1

ISO_8859-1

ISO_8859-1:1987

8859_1

latin1

l1

csISOLatin1

iso-ir-100
cp819

IBM819

IBM-819

819

The aliases method returns a Set object of the aliases. Here is the code to iterate through the aliases:

Set<String> aliases = cset.aliases();

for (String alias : aliases)

 System.out.println(alias);

To find out which character sets are available in a particular implementation, call the static availableCharsets

method. Use this code to find out the names of all available character sets:

Map<String, Charset> charsets = Charset.availableCharsets();

for (String name : charsets.keySet())

 System.out.println(name);

Table 1-1 lists the character encodings that every Java implementation is required to have. Table 1-2 lists the
encoding schemes that the Java Development Kit (JDK) installs by default. The character sets in Table 1-3 are
installed only on operating systems that use non-European languages.

Table 1-1. Required Character Encodings

Charset

Standard
Name

Legacy Name Description

US-ASCII ASCII American Standard Code for Information Exchange

ISO-8859-1 ISO8859_1 ISO 8859-1, Latin alphabet No. 1

UTF-8 UTF8 Eight-bit Unicode Transformation Format

UTF-16 UTF-16 Sixteen-bit Unicode Transformation Format, byte order
specified by an optional initial byte-order mark

UTF-16BE UnicodeBigUnmarked Sixteen-bit Unicode Transformation Format, big-endian
byte order

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Charset

Standard
Name

Legacy Name Description

UTF-16LE UnicodeLittleUnmarked Sixteen-bit Unicode Transformation Format, little-endian
byte order

Table 1-2. Basic Character Encodings

Charset

Standard
Name

Legacy Name Description

ISO8859-2 ISO8859_2 ISO 8859-2, Latin alphabet No. 2

ISO8859-4 ISO8859_4 ISO 8859-4, Latin alphabet No. 4

ISO8859-5 ISO8859_5 ISO 8859-5, Latin/Cyrillic alphabet

ISO8859-7 ISO8859_7 ISO 8859-7, Latin/Greek alphabet

ISO8859-9 ISO8859_9 ISO 8859-9, Latin alphabet No. 5

ISO8859-13 ISO8859_13 ISO 8859-13, Latin alphabet No. 7

ISO8859-15 ISO8859_15 ISO 8859-15, Latin alphabet No. 9

windows-1250 Cp1250 Windows Eastern European

windows-1251 Cp1251 Windows Cyrillic

windows-1252 Cp1252 Windows Latin-1

windows-1253 Cp1253 Windows Greek

windows-1254 Cp1254 Windows Turkish

windows-1257 Cp1257 Windows Baltic

Table 1-3. Extended Character Encodings

Charset Standard

Name

Legacy Name Description

Big5 Big5 Big5, Traditional Chinese

Big5-HKSCS Big5_HKSCS Big5 with Hong Kong extensions, Traditional Chinese

EUC-JP EUC_JP JIS X 0201, 0208, 0212, EUC encoding, Japanese

EUC-KR EUC_KR KS C 5601, EUC encoding, Korean

GB18030 GB18030 Simplified Chinese, PRC Standard

GBK GBK GBK, Simplified Chinese

ISCII91 ISCII91 ISCII91 encoding of Indic scripts

ISO-2022-JP ISO2022JP JIS X 0201, 0208 in ISO 2022 form, Japanese

ISO-2022-KR ISO2022KR ISO 2022 KR, Korean

UTF-16LE UnicodeLittleUnmarked Sixteen-bit Unicode Transformation Format, little-endian
byte order

Table 1-2. Basic Character Encodings

Charset

Standard
Name

Legacy Name Description

ISO8859-2 ISO8859_2 ISO 8859-2, Latin alphabet No. 2

ISO8859-4 ISO8859_4 ISO 8859-4, Latin alphabet No. 4

ISO8859-5 ISO8859_5 ISO 8859-5, Latin/Cyrillic alphabet

ISO8859-7 ISO8859_7 ISO 8859-7, Latin/Greek alphabet

ISO8859-9 ISO8859_9 ISO 8859-9, Latin alphabet No. 5

ISO8859-13 ISO8859_13 ISO 8859-13, Latin alphabet No. 7

ISO8859-15 ISO8859_15 ISO 8859-15, Latin alphabet No. 9

windows-1250 Cp1250 Windows Eastern European

windows-1251 Cp1251 Windows Cyrillic

windows-1252 Cp1252 Windows Latin-1

windows-1253 Cp1253 Windows Greek

windows-1254 Cp1254 Windows Turkish

windows-1257 Cp1257 Windows Baltic

Table 1-3. Extended Character Encodings

Charset Standard

Name

Legacy Name Description

Big5 Big5 Big5, Traditional Chinese

Big5-HKSCS Big5_HKSCS Big5 with Hong Kong extensions, Traditional Chinese

EUC-JP EUC_JP JIS X 0201, 0208, 0212, EUC encoding, Japanese

EUC-KR EUC_KR KS C 5601, EUC encoding, Korean

GB18030 GB18030 Simplified Chinese, PRC Standard

GBK GBK GBK, Simplified Chinese

ISCII91 ISCII91 ISCII91 encoding of Indic scripts

ISO-2022-JP ISO2022JP JIS X 0201, 0208 in ISO 2022 form, Japanese

Charset Standard

Name

Legacy Name Description

ISO-2022-KR ISO2022KR ISO 2022 KR, Korean

ISO8859-3 ISO8859_3 ISO 8859-3, Latin alphabet No. 3

ISO8859-6 ISO8859_6 ISO 8859-6, Latin/Arabic alphabet

ISO8859-8 ISO8859_8 ISO 8859-8, Latin/Hebrew alphabet

Shift_JIS SJIS Shift-JIS, Japanese

TIS-620 TIS620 TIS620, Thai

windows-1255 Cp1255 Windows Hebrew

windows-1256 Cp1256 Windows Arabic

windows-1258 Cp1258 Windows Vietnamese

windows-31j MS932 Windows Japanese

x-EUC-CN EUC_CN GB2312, EUC encoding, Simplified Chinese

x-EUC-JP-LINUX EUC_JP_LINUX JIS X 0201, 0208, EUC encoding, Japanese

x-EUC-TW EUC_TW CNS11643 (Plane 1-3), EUC encoding, Traditional
Chinese

x-MS950-HKSCS MS950_HKSCS Windows Traditional Chinese with Hong Kong
extensions

x-mswin-936 MS936 Windows Simplified Chinese

x-windows-949 MS949 Windows Korean

x-windows-950 MS950 Windows Traditional Chinese

Local encoding schemes cannot represent all Unicode characters. If a character cannot be represented, it is
transformed to a ?.

Once you have a character set, you can use it to convert between Unicode strings and encoded byte sequences.
Here is how you encode a Unicode string:

String str = . . .;

ByteBuffer buffer = cset.encode(str);

byte[] bytes = buffer.array();

Conversely, to decode a byte sequence, you need a byte buffer. Use the static wrap method of the ByteBuffer

array to turn a byte array into a byte buffer. The result of the decode method is a CharBuffer. Call its toString

method to get a string.

byte[] bytes = . . .;

ByteBuffer bbuf = ByteBuffer.wrap(bytes, offset, length);

CharBuffer cbuf = cset.decode(bbuf);

String str = cbuf.toString();

ISO-2022-KR ISO2022KR ISO 2022 KR, Korean

ISO8859-3 ISO8859_3 ISO 8859-3, Latin alphabet No. 3

ISO8859-6 ISO8859_6 ISO 8859-6, Latin/Arabic alphabet

ISO8859-8 ISO8859_8 ISO 8859-8, Latin/Hebrew alphabet

Shift_JIS SJIS Shift-JIS, Japanese

TIS-620 TIS620 TIS620, Thai

windows-1255 Cp1255 Windows Hebrew

windows-1256 Cp1256 Windows Arabic

windows-1258 Cp1258 Windows Vietnamese

windows-31j MS932 Windows Japanese

x-EUC-CN EUC_CN GB2312, EUC encoding, Simplified Chinese

x-EUC-JP-LINUX EUC_JP_LINUX JIS X 0201, 0208, EUC encoding, Japanese

x-EUC-TW EUC_TW CNS11643 (Plane 1-3), EUC encoding, Traditional
Chinese

x-MS950-HKSCS MS950_HKSCS Windows Traditional Chinese with Hong Kong
extensions

x-mswin-936 MS936 Windows Simplified Chinese

x-windows-949 MS949 Windows Korean

x-windows-950 MS950 Windows Traditional Chinese

Local encoding schemes cannot represent all Unicode characters. If a character cannot be represented, it is
transformed to a ?.

Once you have a character set, you can use it to convert between Unicode strings and encoded byte sequences.
Here is how you encode a Unicode string:

String str = . . .;

ByteBuffer buffer = cset.encode(str);

byte[] bytes = buffer.array();

Conversely, to decode a byte sequence, you need a byte buffer. Use the static wrap method of the ByteBuffer

array to turn a byte array into a byte buffer. The result of the decode method is a CharBuffer. Call its toString

method to get a string.

byte[] bytes = . . .;

ByteBuffer bbuf = ByteBuffer.wrap(bytes, offset, length);

CharBuffer cbuf = cset.decode(bbuf);

String str = cbuf.toString();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.nio.charset.Charset 1.4

static SortedMap availableCharsets()

gets all available character sets for this virtual machine. Returns a map
whose keys are character set names and whose values are character
sets.

static Charset forName(String name)

gets a character set for the given name.

Set aliases()

returns the set of alias names for this character set.

ByteBuffer encode(String str)

encodes the given string into a sequence of bytes.

CharBuffer decode(ByteBuffer buffer)

decodes the given byte sequence. Unrecognized inputs are converted to
the Unicode "replacement character" ('\uFFFD').

java.nio.ByteBuffer 1.4

byte[] array()

returns the array of bytes that this buffer manages.

static ByteBuffer wrap(byte[] bytes)

static ByteBuffer wrap(byte[] bytes, int offset, int length)

returns a byte buffer that manages the given array of bytes or the given
range.

java.nio.CharBuffer

char[] array()

returns the array of code units that this buffer manages.

char charAt(int index)

returns the code unit at the given index.

String toString()

returns a string consisting of the code units that this buffer manages.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Reading and Writing Binary Data

The DataOutput interface defines the following methods for writing a number, character, boolean value, or

string in binary format:

writeChars

writeByte

writeInt

writeShort

writeLong

writeFloat

writeDouble

writeChar
writeBoolean

writeUTF

For example, writeInt always writes an integer as a 4-byte binary quantity regardless of the number of digits,

and writeDouble always writes a double as an 8-byte binary quantity. The resulting output is not humanly

readable, but the space needed will be the same for each value of a given type and reading it back in will be
faster than parsing text.

Note

There are two different methods of storing integers and floating-point numbers in
memory, depending on the platform you are using. Suppose, for example, you are
working with a 4-byte int, say the decimal number 1234, or 4D2 in hexadecimal

(1234 = 4 x 256 + 13 x 16 + 2). This can be stored in such a way that the first of
the 4 bytes in memory holds the most significant byte (MSB) of the value: 00 00 04

D2. This is the so-called big-endian method. Or we can start with the least
significant byte (LSB) first: D2 04 00 00. This is called, naturally enough, the little-

endian method. For example, the SPARC uses big-endian; the Pentium, little-
endian. This can lead to problems. When a C or C++ file is saved, the data are
saved exactly as the processor stores them. That makes it challenging to move even
the simplest data files from one platform to another. In Java, all values are written
in the big-endian fashion, regardless of the processor. That makes Java data files
platform independent.

The writeUTF method writes string data by using a modified version of 8-bit Unicode Transformation Format.

Instead of simply using the standard UTF-8 encoding (which is shown in Table 1-4), character strings are first
represented in UTF-16 (see Table 1-5) and then the result is encoded using the UTF-8 rules. The modified
encoding is different for characters with code higher than 0xFFFF. It is used for backward compatibility with

virtual machines that were built when Unicode had not yet grown beyond 16 bits.

Table 1-4. UTF-8 Encoding

Character Range Encoding

0...7F 0a6a5a4a3a2a1a0

80...7FF 110a10a9a8a7a6 10a5a4a3a2a1a0

800...FFFF 1110a15a14a13a12 10a11a10a9a8a7a6 10a5a4a3a2a1a0

10000...10FFFF 11110a20a19a18 10a17a16a15a14a13a12 10a11a10a9a8a7a6
10a5a4a3a2a1a0

Table 1-5. UTF-16 Encoding

Character Range Encoding

0...FFFF a15a14a13a12a11a10a9a8 a7a6a5a4a3a2a1a0

10000...10FFFF 110110b19b18 b17b16a15a14a13a12a11a10 110111a9a8 a7a6a5a4a3a2a1a0
where b19b18b17b16 = a20a19a18a17a16 -1

Because nobody else uses this modification of UTF-8, you should only use the writeUTF method to write strings

that are intended for a Java virtual machine; for example, if you write a program that generates bytecodes. Use
the writeChars method for other purposes.

Note

See RFC 2279 (http://ietf.org/rfc/rfc2279.txt) and RFC 2781
(http://ietf.org/rfc/rfc2781.txt) for definitions of UTF-8 and UTF-16.

To read the data back in, use the following methods, defined in the DataInput interface:

readInt

readShort
readLong

readFloat

readDouble

readChar

readBoolean

readUTF

The DataInputStream class implements the DataInput interface. To read binary data from a file, you combine a

DataInputStream with a source of bytes such as a FileInputStream:

Code View:
DataInputStream in = new DataInputStream(new FileInputStream("employee.dat"));

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://ietf.org/rfc/rfc2279.txt
http://ietf.org/rfc/rfc2781.txt

Similarly, to write binary data, you use the DataOutputStream class that implements the DataOutput interface:

Code View:
DataOutputStream out = new DataOutputStream(new FileOutputStream("employee.dat"));

java.io.DataInput 1.0

boolean readBoolean()

byte readByte()

char readChar()

double readDouble()

float readFloat()

int readInt()

long readLong()

short readShort()

reads in a value of the given type.

void readFully(byte[] b)

reads bytes into the array b, blocking until all bytes are read.

Parameters: b The buffer into which the data are read

void readFully(byte[] b, int off, int len)

reads bytes into the array b, blocking until all bytes are read.

Parameters: b The buffer into which the data are read

 off The start offset of the data

 len The maximum number of bytes to read

String readUTF()

reads a string of characters in "modified UTF-8" format.

int skipBytes(int n)

skips n bytes, blocking until all bytes are skipped.

Parameters: n The number of bytes to be skipped

java.io.DataOutput 1.0

void writeBoolean(boolean b)

void writeByte(int b)

void writeChar(int c)

void writeDouble(double d)

void writeFloat(float f)

void writeInt(int i)

void writeLong(long l)

void writeShort(int s)

writes a value of the given type.

void writeChars(String s)

writes all characters in the string.

void writeUTF(String s)

writes a string of characters in "modified UTF-8" format.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Random-Access Files

The RandomAccessFile class lets you find or write data anywhere in a file. Disk files are random access, but

streams of data from a network are not. You open a random-access file either for reading only or for both
reading and writing. You specify the option by using the string "r" (for read access) or "rw" (for read/write

access) as the second argument in the constructor.

RandomAccessFile in = new RandomAccessFile("employee.dat", "r");

RandomAccessFile inOut = new RandomAccessFile("employee.dat", "rw");

When you open an existing file as a RandomAccessFile, it does not get deleted.

A random-access file has a file pointer that indicates the position of the next byte that will be read or written.
The seek method sets the file pointer to an arbitrary byte position within the file. The argument to seek is a

long integer between zero and the length of the file in bytes.

The getFilePointer method returns the current position of the file pointer.

The RandomAccessFile class implements both the DataInput and DataOutput interfaces. To read and write

from a random-access file, you use methods such as readInt/writeInt and readChar/writeChar that we
discussed in the preceding section.

We now walk through an example program that stores employee records in a random access file. Each record
will have the same size. This makes it easy to read an arbitrary record. Suppose you want to position the file
pointer to the third record. Simply set the file pointer to the appropriate byte position and start reading.

long n = 3;

in.seek((n - 1) * RECORD_SIZE);

Employee e = new Employee();

e.readData(in);

If you want to modify the record and then save it back into the same location, remember to set the file pointer
back to the beginning of the record:

in.seek((n - 1) * RECORD_SIZE);

e.writeData(out);

To determine the total number of bytes in a file, use the length method. The total number of records is the

length divided by the size of each record.

long nbytes = in.length(); // length in bytes

int nrecords = (int) (nbytes / RECORD_SIZE);

Integers and floating-point values have a fixed size in binary format, but we have to work harder for strings. We
provide two helper methods to write and read strings of a fixed size.

The writeFixedString writes the specified number of code units, starting at the beginning of the string. (If

there are too few code units, the method pads the string, using zero values.)

public static void writeFixedString(String s, int size, DataOutput out)

 throws IOException

{

 for (int i = 0; i < size; i++)

 {
 char ch = 0;

 if (i < s.length()) ch = s.charAt(i);

 out.writeChar(ch);

 }

}

The readFixedString method reads characters from the input stream until it has consumed size code units or

until it encounters a character with a zero value. Then, it skips past the remaining zero values in the input field.
For added efficiency, this method uses the StringBuilder class to read in a string.

public static String readFixedString(int size, DataInput in)
 throws IOException

{

 StringBuilder b = new StringBuilder(size);

 int i = 0;

 boolean more = true;

 while (more && i < size)
 {

 char ch = in.readChar();

 i++;

 if (ch == 0) more = false;

 else b.append(ch);

 }

 in.skipBytes(2 * (size - i));
 return b.toString();

}

We placed the writeFixedString and readFixedString methods inside the DataIO helper class.

To write a fixed-size record, we simply write all fields in binary.

public void writeData(DataOutput out) throws IOException

{

 DataIO.writeFixedString(name, NAME_SIZE, out);

 out.writeDouble(salary);

 GregorianCalendar calendar = new GregorianCalendar();

 calendar.setTime(hireDay);

 out.writeInt(calendar.get(Calendar.YEAR));

 out.writeInt(calendar.get(Calendar.MONTH) + 1);

 out.writeInt(calendar.get(Calendar.DAY_OF_MONTH));

}

Reading the data back is just as simple.

public void readData(DataInput in) throws IOException

{

 name = DataIO.readFixedString(NAME_SIZE, in);

 salary = in.readDouble();

 int y = in.readInt();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 int m = in.readInt();

 int d = in.readInt();

 GregorianCalendar calendar = new GregorianCalendar(y, m - 1, d);
 hireDay = calendar.getTime();

}

Let us compute the size of each record. We will use 40 characters for the name strings. Therefore, each record
contains 100 bytes:

40 characters = 80 bytes for the name

1 double = 8 bytes for the salary

3 int = 12 bytes for the date

The program shown in Listing 1-2 writes three records into a data file and then reads them from the file in
reverse order. To do this efficiently requires random access—we need to get at the third record first.

Listing 1-2. RandomFileTest.java

Code View:
 1. import java.io.*;

 2. import java.util.*;

 3.

 4. /**

 5. * @version 1.11 2004-05-11

 6. * @author Cay Horstmann

 7. */

 8.

 9. public class RandomFileTest

 10. {

 11. public static void main(String[] args)

 12. {

 13. Employee[] staff = new Employee[3];

 14.

 15. staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);

 16. staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);

 17. staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

 18.

 19. try

 20. {

 21. // save all employee records to the file employee.dat

 22. DataOutputStream out = new DataOutputStream(new FileOutputStream("employee.dat"));

 23. for (Employee e : staff)

 24. e.writeData(out);

 25. out.close();

 26.

 27. // retrieve all records into a new array

 28. RandomAccessFile in = new RandomAccessFile("employee.dat", "r");

 29. // compute the array size

 30. int n = (int)(in.length() / Employee.RECORD_SIZE);

 31. Employee[] newStaff = new Employee[n];

 32.

 33. // read employees in reverse order

 34. for (int i = n - 1; i >= 0; i--)

 35. {

 36. newStaff[i] = new Employee();

 37. in.seek(i * Employee.RECORD_SIZE);

 38. newStaff[i].readData(in);

 39. }

 40. in.close();

 41.

 42. // print the newly read employee records

 43. for (Employee e : newStaff)

 44. System.out.println(e);

 45. }

 46. catch (IOException e)

 47. {

 48. e.printStackTrace();

 49. }

 50. }

 51. }

 52.

 53. class Employee

 54. {

 55. public Employee() {}

 56.

 57. public Employee(String n, double s, int year, int month, int day)

 58. {

 59. name = n;

 60. salary = s;

 61. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);

 62. hireDay = calendar.getTime();

 63. }

 64.

 65. public String getName()

 66. {

 67. return name;

 68. }

 69.

 70. public double getSalary()

 71. {

 72. return salary;

 73. }

 74.

 75. public Date getHireDay()

 76. {

 77. return hireDay;

 78. }

 79.

 80. /**

 81. Raises the salary of this employee.

 82. @byPercent the percentage of the raise

 83. */

 84. public void raiseSalary(double byPercent)

 85. {

 86. double raise = salary * byPercent / 100;

 87. salary += raise;

 88. }

 89.

 90. public String toString()

 91. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 92. return getClass().getName()

 93. + "[name=" + name

 94. + ",salary=" + salary

 95. + ",hireDay=" + hireDay

 96. + "]";

 97. }

 98.

 99. /**

100. Writes employee data to a data output

101. @param out the data output

102. */

103. public void writeData(DataOutput out) throws IOException

104. {

105. DataIO.writeFixedString(name, NAME_SIZE, out);

106. out.writeDouble(salary);

107.

108. GregorianCalendar calendar = new GregorianCalendar();

109. calendar.setTime(hireDay);

110. out.writeInt(calendar.get(Calendar.YEAR));

111. out.writeInt(calendar.get(Calendar.MONTH) + 1);

112. out.writeInt(calendar.get(Calendar.DAY_OF_MONTH));

113. }

114.

115. /**

116. Reads employee data from a data input

117. @param in the data input

118. */

119. public void readData(DataInput in) throws IOException

120. {

121. name = DataIO.readFixedString(NAME_SIZE, in);

122. salary = in.readDouble();

123. int y = in.readInt();

124. int m = in.readInt();

125. int d = in.readInt();

126. GregorianCalendar calendar = new GregorianCalendar(y, m - 1, d);

127. hireDay = calendar.getTime();

128. }

129.

130. public static final int NAME_SIZE = 40;

131. public static final int RECORD_SIZE = 2 * NAME_SIZE + 8 + 4 + 4 + 4;

132.

133. private String name;

134. private double salary;

135. private Date hireDay;

136. }

137.

138. class DataIO

139. {

140. public static String readFixedString(int size, DataInput in)

141. throws IOException

142. {

143. StringBuilder b = new StringBuilder(size);

144. int i = 0;

145. boolean more = true;

146. while (more && i < size)

147. {

148. char ch = in.readChar();

149. i++;

150. if (ch == 0) more = false;

151. else b.append(ch);

152. }

153. in.skipBytes(2 * (size - i));

154. return b.toString();

155. }

156.

157. public static void writeFixedString(String s, int size, DataOutput out)

158. throws IOException

159. {

160. for (int i = 0; i < size; i++)

161. {

162. char ch = 0;

163. if (i < s.length()) ch = s.charAt(i);

164. out.writeChar(ch);

165. }

166. }

167. }

java.io.RandomAccessFile 1.0

RandomAccessFile(String file, String mode)

RandomAccessFile(File file, String mode)

Parameters: file The file to be opened

 mode "r" for read-only mode, "rw" for read/write mode, "rws"

for read/write mode with synchronous disk writes of data
and metadata for every update, and "rwd" for read/write
mode with synchronous disk writes of data only

long getFilePointer()

returns the current location of the file pointer.

void seek(long pos)

sets the file pointer to pos bytes from the beginning of the file.

long length()

returns the length of the file in bytes.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

ZIP Archives

ZIP archives store one or more files in (usually) compressed format. Each ZIP archive has a header with
information such as the name of the file and the compression method that was used. In Java, you use a
ZipInputStream to read a ZIP archive. You need to look at the individual entries in the archive. The

getNextEntry method returns an object of type ZipEntry that describes the entry. The read method of the

ZipInputStream is modified to return -1 at the end of the current entry (instead of just at the end of the ZIP

file). You must then call closeEntry to read the next entry. Here is a typical code sequence to read through a

ZIP file:

ZipInputStream zin = new ZipInputStream(new FileInputStream(zipname));

ZipEntry entry;
while ((entry = zin.getNextEntry()) != null)

{

 analyze entry;

 read the contents of zin;

 zin.closeEntry();

}
zin.close();

To read the contents of a ZIP entry, you will probably not want to use the raw read method; usually, you will

use the methods of a more competent stream filter. For example, to read a text file inside a ZIP file, you can
use the following loop:

Scanner in = new Scanner(zin);

while (in.hasNextLine())

 do something with in.nextLine();

Note

The ZIP input stream throws a ZipException when there is an error in reading a ZIP

file. Normally this error occurs when the ZIP file has been corrupted.

To write a ZIP file, you use a ZipOutputStream. For each entry that you want to place into the ZIP file, you

create a ZipEntry object. You pass the file name to the ZipEntry constructor; it sets the other parameters

such as file date and decompression method. You can override these settings if you like. Then, you call the
putNextEntry method of the ZipOutputStream to begin writing a new file. Send the file data to the ZIP stream.

When you are done, call closeEntry. Repeat for all the files you want to store. Here is a code skeleton:

FileOutputStream fout = new FileOutputStream("test.zip");

ZipOutputStream zout = new ZipOutputStream(fout);

for all files

{

 ZipEntry ze = new ZipEntry(filename);

 zout.putNextEntry(ze);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 send data to zout;

 zout.closeEntry();

}

zout.close();

Note

JAR files (which were discussed in Volume I, Chapter 10) are simply ZIP files with
another entry, the so-called manifest. You use the JarInputStream and

JarOutputStream classes to read and write the manifest entry.

ZIP streams are a good example of the power of the stream abstraction. When you read the data that are
stored in compressed form, you don't worry that the data are being decompressed as they are being requested.
And the source of the bytes in ZIP formats need not be a file—the ZIP data can come from a network
connection. In fact, whenever the class loader of an applet reads a JAR file, it reads and decompresses data
from the network.

Note

The article at http://www.javaworld.com/javaworld/jw-10-2000/jw-1027-
toolbox.html shows you how to modify a ZIP archive.

The program shown in Listing 1-3 lets you open a ZIP file. It then displays the files stored in the ZIP archive in
the combo box at the bottom of the screen. If you select one of the files, the contents of the file are displayed in
the text area, as shown in Figure 1-5.

Figure 1-5. The ZipTest program

http://www.javaworld.com/javaworld/jw-10-2000/jw-1027-

Listing 1-3. ZipTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import java.util.*;

 5. import java.util.List;

 6. import java.util.zip.*;

 7. import javax.swing.*;

 8.

 9. /**

 10. * @version 1.32 2007-06-22

 11. * @author Cay Horstmann

 12. */

 13. public class ZipTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. ZipTestFrame frame = new ZipTestFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * A frame with a text area to show the contents of a file inside a ZIP archive, a combo

 31. * box to select different files in the archive, and a menu to load a new archive.

 32. */

 33. class ZipTestFrame extends JFrame

 34. {

 35. public ZipTestFrame()

 36. {

 37. setTitle("ZipTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. // add the menu and the Open and Exit menu items

 41. JMenuBar menuBar = new JMenuBar();

 42. JMenu menu = new JMenu("File");

 43.

 44. JMenuItem openItem = new JMenuItem("Open");

 45. menu.add(openItem);

 46. openItem.addActionListener(new ActionListener()

 47. {

 48. public void actionPerformed(ActionEvent event)

 49. {

 50. JFileChooser chooser = new JFileChooser();

 51. chooser.setCurrentDirectory(new File("."));

 52. int r = chooser.showOpenDialog(ZipTestFrame.this);

 53. if (r == JFileChooser.APPROVE_OPTION)

 54. {

 55. zipname = chooser.getSelectedFile().getPath();

 56. fileCombo.removeAllItems();

 57. scanZipFile();

 58. }

 59. }

 60. });

 61.

 62. JMenuItem exitItem = new JMenuItem("Exit");

 63. menu.add(exitItem);

 64. exitItem.addActionListener(new ActionListener()

 65. {

 66. public void actionPerformed(ActionEvent event)

 67. {

 68. System.exit(0);

 69. }

 70. });

 71.

 72. menuBar.add(menu);

 73. setJMenuBar(menuBar);

 74.

 75. // add the text area and combo box

 76. fileText = new JTextArea();

 77. fileCombo = new JComboBox();

 78. fileCombo.addActionListener(new ActionListener()

 79. {

 80. public void actionPerformed(ActionEvent event)

 81. {

 82. loadZipFile((String) fileCombo.getSelectedItem());

 83. }

 84. });

 85.

 86. add(fileCombo, BorderLayout.SOUTH);

 87. add(new JScrollPane(fileText), BorderLayout.CENTER);

 88. }

 89.

 90. /**

 91. * Scans the contents of the ZIP archive and populates the combo box.

 92. */

 93. public void scanZipFile()

 94. {

 95. new SwingWorker<Void, String>()

 96. {

 97. protected Void doInBackground() throws Exception

 98. {

 99. ZipInputStream zin = new ZipInputStream(new FileInputStream(zipname));

100. ZipEntry entry;

101. while ((entry = zin.getNextEntry()) != null)

102. {

103. publish(entry.getName());

104. zin.closeEntry();

105. }

106. zin.close();

107. return null;

108. }

109.

110. protected void process(List<String> names)

111. {

112. for (String name : names)

113. fileCombo.addItem(name);

114.

115. }

116. }.execute();

117. }

118.

119. /**

120. * Loads a file from the ZIP archive into the text area

121. * @param name the name of the file in the archive

122. */

123. public void loadZipFile(final String name)

124. {

125. fileCombo.setEnabled(false);

126. fileText.setText("");

127. new SwingWorker<Void, Void>()

128. {

129. protected Void doInBackground() throws Exception

130. {

131. try

132. {

133. ZipInputStream zin = new ZipInputStream(new FileInputStream(zipname));

134. ZipEntry entry;

135.

136. // find entry with matching name in archive

137. while ((entry = zin.getNextEntry()) != null)

138. {

139. if (entry.getName().equals(name))

140. {

141. // read entry into text area

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

142. Scanner in = new Scanner(zin);

143. while (in.hasNextLine())

144. {

145. fileText.append(in.nextLine());

146. fileText.append("\n");

147. }

148. }

149. zin.closeEntry();

150. }

151. zin.close();

152. }

153. catch (IOException e)

154. {

155. e.printStackTrace();

156. }

157. return null;

158. }

159.

160. protected void done()

161. {

162. fileCombo.setEnabled(true);

163. }

164. }.execute();

165. }

166.

167. public static final int DEFAULT_WIDTH = 400;

168. public static final int DEFAULT_HEIGHT = 300;

169. private JComboBox fileCombo;

170. private JTextArea fileText;

171. private String zipname;

172. }

java.util.zip.ZipInputStream 1.1

ZipInputStream(InputStream in)

creates a ZipInputStream that allows you to inflate data from the given

InputStream.

ZipEntry getNextEntry()

returns a ZipEntry object for the next entry, or null if there are no

more entries.

void closeEntry()

closes the current open entry in the ZIP file. You can then read the next
entry by using getNextEntry().

java.util.zip.ZipOutputStream 1.1

ZipOutputStream(OutputStream out)

creates a ZipOutputStream that you use to write compressed data to the specified

OutputStream.

void putNextEntry(ZipEntry ze)

writes the information in the given ZipEntry to the stream and positions the stream for the

data. The data can then be written to the stream by write().

void closeEntry()

closes the currently open entry in the ZIP file. Use the putNextEntry method to start the
next entry.

void setLevel(int level)

sets the default compression level of subsequent DEFLATED entries. The default value is

Deflater.DEFAULT_COMPRESSION. Throws an IllegalArgumentException if the level is not

valid.

Parameters: level A compression level, from 0 (NO_COMPRESSION) to 9

(BEST_COMPRESSION)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setMethod(int method)

sets the default compression method for this ZipOutputStream for any entries that do not
specify a method.

Parameters: method The compression method, either DEFLATED or STORED

java.util.zip.ZipEntry 1.1

ZipEntry(String name)

Parameters: name The name of the entry

long getCrc()

returns the CRC32 checksum value for this ZipEntry.

String getName()

returns the name of this entry.

long getSize()

returns the uncompressed size of this entry, or -1 if the uncompressed size is not known.

boolean isDirectory()

returns true if this entry is a directory.

void setMethod(int method)

Parameters: method The compression method for the entry; must be either
DEFLATED or STORED

void setSize(long size)

sets the size of this entry. Only required if the compression method is STORED.

Parameters: size The uncompressed size of this entry

void setCrc(long crc)

sets the CRC32 checksum of this entry. Use the CRC32 class to compute this checksum. Only

required if the compression method is STORED.

Parameters: crc The checksum of this entry

java.util.zip.ZipFile 1.1

ZipFile(String name)

ZipFile(File file)

creates a ZipFile for reading from the given string or File object.

Enumeration entries()

returns an Enumeration object that enumerates the ZipEntry objects that describe the

entries of the ZipFile.

ZipEntry getEntry(String name)

returns the entry corresponding to the given name, or null if there is no such entry.

Parameters: name The entry name

InputStream getInputStream(ZipEntry ze)

returns an InputStream for the given entry.

Parameters: ze A ZipEntry in the ZIP file

String getName()

returns the path of this ZIP file.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Object Streams and Serialization

Using a fixed-length record format is a good choice if you need to store data of the same type. However, objects
that you create in an object-oriented program are rarely all of the same type. For example, you might have an
array called staff that is nominally an array of Employee records but contains objects that are actually

instances of a subclass such as Manager.

It is certainly possible to come up with a data format that allows you to store such polymorphic collections, but
fortunately, we don't have to. The Java language supports a very general mechanism, called object serialization,
that makes it possible to write any object to a stream and read it again later. (You will see later in this chapter
where the term "serialization" comes from.)

To save object data, you first need to open an ObjectOutputStream object:

Code View:
ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("employee.dat"));

Now, to save an object, you simply use the writeObject method of the ObjectOutputStream class as in the
following fragment:

Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

out.writeObject(harry);
out.writeObject(boss);

To read the objects back in, first get an ObjectInputStream object:

Code View:
ObjectInputStream in = new ObjectInputStream(new FileInputStream("employee.dat"));

Then, retrieve the objects in the same order in which they were written, using the readObject method.

Employee e1 = (Employee) in.readObject();
Employee e2 = (Employee) in.readObject();

There is, however, one change you need to make to any class that you want to save and restore in an object
stream. The class must implement the Serializable interface:

class Employee implements Serializable { . . . }

The Serializable interface has no methods, so you don't need to change your classes in any way. In this

regard, it is similar to the Cloneable interface that we discussed in Volume I, Chapter 6. However, to make a

class cloneable, you still had to override the clone method of the Object class. To make a class serializable,

you do not need to do anything else.

Note

You can write and read only objects with the writeObject/readObject methods.

For primitive type values, you use methods such as writeInt/readInt or

writeDouble/readDouble. (The object stream classes implement the

DataInput/DataOutput interfaces.)

Behind the scenes, an ObjectOutputStream looks at all fields of the objects and saves their contents. For

example, when writing an Employee object, the name, date, and salary fields are written to the output stream.

However, there is one important situation that we need to consider: What happens when one object is shared
by several objects as part of its state?

To illustrate the problem, let us make a slight modification to the Manager class. Let's assume that each

manager has a secretary:

class Manager extends Employee

{

 . . .

 private Employee secretary;

}

Each Manager object now contains a reference to the Employee object that describes the secretary. Of course,
two managers can share the same secretary, as is the case in Figure 1-6 and the following code:

harry = new Employee("Harry Hacker", . . .);

Manager carl = new Manager("Carl Cracker", . . .);

carl.setSecretary(harry);
Manager tony = new Manager("Tony Tester", . . .);

tony.setSecretary(harry);

Figure 1-6. Two managers can share a mutual employee

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Saving such a network of objects is a challenge. Of course, we cannot save and restore the memory addresses
for the secretary objects. When an object is reloaded, it will likely occupy a completely different memory
address than it originally did.

Instead, each object is saved with a serial number, hence the name object serialization for this mechanism.
Here is the algorithm:

Associate a serial number with each object reference that you encounter (as shown in Figure 1-7).

Figure 1-7. An example of object serialization

[View full size image]

When encountering an object reference for the first time, save the object data to the stream.

If it has been saved previously, just write "same as previously saved object with serial number x."

When reading back the objects, the procedure is reversed.

When an object is specified in the stream for the first time, construct it, initialize it with the stream data,
and remember the association between the sequence number and the object reference.

When the tag "same as previously saved object with serial number x," is encountered, retrieve the object
reference for the sequence number.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

In this chapter, we use serialization to save a collection of objects to a disk file and
retrieve it exactly as we stored it. Another very important application is the
transmittal of a collection of objects across a network connection to another
computer. Just as raw memory addresses are meaningless in a file, they are also
meaningless when communicating with a different processor. Because serialization
replaces memory addresses with serial numbers, it permits the transport of object
collections from one machine to another. We study that use of serialization when
discussing remote method invocation in Chapter 5.

Listing 1-4 is a program that saves and reloads a network of Employee and Manager objects (some of which

share the same employee as a secretary). Note that the secretary object is unique after reloading—when
newStaff[1] gets a raise, that is reflected in the secretary fields of the managers.

Listing 1-4. ObjectStreamTest.java

Code View:
 1. import java.io.*;

 2. import java.util.*;

 3.

 4. /**

 5. * @version 1.10 17 Aug 1998

 6. * @author Cay Horstmann

 7. */

 8. class ObjectStreamTest

 9. {

 10. public static void main(String[] args)

 11. {

 12. Employee harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);

 13. Manager carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);

 14. carl.setSecretary(harry);

 15. Manager tony = new Manager("Tony Tester", 40000, 1990, 3, 15);

 16. tony.setSecretary(harry);

 17.

 18. Employee[] staff = new Employee[3];

 19.

 20. staff[0] = carl;

 21. staff[1] = harry;

 22. staff[2] = tony;

 23.

 24. try

 25. {

 26. // save all employee records to the file employee.dat

 27. ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("employee.dat"));

 28. out.writeObject(staff);

 29. out.close();

 30.

 31. // retrieve all records into a new array

 32. ObjectInputStream in = new ObjectInputStream(new FileInputStream("employee.dat"));

 33. Employee[] newStaff = (Employee[]) in.readObject();

 34. in.close();

 35.

 36. // raise secretary's salary

 37. newStaff[1].raiseSalary(10);

 38.

 39. // print the newly read employee records

 40. for (Employee e : newStaff)

 41. System.out.println(e);

 42. }

 43. catch (Exception e)

 44. {

 45. e.printStackTrace();

 46. }

 47. }

 48. }

 49.

 50. class Employee implements Serializable

 51. {

 52. public Employee()

 53. {

 54. }

 55.

 56. public Employee(String n, double s, int year, int month, int day)

 57. {

 58. name = n;

 59. salary = s;

 60. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);

 61. hireDay = calendar.getTime();

 62. }

 63.

 64. public String getName()

 65. {

 66. return name;

 67. }

 68.

 69. public double getSalary()

 70. {

 71. return salary;

 72. }

 73.

 74. public Date getHireDay()

 75. {

 76. return hireDay;

 77. }

 78.

 79. public void raiseSalary(double byPercent)

 80. {

 81. double raise = salary * byPercent / 100;

 82. salary += raise;

 83. }

 84.

 85. public String toString()

 86. {

 87. return getClass().getName() + "[name=" + name + ",salary=" + salary + ",hireDay="

 88. + hireDay + "]";

 89. }

 90.

 91. private String name;

 92. private double salary;

 93. private Date hireDay;

 94. }

 95.

 96. class Manager extends Employee

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 97. {

 98. /**

 99. * Constructs a Manager without a secretary

100. * @param n the employee's name

101. * @param s the salary

102. * @param year the hire year

103. * @param month the hire month

104. * @param day the hire day

105. */

106. public Manager(String n, double s, int year, int month, int day)

107. {

108. super(n, s, year, month, day);

109. secretary = null;

110. }

111.

112. /**

113. * Assigns a secretary to the manager

114. * @param s the secretary

115. */

116. public void setSecretary(Employee s)

117. {

118. secretary = s;

119. }

120.

121. public String toString()

122. {

123. return super.toString() + "[secretary=" + secretary + "]";

124. }

125.

126. private Employee secretary;

127. }

java.io.ObjectOutputStream 1.1

ObjectOutputStream(OutputStream out)

creates an ObjectOutputStream so that you can write objects to the

specified OutputStream.

void writeObject(Object obj)

writes the specified object to the ObjectOutputStream. This method

saves the class of the object, the signature of the class, and the values
of any nonstatic, nontransient field of the class and its superclasses.

java.io.ObjectInputStream 1.1

ObjectInputStream(InputStream in)

creates an ObjectInputStream to read back object information from the

specified InputStream.

Object readObject()

reads an object from the ObjectInputStream. In particular, this method

reads back the class of the object, the signature of the class, and the
values of the nontransient and nonstatic fields of the class and all its
superclasses. It does deserializing to allow multiple object references to
be recovered.

Understanding the Object Serialization File Format

Object serialization saves object data in a particular file format. Of course, you can use the
writeObject/readObject methods without having to know the exact sequence of bytes that represents objects

in a file. Nonetheless, we found studying the data format to be extremely helpful for gaining insight into the
object streaming process. Because the details are somewhat technical, feel free to skip this section if you are
not interested in the implementation.

Every file begins with the two-byte "magic number"

AC ED

followed by the version number of the object serialization format, which is currently

00 05

(We use hexadecimal numbers throughout this section to denote bytes.) Then, it contains a sequence of
objects, in the order that they were saved.

String objects are saved as

74 two-byte length characters

For example, the string "Harry" is saved as

74 00 05 Harry

The Unicode characters of the string are saved in "modified UTF-8" format.

When an object is saved, the class of that object must be saved as well. The class description contains

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The name of the class.

The serial version unique ID, which is a fingerprint of the data field types and method signatures.

A set of flags describing the serialization method.

A description of the data fields.

The fingerprint is obtained by ordering descriptions of the class, superclass, interfaces, field types, and method
signatures in a canonical way, and then applying the so-called Secure Hash Algorithm (SHA) to that data.

SHA is a fast algorithm that gives a "fingerprint" to a larger block of information. This fingerprint is always a 20-
byte data packet, regardless of the size of the original data. It is created by a clever sequence of bit operations
on the data that makes it essentially 100 percent certain that the fingerprint will change if the information is
altered in any way. (For more details on SHA, see, for example, Cryptography and Network Security: Principles
and Practice, by William Stallings [Prentice Hall, 2002].) However, the serialization mechanism uses only the
first 8 bytes of the SHA code as a class fingerprint. It is still very likely that the class fingerprint will change if
the data fields or methods change.

When reading an object, its fingerprint is compared against the current fingerprint of the class. If they don't
match, then the class definition has changed after the object was written, and an exception is generated. Of
course, in practice, classes do evolve, and it might be necessary for a program to read in older versions of
objects. We discuss this later in the section entitled "Versioning" on page 54.

Here is how a class identifier is stored:

72

2-byte length of class name

class name

8-byte fingerprint

1-byte flag

2-byte count of data field descriptors

data field descriptors

78 (end marker)

superclass type (70 if none)

The flag byte is composed of three bit masks, defined in java.io.ObjectStreamConstants:

static final byte SC_WRITE_METHOD = 1;

 // class has writeObject method that writes additional data

static final byte SC_SERIALIZABLE = 2;

 // class implements Serializable interface

static final byte SC_EXTERNALIZABLE = 4;

 // class implements Externalizable interface

We discuss the Externalizable interface later in this chapter. Externalizable classes supply custom read and

write methods that take over the output of their instance fields. The classes that we write implement the
Serializable interface and will have a flag value of 02. The serializable java.util.Date class defines its own

readObject/writeObject methods and has a flag of 03.

Each data field descriptor has the format:

1-byte type code

2-byte length of field name

field name

class name (if field is an object)

The type code is one of the following:

B byte

C char

D double

F float

I int

J long

L object

S short

Z boolean

[array

When the type code is L, the field name is followed by the field type. Class and field name strings do not start

with the string code 74, but field types do. Field types use a slightly different encoding of their names, namely,

the format used by native methods.

For example, the salary field of the Employee class is encoded as:

D 00 06 salary

Here is the complete class descriptor of the Employee class:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

72 00 08 Employee

 E6 D2 86 7D AE AC 18 1B 02 Fingerprint and flags

 00 03 Number of instance fields

 D 00 06 salary Instance field type and name

 L 00 07 hireDay Instance field type and name

 74 00 10 Ljava/util/Date; Instance field class name—Date

 L 00 04 name Instance field type and name

 74 00 12 Ljava/lang/String; Instance field class name—String

 78 End marker

 70 No superclass

These descriptors are fairly long. If the same class descriptor is needed again in the file, an abbreviated form is
used:

71 4-byte serial number

The serial number refers to the previous explicit class descriptor. We discuss the numbering scheme later.

An object is stored as

73 class descriptor object data

For example, here is how an Employee object is stored:

40 E8 6A 00 00 00 00 00 salary field value—double

73 hireDay field value—new object

 71 00 7E 00 08 Existing class java.util.Date

 77 08 00 00 00 91 1B 4E B1 80 78 External storage—details later

74 00 0C Harry Hacker name field value—String

As you can see, the data file contains enough information to restore the Employee object.

Arrays are saved in the following format:

75 class descriptor 4-byte number of entries entries

The array class name in the class descriptor is in the same format as that used by native methods (which is
slightly different from the class name used by class names in other class descriptors). In this format, class
names start with an L and end with a semicolon.

For example, an array of three Employee objects starts out like this:

75 Array

 72 00 0B [LEmployee; New class, string length, class name Employee[]

 FC BF 36 11 C5 91 11 C7 02 Fingerprint and flags

 00 00 Number of instance fields

 78 End marker

 70 No superclass

 00 00 00 03 Number of array entries

Note that the fingerprint for an array of Employee objects is different from a fingerprint of the Employee class

itself.

All objects (including arrays and strings) and all class descriptors are given serial numbers as they are saved in
the output file. The numbers start at 00 7E 00 00.

We already saw that a full class descriptor for any given class occurs only once. Subsequent descriptors refer to
it. For example, in our previous example, a repeated reference to the Date class was coded as

71 00 7E 00 08

The same mechanism is used for objects. If a reference to a previously saved object is written, it is saved in
exactly the same way; that is, 71 followed by the serial number. It is always clear from the context whether the

particular serial reference denotes a class descriptor or an object.

Finally, a null reference is stored as

70

Here is the commented output of the ObjectRefTest program of the preceding section. If you like, run the

program, look at a hex dump of its data file employee.dat, and compare it with the commented listing. The

important lines toward the end of the output show the reference to a previously saved object.

AC ED 00 05 File header

75 Array staff (serial #1)

 72 00 0B [LEmployee; New class, string length, class name Employee[]

(serial #0)

 FC BF 36 11 C5 91 11 C7 02 Fingerprint and flags

 00 00 Number of instance fields

 78 End marker

 70 No superclass

 00 00 00 03 Number of array entries

73 staff[0]—new object (serial #7)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 72 00 07 Manager New class, string length, class name (serial #2)

 36 06 AE 13 63 8F 59 B7 02 Fingerprint and flags

 00 01 Number of data fields

 L 00 09 secretary Instance field type and name

 74 00 0A LEmployee; Instance field class name—String (serial #3)

 78 End marker

 72 00 08 Employee Superclass—new class, string length, class name
(serial #4)

 E6 D2 86 7D AE AC 18 1B 02 Fingerprint and flags

 00 03 Number of instance fields

 D 00 06 salary Instance field type and name

 L 00 07 hireDay Instance field type and name

 74 00 10 Ljava/util/Date; Instance field class name—String (serial #5)

 L 00 04 name Instance field type and name

 74 00 12 Ljava/lang/String; Instance field class name—String (serial #6)

 78 End marker

 70 No superclass

 40 F3 88 00 00 00 00 00 salary field value—double

 73 hireDay field value—new object (serial #9)

 72 00 0E java.util.Date New class, string length, class name (serial #8)

 68 6A 81 01 4B 59 74 19 03 Fingerprint and flags

 00 00 No instance variables

 78 End marker

 70 No superclass

 77 08 External storage, number of bytes

 00 00 00 83 E9 39 E0 00 Date

 78 End marker

 74 00 0C Carl Cracker name field value—String (serial #10)

 73 secretary field value—new object (serial #11)

 71 00 7E 00 04 existing class (use serial #4)

 40 E8 6A 00 00 00 00 00 salary field value—double

 73 hireDay field value—new object (serial #12)

 71 00 7E 00 08 Existing class (use serial #8)

 77 08 External storage, number of bytes

 00 00 00 91 1B 4E B1 80 Date

 78 End marker

 74 00 0C Harry Hacker name field value—String (serial #13)

 71 00 7E 00 0B staff[1]—existing object (use serial #11)

 73 staff[2]—new object (serial #14)

 71 00 7E 00 02 Existing class (use serial #2)

 40 E3 88 00 00 00 00 00 salary field value—double

 73 hireDay field value—new object (serial #15)

 71 00 7E 00 08 Existing class (use serial #8)

 77 08 External storage, number of bytes

 00 00 00 94 6D 3E EC 00 00 Date

 78 End marker

 74 00 0B Tony Tester name field value—String (serial #16)

 71 00 7E 00 0B secretary field value—existing object (use serial

#11)

Of course, studying these codes can be about as exciting as reading the average phone book. It is not important
to know the exact file format (unless you are trying to create an evil effect by modifying the data), but it is still
instructive to know that the object stream contains a detailed description of all the objects that it contains, with
sufficient detail to allow reconstruction of both objects and arrays of objects.

What you should remember is this:

The object stream output contains the types and data fields of all objects.

Each object is assigned a serial number.

Repeated occurrences of the same object are stored as references to that serial number.

Modifying the Default Serialization Mechanism

Certain data fields should never be serialized, for example, integer values that store file handles or handles of
windows that are only meaningful to native methods. Such information is guaranteed to be useless when you
reload an object at a later time or transport it to a different machine. In fact, improper values for such fields can
actually cause native methods to crash. Java has an easy mechanism to prevent such fields from ever being
serialized. Mark them with the keyword transient. You also need to tag fields as transient if they belong to

nonserializable classes. Transient fields are always skipped when objects are serialized.

The serialization mechanism provides a way for individual classes to add validation or any other desired action
to the default read and write behavior. A serializable class can define methods with the signature

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

private void readObject(ObjectInputStream in)

 throws IOException, ClassNotFoundException;

private void writeObject(ObjectOutputStream out)

 throws IOException;

Then, the data fields are no longer automatically serialized, and these methods are called instead.

Here is a typical example. A number of classes in the java.awt.geom package, such as Point2D.Double, are

not serializable. Now suppose you want to serialize a class LabeledPoint that stores a String and a

Point2D.Double. First, you need to mark the Point2D.Double field as transient to avoid a

NotSerializableException.

public class LabeledPoint implements Serializable
{

 . . .

 private String label;

 private transient Point2D.Double point;

}

In the writeObject method, we first write the object descriptor and the String field, state, by calling the

defaultWriteObject method. This is a special method of the ObjectOutputStream class that can only be called

from within a writeObject method of a serializable class. Then we write the point coordinates, using the

standard DataOutput calls.

private void writeObject(ObjectOutputStream out)

 throws IOException

{

 out.defaultWriteObject();

 out.writeDouble(point.getX());

 out.writeDouble(point.getY());

}

In the readObject method, we reverse the process:

private void readObject(ObjectInputStream in)

 throws IOException

{

 in.defaultReadObject();

 double x = in.readDouble();

 double y = in.readDouble();

 point = new Point2D.Double(x, y);

}

Another example is the java.util.Date class that supplies its own readObject and writeObject methods.

These methods write the date as a number of milliseconds from the epoch (January 1, 1970, midnight UTC).
The Date class has a complex internal representation that stores both a Calendar object and a millisecond

count to optimize lookups. The state of the Calendar is redundant and does not have to be saved.

The readObject and writeObject methods only need to save and load their data fields. They should not

concern themselves with superclass data or any other class information.

Rather than letting the serialization mechanism save and restore object data, a class can define its own

mechanism. To do this, a class must implement the Externalizable interface. This in turn requires it to define

two methods:

public void readExternal(ObjectInputStream in)

 throws IOException, ClassNotFoundException;

public void writeExternal(ObjectOutputStream out)
 throws IOException;

Unlike the readObject and writeObject methods that were described in the preceding section, these methods

are fully responsible for saving and restoring the entire object, including the superclass data. The serialization
mechanism merely records the class of the object in the stream. When reading an externalizable object, the
object stream creates an object with the default constructor and then calls the readExternal method. Here is

how you can implement these methods for the Employee class:

public void readExternal(ObjectInput s)

 throws IOException

{

 name = s.readUTF();

 salary = s.readDouble();

 hireDay = new Date(s.readLong());

}

public void writeExternal(ObjectOutput s)

 throws IOException

{

 s.writeUTF(name);

 s.writeDouble(salary);

 s.writeLong(hireDay.getTime());

}

Tip

Serialization is somewhat slow because the virtual machine must discover the
structure of each object. If you are concerned about performance and if you read
and write a large number of objects of a particular class, you should investigate the
use of the Externalizable interface. The tech tip

http://java.sun.com/developer/TechTips/2000/tt0425.html demonstrates that in the
case of an employee class, using external reading and writing was about 35 to 40
percent faster than the default serialization.

Caution

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/developer/TechTips/2000/tt0425.html

Unlike the readObject and writeObject methods, which are private and can only

be called by the serialization mechanism, the readExternal and writeExternal

methods are public. In particular, readExternal potentially permits modification of

the state of an existing object.

Serializing Singletons and Typesafe Enumerations

You have to pay particular attention when serializing and deserializing objects that are assumed to be unique.
This commonly happens when you are implementing singletons and typesafe enumerations.

If you use the enum construct of Java SE 5.0, then you need not worry about serialization—it just works.
However, suppose you maintain legacy code that contains an enumerated type such as

public class Orientation

{
 public static final Orientation HORIZONTAL = new Orientation(1);

 public static final Orientation VERTICAL = new Orientation(2);

 private Orientation(int v) { value = v; }

 private int value;

}

This idiom was common before enumerations were added to the Java language. Note that the constructor is
private. Thus, no objects can be created beyond Orientation.HORIZONTAL and Orientation.VERTICAL. In

particular, you can use the == operator to test for object equality:

if (orientation == Orientation.HORIZONTAL) . . .

There is an important twist that you need to remember when a typesafe enumeration implements the
Serializable interface. The default serialization mechanism is not appropriate. Suppose we write a value of

type Orientation and read it in again:

Orientation original = Orientation.HORIZONTAL;

ObjectOutputStream out = . . .;

out.write(value);
out.close();

ObjectInputStream in = . . .;

Orientation saved = (Orientation) in.read();

Now the test

if (saved == Orientation.HORIZONTAL) . . .

will fail. In fact, the saved value is a completely new object of the Orientation type and not equal to any of the

predefined constants. Even though the constructor is private, the serialization mechanism can create new
objects!

To solve this problem, you need to define another special serialization method, called readResolve. If the

readResolve method is defined, it is called after the object is deserialized. It must return an object that then

becomes the return value of the readObject method. In our case, the readResolve method will inspect the

value field and return the appropriate enumerated constant:

protected Object readResolve() throws ObjectStreamException

{

 if (value == 1) return Orientation.HORIZONTAL;

 if (value == 2) return Orientation.VERTICAL;

 return null; // this shouldn't happen

}

Remember to add a readResolve method to all typesafe enumerations in your legacy code and to all classes

that follow the singleton design pattern.

Versioning

If you use serialization to save objects, you will need to consider what happens when your program evolves.
Can version 1.1 read the old files? Can the users who still use 1.0 read the files that the new version is now
producing? Clearly, it would be desirable if object files could cope with the evolution of classes.

At first glance it seems that this would not be possible. When a class definition changes in any way, then its SHA
fingerprint also changes, and you know that object streams will refuse to read in objects with different
fingerprints. However, a class can indicate that it is compatible with an earlier version of itself. To do this, you
must first obtain the fingerprint of the earlier version of the class. You use the stand-alone serialver program

that is part of the JDK to obtain this number. For example, running

serialver Employee

prints

Employee: static final long serialVersionUID = -1814239825517340645L;

If you start the serialver program with the -show option, then the program brings up a graphical dialog box

(see Figure 1-8).

Figure 1-8. The graphical version of the serialver program

All later versions of the class must define the serialVersionUID constant to the same fingerprint as the

original.

class Employee implements Serializable // version 1.1

{

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 . . .

 public static final long serialVersionUID = -1814239825517340645L;

}

When a class has a static data member named serialVersionUID, it will not compute the fingerprint manually

but instead will use that value.

Once that static data member has been placed inside a class, the serialization system is now willing to read in
different versions of objects of that class.

If only the methods of the class change, there is no problem with reading the new object data. However, if data
fields change, then you may have problems. For example, the old file object may have more or fewer data fields
than the one in the program, or the types of the data fields may be different. In that case, the object stream
makes an effort to convert the stream object to the current version of the class.

The object stream compares the data fields of the current version of the class with the data fields of the version
in the stream. Of course, the object stream considers only the nontransient and nonstatic data fields. If two
fields have matching names but different types, then the object stream makes no effort to convert one type to
the other—the objects are incompatible. If the object in the stream has data fields that are not present in the
current version, then the object stream ignores the additional data. If the current version has data fields that
are not present in the streamed object, the added fields are set to their default (null for objects, zero for

numbers, and false for boolean values).

Here is an example. Suppose we have saved a number of employee records on disk, using the original version
(1.0) of the class. Now we change the Employee class to version 2.0 by adding a data field called department.

Figure 1-9 shows what happens when a 1.0 object is read into a program that uses 2.0 objects. The department
field is set to null. Figure 1-10 shows the opposite scenario: A program using 1.0 objects reads a 2.0 object.

The additional department field is ignored.

Figure 1-9. Reading an object with fewer data fields

[View full size image]

Figure 1-10. Reading an object with more data fields

[View full size image]

Is this process safe? It depends. Dropping a data field seems harmless—the recipient still has all the data that it
knew how to manipulate. Setting a data field to null might not be so safe. Many classes work hard to initialize

all data fields in all constructors to non-null values, so that the methods don't have to be prepared to handle
null data. It is up to the class designer to implement additional code in the readObject method to fix version

incompatibilities or to make sure the methods are robust enough to handle null data.

Using Serialization for Cloning

There is an amusing use for the serialization mechanism: It gives you an easy way to clone an object provided
the class is serializable. Simply serialize it to an output stream and then read it back in. The result is a new
object that is a deep copy of the existing object. You don't have to write the object to a file—you can use a
ByteArrayOutputStream to save the data into a byte array.

As Listing 1-5 shows, to get clone for free, simply extend the SerialCloneable class, and you are done.

You should be aware that this method, although clever, will usually be much slower than a clone method that
explicitly constructs a new object and copies or clones the data fields.

Listing 1-5. SerialCloneTest.java

Code View:
 1. import java.io.*;

 2. import java.util.*;

 3.

 4. public class SerialCloneTest

 5. {

 6. public static void main(String[] args)

 7. {

 8. Employee harry = new Employee("Harry Hacker", 35000, 1989, 10, 1);

 9. // clone harry

10. Employee harry2 = (Employee) harry.clone();

11.

12. // mutate harry

13. harry.raiseSalary(10);

14.

15. // now harry and the clone are different

16. System.out.println(harry);

17. System.out.println(harry2);

18. }

19. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

20.

21. /**

22. A class whose clone method uses serialization.

23. */

24. class SerialCloneable implements Cloneable, Serializable

25. {

26. public Object clone()

27. {

28. try

29. {

30. // save the object to a byte array

31. ByteArrayOutputStream bout = new ByteArrayOutputStream();

32. ObjectOutputStream out = new ObjectOutputStream(bout);

33. out.writeObject(this);

34. out.close();

35.

36. // read a clone of the object from the byte array

37. ByteArrayInputStream bin = new ByteArrayInputStream(bout.toByteArray());

38. ObjectInputStream in = new ObjectInputStream(bin);

39. Object ret = in.readObject();

40. in.close();

41.

42. return ret;

43. }

44. catch (Exception e)

45. {

46. return null;

47. }

48. }

49. }

50.

51. /**

52. The familiar Employee class, redefined to extend the

53. SerialCloneable class.

54. */

55. class Employee extends SerialCloneable

56. {

57. public Employee(String n, double s, int year, int month, int day)

58. {

59. name = n;

60. salary = s;

61. GregorianCalendar calendar = new GregorianCalendar(year, month - 1, day);

62. hireDay = calendar.getTime();

63. }

64.

65. public String getName()

66. {

67. return name;

68. }

69.

70. public double getSalary()

71. {

72. return salary;

73. }

74.

75. public Date getHireDay()

76. {

77. return hireDay;

78. }

79.

80. public void raiseSalary(double byPercent)

81. {

82. double raise = salary * byPercent / 100;

83. salary += raise;

84. }

85.

86. public String toString()

87. {

88. return getClass().getName()

89. + "[name=" + name

90. + ",salary=" + salary

91. + ",hireDay=" + hireDay

92. + "]";

93. }

94.

95. private String name;

96. private double salary;

97. private Date hireDay;

98. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

File Management

You have learned how to read and write data from a file. However, there is more to file management than
reading and writing. The File class encapsulates the functionality that you will need to work with the file

system on the user's machine. For example, you use the File class to find out when a file was last modified or

to remove or rename the file. In other words, the stream classes are concerned with the contents of the file,
whereas the File class is concerned with the storage of the file on a disk.

Note

As is so often the case in Java, the File class takes the least common denominator

approach. For example, under Windows, you can find out (or set) the read-only flag
for a file, but while you can find out if it is a hidden file, you can't hide it without
using a native method.

The simplest constructor for a File object takes a (full) file name. If you don't supply a path name, then Java

uses the current directory. For example,

File f = new File("test.txt");

gives you a file object with this name in the current directory. (The "current directory" is the current directory of
the process that executes the virtual machine. If you launched the virtual machine from the command line, it is
the directory from which you started the java executable.)

Caution

Because the backslash character is the escape character in Java strings, be sure to
use \\ for Windows-style path names ("C:\\Windows\\win.ini"). In Windows, you
can also use a single forward slash ("C:/Windows/win.ini") because most

Windows file handling system calls will interpret forward slashes as file separators.
However, this is not recommended—the behavior of the Windows system functions
is subject to change, and on other operating systems, the file separator might be
different. Instead, for portable programs, you should use the file separator
character for the platform on which your program runs. It is stored in the constant
string File.separator.

A call to this constructor does not create a file with this name if it doesn't exist. Actually, creating a file from a
File object is done with one of the stream class constructors or the createNewFile method in the File class.

The createNewFile method only creates a file if no file with that name exists, and it returns a boolean to tell

you whether it was successful.

On the other hand, once you have a File object, the exists method in the File class tells you whether a file

exists with that name. For example, the following trial program would almost certainly print "false" on anyone's
machine, and yet it can print out a path name to this nonexistent file.

import java.io.*;

public class Test

{

 public static void main(String args[])

 {

 File f = new File("afilethatprobablydoesntexist");

 System.out.println(f.getAbsolutePath());

 System.out.println(f.exists());
 }

}

There are two other constructors for File objects:

File(String path, String name)

which creates a File object with the given name in the directory specified by the path parameter. (If the path

parameter is null, this constructor creates a File object, using the current directory.)

Finally, you can use an existing File object in the constructor:

File(File dir, String name)

where the File object represents a directory and, as before, if dir is null, the constructor creates a File

object in the current directory.

Somewhat confusingly, a File object can represent either a file or a directory (perhaps because the operating

system that the Java designers were most familiar with happens to implement directories as files). You use the
isDirectory and isFile methods to tell whether the file object represents a file or a directory. This is

surprising—in an object-oriented system, you might have expected a separate Directory class, perhaps
extending the File class.

To make an object representing a directory, you simply supply the directory name in the File constructor:

File tempDir = new File(File.separator + "temp");

If this directory does not yet exist, you can create it with the mkdir method:

tempDir.mkdir();

If a file object represents a directory, use list() to get an array of the file names in that directory. The

program in Listing 1-6 uses all these methods to print out the directory substructure of whatever path is
entered on the command line. (It would be easy enough to change this program into a utility class that returns
a list of the subdirectories for further processing.)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Tip

Always use File objects, not strings, when manipulating file or directory names. For

example, the equals method of the File class knows that some file systems are not

case significant and that a trailing / in a directory name doesn't matter.

Listing 1-6. FindDirectories.java

Code View:
 1. import java.io.*;

 2.

 3. /**

 4. * @version 1.00 05 Sep 1997

 5. * @author Gary Cornell

 6. */

 7. public class FindDirectories

 8. {

 9. public static void main(String[] args)

10. {

11. // if no arguments provided, start at the parent directory

12. if (args.length == 0) args = new String[] { ".." };

13.

14. try

15. {

16. File pathName = new File(args[0]);

17. String[] fileNames = pathName.list();

18.

19. // enumerate all files in the directory

20. for (int i = 0; i < fileNames.length; i++)

21. {

22. File f = new File(pathName.getPath(), fileNames[i]);

23.

24. // if the file is again a directory, call the main method recursively

25. if (f.isDirectory())

26. {

27. System.out.println(f.getCanonicalPath());

28. main(new String[] { f.getPath() });

29. }

30. }

31. }

32. catch (IOException e)

33. {

34. e.printStackTrace();

35. }

36. }

37. }

Rather than listing all files in a directory, you can use a FileNameFilter object as a parameter to the list

method to narrow down the list. These objects are simply instances of a class that satisfies the FilenameFilter

interface.

All a class needs to do to implement the FilenameFilter interface is define a method called accept. Here is an

example of a simple FilenameFilter class that allows only files with a specified extension:

public class ExtensionFilter implements FilenameFilter
{

 public ExtensionFilter(String ext)

 {

 extension = "." + ext;

 }

 public boolean accept(File dir, String name)

 {

 return name.endsWith(extension);

 }

 private String extension;

}

When writing portable programs, it is a challenge to specify file names with subdirectories. As we mentioned
earlier, it turns out that you can use a forward slash (the UNIX separator) as the directory separator in Windows
as well, but other operating systems might not permit this, so we don't recommend using a forward slash.

Caution

If you do use forward slashes as directory separators in Windows when constructing
a File object, the getAbsolutePath method returns a file name that contains

forward slashes, which will look strange to Windows users. Instead, use the
getCanonicalPath method—it replaces the forward slashes with backslashes.

It is much better to use the information about the current directory separator that the File class stores in a
static instance field called separator. In a Windows environment, this is a backslash (\); in a UNIX

environment, it is a forward slash (/). For example:

File foo = new File("Documents" + File.separator + "data.txt")

Of course, if you use the second alternate version of the File constructor

File foo = new File("Documents", "data.txt")

then the constructor will supply the correct separator.

The API notes that follow give you what we think are the most important remaining methods of the File class;

their use should be straightforward.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.io.File 1.0

boolean canRead()

boolean canWrite()

boolean canExecute() 6

indicates whether the file is readable, writable, or executable.

boolean setReadable(boolean state, boolean ownerOnly) 6

boolean setWritable(boolean state, boolean ownerOnly) 6

boolean setExecutable(boolean state, boolean ownerOnly) 6

sets the readable, writable, or executable state of this file. If ownerOnly is true, the state is

set for the file's owner only. Otherwise, it is set for everyone. The methods return true if

setting the state succeeded.

static boolean createTempFile(String prefix, String suffix) 1.2

static boolean createTempFile(String prefix, String suffix, File directory) 1.2

creates a temporary file in the system's default temp directory or the given directory, using
the given prefix and suffix to generate the temporary name.

Parameters: prefix A prefix string that is at least three characters long

 suffix An optional suffix. If null, .tmp is used

 directory The directory in which the file is created. If it is null, the
file is created in the current working directory

boolean delete()

tries to delete the file. Returns true if the file was deleted, false otherwise.

void deleteOnExit()

requests that the file be deleted when the virtual machine shuts down.

boolean exists()

returns true if the file or directory exists; false otherwise.

String getAbsolutePath()

returns a string that contains the absolute path name. Tip: Use getCanonicalPath instead.

File getCanonicalFile() 1.2

returns a File object that contains the canonical path name for the file. In particular,

redundant "." directories are removed, the correct directory separator is used, and the

capitalization preferred by the underlying file system is obtained.

String getCanonicalPath() 1.1

returns a string that contains the canonical path name. In particular, redundant "."

directories are removed, the correct directory separator is used, and the capitalization
preferred by the underlying file system is obtained.

String getName()

returns a string that contains the file name of the File object (does not include path

information).

String getParent()

returns a string that contains the name of the parent of this File object. If this File object

is a file, then the parent is the directory containing it. If it is a directory, then the parent is
the parent directory or null if there is no parent directory.

File getParentFile() 1.2

returns a File object for the parent of this File directory. See getParent for a definition of

"parent."

String getPath()

returns a string that contains the path name of the file.

boolean isDirectory()

returns true if the File represents a directory; false otherwise.

boolean isFile()

returns true if the File object represents a file as opposed to a directory or a device.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

boolean isHidden() 1.2

returns true if the File object represents a hidden file or directory.

long lastModified()

returns the time the file was last modified (counted in milliseconds since Midnight January 1,
1970 GMT), or 0 if the file does not exist. Use the Date(long) constructor to convert this

value to a date.

long length()

returns the length of the file in bytes, or 0 if the file does not exist.

String[] list()

returns an array of strings that contain the names of the files and directories contained by
this File object, or null if this File was not representing a directory.

String[] list(FilenameFilter filter)

returns an array of the names of the files and directories contained by this File that satisfy

the filter, or null if none exist.

File[] listFiles() 1.2

returns an array of File objects corresponding to the files and directories contained by this
File object, or null if this File was not representing a directory.

File[] listFiles(FilenameFilter filter) 1.2

returns an array of File objects for the files and directories contained by this File that

satisfy the filter, or null if none exist.

static File[] listRoots() 1.2

returns an array of File objects corresponding to all the available file roots. (For example,

on a Windows system, you get the File objects representing the installed drives, both local

drives and mapped network drives. On a UNIX system, you simply get "/".)

boolean createNewFile() 1.2

atomically makes a new file whose name is given by the File object if no file with that name

exists. That is, the checking for the file name and the creation are not interrupted by other
file system activity. Returns true if the method created the file.

boolean mkdir()

makes a subdirectory whose name is given by the File object. Returns true if the directory
was successfully created; false otherwise.

boolean mkdirs()

unlike mkdir, creates the parent directories if necessary. Returns false if any of the

necessary directories could not be created.

boolean renameTo(File newName)

returns true if the name was changed; false otherwise.

boolean setLastModified(long time) 1.2

sets the last modified time of the file. Returns true if successful, false otherwise. time is a

long integer representing the number of milliseconds since Midnight January 1, 1970, GMT.
Use the getTime method of the Date class to calculate this value.

boolean setReadOnly() 1.2

sets the file to be read-only. Returns true if successful, false otherwise.

URL toURL() 1.2

converts the File object to a file URL.

long getTotalSpace() 6

long getFreeSpace() 6

long getUsableSpace() 6

gets the total size, number of unallocated bytes, and number of available bytes on the
partition described by this File object. If this File object does not describe a partition, the

methods return 0.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.io.FilenameFilter 1.0

boolean accept(File dir, String name)

should be defined to return true if the file matches the filter criterion.

Parameters: dir A File object representing the directory that contains

the file

 name The name of the file

New I/O

Java SE 1.4 introduced a number of features for improved input/output processing, collectively called the "new
I/O," in the java.nio package. (Of course, the "new" moniker is somewhat regrettable because, a few years

down the road, the package wasn't new any longer.)

The package includes support for the following features:

Character set encoders and decoders

Nonblocking I/O

Memory-mapped files

File locking

We already covered character encoding and decoding in the section "Character Sets" on page 19. Nonblocking
I/O is discussed in Chapter 3 because it is particularly important when communicating across a network. In the
following sections, we examine memory-mapped files and file locking in detail.

Memory-Mapped Files

Most operating systems can take advantage of the virtual memory implementation to "map" a file, or a region of
a file, into memory. Then the file can be accessed as if it were an in-memory array, which is much faster than
the traditional file operations.

At the end of this section, you can find a program that computes the CRC32 checksum of a file, using traditional
file input and a memory-mapped file. On one machine, we got the timing data shown in Table 1-6 when
computing the checksum of the 37-Mbyte file rt.jar in the jre/lib directory of the JDK.

Table 1-6. Timing Data for File Operations

Method Time

Plain Input Stream 110 seconds

Buffered Input Stream 9.9 seconds

Random Access File 162 seconds

Memory Mapped file 7.2 seconds

As you can see, on this particular machine, memory mapping is a bit faster than using buffered sequential input
and dramatically faster than using a RandomAccessFile.

Of course, the exact values will differ greatly from one machine to another, but it is obvious that the
performance gain can be substantial if you need to use random access. For sequential reading of files of
moderate size, on the other hand, there is no reason to use memory mapping.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The java.nio package makes memory mapping quite simple. Here is what you do.

First, get a channel from the file. A channel is an abstraction for disk files that lets you access operating system
features such as memory mapping, file locking, and fast data transfers between files. You get a channel by
calling the getChannel method that has been added to the FileInputStream, FileOutputStream, and

RandomAccessFile class.

FileInputStream in = new FileInputStream(. . .);

FileChannel channel = in.getChannel();

Then you get a MappedByteBuffer from the channel by calling the map method of the FileChannel class. You

specify the area of the file that you want to map and a mapping mode. Three modes are supported:

FileChannel.MapMode.READ_ONLY: The resulting buffer is read-only. Any attempt to write to the buffer

results in a ReadOnlyBufferException.

FileChannel.MapMode.READ_WRITE: The resulting buffer is writable, and the changes will be written back

to the file at some time. Note that other programs that have mapped the same file might not see those
changes immediately. The exact behavior of simultaneous file mapping by multiple programs is operating-
system dependent.

FileChannel.MapMode.PRIVATE: The resulting buffer is writable, but any changes are private to this

buffer and are not propagated to the file.

Once you have the buffer, you can read and write data, using the methods of the ByteBuffer class and the

Buffer superclass.

Buffers support both sequential and random data access. A buffer has a position that is advanced by get and

put operations. For example, you can sequentially traverse all bytes in the buffer as

while (buffer.hasRemaining())
{

 byte b = buffer.get();

 . . .

}

Alternatively, you can use random access:

for (int i = 0; i < buffer.limit(); i++)

{

 byte b = buffer.get(i);
 . . .

}

You can also read and write arrays of bytes with the methods

get(byte[] bytes)

get(byte[], int offset, int length)

Finally, there are methods

getInt
getLong

getShort

getChar

getFloat

getDouble

to read primitive type values that are stored as binary values in the file. As we already mentioned, Java uses
big-endian ordering for binary data. However, if you need to process a file containing binary numbers in little-
endian order, simply call

buffer.order(ByteOrder.LITTLE_ENDIAN);

To find out the current byte order of a buffer, call

ByteOrder b = buffer.order()

Caution

This pair of methods does not use the set/get naming convention.

To write numbers to a buffer, use one of the methods

putInt

putLong

putShort

putChar

putFloat

putDouble

Listing 1-7 computes the 32-bit cyclic redundancy checksum (CRC32) of a file. That quantity is a checksum that
is often used to determine whether a file has been corrupted. Corruption of a file makes it very likely that the
checksum has changed. The java.util.zip package contains a class CRC32 that computes the checksum of a

sequence of bytes, using the following loop:

CRC32 crc = new CRC32();

while (more bytes)

 crc.update(next byte)

long checksum = crc.getValue();

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

For a nice explanation of the CRC algorithm, see
http://www.relisoft.com/Science/CrcMath.html.

The details of the CRC computation are not important. We just use it as an example of a useful file operation.

Run the program as

java NIOTest filename

Listing 1-7. NIOTest.java

Code View:
 1. import java.io.*;

 2. import java.nio.*;

 3. import java.nio.channels.*;

 4. import java.util.zip.*;

 5.

 6. /**

 7. * This program computes the CRC checksum of a file.

 8. * Usage: java NIOTest filename

 9. * @version 1.01 2004-05-11

10. * @author Cay Horstmann

11. */

12. public class NIOTest

13. {

14. public static long checksumInputStream(String filename) throws IOException

15. {

16. InputStream in = new FileInputStream(filename);

17. CRC32 crc = new CRC32();

18.

19. int c;

20. while ((c = in.read()) != -1)

21. crc.update(c);

22. return crc.getValue();

23. }

24.

25. public static long checksumBufferedInputStream(String filename) throws IOException

26. {

27. InputStream in = new BufferedInputStream(new FileInputStream(filename));

28. CRC32 crc = new CRC32();

29.

30. int c;

31. while ((c = in.read()) != -1)

32. crc.update(c);

33. return crc.getValue();

34. }

35.

36. public static long checksumRandomAccessFile(String filename) throws IOException

37. {

38. RandomAccessFile file = new RandomAccessFile(filename, "r");

39. long length = file.length();

40. CRC32 crc = new CRC32();

41.

42. for (long p = 0; p < length; p++)

http://www.relisoft.com/Science/CrcMath.html

43. {

44. file.seek(p);

45. int c = file.readByte();

46. crc.update(c);

47. }

48. return crc.getValue();

49. }

50.

51. public static long checksumMappedFile(String filename) throws IOException

52. {

53. FileInputStream in = new FileInputStream(filename);

54. FileChannel channel = in.getChannel();

55.

56. CRC32 crc = new CRC32();

57. int length = (int) channel.size();

58. MappedByteBuffer buffer = channel.map(FileChannel.MapMode.READ_ONLY, 0, length);

59.

60. for (int p = 0; p < length; p++)

61. {

62. int c = buffer.get(p);

63. crc.update(c);

64. }

65. return crc.getValue();

66. }

67.

68. public static void main(String[] args) throws IOException

69. {

70. System.out.println("Input Stream:");

71. long start = System.currentTimeMillis();

72. long crcValue = checksumInputStream(args[0]);

73. long end = System.currentTimeMillis();

74. System.out.println(Long.toHexString(crcValue));

75. System.out.println((end - start) + " milliseconds");

76.

77. System.out.println("Buffered Input Stream:");

78. start = System.currentTimeMillis();

79. crcValue = checksumBufferedInputStream(args[0]);

80. end = System.currentTimeMillis();

81. System.out.println(Long.toHexString(crcValue));

82. System.out.println((end - start) + " milliseconds");

83.

84. System.out.println("Random Access File:");

85. start = System.currentTimeMillis();

86. crcValue = checksumRandomAccessFile(args[0]);

87. end = System.currentTimeMillis();

88. System.out.println(Long.toHexString(crcValue));

89. System.out.println((end - start) + " milliseconds");

90.

91. System.out.println("Mapped File:");

92. start = System.currentTimeMillis();

93. crcValue = checksumMappedFile(args[0]);

94. end = System.currentTimeMillis();

95. System.out.println(Long.toHexString(crcValue));

96. System.out.println((end - start) + " milliseconds");

97. }

98. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.io.FileInputStream 1.0

FileChannel getChannel() 1.4

returns a channel for accessing this stream.

java.io.FileOutputStream 1.0

FileChannel getChannel() 1.4

returns a channel for accessing this stream.

java.io.RandomAccessFile 1.0

FileChannel getChannel() 1.4

returns a channel for accessing this file.

java.nio.channels.FileChannel 1.4

MappedByteBuffer map(FileChannel.MapMode mode, long position, long size)

maps a region of the file to memory.

Parameters: mode One of the constants READ_ONLY, READ_WRITE, or PRIVATE
in the FileChannel.MapMode class

 position The start of the mapped region

 size The size of the mapped region

java.nio.Buffer 1.4

boolean hasRemaining()

returns true if the current buffer position has not yet reached the

buffer's limit position.

int limit()

returns the limit position of the buffer; that is, the first position at which
no more values are available.

java.nio.ByteBuffer 1.4

byte get()

gets a byte from the current position and advances the current position to the next byte.

byte get(int index)

gets a byte from the specified index.

ByteBuffer put(byte b)

puts a byte to the current position and advances the current position to the next byte.
Returns a reference to this buffer.

ByteBuffer put(int index, byte b)

puts a byte at the specified index. Returns a reference to this buffer.

ByteBuffer get(byte[] destination)

ByteBuffer get(byte[] destination, int offset, int length)

fills a byte array, or a region of a byte array, with bytes from the buffer, and advances the
current position by the number of bytes read. If not enough bytes remain in the buffer, then
no bytes are read, and a BufferUnderflowException is thrown. Returns a reference to this

buffer.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Parameters: destination The byte array to be filled

 offset The offset of the region to be filled

 length The length of the region to be filled

ByteBuffer put(byte[] source)

ByteBuffer put(byte[] source, int offset, int length)

puts all bytes from a byte array, or the bytes from a region of a byte array, into the buffer,
and advances the current position by the number of bytes read. If not enough bytes remain
in the buffer, then no bytes are written, and a BufferOverflowException is thrown. Returns

a reference to this buffer.

Parameters: source The byte array to be written

 offset The offset of the region to be written

 length The length of the region to be written

Xxx getXxx()

Xxx getXxx(int index)

ByteBuffer putXxx(xxx value)

ByteBuffer putXxx(int index, xxx value)

gets or puts a binary number. Xxx is one of Int, Long, Short, Char, Float, or Double.

ByteBuffer order(ByteOrder order)

ByteOrder order()

sets or gets the byte order. The value for order is one of the constants BIG_ENDIAN or

LITTLE_ENDIAN of the ByteOrder class.

The Buffer Data Structure

When you use memory mapping, you make a single buffer that spans the entire file, or the area of the file in
which you are interested. You can also use buffers to read and write more modest chunks of information.

In this section, we briefly describe the basic operations on Buffer objects. A buffer is an array of values of the

same type. The Buffer class is an abstract class with concrete subclasses ByteBuffer, CharBuffer,

DoubleBuffer, FloatBuffer, IntBuffer, LongBuffer, and ShortBuffer.

Note

The StringBuffer class is not related to these buffers.

In practice, you will most commonly use ByteBuffer and CharBuffer. As shown in Figure 1-11, a buffer has

A capacity that never changes.

A position at which the next value is read or written.

A limit beyond which reading and writing is meaningless.

Optionally, a mark for repeating a read or write operation.

Figure 1-11. A buffer

These values fulfill the condition

0 mark position limit capacity

The principal purpose for a buffer is a "write, then read" cycle. At the outset, the buffer's position is 0 and the
limit is the capacity. Keep calling put to add values to the buffer. When you run out of data or you reach the

capacity, it is time to switch to reading.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Call flip to set the limit to the current position and the position to 0. Now keep calling get while the remaining

method (which returns limit - position) is positive. When you have read all values in the buffer, call clear to

prepare the buffer for the next writing cycle. The clear method resets the position to 0 and the limit to the
capacity.

If you want to reread the buffer, use rewind or mark/reset—see the API notes for details.

java.nio.Buffer 1.4

Buffer clear()

prepares this buffer for writing by setting the position to 0 and the limit
to the capacity; returns this.

Buffer flip()

prepares this buffer for reading by setting the limit to the position and
the position to 0; returns this.

Buffer rewind()

prepares this buffer for rereading the same values by setting the position
to 0 and leaving the limit unchanged; returns this.

Buffer mark()

sets the mark of this buffer to the position; returns this.

Buffer reset()

sets the position of this buffer to the mark, thus allowing the marked
portion to be read or written again; returns this.

int remaining()

returns the remaining number of readable or writable values; that is, the
difference between limit and position.

int position()

returns the position of this buffer.

int capacity()

returns the capacity of this buffer.

java.nio.CharBuffer 1.4

char get()

CharBuffer get(char[] destination)

CharBuffer get(char[] destination, int offset, int length)

gets one char value, or a range of char values, starting at the buffer's

position and moving the position past the characters that were read. The
last two methods return this.

CharBuffer put(char c)

CharBuffer put(char[] source)

CharBuffer put(char[] source, int offset, int length)

CharBuffer put(String source)

CharBuffer put(CharBuffer source)

puts one char value, or a range of char values, starting at the buffer's
position and advancing the position past the characters that were
written. When reading from a CharBuffer, all remaining characters are

read. All methods return this.

CharBuffer read(CharBuffer destination)

gets char values from this buffer and puts them into the destination

until the destination's limit is reached. Returns this.

File Locking

Consider a situation in which multiple simultaneously executing programs need to modify the same file. Clearly,
the programs need to communicate in some way, or the file can easily become damaged.

File locks control access to a file or a range of bytes within a file. However, file locking varies greatly among
operating systems, which explains why file locking capabilities were absent from prior versions of the JDK.

File locking is not all that common in application programs. Many applications use a database for data storage,

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

and the database has mechanisms for resolving concurrent access. If you store information in flat files and are
worried about concurrent access, you might find it simpler to start using a database rather than designing
complex file locking schemes.

Still, there are situations in which file locking is essential. Suppose your application saves a configuration file
with user preferences. If a user invokes two instances of the application, it could happen that both of them want
to write the configuration file at the same time. In that situation, the first instance should lock the file. When the
second instance finds the file locked, it can decide to wait until the file is unlocked or simply skip the writing
process.

To lock a file, call either the lock or tryLock method of the FileChannel class:

FileLock lock = channel.lock();

or

FileLock lock = channel.tryLock();

The first call blocks until the lock becomes available. The second call returns immediately, either with the lock or
null if the lock is not available. The file remains locked until the channel is closed or the release method is

invoked on the lock.

You can also lock a portion of the file with the call

FileLock lock(long start, long size, boolean exclusive)

or

FileLock tryLock(long start, long size, boolean exclusive)

The exclusive flag is true to lock the file for both reading and writing. It is false for a shared lock, which

allows multiple processes to read from the file, while preventing any process from acquiring an exclusive lock.
Not all operating systems support shared locks. You may get an exclusive lock even if you just asked for a
shared one. Call the isShared method of the FileLock class to find out which kind you have.

Note

If you lock the tail portion of a file and the file subsequently grows beyond the
locked portion, the additional area is not locked. To lock all bytes, use a size of
Long.MAX_VALUE.

Keep in mind that file locking is system dependent. Here are some points to watch for:

On some systems, file locking is merely advisory. If an application fails to get a lock, it may still write to a
file that another application has currently locked.

On some systems, you cannot simultaneously lock a file and map it into memory.

File locks are held by the entire Java virtual machine. If two programs are launched by the same virtual
machine (such as an applet or application launcher), then they can't each acquire a lock on the same file.
The lock and tryLock methods will throw an OverlappingFileLockException if the virtual machine

already holds another overlapping lock on the same file.

On some systems, closing a channel releases all locks on the underlying file held by the Java virtual
machine. You should therefore avoid multiple channels on the same locked file.

Locking files on a networked file system is highly system dependent and should probably be avoided.

java.nio.channels.FileChannel 1.4

FileLock lock()

acquires an exclusive lock on the entire file. This method blocks until the lock is acquired.

FileLock tryLock()

acquires an exclusive lock on the entire file, or returns null if the lock cannot be acquired.

FileLock lock(long position, long size, boolean shared)

FileLock tryLock(long position, long size, boolean shared)

acquires a lock on a region of the file. The first method blocks until the lock is acquired, and
the second method returns null if the lock cannot be acquired.

Parameters: position The start of the region to be locked

 size The size of the region to be locked

 shared true for a shared lock, false for an exclusive lock

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.nio.channels.FileLock 1.4

void release()

releases this lock.

Regular Expressions

Regular expressions are used to specify string patterns. You can use regular expressions whenever you need to
locate strings that match a particular pattern. For example, one of our sample programs locates all hyperlinks in
an HTML file by looking for strings of the pattern .

Of course, for specifying a pattern, the ... notation is not precise enough. You need to specify precisely what

sequence of characters is a legal match. You need to use a special syntax whenever you describe a pattern.

Here is a simple example. The regular expression

[Jj]ava.+

matches any string of the following form:

The first letter is a J or j.

The next three letters are ava.

The remainder of the string consists of one or more arbitrary characters.

For example, the string "javanese" matches the particular regular expression, but the string "Core Java" does

not.

As you can see, you need to know a bit of syntax to understand the meaning of a regular expression.
Fortunately, for most purposes, a small number of straightforward constructs are sufficient.

A character class is a set of character alternatives, enclosed in brackets, such as [Jj], [0-9], [A-Za-z],

or [^0-9]. Here the - denotes a range (all characters whose Unicode value falls between the two bounds),

and ^ denotes the complement (all characters except the ones specified).

There are many predefined character classes such as \d (digits) or \p{Sc} (Unicode currency symbol).

See Tables 1-7 and 1-8.

Table 1-7. Regular Expression Syntax

Syntax Explanation

Characters

c The character c

\unnnn, \xnn, \0n, \0nn, \0nnn The code unit with the given hex or octal value

\t, \n, \r, \f, \a, \e The control characters tab, newline, return, form feed,
alert, and escape

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Syntax Explanation

\cc The control character corresponding to the character c

Character Classes

[C1C2. . .] Any of the characters represented by C1, C2, . . . The Ci

are characters, character ranges (c1-c2), or character

classes

[^. . .] Complement of character class

[. . . && . . .] Intersection of two character classes

Predefined Character Classes

. Any character except line terminators (or any character if
the DOTALL flag is set)

\d A digit [0-9]

\D A nondigit [^0-9]

\s A whitespace character [\t\n\r\f\x0B]

\S A nonwhitespace character

\w A word character [a-zA-Z0-9_]

\W A nonword character

\p{name} A named character class—see Table 1-8

\P{name} The complement of a named character class

Boundary Matchers

^ $ Beginning, end of input (or beginning, end of line in
multiline mode)

\b A word boundary

\B A nonword boundary

\A Beginning of input

\z End of input

\Z End of input except final line terminator

\G End of previous match

Quantifiers

X? Optional X

X* X, 0 or more times

X+ X, 1 or more times

X{n} X{n,} X{n,m} X n times, at least n times, between n and m times

Quantifier Suffixes

? Turn default (greedy) match into reluctant match

\cc The control character corresponding to the character c

Character Classes

[C1C2. . .] Any of the characters represented by C1, C2, . . . The Ci

are characters, character ranges (c1-c2), or character

classes

[^. . .] Complement of character class

[. . . && . . .] Intersection of two character classes

Predefined Character Classes

. Any character except line terminators (or any character if
the DOTALL flag is set)

\d A digit [0-9]

\D A nondigit [^0-9]

\s A whitespace character [\t\n\r\f\x0B]

\S A nonwhitespace character

\w A word character [a-zA-Z0-9_]

\W A nonword character

\p{name} A named character class—see Table 1-8

\P{name} The complement of a named character class

Boundary Matchers

^ $ Beginning, end of input (or beginning, end of line in
multiline mode)

\b A word boundary

\B A nonword boundary

\A Beginning of input

\z End of input

\Z End of input except final line terminator

\G End of previous match

Quantifiers

X? Optional X

X* X, 0 or more times

X+ X, 1 or more times

X{n} X{n,} X{n,m} X n times, at least n times, between n and m times

Quantifier Suffixes

? Turn default (greedy) match into reluctant match

Syntax Explanation

+ Turn default (greedy) match into possessive match

Set Operations

XY Any string from X, followed by any string from Y

X|Y Any string from X or Y

Grouping

(X) Capture the string matching X as a group

\n The match of the nth group

Escapes

\c The character c (must not be an alphabetic character)

\Q . . . \E Quote . . . verbatim

(? . . .) Special construct—see API notes of Pattern class

Table 1-8. Predefined Character Class Names

Character Class Name Explanation

Lower ASCII lower case [a-z]

Upper ASCII upper case [A-Z]

Alpha ASCII alphabetic [A-Za-z]

Digit ASCII digits [0-9]

Alnum ASCII alphabetic or digit [A-Za-z0-9]

XDigit Hex digits [0-9A-Fa-f]

Print or Graph Printable ASCII character [\x21-\x7E]

Punct ASCII nonalpha or digit [\p{Print}&&\P{Alnum}]

ASCII All ASCII [\x00-\x7F]

Cntrl ASCII Control character [\x00-\x1F]

Blank Space or tab [\t]

Space Whitespace [\t\n\r\f\0x0B]

javaLowerCase Lower case, as determined by Character.isLowerCase()

javaUpperCase Upper case, as determined by Character.isUpperCase()

javaWhitespace Whitespace, as determined by Character.isWhitespace()

javaMirrored Mirrored, as determined by Character.isMirrored()

InBlock Block is the name of a Unicode character block, with spaces
removed, such as BasicLatin or Mongolian. See

http://www.unicode.org for a list of block names.

+ Turn default (greedy) match into possessive match

Set Operations

XY Any string from X, followed by any string from Y

X|Y Any string from X or Y

Grouping

(X) Capture the string matching X as a group

\n The match of the nth group

Escapes

\c The character c (must not be an alphabetic character)

\Q . . . \E Quote . . . verbatim

(? . . .) Special construct—see API notes of Pattern class

Table 1-8. Predefined Character Class Names

Character Class Name Explanation

Lower ASCII lower case [a-z]

Upper ASCII upper case [A-Z]

Alpha ASCII alphabetic [A-Za-z]

Digit ASCII digits [0-9]

Alnum ASCII alphabetic or digit [A-Za-z0-9]

XDigit Hex digits [0-9A-Fa-f]

Print or Graph Printable ASCII character [\x21-\x7E]

Punct ASCII nonalpha or digit [\p{Print}&&\P{Alnum}]

ASCII All ASCII [\x00-\x7F]

Cntrl ASCII Control character [\x00-\x1F]

Blank Space or tab [\t]

Space Whitespace [\t\n\r\f\0x0B]

javaLowerCase Lower case, as determined by Character.isLowerCase()

javaUpperCase Upper case, as determined by Character.isUpperCase()

javaWhitespace Whitespace, as determined by Character.isWhitespace()

javaMirrored Mirrored, as determined by Character.isMirrored()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.unicode.org

Character Class Name Explanation

InBlock Block is the name of a Unicode character block, with spaces
removed, such as BasicLatin or Mongolian. See

http://www.unicode.org for a list of block names.

Category or InCategory Category is the name of a Unicode character category such as L

(letter) or Sc (currency symbol). See http://www.unicode.org for

a list of category names.

Most characters match themselves, such as the ava characters in the preceding example.

The . symbol matches any character (except possibly line terminators, depending on flag settings).

Use \ as an escape character, for example \. matches a period and \\ matches a backslash.

^ and $ match the beginning and end of a line, respectively.

If X and Y are regular expressions, then XY means "any match for X followed by a match for Y". X | Y

means "any match for X or Y".

You can apply quantifiers X+ (1 or more), X* (0 or more), and X? (0 or 1) to an expression X.

By default, a quantifier matches the largest possible repetition that makes the overall match succeed. You
can modify that behavior with suffixes ? (reluctant or stingy match—match the smallest repetition count)

and + (possessive or greedy match—match the largest count even if that makes the overall match fail).

For example, the string cab matches [a-z]*ab but not [a-z]*+ab. In the first case, the expression [a-

z]* only matches the character c, so that the characters ab match the remainder of the pattern. But the

greedy version [a-z]*+ matches the characters cab, leaving the remainder of the pattern unmatched.

You can use groups to define subexpressions. Enclose the groups in (); for example, ([+-]?)([0-9]+).

You can then ask the pattern matcher to return the match of each group or to refer back to a group with
\n, where n is the group number (starting with \1).

For example, here is a somewhat complex but potentially useful regular expression—it describes decimal or
hexadecimal integers:

[+-]?[0-9]+|0[Xx][0-9A-Fa-f]+

Unfortunately, the expression syntax is not completely standardized between the various programs and libraries
that use regular expressions. Although there is consensus on the basic constructs, there are many maddening
differences in the details. The Java regular expression classes use a syntax that is similar to, but not quite the
same as, the one used in the Perl language. Table 1-7 shows all constructs of the Java syntax. For more
information on the regular expression syntax, consult the API documentation for the Pattern class or the book

Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly and Associates, 1997).

InBlock Block is the name of a Unicode character block, with spaces
removed, such as BasicLatin or Mongolian. See

http://www.unicode.org for a list of block names.

Category or InCategory Category is the name of a Unicode character category such as L

(letter) or Sc (currency symbol). See http://www.unicode.org for

a list of category names.

Most characters match themselves, such as the ava characters in the preceding example.

The . symbol matches any character (except possibly line terminators, depending on flag settings).

Use \ as an escape character, for example \. matches a period and \\ matches a backslash.

^ and $ match the beginning and end of a line, respectively.

If X and Y are regular expressions, then XY means "any match for X followed by a match for Y". X | Y

means "any match for X or Y".

You can apply quantifiers X+ (1 or more), X* (0 or more), and X? (0 or 1) to an expression X.

By default, a quantifier matches the largest possible repetition that makes the overall match succeed. You
can modify that behavior with suffixes ? (reluctant or stingy match—match the smallest repetition count)

and + (possessive or greedy match—match the largest count even if that makes the overall match fail).

For example, the string cab matches [a-z]*ab but not [a-z]*+ab. In the first case, the expression [a-

z]* only matches the character c, so that the characters ab match the remainder of the pattern. But the

greedy version [a-z]*+ matches the characters cab, leaving the remainder of the pattern unmatched.

You can use groups to define subexpressions. Enclose the groups in (); for example, ([+-]?)([0-9]+).

You can then ask the pattern matcher to return the match of each group or to refer back to a group with
\n, where n is the group number (starting with \1).

For example, here is a somewhat complex but potentially useful regular expression—it describes decimal or
hexadecimal integers:

[+-]?[0-9]+|0[Xx][0-9A-Fa-f]+

Unfortunately, the expression syntax is not completely standardized between the various programs and libraries
that use regular expressions. Although there is consensus on the basic constructs, there are many maddening
differences in the details. The Java regular expression classes use a syntax that is similar to, but not quite the
same as, the one used in the Perl language. Table 1-7 shows all constructs of the Java syntax. For more
information on the regular expression syntax, consult the API documentation for the Pattern class or the book

Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly and Associates, 1997).

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org
http://www.unicode.org

The simplest use for a regular expression is to test whether a particular string matches it. Here is how you
program that test in Java. First construct a Pattern object from the string denoting the regular expression.

Then get a Matcher object from the pattern, and call its matches method:

Pattern pattern = Pattern.compile(patternString);

Matcher matcher = pattern.matcher(input);
if (matcher.matches()) . . .

The input of the matcher is an object of any class that implements the CharSequence interface, such as a

String, StringBuilder, or CharBuffer.

When compiling the pattern, you can set one or more flags, for example,

Pattern pattern = Pattern.compile(patternString,

 Pattern.CASE_INSENSITIVE + Pattern.UNICODE_CASE);

The following six flags are supported:

CASE_INSENSITIVE: Match characters independently of the letter case. By default, this flag takes only US
ASCII characters into account.

UNICODE_CASE: When used in combination with CASE_INSENSITIVE, use Unicode letter case for matching.

MULTILINE: ^ and $ match the beginning and end of a line, not the entire input.

UNIX_LINES: Only '\n' is recognized as a line terminator when matching ^ and $ in multiline mode.

DOTALL: When using this flag, the . symbol matches all characters, including line terminators.

CANON_EQ: Takes canonical equivalence of Unicode characters into account. For example, u followed by ¨

(diaeresis) matches ü.

If the regular expression contains groups, then the Matcher object can reveal the group boundaries. The

methods

int start(int groupIndex)

int end(int groupIndex)

yield the starting index and the past-the-end index of a particular group.

You can simply extract the matched string by calling

String group(int groupIndex)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Group 0 is the entire input; the group index for the first actual group is 1. Call the groupCount method to get

the total group count.

Nested groups are ordered by the opening parentheses. For example, given the pattern

((1?[0-9]):([0-5][0-9]))[ap]m

and the input

11:59am

the matcher reports the following groups

Group Index Start End String

0 0 7 11;59am

1 0 5 11:59

2 0 2 11

3 3 5 59

Listing 1-8 prompts for a pattern, then for strings to match. It prints out whether or not the input matches the
pattern. If the input matches and the pattern contains groups, then the program prints the group boundaries as
parentheses, such as

((11):(59))am

Listing 1-8. RegexTest.java

Code View:
 1. import java.util.*;

 2. import java.util.regex.*;

 3.

 4. /**

 5. * This program tests regular expression matching.

 6. * Enter a pattern and strings to match, or hit Cancel

 7. * to exit. If the pattern contains groups, the group

 8. * boundaries are displayed in the match.

 9. * @version 1.01 2004-05-11

10. * @author Cay Horstmann

11. */

12. public class RegExTest

13. {

14. public static void main(String[] args)

15. {

16. Scanner in = new Scanner(System.in);

17. System.out.println("Enter pattern: ");

18. String patternString = in.nextLine();

19.

20. Pattern pattern = null;

21. try

22. {

23. pattern = Pattern.compile(patternString);

24. }

25. catch (PatternSyntaxException e)

26. {

27. System.out.println("Pattern syntax error");

28. System.exit(1);

29. }

30.

31. while (true)

32. {

33. System.out.println("Enter string to match: ");

34. String input = in.nextLine();

35. if (input == null || input.equals("")) return;

36. Matcher matcher = pattern.matcher(input);

37. if (matcher.matches())

38. {

39. System.out.println("Match");

40. int g = matcher.groupCount();

41. if (g > 0)

42. {

43. for (int i = 0; i < input.length(); i++)

44. {

45. for (int j = 1; j <= g; j++)

46. if (i == matcher.start(j))

47. System.out.print('(');

48. System.out.print(input.charAt(i));

49. for (int j = 1; j <= g; j++)

50. if (i + 1 == matcher.end(j))

51. System.out.print(')');

52. }

53. System.out.println();

54. }

55. }

56. else

57. System.out.println("No match");

58. }

59. }

60. }

Usually, you don't want to match the entire input against a regular expression, but you want to find one or more
matching substrings in the input. Use the find method of the Matcher class to find the next match. If it returns

true, use the start and end methods to find the extent of the match.

while (matcher.find())

{
 int start = matcher.start();

 int end = matcher.end();

 String match = input.substring(start, end);

 . . .

}

Listing 1-9 puts this mechanism to work. It locates all hypertext references in a web page and prints them. To
run the program, supply a URL on the command line, such as

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java HrefMatch http://www.horstmann.com

Listing 1-9. HrefMatch.java

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import java.util.regex.*;

 4.

 5. /**

 6. * This program displays all URLs in a web page by matching a regular expression that describes

 7. * the HTML tag. Start the program as

 8. * java HrefMatch URL

 9. * @version 1.01 2004-06-04

10. * @author Cay Horstmann

11. */

12. public class HrefMatch

13. {

14. public static void main(String[] args)

15. {

16. try

17. {

18. // get URL string from command line or use default

19. String urlString;

20. if (args.length > 0) urlString = args[0];

21. else urlString = "http://java.sun.com";

22.

23. // open reader for URL

24. InputStreamReader in = new InputStreamReader(new URL(urlString).openStream());

25.

26. // read contents into string builder

27. StringBuilder input = new StringBuilder();

28. int ch;

29. while ((ch = in.read()) != -1)

30. input.append((char) ch);

31.

32. // search for all occurrences of pattern

33. String patternString = "<a\\s+href\\s*=\\s*(\"[^\"]*\"|[^\\s>])\\s*>";

34. Pattern pattern = Pattern.compile(patternString, Pattern.CASE_INSENSITIVE);

35. Matcher matcher = pattern.matcher(input);

36.

37. while (matcher.find())

38. {

39. int start = matcher.start();

40. int end = matcher.end();

41. String match = input.substring(start, end);

42. System.out.println(match);

43. }

44. }

45. catch (IOException e)

46. {

47. e.printStackTrace();

48. }

49. catch (PatternSyntaxException e)

50. {

51. e.printStackTrace();

52. }

53. }

54. }

The replaceAll method of the Matcher class replaces all occurrences of a regular expression with a
replacement string. For example, the following instructions replace all sequences of digits with a # character.

Pattern pattern = Pattern.compile("[0-9]+");

Matcher matcher = pattern.matcher(input);

String output = matcher.replaceAll("#");

The replacement string can contain references to groups in the pattern: $n is replaced with the nth group. Use

\$ to include a $ character in the replacement text.

The replaceFirst method replaces only the first occurrence of the pattern.

Finally, the Pattern class has a split method that splits an input into an array of strings, using the regular

expression matches as boundaries. For example, the following instructions split the input into tokens, where the
delimiters are punctuation marks surrounded by optional whitespace.

Pattern pattern = Pattern.compile("\\s*\\p{Punct}\\s*");
String[] tokens = pattern.split(input);

java.util.regex.Pattern 1.4

static Pattern compile(String expression)

static Pattern compile(String expression, int flags)

compiles the regular expression string into a pattern object for fast processing of matches.

Parameters: expression The regular expression

 flags One or more of the flags CASE_INSENSITIVE,

UNICODE_CASE, MULTILINE, UNIX_LINES, DOTALL, and

CANON_EQ

Matcher matcher(CharSequence input)

returns a matcher object that you can use to locate the matches of the pattern in the input.

String[] split(CharSequence input)

String[] split(CharSequence input, int limit)

splits the input string into tokens, where the pattern specifies the form of the delimiters.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Returns an array of tokens. The delimiters are not part of the tokens.

Parameters: input The string to be split into tokens

 limit The maximum number of strings to produce. If limit -

1 matching delimiters have been found, then the last
entry of the returned array contains the remaining unsplit
input. If limit is 0, then the entire input is split. If

limit is 0, then trailing empty strings are not placed in

the returned array

java.util.regex.Matcher 1.4

boolean matches()

returns true if the input matches the pattern.

boolean lookingAt()

returns true if the beginning of the input matches the pattern.

boolean find()

boolean find(int start)

attempts to find the next match and return true if another match is found.

Parameters: start The index at which to start searching

int start()

int end()

returns the start or past-the-end position of the current match.

String group()

returns the current match.

int groupCount()

returns the number of groups in the input pattern.

int start(int groupIndex)

int end(int groupIndex)

returns the start or past-the-end position of a given group in the current match.

Parameters: groupIndex The group index (starting with 1), or 0 to indicate the
entire match

String group(int groupIndex)

returns the string matching a given group.

Parameters: groupIndex The group index (starting with 1), or 0 to indicate the
entire match

String replaceAll(String replacement)

String replaceFirst(String replacement)

returns a string obtained from the matcher input by replacing all matches, or the first match,
with the replacement string.

Parameters: replacement The replacement string. It can contain references to a
pattern group as $n. Use \$ to include a $ symbol

Matcher reset()

Matcher reset(CharSequence input)

resets the matcher state. The second method makes the matcher work on a different input.
Both methods return this.

You have now seen how to carry out input and output operations in Java, and you had an overview of the
regular expression package that was a part of the "new I/O" specification. In the next chapter, we turn to the
processing of XML data.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 2. XML

INTRODUCING XML

PARSING AN XML DOCUMENT

VALIDATING XML DOCUMENTS

LOCATING INFORMATION WITH XPATH

USING NAMESPACES

STREAMING PARSERS

GENERATING XML DOCUMENTS

XSL TRANSFORMATIONS

The preface of the book Essential XML by Don Box et al. (Addison-Wesley Professional 2000) states only half-
jokingly: "The Extensible Markup Language (XML) has replaced Java, Design Patterns, and Object Technology as
the software industry's solution to world hunger." Indeed, as you will see in this chapter, XML is a very useful
technology for describing structured information. XML tools make it easy to process and transform that
information. However, XML is not a silver bullet. You need domain-specific standards and code libraries to use it
effectively. Moreover, far from making Java technology obsolete, XML works very well with Java. Since the late
1990s, IBM, Apache, and others have been instrumental in producing high-quality Java libraries for XML
processing. Starting with Java SE 1.4, Sun has integrated the most important libraries into the Java platform.

This chapter introduces XML and covers the XML features of the Java library. As always, we point out along the
way when the hype surrounding XML is justified and when you have to take it with a grain of salt and solve your
problems the old-fashioned way, through good design and code.

Introducing XML

In Chapter 10 of Volume I, you have seen the use of property files to describe the configuration of a program. A
property file contains a set of name/value pairs, such as

fontname=Times Roman

fontsize=12

windowsize=400 200
color=0 50 100

You can use the Properties class to read in such a file with a single method call. That's a nice feature, but it

doesn't really go far enough. In many cases, the information that you want to describe has more structure than
the property file format can comfortably handle. Consider the fontname/fontsize entries in the example. It

would be more object oriented to have a single entry:

font=Times Roman 12

But then parsing the font description gets ugly—you have to figure out when the font name ends and when the
font size starts.

Property files have a single flat hierarchy. You can often see programmers work around that limitation with key
names such as

title.fontname=Helvetica

title.fontsize=36

body.fontname=Times Roman

body.fontsize=12

Another shortcoming of the property file format is caused by the requirement that keys be unique. To store a
sequence of values, you need another workaround, such as

menu.item.1=Times Roman

menu.item.2=Helvetica
menu.item.3=Goudy Old Style

The XML format solves these problems because it can express hierarchical structures and thus is more flexible
than the flat table structure of a property file.

An XML file for describing a program configuration might look like this:

Code View:
<configuration>

 <title>

 <name>Helvetica</name>

 <size>36</size>

 </title>

 <body>

 <name>Times Roman</name>

 <size>12</size>

 </body>

 <window>

 <width>400</width>

 <height>200</height>

 </window>

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 <color>

 <red>0</red>

 <green>50</green>
 <blue>100</blue>

 </color>

 <menu>

 <item>Times Roman</item>

 <item>Helvetica</item>

 <item>Goudy Old Style</item>

 </menu>

</configuration>

The XML format allows you to express the structure hierarchy and repeated elements without contortions.

As you can see, the format of an XML file is straightforward. It looks similar to an HTML file. There is a good
reason—both the XML and HTML formats are descendants of the venerable Standard Generalized Markup
Language (SGML).

SGML has been around since the 1970s for describing the structure of complex documents. It has been used
with success in some industries that require ongoing maintenance of massive documentation, in particular, the
aircraft industry. However, SGML is quite complex, so it has never caught on in a big way. Much of that
complexity arises because SGML has two conflicting goals. SGML wants to make sure that documents are
formed according to the rules for their document type, but it also wants to make data entry easy by allowing
shortcuts that reduce typing. XML was designed as a simplified version of SGML for use on the Internet. As is
often true, simpler is better, and XML has enjoyed the immediate and enthusiastic reception that has eluded
SGML for so long.

Note

You can find a very nice version of the XML standard, with annotations by Tim Bray,
at http://www.xml.com/axml/axml.html.

Even though XML and HTML have common roots, there are important differences between the two.

Unlike HTML, XML is case sensitive. For example, <H1> and <h1> are different XML tags.

In HTML, you can omit end tags such as </p> or tags if it is clear from the context where a

paragraph or list item ends. In XML, you can never omit an end tag.

In XML, elements that have a single tag without a matching end tag must end in a /, as in <img

src="coffeecup.png"/>. That way, the parser knows not to look for a tag.

In XML, attribute values must be enclosed in quotation marks. In HTML, quotation marks are optional. For

http://www.xml.com/axml/axml.html

example, <applet code="MyApplet.class" width=300 height=300> is legal HTML but not legal XML. In

XML, you have to use quotation marks: width="300".

In HTML, you can have attribute names without values, such as <input type="radio" name="language"

value="Java" checked>. In XML, all attributes must have values, such as checked="true" or (ugh)

checked="checked".

Note

The current recommendation for web documents by the World Wide Web
Consortium (W3C) is the XHTML standard, which tightens up the HTML standard to
be XML compliant. You can find a copy of the XHTML standard at
http://www.w3.org/TR/xhtml1/. XHTML is backward-compatible with current
browsers, but not all HTML authoring tools support it. As XHTML becomes more
widespread, you can use the XML tools that are described in this chapter to analyze
web documents.

The Structure of an XML Document

An XML document should start with a header such as

<?xml version="1.0"?>

or

<?xml version="1.0" encoding="UTF-8"?>

Strictly speaking, a header is optional, but it is highly recommended.

Note

Because SGML was created for processing of real documents, XML files are called
documents, even though many XML files describe data sets that one would not
normally call documents.

The header can be followed by a document type definition (DTD), such as

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.w3.org/TR/xhtml1/

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

DTDs are an important mechanism to ensure the correctness of a document, but they are not required. We
discuss them later in this chapter.

Finally, the body of the XML document contains the root element, which can contain other elements. For
example,

<?xml version="1.0"?>

<!DOCTYPE configuration . . .>

<configuration>

 <title>

 <name>Helvetica</name>

 <size>36</size>

 </title>

 . . .

</configuration>

An element can contain child elements, text, or both. In the preceding example, the font element has two child

elements, name and size. The name element contains the text "Helvetica".

Tip

It is best if you structure your XML documents such that an element contains either
child elements or text. In other words, you should avoid situations such as

 Helvetica

 <size>36</size>

This is called mixed contents in the XML specification. As you will see later in this
chapter, you can simplify parsing if you avoid mixed contents.

XML elements can contain attributes, such as

<size unit="pt">36</size>

There is some disagreement among XML designers about when to use elements and when to use attributes. For
example, it would seem easier to describe a font as

than

 <name>Helvetica</name>

 <size>36</size>

However, attributes are much less flexible. Suppose you want to add units to the size value. If you use
attributes, then you must add the unit to the attribute value:

Ugh! Now you have to parse the string "36 pt", just the kind of hassle that XML was designed to avoid. Adding

an attribute to the size element is much cleaner:

 <name>Helvetica</name>

 <size unit="pt">36</size>

A commonly used rule of thumb is that attributes should be used only to modify the interpretation of a value,
not to specify values. If you find yourself engaged in metaphysical discussions about whether a particular
setting is a modification of the interpretation of a value or not, then just say "no" to attributes and use elements
throughout. Many useful XML documents don't use attributes at all.

Note

In HTML, the rule for attribute usage is simple: If it isn't displayed on the web page,
it's an attribute. For example, consider the hyperlink

Java Technology

The string Java Technology is displayed on the web page, but the URL of the link is
not a part of the displayed page. However, the rule isn't all that helpful for most
XML files because the data in an XML file aren't normally meant to be viewed by
humans.

Elements and text are the "bread and butter" of XML documents. Here are a few other markup instructions that
you might encounter:

Character references have the form &#decimalValue; or &#xhexValue;. For example, the character é can

be denoted with either of the following:

é

Ù

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Entity references have the form &name;. The entity references

<

>

&

"
'

have predefined meanings: the less than, greater than, ampersand, quotation mark, and apostrophe
characters. You can define other entity references in a DTD.

CDATA sections are delimited by <![CDATA[and]]>. They are a special form of character data. You can

use them to include strings that contain characters such as < > & without having them interpreted as

markup, for example,

<![CDATA[< & > are my favorite delimiters]]>

CDATA sections cannot contain the string]]>. Use this feature with caution! It is too often used as a back
door for smuggling legacy data into XML documents.

Processing instructions are instructions for applications that process XML documents. They are delimited
by <? and ?>, for example,

<?xml-stylesheet href="mystyle.css" type="text/css"?>

Every XML document starts with a processing instruction

<?xml version="1.0"?>

Comments are delimited by <!-- and -->, for example,

<!-- This is a comment. -->

Comments should not contain the string --. Comments should only be information for human readers.

They should never contain hidden commands. Use processing instructions for commands.

Chapter 2. XML

INTRODUCING XML

PARSING AN XML DOCUMENT

VALIDATING XML DOCUMENTS

LOCATING INFORMATION WITH XPATH

USING NAMESPACES

STREAMING PARSERS

GENERATING XML DOCUMENTS

XSL TRANSFORMATIONS

The preface of the book Essential XML by Don Box et al. (Addison-Wesley Professional 2000) states only half-
jokingly: "The Extensible Markup Language (XML) has replaced Java, Design Patterns, and Object Technology as
the software industry's solution to world hunger." Indeed, as you will see in this chapter, XML is a very useful
technology for describing structured information. XML tools make it easy to process and transform that
information. However, XML is not a silver bullet. You need domain-specific standards and code libraries to use it
effectively. Moreover, far from making Java technology obsolete, XML works very well with Java. Since the late
1990s, IBM, Apache, and others have been instrumental in producing high-quality Java libraries for XML
processing. Starting with Java SE 1.4, Sun has integrated the most important libraries into the Java platform.

This chapter introduces XML and covers the XML features of the Java library. As always, we point out along the
way when the hype surrounding XML is justified and when you have to take it with a grain of salt and solve your
problems the old-fashioned way, through good design and code.

Introducing XML

In Chapter 10 of Volume I, you have seen the use of property files to describe the configuration of a program. A
property file contains a set of name/value pairs, such as

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

fontname=Times Roman

fontsize=12

windowsize=400 200
color=0 50 100

You can use the Properties class to read in such a file with a single method call. That's a nice feature, but it

doesn't really go far enough. In many cases, the information that you want to describe has more structure than
the property file format can comfortably handle. Consider the fontname/fontsize entries in the example. It

would be more object oriented to have a single entry:

font=Times Roman 12

But then parsing the font description gets ugly—you have to figure out when the font name ends and when the
font size starts.

Property files have a single flat hierarchy. You can often see programmers work around that limitation with key
names such as

title.fontname=Helvetica

title.fontsize=36

body.fontname=Times Roman

body.fontsize=12

Another shortcoming of the property file format is caused by the requirement that keys be unique. To store a
sequence of values, you need another workaround, such as

menu.item.1=Times Roman

menu.item.2=Helvetica
menu.item.3=Goudy Old Style

The XML format solves these problems because it can express hierarchical structures and thus is more flexible
than the flat table structure of a property file.

An XML file for describing a program configuration might look like this:

Code View:
<configuration>

 <title>

 <name>Helvetica</name>

 <size>36</size>

 </title>

 <body>

 <name>Times Roman</name>

 <size>12</size>

 </body>

 <window>

 <width>400</width>

 <height>200</height>

 </window>

 <color>

 <red>0</red>

 <green>50</green>
 <blue>100</blue>

 </color>

 <menu>

 <item>Times Roman</item>

 <item>Helvetica</item>

 <item>Goudy Old Style</item>

 </menu>

</configuration>

The XML format allows you to express the structure hierarchy and repeated elements without contortions.

As you can see, the format of an XML file is straightforward. It looks similar to an HTML file. There is a good
reason—both the XML and HTML formats are descendants of the venerable Standard Generalized Markup
Language (SGML).

SGML has been around since the 1970s for describing the structure of complex documents. It has been used
with success in some industries that require ongoing maintenance of massive documentation, in particular, the
aircraft industry. However, SGML is quite complex, so it has never caught on in a big way. Much of that
complexity arises because SGML has two conflicting goals. SGML wants to make sure that documents are
formed according to the rules for their document type, but it also wants to make data entry easy by allowing
shortcuts that reduce typing. XML was designed as a simplified version of SGML for use on the Internet. As is
often true, simpler is better, and XML has enjoyed the immediate and enthusiastic reception that has eluded
SGML for so long.

Note

You can find a very nice version of the XML standard, with annotations by Tim Bray,
at http://www.xml.com/axml/axml.html.

Even though XML and HTML have common roots, there are important differences between the two.

Unlike HTML, XML is case sensitive. For example, <H1> and <h1> are different XML tags.

In HTML, you can omit end tags such as </p> or tags if it is clear from the context where a

paragraph or list item ends. In XML, you can never omit an end tag.

In XML, elements that have a single tag without a matching end tag must end in a /, as in <img

src="coffeecup.png"/>. That way, the parser knows not to look for a tag.

In XML, attribute values must be enclosed in quotation marks. In HTML, quotation marks are optional. For

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.xml.com/axml/axml.html

example, <applet code="MyApplet.class" width=300 height=300> is legal HTML but not legal XML. In

XML, you have to use quotation marks: width="300".

In HTML, you can have attribute names without values, such as <input type="radio" name="language"

value="Java" checked>. In XML, all attributes must have values, such as checked="true" or (ugh)

checked="checked".

Note

The current recommendation for web documents by the World Wide Web
Consortium (W3C) is the XHTML standard, which tightens up the HTML standard to
be XML compliant. You can find a copy of the XHTML standard at
http://www.w3.org/TR/xhtml1/. XHTML is backward-compatible with current
browsers, but not all HTML authoring tools support it. As XHTML becomes more
widespread, you can use the XML tools that are described in this chapter to analyze
web documents.

The Structure of an XML Document

An XML document should start with a header such as

<?xml version="1.0"?>

or

<?xml version="1.0" encoding="UTF-8"?>

Strictly speaking, a header is optional, but it is highly recommended.

Note

Because SGML was created for processing of real documents, XML files are called
documents, even though many XML files describe data sets that one would not
normally call documents.

The header can be followed by a document type definition (DTD), such as

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

http://www.w3.org/TR/xhtml1/

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

DTDs are an important mechanism to ensure the correctness of a document, but they are not required. We
discuss them later in this chapter.

Finally, the body of the XML document contains the root element, which can contain other elements. For
example,

<?xml version="1.0"?>

<!DOCTYPE configuration . . .>

<configuration>

 <title>

 <name>Helvetica</name>

 <size>36</size>

 </title>

 . . .

</configuration>

An element can contain child elements, text, or both. In the preceding example, the font element has two child

elements, name and size. The name element contains the text "Helvetica".

Tip

It is best if you structure your XML documents such that an element contains either
child elements or text. In other words, you should avoid situations such as

 Helvetica

 <size>36</size>

This is called mixed contents in the XML specification. As you will see later in this
chapter, you can simplify parsing if you avoid mixed contents.

XML elements can contain attributes, such as

<size unit="pt">36</size>

There is some disagreement among XML designers about when to use elements and when to use attributes. For
example, it would seem easier to describe a font as

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

than

 <name>Helvetica</name>

 <size>36</size>

However, attributes are much less flexible. Suppose you want to add units to the size value. If you use
attributes, then you must add the unit to the attribute value:

Ugh! Now you have to parse the string "36 pt", just the kind of hassle that XML was designed to avoid. Adding

an attribute to the size element is much cleaner:

 <name>Helvetica</name>

 <size unit="pt">36</size>

A commonly used rule of thumb is that attributes should be used only to modify the interpretation of a value,
not to specify values. If you find yourself engaged in metaphysical discussions about whether a particular
setting is a modification of the interpretation of a value or not, then just say "no" to attributes and use elements
throughout. Many useful XML documents don't use attributes at all.

Note

In HTML, the rule for attribute usage is simple: If it isn't displayed on the web page,
it's an attribute. For example, consider the hyperlink

Java Technology

The string Java Technology is displayed on the web page, but the URL of the link is
not a part of the displayed page. However, the rule isn't all that helpful for most
XML files because the data in an XML file aren't normally meant to be viewed by
humans.

Elements and text are the "bread and butter" of XML documents. Here are a few other markup instructions that
you might encounter:

Character references have the form &#decimalValue; or &#xhexValue;. For example, the character é can

be denoted with either of the following:

é

Ù

Entity references have the form &name;. The entity references

<

>

&

"
'

have predefined meanings: the less than, greater than, ampersand, quotation mark, and apostrophe
characters. You can define other entity references in a DTD.

CDATA sections are delimited by <![CDATA[and]]>. They are a special form of character data. You can

use them to include strings that contain characters such as < > & without having them interpreted as

markup, for example,

<![CDATA[< & > are my favorite delimiters]]>

CDATA sections cannot contain the string]]>. Use this feature with caution! It is too often used as a back
door for smuggling legacy data into XML documents.

Processing instructions are instructions for applications that process XML documents. They are delimited
by <? and ?>, for example,

<?xml-stylesheet href="mystyle.css" type="text/css"?>

Every XML document starts with a processing instruction

<?xml version="1.0"?>

Comments are delimited by <!-- and -->, for example,

<!-- This is a comment. -->

Comments should not contain the string --. Comments should only be information for human readers.

They should never contain hidden commands. Use processing instructions for commands.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Parsing an XML Document

To process an XML document, you need to parse it. A parser is a program that reads a file, confirms that the file
has the correct format, breaks it up into the constituent elements, and lets a programmer access those
elements. The Java library supplies two kinds of XML parsers:

Tree parsers such as the Document Object Model (DOM) parser that read an XML document into a tree
structure.

Streaming parsers such as the Simple API for XML (SAX) parser that generate events as they read an XML
document.

The DOM parser is easy to use for most purposes, and we explain it first. You would consider a streaming parser
if you process very long documents whose tree structures would use up a lot of memory, or if you are just
interested in a few elements and you don't care about their context. For more information, see the section
"Streaming Parsers" on page 138.

The DOM parser interface is standardized by the World Wide Web Consortium (W3C). The org.w3c.dom package

contains the definitions of interface types such as Document and Element. Different suppliers, such as the

Apache Organization and IBM, have written DOM parsers whose classes implement these interfaces. The Sun
Java API for XML Processing (JAXP) library actually makes it possible to plug in any of these parsers. But Sun
also includes its own DOM parser in the Java SDK. We use the Sun parser in this chapter.

To read an XML document, you need a DocumentBuilder object, which you get from a

DocumentBuilderFactory, like this:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

You can now read a document from a file:

File f = . . .

Document doc = builder.parse(f);

Alternatively, you can use a URL:

URL u = . . .

Document doc = builder.parse(u);

You can even specify an arbitrary input stream:

InputStream in = . . .

Document doc = builder.parse(in);

Note

If you use an input stream as an input source, then the parser will not be able to
locate other files that are referenced relative to the location of the document, such
as a DTD in the same directory. You can install an "entity resolver" to overcome that
problem.

The Document object is an in-memory representation of the tree structure of the XML document. It is composed

of objects whose classes implement the Node interface and its various subinterfaces. Figure 2-1 shows the

inheritance hierarchy of the subinterfaces.

Figure 2-1. The Node interface and its subinterfaces

[View full size image]

You start analyzing the contents of a document by calling the getDocumentElement method. It returns the root

element.

Element root = doc.getDocumentElement();

For example, if you are processing a document

<?xml version="1.0"?>

 . . .

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

then calling getDocumentElement returns the font element.

The getTagName method returns the tag name of an element. In the preceding example, root.getTagName()
returns the string "font".

To get the element's children (which may be subelements, text, comments, or other nodes), use the
getChildNodes method. That method returns a collection of type NodeList. That type was invented before the

standard Java collections, and it has a different access protocol. The item method gets the item with a given

index, and the getLength method gives the total count of the items. Therefore, you can enumerate all children

like this:

NodeList children = root.getChildNodes();

for (int i = 0; i < children.getLength(); i++)

{
 Node child = children.item(i);

 . . .

}

Be careful when analyzing the children. Suppose, for example, that you are processing the document

 <name>Helvetica</name>
 <size>36</size>

You would expect the font element to have two children, but the parser reports five:

The whitespace between and <name>

The name element

The whitespace between </name> and <size>

The size element

The whitespace between </size> and

Figure 2-2 shows the DOM tree.

Figure 2-2. A simple DOM tree

[View full size image]

If you expect only subelements, then you can ignore the whitespace:

for (int i = 0; i < children.getLength(); i++)

{

 Node child = children.item(i);

 if (child instanceof Element)

 {

 Element childElement = (Element) child;
 . . .

 }

}

Now you look at only two elements, with tag names name and size.

As you see in the next section, you can do even better if your document has a DTD. Then the parser knows
which elements don't have text nodes as children, and it can suppress the whitespace for you.

When analyzing the name and size elements, you want to retrieve the text strings that they contain. Those text

strings are themselves contained in child nodes of type Text. Because you know that these Text nodes are the

only children, you can use the getFirstChild method without having to traverse another NodeList. Then use

the getData method to retrieve the string stored in the Text node.

for (int i = 0; i < children.getLength(); i++)

{

 Node child = children.item(i);

 if (child instanceof Element)

 {

 Element childElement = (Element) child;

 Text textNode = (Text) childElement.getFirstChild();

 String text = textNode.getData().trim();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 if (childElement.getTagName().equals("name"))

 name = text;

 else if (childElement.getTagName().equals("size"))
 size = Integer.parseInt(text);

 }

}

Tip

It is a good idea to call trim on the return value of the getData method. If the

author of an XML file puts the beginning and the ending tag on separate lines, such
as

<size>

 36

</size>

then the parser includes all line breaks and spaces in the text node data. Calling the
trim method removes the whitespace surrounding the actual data.

You can also get the last child with the getLastChild method, and the next sibling of a node with
getNextSibling. Therefore, another way of traversing a set of child nodes is

for (Node childNode = element.getFirstChild();

 childNode != null;

 childNode = childNode.getNextSibling())

{

 . . .
}

To enumerate the attributes of a node, call the getAttributes method. It returns a NamedNodeMap object that

contains Node objects describing the attributes. You can traverse the nodes in a NamedNodeMap in the same way

as a NodeList. Then call the getNodeName and getNodeValue methods to get the attribute names and values.

NamedNodeMap attributes = element.getAttributes();

for (int i = 0; i < attributes.getLength(); i++)

{

 Node attribute = attributes.item(i);

 String name = attribute.getNodeName();

 String value = attribute.getNodeValue();

 . . .

}

Alternatively, if you know the name of an attribute, you can retrieve the corresponding value directly:

String unit = element.getAttribute("unit");

You have now seen how to analyze a DOM tree. The program in Listing 2-1 puts these techniques to work. You
can use the File -> Open menu option to read in an XML file. A DocumentBuilder object parses the XML file and
produces a Document object. The program displays the Document object as a tree (see Figure 2-3).

Figure 2-3. A parse tree of an XML document

The tree display shows clearly how child elements are surrounded by text containing whitespace and comments.
For greater clarity, the program displays newline and return characters as \n and \r. (Otherwise, they would

show up as hollow boxes, the default symbol for a character that Swing cannot draw in a string.)

In Chapter 6, you will learn the techniques that this program uses to display the tree and the attribute tables.
The DOMTreeModel class implements the TreeModel interface. The getRoot method returns the root element of

the document. The getChild method gets the node list of children and returns the item with the requested

index. The tree cell renderer displays the following:

For elements, the element tag name and a table of all attributes.

For character data, the interface (Text, Comment, or CDATASection), followed by the data, with newline
and return characters replaced by \n and \r.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

For all other node types, the class name followed by the result of toString.

Listing 2-1. DOMTreeTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import javax.swing.*;

 5. import javax.swing.event.*;

 6. import javax.swing.table.*;

 7. import javax.swing.tree.*;

 8. import javax.xml.parsers.*;

 9. import org.w3c.dom.*;

 10.

 11. /**

 12. * This program displays an XML document as a tree.

 13. * @version 1.11 2007-06-24

 14. * @author Cay Horstmann

 15. */

 16. public class DOMTreeTest

 17. {

 18. public static void main(String[] args)

 19. {

 20. EventQueue.invokeLater(new Runnable()

 21. {

 22. public void run()

 23. {

 24. JFrame frame = new DOMTreeFrame();

 25. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 26. frame.setVisible(true);

 27. }

 28. });

 29. }

 30. }

 31.

 32. /**

 33. * This frame contains a tree that displays the contents of an XML document.

 34. */

 35. class DOMTreeFrame extends JFrame

 36. {

 37. public DOMTreeFrame()

 38. {

 39. setTitle("DOMTreeTest");

 40. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 41.

 42. JMenu fileMenu = new JMenu("File");

 43. JMenuItem openItem = new JMenuItem("Open");

 44. openItem.addActionListener(new ActionListener()

 45. {

 46. public void actionPerformed(ActionEvent event)

 47. {

 48. openFile();

 49. }

 50. });

 51. fileMenu.add(openItem);

 52.

 53. JMenuItem exitItem = new JMenuItem("Exit");

 54. exitItem.addActionListener(new ActionListener()

 55. {

 56. public void actionPerformed(ActionEvent event)

 57. {

 58. System.exit(0);

 59. }

 60. });

 61. fileMenu.add(exitItem);

 62.

 63. JMenuBar menuBar = new JMenuBar();

 64. menuBar.add(fileMenu);

 65. setJMenuBar(menuBar);

 66. }

 67.

 68. /**

 69. * Open a file and load the document.

 70. */

 71. public void openFile()

 72. {

 73. JFileChooser chooser = new JFileChooser();

 74. chooser.setCurrentDirectory(new File("."));

 75.

 76. chooser.setFileFilter(new javax.swing.filechooser.FileFilter()

 77. {

 78. public boolean accept(File f)

 79. {

 80. return f.isDirectory() || f.getName().toLowerCase().endsWith(".xml");

 81. }

 82.

 83. public String getDescription()

 84. {

 85. return "XML files";

 86. }

 87. });

 88. int r = chooser.showOpenDialog(this);

 89. if (r != JFileChooser.APPROVE_OPTION) return;

 90. final File file = chooser.getSelectedFile();

 91.

 92. new SwingWorker<Document, Void>()

 93. {

 94. protected Document doInBackground() throws Exception

 95. {

 96. if (builder == null)

 97. {

 98. DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 99. builder = factory.newDocumentBuilder();

100. }

101. return builder.parse(file);

102. }

103.

104. protected void done()

105. {

106. try

107. {

108. Document doc = get();

109. JTree tree = new JTree(new DOMTreeModel(doc));

110. tree.setCellRenderer(new DOMTreeCellRenderer());

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

111.

112. setContentPane(new JScrollPane(tree));

113. validate();

114. }

115. catch (Exception e)

116. {

117. JOptionPane.showMessageDialog(DOMTreeFrame.this, e);

118. }

119. }

120. }.execute();

121. }

122.

123. private DocumentBuilder builder;

124. private static final int DEFAULT_WIDTH = 400;

125. private static final int DEFAULT_HEIGHT = 400;

126. }

127.

128. /**

129. * This tree model describes the tree structure of an XML document.

130. */

131. class DOMTreeModel implements TreeModel

132. {

133. /**

134. * Constructs a document tree model.

135. * @param doc the document

136. */

137. public DOMTreeModel(Document doc)

138. {

139. this.doc = doc;

140. }

141.

142. public Object getRoot()

143. {

144. return doc.getDocumentElement();

145. }

146.

147. public int getChildCount(Object parent)

148. {

149. Node node = (Node) parent;

150. NodeList list = node.getChildNodes();

151. return list.getLength();

152. }

153.

154. public Object getChild(Object parent, int index)

155. {

156. Node node = (Node) parent;

157. NodeList list = node.getChildNodes();

158. return list.item(index);

159. }

160.

161. public int getIndexOfChild(Object parent, Object child)

162. {

163. Node node = (Node) parent;

164. NodeList list = node.getChildNodes();

165. for (int i = 0; i < list.getLength(); i++)

166. if (getChild(node, i) == child) return i;

167. return -1;

168. }

169.

170. public boolean isLeaf(Object node)

171. {

172. return getChildCount(node) == 0;

173. }

174.

175. public void valueForPathChanged(TreePath path, Object newValue)

176. {

177. }

178.

179. public void addTreeModelListener(TreeModelListener l)

180. {

181. }

182.

183. public void removeTreeModelListener(TreeModelListener l)

184. {

185. }

186.

187. private Document doc;

188. }

189.

190. /**

191. * This class renders an XML node.

192. */

193. class DOMTreeCellRenderer extends DefaultTreeCellRenderer

194. {

195. public Component getTreeCellRendererComponent(JTree tree, Object value, boolean selected,

196. boolean expanded, boolean leaf, int row, boolean hasFocus)

197. {

198. Node node = (Node) value;

199. if (node instanceof Element) return elementPanel((Element) node);

200.

201. super.getTreeCellRendererComponent(tree, value, selected, expanded, leaf, row, hasFocus);

202. if (node instanceof CharacterData) setText(characterString((CharacterData) node));

203. else setText(node.getClass() + ": " + node.toString());

204. return this;

205. }

206.

207. public static JPanel elementPanel(Element e)

208. {

209. JPanel panel = new JPanel();

210. panel.add(new JLabel("Element: " + e.getTagName()));

211. final NamedNodeMap map = e.getAttributes();

212. panel.add(new JTable(new AbstractTableModel()

213. {

214. public int getRowCount()

215. {

216. return map.getLength();

217. }

218.

219. public int getColumnCount()

220. {

221. return 2;

222. }

223.

224. public Object getValueAt(int r, int c)

225. {

226. return c == 0 ? map.item(r).getNodeName() : map.item(r).getNodeValue();

227. }

228. }));

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

229. return panel;

230. }

231.

232. public static String characterString(CharacterData node)

233. {

234. StringBuilder builder = new StringBuilder(node.getData());

235. for (int i = 0; i < builder.length(); i++)

236. {

237. if (builder.charAt(i) == '\r')

238. {

239. builder.replace(i, i + 1, "\\r");

240. i++;

241. }

242. else if (builder.charAt(i) == '\n')

243. {

244. builder.replace(i, i + 1, "\\n");

245. i++;

246. }

247. else if (builder.charAt(i) == '\t')

248. {

249. builder.replace(i, i + 1, "\\t");

250. i++;

251. }

252. }

253. if (node instanceof CDATASection) builder.insert(0, "CDATASection: ");

254. else if (node instanceof Text) builder.insert(0, "Text: ");

255. else if (node instanceof Comment) builder.insert(0, "Comment: ");

256.

257. return builder.toString();

258. }

259. }

javax.xml.parsers.DocumentBuilderFactory 1.4

static DocumentBuilderFactory newInstance()

returns an instance of the DocumentBuilderFactory class.

DocumentBuilder newDocumentBuilder()

returns an instance of the DocumentBuilder class.

javax.xml.parsers.DocumentBuilder 1.4

Document parse(File f)

Document parse(String url)

Document parse(InputStream in)

parses an XML document from the given file, URL, or input stream and
returns the parsed document.

org.w3c.dom.Document 1.4

Element getDocumentElement()

returns the root element of the document.

org.w3c.dom.Element 1.4

String getTagName()

returns the name of the element.

String getAttribute(String name)

returns the value of the attribute with the given name, or the empty
string if there is no such attribute.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

org.w3c.dom.Node 1.4

NodeList getChildNodes()

returns a node list that contains all children of this node.

Node getFirstChild()

Node getLastChild()

gets the first or last child node of this node, or null if this node has no

children.

Node getNextSibling()

Node getPreviousSibling()

gets the next or previous sibling of this node, or null if this node has no

siblings.

Node getParentNode()

gets the parent of this node, or null if this node is the document node.

NamedNodeMap getAttributes()

returns a node map that contains Attr nodes that describe all attributes

of this node.

String getNodeName()

returns the name of this node. If the node is an Attr node, then the
name is the attribute name.

String getNodeValue()

returns the value of this node. If the node is an Attr node, then the

value is the attribute value.

org.w3c.dom.CharacterData 1.4

String getData()

returns the text stored in this node.

org.w3c.dom.NodeList 1.4

int getLength()

returns the number of nodes in this list.

Node item(int index)

returns the node with the given index. The index is between 0 and
getLength() - 1.

org.w3c.dom.NamedNodeMap 1.4

int getLength()

returns the number of nodes in this map.

Node item(int index)

returns the node with the given index. The index is between 0 and
getLength() - 1.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Validating XML Documents

In the preceding section, you saw how to traverse the tree structure of a DOM document. However, if you simply
follow that approach, you'll find that you will have quite a bit of tedious programming and error checking. Not only
do you have to deal with whitespace between elements, but you also need to check whether the document contains
the nodes that you expect. For example, suppose you are reading an element:

 <name>Helvetica</name>

 <size>36</size>

You get the first child. Oops . . . it is a text node containing whitespace "\n " . You skip text nodes and find the

first element node. Then you need to check that its tag name is "name" . You need to check that it has one child

node of type Text . You move on to the next nonwhitespace child and make the same check. What if the author of

the document switched the order of the children or added another child element? It is tedious to code all the error
checking, and reckless to skip the checks.

Fortunately, one of the major benefits of an XML parser is that it can automatically verify that a document has the
correct structure. Then the parsing becomes much simpler. For example, if you know that the font fragment has
passed validation, then you can simply get the two grandchildren, cast them as Text nodes, and get the text data,

without any further checking.

To specify the document structure, you can supply a DTD or an XML Schema definition. A DTD or schema contains
rules that explain how a document should be formed, by specifying the legal child elements and attributes for each
element. For example, a DTD might contain a rule:

<!ELEMENT font (name,size)>

This rule expresses that a font element must always have two children, which are name and size elements. The

XML Schema language expresses the same constraint as

<xsd:element name="font">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="size" type="xsd:int"/>

 </xsd:sequence>

</xsd:element>

XML Schema can express more sophisticated validation conditions (such as the fact that the size element must

contain an integer) than can DTDs. Unlike the DTD syntax, the XML Schema syntax uses XML, which is a benefit if
you need to process schema files.

The XML Schema language was designed to replace DTDs. However, as we write this chapter, DTDs are still very
much alive. XML Schema is very complex and far from universally adopted. In fact, some XML users are so annoyed
by the complexity of XML Schema that they use alternative validation languages. The most common choice is Relax
NG (http://www.relaxng.org).

In the next section, we discuss DTDs in detail. We then briefly cover the basics of XML Schema support. Finally, we
show you a complete application that demonstrates how validation simplifies XML programming.

Document Type Definitions

There are several methods for supplying a DTD. You can include a DTD in an XML document like this:

<?xml version="1.0"?>

<!DOCTYPE configuration [
 <!ELEMENT configuration . . .>

 more rules

 . . .

]>

<configuration>

 . . .

</configuration>

As you can see, the rules are included inside a DOCTYPE declaration, in a block delimited by [. . .] . The document

type must match the name of the root element, such as configuration in our example.

Supplying a DTD inside an XML document is somewhat uncommon because DTDs can grow lengthy. It makes more
sense to store the DTD externally. The SYSTEM declaration can be used for that purpose. You specify a URL that

contains the DTD, for example:

<!DOCTYPE configuration SYSTEM "config.dtd">

or

<!DOCTYPE configuration SYSTEM "http://myserver.com/config.dtd">

Caution

If you use a relative URL for the DTD (such as "config.dtd"), then give the parser a

File or URL object, not an InputStream . If you must parse from an input stream,

supply an entity resolver—see the following note.

Finally, the mechanism for identifying "well known" DTDs has its origin in SGML. Here is an example:

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

If an XML processor knows how to locate the DTD with the public identifier, then it need not go to the URL.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

If you use a DOM parser and would like to support a PUBLIC identifier, call the

setEntityResolver method of the DocumentBuilder class to install an object of a

class that implements the EntityResolver interface. That interface has a single

method, resolveEntity . Here is the outline of a typical implementation:

class MyEntityResolver implements EntityResolver

{

 public InputSource resolveEntity(String publicID,

 String systemID)

 {

 if (publicID.equals(a known ID))

 return new InputSource(DTD data);

 else

 return null; // use default behavior
 }

}

You can construct the input source from an InputStream , a Reader , or a string.

Now that you have seen how the parser locates the DTD, let us consider the various kinds of rules.

The ELEMENT rule specifies what children an element can have. You specify a regular expression, made up of the

components shown in Table 2-1 .

Table 2-1. Rules for Element Content

Rule Meaning

E * 0 or more occurrences of E

E + 1 or more occurrences of E

E ? 0 or 1 occurrences of E

E 1 | E 2 | . . . | En One of E 1 , E 2 , . . . , En

E 1 , E 2 , . . . , En E 1 followed by E 2 , . . . , En

#PCDATA Text

(#PCDATA| E 1 | E 2 | . . . | En)* 0 or more occurrences of text and E 1 , E 2 , . . .,
En in any order (mixed content)

ANY Any children allowed

EMPTY No children allowed

Here are several simple but typical examples. The following rule states that a menu element contains 0 or more

item elements:

<!ELEMENT menu (item)*>

This set of rules states that a font is described by a name followed by a size, each of which contain text:

<!ELEMENT font (name,size)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT size (#PCDATA)>

The abbreviation PCDATA denotes parsed character data. The data are called "parsed" because the parser interprets

the text string, looking for < characters that denote the start of a new tag, or & characters that denote the start of

an entity.

An element specification can contain regular expressions that are nested and complex. For example, here is a rule
that describes the makeup of a chapter in this book:

<!ELEMENT chapter (intro,(heading,(para|image|table|note)+)+)

Each chapter starts with an introduction, which is followed by one or more sections consisting of a heading and one
or more paragraphs, images, tables, or notes.

However, in one common case you can't define the rules to be as flexible as you might like. Whenever an element
can contain text, then there are only two valid cases. Either the element contains nothing but text, such as

<!ELEMENT name (#PCDATA)>

or the element contains any combination of text and tags in any order , such as

<!ELEMENT para (#PCDATA|em|strong|code)*>

It is not legal to specify other types of rules that contain #PCDATA . For example, the following rule is illegal:

<!ELEMENT captionedImage (image,#PCDATA)>

You have to rewrite such a rule, either by introducing another caption element or by allowing any combination of

image tags and text.

This restriction simplifies the job of the XML parser when parsing mixed content (a mixture of tags and text).
Because you lose some control when allowing mixed content, it is best to design DTDs such that all elements
contain either other elements or nothing but text.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Actually, it isn't quite true that you can specify arbitrary regular expressions of
elements in a DTD rule. An XML parser may reject certain complex rule sets that lead
to "nondeterministic" parsing. For example, a regular expression ((x,y)|(x,z)) is

nondeterministic. When the parser sees x , it doesn't know which of the two

alternatives to take. This expression can be rewritten in a deterministic form, as
(x,(y|z)) . However, some expressions can't be reformulated, such as ((x,y)*|x?) .

The Sun parser gives no warnings when presented with an ambiguous DTD. It simply
picks the first matching alternative when parsing, which causes it to reject some
correct inputs. Of course, the parser is well within its rights to do so because the XML
standard allows a parser to assume that the DTD is unambiguous.

In practice, this isn't an issue over which you should lose sleep, because most DTDs are
so simple that you never run into ambiguity problems.

You also specify rules to describe the legal attributes of elements. The general syntax is

<!ATTLIST element attribute type default>

Table 2-2 shows the legal attribute types, and Table 2-3 shows the syntax for the defaults.

Table 2-2. Attribute Types

Type Meaning

CDATA Any character string

(A 1 | A 2 | . . . | An) One of the string attributes A 1 A 2 . . . | An

NMTOKEN , NMTOKENS One or more name tokens

ID A unique ID

IDREF , IDREFS One or more references to a unique ID

ENTITY , ENTITIES One or more unparsed entities

Table 2-3. Attribute Defaults

Default Meaning

#REQUIRED Attribute is required.

#IMPLIED Attribute is optional.

A Attribute is optional; the parser reports it to be A if it is
not specified.

#FIXED A The attribute must either be unspecified or A ; in either
case, the parser reports it to be A.

Here are two typical attribute specifications:

<!ATTLIST font style (plain|bold|italic|bold-italic) "plain">

<!ATTLIST size unit CDATA #IMPLIED>

The first specification describes the style attribute of a font element. There are four legal attribute values, and the

default value is plain . The second specification expresses that the unit attribute of the size element can contain

any character data sequence.

Note

We generally recommend the use of elements, not attributes, to describe data.
Following that recommendation, the font style should be a separate element, such as
<style>plain</style>... . However, attributes have an undeniable

advantage for enumerated types because the parser can verify that the values are
legal. For example, if the font style is an attribute, the parser checks that it is one of
the four allowed values, and it supplies a default if no value was given.

The handling of a CDATA attribute value is subtly different from the processing of #PCDATA that you have seen

before, and quite unrelated to the <![CDATA[...]]> sections. The attribute value is first normalized ; that is, the

parser processes character and entity references (such as é or <) and replaces whitespace with spaces.

An NMTOKEN (or name token) is similar to CDATA , but most nonalphanumeric characters and internal whitespace are
disallowed, and the parser removes leading and trailing whitespace. NMTOKENS is a whitespace-separated list of

name tokens.

The ID construct is quite useful. An ID is a name token that must be unique in the document—the parser checks the

uniqueness. You will see an application in the next sample program. An IDREF is a reference to an ID that exists in
the same document—which the parser also checks. IDREFS is a whitespace-separated list of ID references.

An ENTITY attribute value refers to an "unparsed external entity." That is a holdover from SGML that is rarely used

in practice. The annotated XML specification at http://www.xml.com/axml/axml.html has an example.

A DTD can also define entities , or abbreviations that are replaced during parsing. You can find a good example for
the use of entities in the user interface descriptions for the Mozilla/Netscape 6 browser. Those descriptions are
formatted in XML and contain entity definitions such as

<!ENTITY back.label "Back">

Elsewhere, text can contain an entity reference, for example:

<menuitem label="&back.label;"/>

The parser replaces the entity reference with the replacement string. For internationalization of the application, only
the string in the entity definition needs to be changed. Other uses of entities are more complex and less commonly
used. Look at the XML specification for details.

This concludes the introduction to DTDs. Now that you have seen how to use DTDs, you can configure your parser
to take advantage of them. First, tell the document builder factory to turn on validation.

factory.setValidating(true);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

All builders produced by this factory validate their input against a DTD. The most useful benefit of validation is to
ignore whitespace in element content. For example, consider the XML fragment

 <name>Helvetica</name>

 <size>36</size>

A nonvalidating parser reports the whitespace between the font , name , and size elements because it has no way

of knowing if the children of font are

(name,size)

(#PCDATA,name,size)*

or perhaps

ANY

Once the DTD specifies that the children are (name,size) , the parser knows that the whitespace between them is

not text. Call

factory.setIgnoringElementContentWhitespace(true);

and the builder will stop reporting the whitespace in text nodes. That means you can now rely on the fact that a
font node has two children. You no longer need to program a tedious loop:

for (int i = 0; i < children.getLength(); i++)

{

 Node child = children.item(i);
 if (child instanceof Element)

 {

 Element childElement = (Element) child;

 if (childElement.getTagName().equals("name")) . . .

 else if (childElement.getTagName().equals("size")) . . .

 }

}

Instead, you can simply access the first and second child:

Element nameElement = (Element) children.item(0);

Element sizeElement = (Element) children.item(1);

That is why DTDs are so useful. You don't overload your program with rule checking code—the parser has already
done that work by the time you get the document.

Tip

Many programmers who start using XML are uncomfortable with validation and end up
analyzing the DOM tree on the fly. If you need to convince colleagues of the benefit of
using validated documents, show them the two coding alternatives—it should win them
over.

When the parser reports an error, your application will want to do something about it—log it, show it to the user, or
throw an exception to abandon the parsing. Therefore, you should install an error handler whenever you use
validation. Supply an object that implements the ErrorHandler interface. That interface has three methods:

void warning(SAXParseException exception)
void error(SAXParseException exception)

void fatalError(SAXParseException exception)

You install the error handler with the setErrorHandler method of the DocumentBuilder class:

builder.setErrorHandler(handler);

javax.xml.parsers.DocumentBuilder 1.4

void setEntityResolver(EntityResolver resolver)

sets the resolver to locate entities that are referenced in the XML
documents to be parsed.

void setErrorHandler(ErrorHandler handler)

sets the handler to report errors and warnings that occur during parsing.

org.xml.sax.EntityResolver 1.4

public InputSource resolveEntity(String publicID, String

systemID)

returns an input source that contains the data referenced by the given
ID(s), or null to indicate that this resolver doesn't know how to resolve the

particular name. The publicID parameter may be null if no public ID was

supplied.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

org.xml.sax.InputSource 1.4

InputSource(InputStream in)

InputSource(Reader in)

InputSource(String systemID)

constructs an input source from a stream, reader, or system ID (usually a
relative or absolute URL).

org.xml.sax.ErrorHandler 1.4

void fatalError(SAXParseException exception)

void error(SAXParseException exception)

void warning(SAXParseException exception)

Override these methods to provide handlers for fatal errors, nonfatal errors,
and warnings.

org.xml.sax.SAXParseException 1.4

int getLineNumber()

int getColumnNumber()

returns the line and column number of the end of the processed input that
caused the exception.

javax.xml.parsers.DocumentBuilderFactory 1.4

boolean isValidating()

void setValidating(boolean value)

gets or sets the validating property of the factory. If set to true , the

parsers that this factory generates validate their input.

boolean isIgnoringElementContentWhitespace()

void setIgnoringElementContentWhitespace(boolean value)

gets or sets the ignoringElementContentWhitespace property of the

factory. If set to true , the parsers that this factory generates ignore

whitespace text between element nodes that don't have mixed content
(i.e., a mixture of elements and #PCDATA).

XML Schema

Because XML Schema is quite a bit more complex than the DTD syntax, we cover only the basics. For more
information, we recommend the tutorial at http://www.w3.org/TR/xmlschema-0 .

To reference a Schema file in a document, add attributes to the root element, for example:

<?xml version="1.0"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="config.xsd">

. . .

</configuration>

This declaration states that the schema file config.xsd should be used to validate the document. If your document

uses namespaces, the syntax is a bit more complex—see the XML Schema tutorial for details. (The prefix xsi is a

namespace alias —see the section "Using Namespaces " on page 136 for more information.)

A schema defines a type for each element. The type can be a simple type —a string with formatting restrictions—or
a complex type . Some simple types are built into XML Schema, including

xsd:string

xsd:int

xsd:boolean

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

We use the prefix xsd: to denote the XML Schema Definition namespace. Some

authors use the prefix xs: instead.

You can define your own simple types. For example, here is an enumerated type:

<xsd:simpleType name="StyleType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="PLAIN" />

 <xsd:enumeration value="BOLD" />

 <xsd:enumeration value="ITALIC" />

 <xsd:enumeration value="BOLD_ITALIC" />
 </xsd:restriction>

</xsd:simpleType>

When you define an element, you specify its type:

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="size" type="xsd:int"/>

<xsd:element name="style" type="StyleType"/>

The type constrains the element content. For example, the elements

<size>10</size>

<style>PLAIN</style>

will validate correctly, but the elements

<size>default</size>

<style>SLANTED</style>

will be rejected by the parser.

You can compose types into complex types, for example:

<xsd:complexType name="FontType">

 <xsd:sequence>

 <xsd:element ref="name"/>

 <xsd:element ref="size"/>

 <xsd:element ref="style"/>

 </xsd:sequence>

</xsd:complexType>

A FontType is a sequence of name , size , and style elements. In this type definition, we use the ref attribute and

refer to definitions that are located elsewhere in the schema. You can also nest definitions, like this:

<xsd:complexType name="FontType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="size" type="xsd:int"/>

 <xsd:element name="style" type="StyleType">
 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="PLAIN" />

 <xsd:enumeration value="BOLD" />

 <xsd:enumeration value="ITALIC" />

 <xsd:enumeration value="BOLD_ITALIC" />

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

Note the anonymous type definition of the style element.

The xsd:sequence construct is the equivalent of the concatenation notation in DTDs. The xsd:choice construct is

the equivalent of the | operator. For example,

<xsd:complexType name="contactinfo">

 <xsd:choice>
 <xsd:element ref="email"/>

 <xsd:element ref="phone"/>

 </xsd:choice>

</xsd:complexType>

This is the equivalent of the DTD type email|phone .

To allow repeated elements, you use the minoccurs and maxoccurs attributes. For example, the equivalent of the

DTD type item* is

<xsd:element name="item" type=". . ." minoccurs="0" maxoccurs="unbounded">

To specify attributes, add xsd:attribute elements to complexType definitions:

Code View:
<xsd:element name="size">

 <xsd:complexType>

 . . .

 <xsd:attribute name="unit" type="xsd:string" use="optional" default="cm"/>

 </xsd:complexType>

</xsd:element>

This is the equivalent of the DTD statement

<!ATTLIST size unit CDATA #IMPLIED "cm">

You enclose element and type definitions of your schema inside an xsd:schema element:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 . . .

</xsd:schema>

Parsing an XML file with a schema is similar to parsing a file with a DTD, but with three differences:

You need to turn on support for namespaces, even if you don't use them in your XML files.

factory.setNamespaceAware(true);

1.

You need to prepare the factory for handling schemas, with the following magic incantation:

Code View:
final String JAXP_SCHEMA_LANGUAGE = "http://java.sun.com/xml/jaxp/properties/schemaLanguage";

final String W3C_XML_SCHEMA = "http://www.w3.org/2001/XMLSchema";

factory.setAttribute(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);

2.

The parser does not discard element content whitespace . This is a definite annoyance, and there is
disagreement whether or not it is an actual bug. See the code in Listing 2-4 on page 122 for a workaround.

3.

A Practical Example

In this section, we work through a practical example that shows the use of XML in a realistic setting. Recall from
Volume I, Chapter 9 that the GridBagLayout is the most useful layout manager for Swing components. However, it

is feared not just for its complexity but also for the programming tedium. It would be much more convenient to put
the layout instructions into a text file instead of producing large amounts of repetitive code. In this section, you see
how to use XML to describe a grid bag layout and how to parse the layout files.

A grid bag is made up of rows and columns, very similar to an HTML table. Similar to an HTML table, we describe it
as a sequence of rows, each of which contains cells:

<gridbag>

 <row>

 <cell>...</cell>
 <cell>...</cell>

 . . .

 </row>

 <row>

 <cell>...</cell>

 <cell>...</cell>

 . . .

 </row>

 . . .

</gridbag>

The gridbag.dtd specifies these rules:

<!ELEMENT gridbag (row)*>

<!ELEMENT row (cell)*>

Some cells can span multiple rows and columns. In the grid bag layout, that is achieved by setting the gridwidth

and gridheight constraints to values larger than 1. We use attributes of the same name:

<cell gridwidth="2" gridheight="2">

Similarly, we use attributes for the other grid bag constraints fill , anchor , gridx , gridy , weightx , weighty ,

ipadx , and ipady . (We don't handle the insets constraint because its value is not a simple type, but it would be

straightforward to support it.) For example,

<cell fill="HORIZONTAL" anchor="NORTH">

For most of these attributes, we provide the same defaults as the GridBagConstraints default constructor:

<!ATTLIST cell gridwidth CDATA "1">

<!ATTLIST cell gridheight CDATA "1">

<!ATTLIST cell fill (NONE|BOTH|HORIZONTAL|VERTICAL) "NONE">
<!ATTLIST cell anchor (CENTER|NORTH|NORTHEAST|EAST

 |SOUTHEAST|SOUTH|SOUTHWEST|WEST|NORTHWEST) "CENTER">

. . .

The gridx and gridy values get special treatment because it would be tedious and somewhat error prone to specify

them by hand. Supplying them is optional:

<!ATTLIST cell gridx CDATA #IMPLIED>

<!ATTLIST cell gridy CDATA #IMPLIED>

If they are not supplied, the program determines them according to the following heuristic: In column 0, the default
gridx is 0. Otherwise, it is the preceding gridx plus the preceding gridwidth . The default gridy is always the
same as the row number. Thus, you don't have to specify gridx and gridy in the most common cases, in which a

component spans multiple rows. However, if a component spans multiple columns, then you must specify gridx

whenever you skip over that component.

Note

Grid bag experts might wonder why we don't use the RELATIVE and REMAINDER

mechanism to let the grid bag layout automatically determine the gridx and gridy

positions. We tried, but no amount of fussing would produce the layout of the font
dialog example of Figure 2-4 . Reading through the GridBagLayout source code, it is

apparent that the algorithm just won't do the heavy lifting that would be required to
recover the absolute positions.

Figure 2-4. A font dialog defined by an XML layout

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The program parses the attributes and sets the grid bag constraints. For example, to read the grid width, the
program contains a single statement:

constraints.gridwidth = Integer.parseInt(e.getAttribute("gridwidth"));

The program need not worry about a missing attribute because the parser automatically supplies the default value
if no other value was specified in the document.

To test whether a gridx or gridy attribute was specified, we call the getAttribute method and check if it returns
the empty string:

String value = e.getAttribute("gridy");

if (value.length() == 0) // use default

 constraints.gridy = r;

else

 constraints.gridx = Integer.parseInt(value);

We found it convenient to allow arbitrary objects inside cells. That lets us specify noncomponent types such as
borders. We only require that the objects belong to a class that follows the JavaBeans convention: to have a default
constructor, and to have properties that are given by getter/setter pairs. (We discuss JavaBeans in more detail in
Chapter 8 .)

A bean is defined by a class name and zero or more properties:

<!ELEMENT bean (class, property*)>

<!ELEMENT class (#PCDATA)>

A property contains a name and a value.

<!ELEMENT property (name, value)>

<!ELEMENT name (#PCDATA)>

The value is an integer, boolean , string, or another bean:

<!ELEMENT value (int|string|boolean|bean)>

<!ELEMENT int (#PCDATA)>

<!ELEMENT string (#PCDATA)>
<!ELEMENT boolean (#PCDATA)>

Here is a typical example, a JLabel whose text property is set to the string "Face: " .

<bean>
 <class>javax.swing.JLabel</class>

 <property>

 <name>text</name>

 <value><string>Face: </string></value>

 </property>

</bean>

It seems like a bother to surround a string with the <string> tag. Why not just use #PCDATA for strings and leave
the tags for the other types? Because then we would need to use mixed content and weaken the rule for the value

element to

<!ELEMENT value (#PCDATA|int|boolean|bean)*>

However, that rule would allow an arbitrary mixture of text and tags.

The program sets a property by using the BeanInfo class. BeanInfo enumerates the property descriptors of the

bean. We search for the property with the matching name, and then call its setter method with the supplied value.

When our program reads in a user interface description, it has enough information to construct and arrange the
user interface components. But, of course, the interface is not alive—no event listeners have been attached. To add
event listeners, we have to locate the components. For that reason, we support an optional attribute of type ID for

each bean:

<!ATTLIST bean id ID #IMPLIED>

For example, here is a combo box with an ID:

<bean id="face">

 <class>javax.swing.JComboBox</class>

</bean>

Recall that the parser checks that IDs are unique.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

A programmer can attach event handlers like this:

gridbag = new GridBagPane("fontdialog.xml");

setContentPane(gridbag);

JComboBox face = (JComboBox) gridbag.get("face");

face.addListener(listener);

Note

In this example, we only use XML to describe the component layout and leave it to
programmers to attach the event handlers in the Java code. You could go a step further
and add the code to the XML description. The most promising approach is to use a
scripting language such as JavaScript for the code. If you want to add that
enhancement, check out the Rhino interpreter at http://www.mozilla.org/rhino .

The program in Listing 2-2 shows how to use the GridBagPane class to do all the boring work of setting up the grid

bag layout. The layout is defined in Listing 2-3 . Figure 2-4 shows the result. The program only initializes the combo
boxes (which are too complex for the bean property-setting mechanism that the GridBagPane supports) and

attaches event listeners. The GridBagPane class in Listing 2-4 parses the XML file, constructs the components, and

lays them out. Listing 2-5 shows the DTD.

The program can also process a schema instead of a DTD if you launch it with

java GridBagTest fontdialog-schema.xml

Listing 2-6 contains the schema.

This example is a typical use of XML. The XML format is robust enough to express complex relationships. The XML
parser adds value by taking over the routine job of validity checking and supplying defaults.

Listing 2-2. GridBagTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import javax.swing.*;

 4.

 5. /**

 6. * This program shows how to use an XML file to describe a gridbag layout

 7. * @version 1.01 2007-06-25

 8. * @author Cay Horstmann

 9. */

10. public class GridBagTest

11. {

12. public static void main(final String[] args)

13. {

14. EventQueue.invokeLater(new Runnable()

15. {

16. public void run()

17. {

18. String filename = args.length == 0 ? "fontdialog.xml" : args[0];

19. JFrame frame = new FontFrame(filename);

20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

21. frame.setVisible(true);

22. }

23. });

24. }

25. }

26.

27. /**

28. * This frame contains a font selection dialog that is described by an XML file.

29. * @param filename the file containing the user interface components for the dialog.

30. */

31. class FontFrame extends JFrame

32. {

33. public FontFrame(String filename)

34. {

35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

36. setTitle("GridBagTest");

37.

38. gridbag = new GridBagPane(filename);

39. add(gridbag);

40.

41. face = (JComboBox) gridbag.get("face");

42. size = (JComboBox) gridbag.get("size");

43. bold = (JCheckBox) gridbag.get("bold");

44. italic = (JCheckBox) gridbag.get("italic");

45.

46. face.setModel(new DefaultComboBoxModel(new Object[] { "Serif", "SansSerif",

47. "Monospaced", "Dialog", "DialogInput" }));

48.

49. size.setModel(new DefaultComboBoxModel(new Object[] { "8", "10", "12", "15", "18", "24",

50. "36", "48" }));

51.

52. ActionListener listener = new ActionListener()

53. {

54. public void actionPerformed(ActionEvent event)

55. {

56. setSample();

57. }

58. };

59.

60. face.addActionListener(listener);

61. size.addActionListener(listener);

62. bold.addActionListener(listener);

63. italic.addActionListener(listener);

64. setSample();

65. }

66.

67. /**

68. * This method sets the text sample to the selected font.

69. */

70. public void setSample()

71. {

72. String fontFace = (String) face.getSelectedItem();

73. int fontSize = Integer.parseInt((String) size.getSelectedItem());

74. JTextArea sample = (JTextArea) gridbag.get("sample");

75. int fontStyle = (bold.isSelected() ? Font.BOLD : 0)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

76. + (italic.isSelected() ? Font.ITALIC : 0);

77.

78. sample.setFont(new Font(fontFace, fontStyle, fontSize));

79. sample.repaint();

80. }

81.

82. private GridBagPane gridbag;

83. private JComboBox face;

84. private JComboBox size;

85. private JCheckBox bold;

86. private JCheckBox italic;

87. private static final int DEFAULT_WIDTH = 400;

88. private static final int DEFAULT_HEIGHT = 400;

89. }

Listing 2-3. fontdialog.xml

Code View:
 1. <?xml version="1.0"?>

 2. <!DOCTYPE gridbag SYSTEM "gridbag.dtd">

 3. <gridbag>

 4. <row>

 5. <cell anchor="EAST">

 6. <bean>

 7. <class>javax.swing.JLabel</class>

 8. <property>

 9. <name>text</name>

10. <value><string>Face: </string></value>

11. </property>

12. </bean>

13. </cell>

14. <cell fill="HORIZONTAL" weightx="100">

15. <bean id="face">

16. <class>javax.swing.JComboBox</class>

17. </bean>

18. </cell>

19. <cell gridheight="4" fill="BOTH" weightx="100" weighty="100">

20. <bean id="sample">

21. <class>javax.swing.JTextArea</class>

22. <property>

23. <name>text</name>

24. <value><string>The quick brown fox jumps over the lazy dog</string></value>

25. </property>

26. <property>

27. <name>editable</name>

28. <value><boolean>false</boolean></value>

29. </property>

30. <property>

31. <name>lineWrap</name>

32. <value><boolean>true</boolean></value>

33. </property>

34. <property>

35. <name>border</name>

36. <value>

37. <bean>

38. <class>javax.swing.border.EtchedBorder</class>

39. </bean>

40. </value>

41. </property>

42. </bean>

43. </cell>

44. </row>

45. <row>

46. <cell anchor="EAST">

47. <bean>

48. <class>javax.swing.JLabel</class>

49. <property>

50. <name>text</name>

51. <value><string>Size: </string></value>

52. </property>

53. </bean>

54. </cell>

55. <cell fill="HORIZONTAL" weightx="100">

56. <bean id="size">

57. <class>javax.swing.JComboBox</class>

58. </bean>

59. </cell>

60. </row>

61. <row>

62. <cell gridwidth="2" weighty="100">

63. <bean id="bold">

64. <class>javax.swing.JCheckBox</class>

65. <property>

66. <name>text</name>

67. <value><string>Bold</string></value>

68. </property>

69. </bean>

70. </cell>

71. </row>

72. <row>

73. <cell gridwidth="2" weighty="100">

74. <bean id="italic">

75. <class>javax.swing.JCheckBox</class>

76. <property>

77. <name>text</name>

78. <value><string>Italic</string></value>

79. </property>

80. </bean>

81. </cell>

82. </row>

83. </gridbag>

Listing 2-4. GridBagPane.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. import java.awt.*;

 2. import java.beans.*;

 3. import java.io.*;

 4. import java.lang.reflect.*;

 5. import javax.swing.*;

 6. import javax.xml.parsers.*;

 7. import org.w3c.dom.*;

 8.

 9. /**

 10. * This panel uses an XML file to describe its components and their grid bag layout positions.

 11. * @version 1.10 2004-09-04

 12. * @author Cay Horstmann

 13. */

 14. public class GridBagPane extends JPanel

 15. {

 16. /**

 17. * Constructs a grid bag pane.

 18. * @param filename the name of the XML file that describes the pane's components and their

 19. * positions

 20. */

 21. public GridBagPane(String filename)

 22. {

 23. setLayout(new GridBagLayout());

 24. constraints = new GridBagConstraints();

 25.

 26. try

 27. {

 28. DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 29. factory.setValidating(true);

 30.

 31. if (filename.contains("-schema"))

 32. {

 33. factory.setNamespaceAware(true);

 34. final String JAXP_SCHEMA_LANGUAGE = "http://java.sun.com/xml/jaxp/properties/

 35. schemaLanguage";

 36. final String W3C_XML_SCHEMA = "http://www.w3.org/2001/XMLSchema";

 37. factory.setAttribute(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);

 38. }

 39.

 40. factory.setIgnoringElementContentWhitespace(true);

 41.

 42. DocumentBuilder builder = factory.newDocumentBuilder();

 43. Document doc = builder.parse(new File(filename));

 44.

 45. if (filename.contains("-schema"))

 46. {

 47. int count = removeElementContentWhitespace(doc.getDocumentElement());

 48. System.out.println(count + " whitespace nodes removed.");

 49. }

 50.

 51. parseGridbag(doc.getDocumentElement());

 52. }

 53. catch (Exception e)

 54. {

 55. e.printStackTrace();

 56. }

 57. }

 58.

 59. /**

 60. * Removes all (heuristically determined) element content whitespace nodes

 61. * @param e the root element

 62. * @return the number of whitespace nodes that were removed.

 63. */

 64. private int removeElementContentWhitespace(Element e)

 65. {

 66. NodeList children = e.getChildNodes();

 67. int count = 0;

 68. boolean allTextChildrenAreWhiteSpace = true;

 69. int elements = 0;

 70. for (int i = 0; i < children.getLength() && allTextChildrenAreWhiteSpace; i++)

 71. {

 72. Node child = children.item(i);

 73. if (child instanceof Text && ((Text) child).getData().trim().length() > 0)

 74. allTextChildrenAreWhiteSpace = false;

 75. else if (child instanceof Element)

 76. {

 77. elements++;

 78. count += removeElementContentWhitespace((Element) child);

 79. }

 80. }

 81. if (elements > 0 && allTextChildrenAreWhiteSpace) // heuristics for element content

 82. {

 83. for (int i = children.getLength() - 1; i >= 0; i--)

 84. {

 85. Node child = children.item(i);

 86. if (child instanceof Text)

 87. {

 88. e.removeChild(child);

 89. count++;

 90. }

 91. }

 92. }

 93. return count;

 94. }

 95.

 96. /**

 97. * Gets a component with a given name

 98. * @param name a component name

 99. * @return the component with the given name, or null if no component in this grid bag

100. * pane has the given name

101. */

102. public Component get(String name)

103. {

104. Component[] components = getComponents();

105. for (int i = 0; i < components.length; i++)

106. {

107. if (components[i].getName().equals(name)) return components[i];

108. }

109. return null;

110. }

111.

112. /**

113. * Parses a gridbag element.

114. * @param e a gridbag element

115. */

116. private void parseGridbag(Element e)

117. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

118. NodeList rows = e.getChildNodes();

119. for (int i = 0; i < rows.getLength(); i++)

120. {

121. Element row = (Element) rows.item(i);

122. NodeList cells = row.getChildNodes();

123. for (int j = 0; j < cells.getLength(); j++)

124. {

125. Element cell = (Element) cells.item(j);

126. parseCell(cell, i, j);

127. }

128. }

129. }

130.

131. /**

132. * Parses a cell element.

133. * @param e a cell element

134. * @param r the row of the cell

135. * @param c the column of the cell

136. */

137. private void parseCell(Element e, int r, int c)

138. {

139. // get attributes

140.

141. String value = e.getAttribute("gridx");

142. if (value.length() == 0) // use default

143. {

144. if (c == 0) constraints.gridx = 0;

145. else constraints.gridx += constraints.gridwidth;

146. }

147. else constraints.gridx = Integer.parseInt(value);

148.

149. value = e.getAttribute("gridy");

150. if (value.length() == 0) // use default

151. constraints.gridy = r;

152. else constraints.gridy = Integer.parseInt(value);

153.

154. constraints.gridwidth = Integer.parseInt(e.getAttribute("gridwidth"));

155. constraints.gridheight = Integer.parseInt(e.getAttribute("gridheight"));

156. constraints.weightx = Integer.parseInt(e.getAttribute("weightx"));

157. constraints.weighty = Integer.parseInt(e.getAttribute("weighty"));

158. constraints.ipadx = Integer.parseInt(e.getAttribute("ipadx"));

159. constraints.ipady = Integer.parseInt(e.getAttribute("ipady"));

160.

161. // use reflection to get integer values of static fields

162. Class<GridBagConstraints> cl = GridBagConstraints.class;

163.

164. try

165. {

166. String name = e.getAttribute("fill");

167. Field f = cl.getField(name);

168. constraints.fill = f.getInt(cl);

169.

170. name = e.getAttribute("anchor");

171. f = cl.getField(name);

172. constraints.anchor = f.getInt(cl);

173. }

174. catch (Exception ex) // the reflection methods can throw various exceptions

175. {

176. ex.printStackTrace();

177. }

178.

179. Component comp = (Component) parseBean((Element) e.getFirstChild());

180. add(comp, constraints);

181. }

182.

183. /**

184. * Parses a bean element.

185. * @param e a bean element

186. */

187. private Object parseBean(Element e)

188. {

189. try

190. {

191. NodeList children = e.getChildNodes();

192. Element classElement = (Element) children.item(0);

193. String className = ((Text) classElement.getFirstChild()).getData();

194.

195. Class<?> cl = Class.forName(className);

196.

197. Object obj = cl.newInstance();

198.

199. if (obj instanceof Component) ((Component) obj).setName(e.getAttribute("id"));

200.

201. for (int i = 1; i < children.getLength(); i++)

202. {

203. Node propertyElement = children.item(i);

204. Element nameElement = (Element) propertyElement.getFirstChild();

205. String propertyName = ((Text) nameElement.getFirstChild()).getData();

206.

207. Element valueElement = (Element) propertyElement.getLastChild();

208. Object value = parseValue(valueElement);

209. BeanInfo beanInfo = Introspector.getBeanInfo(cl);

210. PropertyDescriptor[] descriptors = beanInfo.getPropertyDescriptors();

211. boolean done = false;

212. for (int j = 0; !done && j < descriptors.length; j++)

213. {

214. if (descriptors[j].getName().equals(propertyName))

215. {

216. descriptors[j].getWriteMethod().invoke(obj, value);

217. done = true;

218. }

219. }

220.

221. }

222. return obj;

223. }

224. catch (Exception ex) // the reflection methods can throw various exceptions

225. {

226. ex.printStackTrace();

227. return null;

228. }

229. }

230.

231. /**

232. * Parses a value element.

233. * @param e a value element

234. */

235. private Object parseValue(Element e)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

236. {

237. Element child = (Element) e.getFirstChild();

238. if (child.getTagName().equals("bean")) return parseBean(child);

239. String text = ((Text) child.getFirstChild()).getData();

240. if (child.getTagName().equals("int")) return new Integer(text);

241. else if (child.getTagName().equals("boolean")) return new Boolean(text);

242. else if (child.getTagName().equals("string")) return text;

243. else return null;

244. }

245.

246. private GridBagConstraints constraints;

247. }

Listing 2-5. gridbag.dtd

Code View:
 1. <!ELEMENT gridbag (row)*>

 2. <!ELEMENT row (cell)*>

 3. <!ELEMENT cell (bean)>

 4. <!ATTLIST cell gridx CDATA #IMPLIED>

 5. <!ATTLIST cell gridy CDATA #IMPLIED>

 6. <!ATTLIST cell gridwidth CDATA "1">

 7. <!ATTLIST cell gridheight CDATA "1">

 8. <!ATTLIST cell weightx CDATA "0">

 9. <!ATTLIST cell weighty CDATA "0">

10. <!ATTLIST cell fill (NONE|BOTH|HORIZONTAL|VERTICAL) "NONE">

11. <!ATTLIST cell anchor

12. (CENTER|NORTH|NORTHEAST|EAST|SOUTHEAST|SOUTH|SOUTHWEST|WEST|NORTHWEST) "CENTER">

13. <!ATTLIST cell ipadx CDATA "0">

14. <!ATTLIST cell ipady CDATA "0">

15.

16. <!ELEMENT bean (class, property*)>

17. <!ATTLIST bean id ID #IMPLIED>

18.

19. <!ELEMENT class (#PCDATA)>

20. <!ELEMENT property (name, value)>

21. <!ELEMENT name (#PCDATA)>

22. <!ELEMENT value (int|string|boolean|bean)>

23. <!ELEMENT int (#PCDATA)>

24. <!ELEMENT string (#PCDATA)>

25. <!ELEMENT boolean (#PCDATA)>

Listing 2-6. gridbag.xsd

Code View:
 1. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 2.

 3. <xsd:element name="gridbag" type="GridBagType"/>

 4.

 5. <xsd:element name="bean" type="BeanType"/>

 6.

 7. <xsd:complexType name="GridBagType">

 8. <xsd:sequence>

 9. <xsd:element name="row" type="RowType" minOccurs="0" maxOccurs="unbounded"/>

10. </xsd:sequence>

11. </xsd:complexType>

12.

13. <xsd:complexType name="RowType">

14. <xsd:sequence>

15. <xsd:element name="cell" type="CellType" minOccurs="0" maxOccurs="unbounded"/>

16. </xsd:sequence>

17. </xsd:complexType>

18.

19. <xsd:complexType name="CellType">

20. <xsd:sequence>

21. <xsd:element ref="bean"/>

22. </xsd:sequence>

23. <xsd:attribute name="gridx" type="xsd:int" use="optional"/>

24. <xsd:attribute name="gridy" type="xsd:int" use="optional"/>

25. <xsd:attribute name="gridwidth" type="xsd:int" use="optional" default="1" />

26. <xsd:attribute name="gridheight" type="xsd:int" use="optional" default="1" />

27. <xsd:attribute name="weightx" type="xsd:int" use="optional" default="0" />

28. <xsd:attribute name="weighty" type="xsd:int" use="optional" default="0" />

29. <xsd:attribute name="fill" use="optional" default="NONE">

30. <xsd:simpleType>

31. <xsd:restriction base="xsd:string">

32. <xsd:enumeration value="NONE" />

33. <xsd:enumeration value="BOTH" />

34. <xsd:enumeration value="HORIZONTAL" />

35. <xsd:enumeration value="VERTICAL" />

36. </xsd:restriction>

37. </xsd:simpleType>

38. </xsd:attribute>

39. <xsd:attribute name="anchor" use="optional" default="CENTER">

40. <xsd:simpleType>

41. <xsd:restriction base="xsd:string">

42. <xsd:enumeration value="CENTER" />

43. <xsd:enumeration value="NORTH" />

44. <xsd:enumeration value="NORTHEAST" />

45. <xsd:enumeration value="EAST" />

46. <xsd:enumeration value="SOUTHEAST" />

47. <xsd:enumeration value="SOUTH" />

48. <xsd:enumeration value="SOUTHWEST" />

49. <xsd:enumeration value="WEST" />

50. <xsd:enumeration value="NORTHWEST" />

51. </xsd:restriction>

52. </xsd:simpleType>

53. </xsd:attribute>

54. <xsd:attribute name="ipady" type="xsd:int" use="optional" default="0" />

55. <xsd:attribute name="ipadx" type="xsd:int" use="optional" default="0" />

56. </xsd:complexType>

57.

58. <xsd:complexType name="BeanType">

59. <xsd:sequence>

60. <xsd:element name="class" type="xsd:string"/>

61. <xsd:element name="property" type="PropertyType" minOccurs="0" maxOccurs="unbounded"/>

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

62. </xsd:sequence>

63. <xsd:attribute name="id" type="xsd:ID" use="optional" />

64. </xsd:complexType>

65.

66. <xsd:complexType name="PropertyType">

67. <xsd:sequence>

68. <xsd:element name="name" type="xsd:string"/>

69. <xsd:element name="value" type="ValueType"/>

70. </xsd:sequence>

71. </xsd:complexType>

72.

73. <xsd:complexType name="ValueType">

74. <xsd:choice>

75. <xsd:element ref="bean"/>

76. <xsd:element name="int" type="xsd:int"/>

77. <xsd:element name="string" type="xsd:string"/>

78. <xsd:element name="boolean" type="xsd:boolean"/>

79. </xsd:choice>

80. </xsd:complexType>

81. </xsd:schema>

Locating Information with XPath

If you want to locate a specific piece of information in an XML document, then it can be a bit of a hassle to
navigate the nodes of the DOM tree. The XPath language makes it simple to access tree nodes. For example,
suppose you have this XML document:

<configuration>

 . . .

 <database>

 <username>dbuser</username>

 <password>secret</password>

 . . .
 </database>

</configuration>

You can get the database user name by evaluating the XPath expression

/configuration/database/username

That's a lot simpler than the plain DOM approach:

Get the document node.1.

Enumerate its children.2.

Locate the database element.3.

Get its first child, the username element.4.

Get its first child, a Text node.5.

Get its data.6.

An XPath can describe a set of nodes in an XML document. For example, the XPath

/gridbag/row

describes the set of all row elements that are children of the gridbag root element. You can select a particular

element with the [] operator:

/gridbag/row[1]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

is the first row. (The index values start at 1.)

Use the @ operator to get attribute values. The XPath expression

/gridbag/row[1]/cell[1]/@anchor

describes the anchor attribute of the first cell in the first row. The XPath expression

/gridbag/row/cell/@anchor

describes all anchor attribute nodes of cell elements within row elements that are children of the gridbag root

node.

There are a number of useful XPath functions. For example,

count(/gridbag/row)

returns the number of row children of the gridbag root. There are many more elaborate XPath expressions—see
the specification at http://www.w3c.org/TR/xpath or the nifty online tutorial at
http://www.zvon.org/xxl/XPathTutorial/General/examples.html.

Java SE 5.0 added an API to evaluate XPath expressions. You first create an XPath object from an

XPathFactory:

XPathFactory xpfactory = XPathFactory.newInstance();

path = xpfactory.newXPath();

You then call the evaluate method to evaluate XPath expressions:

String username = path.evaluate("/configuration/database/username", doc);

You can use the same XPath object to evaluate multiple expressions.

This form of the evaluate method returns a string result. It is suitable for retrieving text, such as the text of

the username node in the preceding example. If an XPath expression yields a node set, make a call such as the

following:

Code View:
NodeList nodes = (NodeList) path.evaluate("/gridbag/row", doc, XPathConstants.NODESET);

If the result is a single node, use XPathConstants.NODE instead:

Code View:
Node node = (Node) path.evaluate("/gridbag/row[1]", doc, XPathConstants.NODE);

If the result is a number, use XPathConstants.NUMBER:

http://www.w3c.org/TR/xpath
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

Code View:
int count = ((Number) path.evaluate("count(/gridbag/row)", doc, XPathConstants.NUM-

BER)).intValue();

You don't have to start the search at the document root. You can start the search at any node or node list. For
example, if you have a node from a previous evaluation, you can call

result = path.evaluate(expression, node);

The program in Listing 2-7 demonstrates the evaluation of XPath expressions. Load an XML file and type an
expression. Select the expression type and click the Evaluate button. The result of the expression is displayed at
the bottom of the frame (see Figure 2-5).

Figure 2-5. Evaluating XPath expressions

Listing 2-7. XPathTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import javax.swing.*;

 5. import javax.swing.border.*;

 6. import javax.xml.namespace.*;

 7. import javax.xml.parsers.*;

 8. import javax.xml.xpath.*;

 9. import org.w3c.dom.*;

 10. import org.xml.sax.*;

 11.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 12. /**

 13. * This program evaluates XPath expressions

 14. * @version 1.01 2007-06-25

 15. * @author Cay Horstmann

 16. */

 17. public class XPathTest

 18. {

 19. public static void main(String[] args)

 20. {

 21. EventQueue.invokeLater(new Runnable()

 22. {

 23. public void run()

 24. {

 25. JFrame frame = new XPathFrame();

 26. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 27. frame.setVisible(true);

 28. }

 29. });

 30. }

 31. }

 32.

 33. /**

 34. * This frame shows an XML document, a panel to type an XPath expression, and a text field

 35. * to display the result.

 36. */

 37. class XPathFrame extends JFrame

 38. {

 39. public XPathFrame()

 40. {

 41. setTitle("XPathTest");

 42.

 43. JMenu fileMenu = new JMenu("File");

 44. JMenuItem openItem = new JMenuItem("Open");

 45. openItem.addActionListener(new ActionListener()

 46. {

 47. public void actionPerformed(ActionEvent event)

 48. {

 49. openFile();

 50. }

 51. });

 52. fileMenu.add(openItem);

 53.

 54. JMenuItem exitItem = new JMenuItem("Exit");

 55. exitItem.addActionListener(new ActionListener()

 56. {

 57. public void actionPerformed(ActionEvent event)

 58. {

 59. System.exit(0);

 60. }

 61. });

 62. fileMenu.add(exitItem);

 63.

 64. JMenuBar menuBar = new JMenuBar();

 65. menuBar.add(fileMenu);

 66. setJMenuBar(menuBar);

 67.

 68. ActionListener listener = new ActionListener()

 69. {

 70. public void actionPerformed(ActionEvent event)

 71. {

 72. evaluate();

 73. }

 74. };

 75. expression = new JTextField(20);

 76. expression.addActionListener(listener);

 77. JButton evaluateButton = new JButton("Evaluate");

 78. evaluateButton.addActionListener(listener);

 79.

 80. typeCombo = new JComboBox(new Object[] { "STRING", "NODE", "NODESET", "NUMBER",

 81. "BOOLEAN" });

 82. typeCombo.setSelectedItem("STRING");

 83.

 84. JPanel panel = new JPanel();

 85. panel.add(expression);

 86. panel.add(typeCombo);

 87. panel.add(evaluateButton);

 88. docText = new JTextArea(10, 40);

 89. result = new JTextField();

 90. result.setBorder(new TitledBorder("Result"));

 91.

 92. add(panel, BorderLayout.NORTH);

 93. add(new JScrollPane(docText), BorderLayout.CENTER);

 94. add(result, BorderLayout.SOUTH);

 95.

 96. try

 97. {

 98. DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 99. builder = factory.newDocumentBuilder();

100. }

101. catch (ParserConfigurationException e)

102. {

103. JOptionPane.showMessageDialog(this, e);

104. }

105.

106. XPathFactory xpfactory = XPathFactory.newInstance();

107. path = xpfactory.newXPath();

108. pack();

109. }

110.

111. /**

112. * Open a file and load the document.

113. */

114. public void openFile()

115. {

116. JFileChooser chooser = new JFileChooser();

117. chooser.setCurrentDirectory(new File("."));

118.

119. chooser.setFileFilter(new javax.swing.filechooser.FileFilter()

120. {

121. public boolean accept(File f)

122. {

123. return f.isDirectory() || f.getName().toLowerCase().endsWith(".xml");

124. }

125.

126. public String getDescription()

127. {

128. return "XML files";

129. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

130. });

131. int r = chooser.showOpenDialog(this);

132. if (r != JFileChooser.APPROVE_OPTION) return;

133. File f = chooser.getSelectedFile();

134. try

135. {

136. byte[] bytes = new byte[(int) f.length()];

137. new FileInputStream(f).read(bytes);

138. docText.setText(new String(bytes));

139. doc = builder.parse(f);

140. }

141. catch (IOException e)

142. {

143. JOptionPane.showMessageDialog(this, e);

144. }

145. catch (SAXException e)

146. {

147. JOptionPane.showMessageDialog(this, e);

148. }

149. }

150.

151. public void evaluate()

152. {

153. try

154. {

155. String typeName = (String) typeCombo.getSelectedItem();

156. QName returnType = (QName) XPathConstants.class.getField(typeName).get(null);

157. Object evalResult = path.evaluate(expression.getText(), doc, returnType);

158. if (typeName.equals("NODESET"))

159. {

160. NodeList list = (NodeList) evalResult;

161. StringBuilder builder = new StringBuilder();

162. builder.append("{");

163. for (int i = 0; i < list.getLength(); i++)

164. {

165. if (i > 0) builder.append(", ");

166. builder.append("" + list.item(i));

167. }

168. builder.append("}");

169. result.setText("" + builder);

170. }

171. else result.setText("" + evalResult);

172. }

173. catch (XPathExpressionException e)

174. {

175. result.setText("" + e);

176. }

177. catch (Exception e) // reflection exception

178. {

179. e.printStackTrace();

180. }

181. }

182.

183. private DocumentBuilder builder;

184. private Document doc;

185. private XPath path;

186. private JTextField expression;

187. private JTextField result;

188. private JTextArea docText;

189. private JComboBox typeCombo;

190. }

javax.xml.xpath.XPathFactory 5.0

static XPathFactory newInstance()

returns an XPathFactory instance for creating XPath objects.

XPath newXpath()

constructs an XPath object for evaluating XPath expressions.

javax.xml.xpath.XPath 5.0

String evaluate(String expression, Object startingPoint)

evaluates an expression, beginning with the given starting point. The
starting point can be a node or node list. If the result is a node or node
set, then the returned string consists of the data of all text node
children.

Object evaluate(String expression, Object startingPoint,

QName resultType)

evaluates an expression, beginning with the given starting point. The
starting point can be a node or node list. The resultType is one of the

constants STRING, NODE, NODESET, NUMBER, or BOOLEAN in the

XPathConstants class. The return value is a String, Node, NodeList,

Number, or Boolean.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Using Namespaces

The Java language uses packages to avoid name clashes. Programmers can use the same name for different
classes as long as they aren't in the same package. XML has a similar namespace mechanism for element and
attribute names.

A namespace is identified by a Uniform Resource Identifier (URI), such as

http://www.w3.org/2001/XMLSchema

uuid:1c759aed-b748-475c-ab68-10679700c4f2

urn:com:books-r-us

The HTTP URL form is the most common. Note that the URL is just used as an identifier string, not as a locator
for a document. For example, the namespace identifiers

http://www.horstmann.com/corejava
http://www.horstmann.com/corejava/index.html

denote different namespaces, even though a web server would serve the same document for both URLs.

There need not be any document at a namespace URL—the XML parser doesn't attempt to find anything at that
location. However, as a help to programmers who encounter a possibly unfamiliar namespace, it is customary to
place a document explaining the purpose of the namespace at the URL location. For example, if you point your
browser to the namespace URL for the XML Schema namespace (http://www.w3.org/2001/XMLSchema), you
will find a document describing the XML Schema standard.

Why use HTTP URLs for namespace identifiers? It is easy to ensure that they are unique. If you choose a real
URL, then the host part's uniqueness is guaranteed by the domain name system. Your organization can then
arrange for the uniqueness of the remainder of the URL. This is the same rationale that underlies the use of
reversed domain names in Java package names.

Of course, although you want long namespace identifiers for uniqueness, you don't want to deal with long
identifiers any more than you have to. In the Java programming language, you use the import mechanism to

specify the long names of packages, and then use just the short class names. In XML, there is a similar
mechanism, like this:

<element xmlns="namespaceURI">

 children

</element>

The element and its children are now part of the given namespace.

A child can provide its own namespace, for example:

<element xmlns="namespaceURI1">

 <child xmlns="namespaceURI2">

 grandchildren

 </child>

 more children

</element>

http://www.w3.org/2001/XMLSchema
http://www.horstmann.com/corejava
http://www.horstmann.com/corejava/index.html
http://www.w3.org/2001/XMLSchema

Then the first child and the grandchildren are part of the second namespace.

That simple mechanism works well if you need only a single namespace or if the namespaces are naturally
nested. Otherwise, you will want to use a second mechanism that has no analog in Java. You can have an alias
for a namespace—a short identifier that you choose for a particular document. Here is a typical example:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="gridbag" type="GridBagType"/>

 . . .

</xsd:schema>

The attribute

xmlns:alias="namespaceURI"

defines a namespace and an alias. In our example, the alias is the string xsd. Thus, xsd:schema really means

"schema in the namespace http://www.w3.org/2001/XMLSchema".

Note

Only child elements inherit the namespace of their parent. Attributes without an
explicit alias prefix are never part of a namespace. Consider this contrived example:

<configuration xmlns="http://www.horstmann.com/corejava"

 xmlns:si="http://www.bipm.fr/enus/3_SI/si.html">

 <size value="210" si:unit="mm"/>

 . . .

</configuration>

In this example, the elements configuration and size are part of the namespace

with URI http://www.horstmann.com/corejava. The attribute si:unit is part of the

namespace with URI http://www.bipm.fr/enus/3_SI/si.html. However, the attribute
value is not part of any namespace.

You can control how the parser deals with namespaces. By default, the Sun DOM parser is not "namespace
aware."

To turn on namespace handling, call the setNamespaceAware method of the DocumentBuilderFactory:

factory.setNamespaceAware(true);

Then all builders the factory produces support namespaces. Each node has three properties:

The qualified name, with an alias prefix, returned by getNodeName, getTagName, and so on.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.w3.org/2001/XMLSchema
http://www.horstmann.com/corejava
http://www.bipm.fr/enus/3_SI/si.html

The namespace URI, returned by the getNamespaceURI method.

The local name, without an alias prefix or a namespace, returned by the getLocalName method.

Here is an example. Suppose the parser sees the following element:

<xsd:schema xmlns:xsl="http://www.w3.org/2001/XMLSchema">

It then reports the following:

Qualified name = xsd:schema

Namespace URI = http://www.w3.org/2001/XMLSchema

Local name = schema

Note

If namespace awareness is turned off, then getNamespaceURI and getLocalName
return null.

org.w3c.dom.Node 1.4

String getLocalName()

returns the local name (without alias prefix), or null if the parser is not

namespace aware.

String getNamespaceURI()

returns the namespace URI, or null if the node is not part of a

namespace or if the parser is not namespace aware.

http://www.w3.org/2001/XMLSchema

javax.xml.parsers.DocumentBuilderFactory 1.4

boolean isNamespaceAware()

void setNamespaceAware(boolean value)

gets or sets the namespaceAware property of the factory. If set to true,

the parsers that this factory generates are namespace aware.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Streaming Parsers

The DOM parser reads an XML document in its entirety into a tree data structure. For most practical applications, DOM works fine.
However, it can be inefficient if the document is large and if your processing algorithm is simple enough that you can analyze nodes
on the fly, without having to see all of the tree structure. In these cases, you should use a streaming parser.

In the following sections, we discuss the streaming parsers supplied by the Java library: the venerable SAX parser and the more
modern StAX parser that was added to Java SE 6. The SAX parser uses event callbacks, and the StAX parser provides an iterator
through the parsing events. The latter is usually a bit more convenient.

Using the SAX Parser

The SAX parser reports events as it parses the components of the XML input, but it does not store the document in any way—it is up
to the event handlers whether they want to build a data structure. In fact, the DOM parser is built on top of the SAX parser. It builds
the DOM tree as it receives the parser events.

Whenever you use a SAX parser, you need a handler that defines the event actions for the various parse events. The ContentHandler

interface defines several callback methods that the parser executes as it parses the document. Here are the most important ones:

startElement and endElement are called each time a start tag or end tag is encountered.

characters is called whenever character data are encountered.

startDocument and endDocument are called once each, at the start and the end of the document.

For example, when parsing the fragment

 <name>Helvetica</name>

 <size units="pt">36</size>

the parser makes the following callbacks:

startElement , element name: font1.

startElement , element name: name2.

characters , content: Helvetica3.

endElement , element name: name4.

5.

6.

4.

startElement , element name: size , attributes: units="pt"5.

characters , content: 366.

endElement , element name: size7.

endElement , element name: font8.

Your handler needs to override these methods and have them carry out whatever action you want to carry out as you parse the file.
The program at the end of this section prints all links in an HTML file. It simply overrides the startElement method

of the handler to check for links with name a and an attribute with name href . This is potentially useful for implementing a "web

crawler," a program that reaches more and more web pages by following links.

Note

Unfortunately, many HTML pages deviate so much from proper XML that the example program will not
be able to parse them. As already mentioned, the W3C recommends that web designers use XHTML, an
HTML dialect that can be displayed by current web browsers and that is also proper XML. Because the
W3C "eats its own dog food," their web pages are written in XHTML. You can use those pages to test
the example program. For example, if you run

java SAXTest http://www.w3c.org/MarkUp

then you will see a list of the URLs of all links on that page.

The sample program is a good example for the use of SAX. We don't care at all in which context the a elements occur, and there is no

need to store a tree structure.

Here is how you get a SAX parser:

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = factory.newSAXParser();

You can now process a document:

parser.parse(source, handler);

Here, source can be a file, URL string, or input stream. The handler belongs to a subclass of DefaultHandler . The DefaultHandler

class defines do-nothing methods for the four interfaces:

ContentHandler

DTDHandler

EntityResolver

ErrorHandler

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The example program defines a handler that overrides the startElement method of the ContentHandler interface to watch out for a

elements with an href attribute:

Code View:
DefaultHandler handler = new

 DefaultHandler()

 {

 public void startElement(String namespaceURI, String lname, String qname, Attributes attrs)

 throws SAXException

 {

 if (lname.equalsIgnoreCase("a") && attrs != null)

 {

 for (int i = 0; i < attrs.getLength(); i++)
 {

 String aname = attrs.getLocalName(i);

 if (aname.equalsIgnoreCase("href"))

 System.out.println(attrs.getValue(i));

 }

 }
 }

 };

The startElement method has three parameters that describe the element name. The qname parameter reports the qualified name of

the form alias:localname . If namespace processing is turned on, then the namespaceURI and lname parameters describe the

namespace and local (unqualified) name.

As with the DOM parser, namespace processing is turned off by default. You activate namespace processing by calling the
setNamespaceAware method of the factory class:

SAXParserFactory factory = SAXParserFactory.newInstance();

factory.setNamespaceAware(true);

SAXParser saxParser = factory.newSAXParser();

Listing 2-8 contains the code for the web crawler program. Later in this chapter, you will see another interesting use of SAX. An easy
way of turning a non-XML data source into XML is to report the SAX events that an XML parser would report. See the section "XSL
Transformations " on page 157 for details.

Listing 2-8. SAXTest.java

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import javax.xml.parsers.*;

 4. import org.xml.sax.*;

 5. import org.xml.sax.helpers.*;

 6.

 7. /**

 8. * This program demonstrates how to use a SAX parser. The program prints all hyperlinks links

 9. * of an XHTML web page.

10. * Usage: java SAXTest url

11. * @version 1.00 2001-09-29

12. * @author Cay Horstmann

13. */

14. public class SAXTest

15. {

16. public static void main(String[] args) throws Exception

17. {

18. String url;

19. if (args.length == 0)

20. {

21. url = "http://www.w3c.org";

22. System.out.println("Using " + url);

23. }

24. else url = args[0];

25.

26. DefaultHandler handler = new DefaultHandler()

27. {

28. public void startElement(String namespaceURI, String lname, String qname,

29. Attributes attrs)

30. {

31. if (lname.equals("a") && attrs != null)

32. {

33. for (int i = 0; i < attrs.getLength(); i++)

34. {

35. String aname = attrs.getLocalName(i);

36. if (aname.equals("href")) System.out.println(attrs.getValue(i));

37. }

38. }

39. }

40. };

41.

42. SAXParserFactory factory = SAXParserFactory.newInstance();

43. factory.setNamespaceAware(true);

44. SAXParser saxParser = factory.newSAXParser();

45. InputStream in = new URL(url).openStream();

46. saxParser.parse(in, handler);

47. }

48. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.xml.parsers.SAXParserFactory 1.4

static SAXParserFactory newInstance()

returns an instance of the SAXParserFactory class.

SAXParser newSAXParser()

returns an instance of the SAXParser class.

boolean isNamespaceAware()

void setNamespaceAware(boolean value)

gets or sets the namespaceAware property of the factory. If set to true , the parsers that

this factory generates are namespace aware.

boolean isValidating()

void setValidating(boolean value)

gets or sets the validating property of the factory. If set to true , the parsers that this

factory generates validate their input.

javax.xml.parsers.SAXParser 1.4

void parse(File f, DefaultHandler handler)

void parse(String url, DefaultHandler handler)

void parse(InputStream in, DefaultHandler handler)

parses an XML document from the given file, URL, or input stream and reports parse
events to the given handler.

org.xml.sax.ContentHandler 1.4

void startDocument()

void endDocument()

is called at the start or the end of the document.

void startElement(String uri, String lname, String qname, Attributes attr)

void endElement(String uri, String lname, String qname)

is called at the start or the end of an element.

Parameters: uri The URI of the namespace (if the parser is namespace aware)

 lname The local name without alias prefix (if the parser is
namespace aware)

 qname The element name if the parser is not namespace aware, or
the qualified name with alias prefix if the parser reports
qualified names in addition to local names

void characters(char[] data, int start, int length)

is called when the parser reports character data.

Parameters: data An array of character data

 start The index of the first character in the data array that is a part
of the reported characters

 length The length of the reported character string

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

org.xml.sax.Attributes 1.4

int getLength()

returns the number of attributes stored in this attribute collection.

String getLocalName(int index)

returns the local name (without alias prefix) of the attribute with the given index, or the
empty string if the parser is not namespace aware.

String getURI(int index)

returns the namespace URI of the attribute with the given index, or the empty string if the
node is not part of a namespace or if the parser is not namespace aware.

String getQName(int index)

returns the qualified name (with alias prefix) of the attribute with the given index, or the
empty string if the qualified name is not reported by the parser.

String getValue(int index)

String getValue(String qname)

String getValue(String uri, String lname)

returns the attribute value from a given index, qualified name, or namespace URI + local
name. Returns null if the value doesn't exist.

Using the StAX Parser

The StAX parser is a "pull parser." Instead of installing an event handler, you simply iterate through the events, using this basic loop:

InputStream in = url.openStream();

XMLInputFactory factory = XMLInputFactory.newInstance();

XMLStreamReader parser = factory.createXMLStreamReader(in);

while (parser.hasNext())

{

 int event = parser.next();

 Call parser methods to obtain event details
}

For example, when parsing the fragment

 <name>Helvetica</name>

 <size units="pt">36</size>

the parser yields the following events:

START_ELEMENT , element name: font1.

CHARACTERS , content: white space2.

START_ELEMENT , element name: name3.

CHARACTERS , content: Helvetica4.

END_ELEMENT , element name: name5.

CHARACTERS , content: white space6.

START_ELEMENT , element name: size7.

CHARACTERS , content: 368.

END_ELEMENT , element name: size9.

CHARACTERS , content: white space10.

END_ELEMENT , element name: font11.

To analyze the attribute values, call the appropriate methods of the XMLStreamReader class. For example,

String units = parser.getAttributeValue(null, "units");

gets the units attribute of the current element.

By default, namespace processing is enabled. You can deactivate it by modifying the factory:

XMLInputFactory factory = XMLInputFactory.newInstance();

factory.setProperty(XMLInputFactory.IS_NAMESPACE_AWARE, false);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 2-9 contains the code for the web crawler program, implemented with the StAX parser. As you can see, the code is simpler
than the equivalent SAX code because you don't have to worry about event handling.

Listing 2-9. StAXTest.java

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import javax.xml.stream.*;

 4.

 5. /**

 6. * This program demonstrates how to use a StAX parser. The program prints all hyperlinks links

 7. * of an XHTML web page.

 8. * Usage: java StAXTest url

 9. * @author Cay Horstmann

10. * @version 1.0 2007-06-23

11. */

12. public class StAXTest

13. {

14. public static void main(String[] args) throws Exception

15. {

16. String urlString;

17. if (args.length == 0)

18. {

19. urlString = "http://www.w3c.org";

20. System.out.println("Using " + urlString);

21. }

22. else urlString = args[0];

23. URL url = new URL(urlString);

24. InputStream in = url.openStream();

25. XMLInputFactory factory = XMLInputFactory.newInstance();

26. XMLStreamReader parser = factory.createXMLStreamReader(in);

27. while (parser.hasNext())

28. {

29. int event = parser.next();

30. if (event == XMLStreamConstants.START_ELEMENT)

31. {

32. if (parser.getLocalName().equals("a"))

33. {

34. String href = parser.getAttributeValue(null, "href");

35. if (href != null)

36. System.out.println(href);

37. }

38. }

39. }

40. }

41. }

javax.xml.stream.XMLInputFactory 6

static XMLInputFactory newInstance()

returns an instance of the XMLInputFactory class.

void setProperty(String name, Object value)

sets a property for this factory, or throws an IllegalArgumentException if the property is not supported or

cannot be set to the given value. The Java SE implementation supports the following Boolean valued properties:

"javax.xml.stream.isValidating" When false (the default), the document is not validated.
Not required by the specification.

"javax.xml.stream.isNamespaceAware" When true (the default), namespaces are processed. Not
required by the specification.

"javax.xml.stream.isCoalescing" When false (the default), adjacent character data are not
coalesced.

"javax.xml.stream.isReplacingEntityReferences" When true (the default), entity references are replaced
and reported as character data.

"javax.xml.stream.isSupportingExternalEntities" When true (the default), external entities are resolved.
The specification gives no default for this property.

"javax.xml.stream.supportDTD" When true (the default), DTDs are reported as events.

XMLStreamReader createXMLStreamReader(InputStream in)

XMLStreamReader createXMLStreamReader(InputStream in, String characterEncoding)

XMLStreamReader createXMLStreamReader(Reader in)

XMLStreamReader createXMLStreamReader(Source in)

creates a parser that reads from the given stream, reader, or JAXP source.

javax.xml.stream.XMLStreamReader 6

boolean hasNext()

returns true if there is another parse event.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

int next()

sets the parser state to the next parse event and returns one of the following constants:
START_ELEMENT , END_ELEMENT , CHARACTERS , START_DOCUMENT , END_DOCUMENT , CDATA ,

COMMENT , SPACE (ignorable whitespace), PROCESSING_INSTRUCTION , ENTITY_REFERENCE ,

DTD .

boolean isStartElement()

boolean isEndElement()

boolean isCharacters()

boolean isWhiteSpace()

returns true if the current event is a start element, end element, character data, or

whitespace.

QName getName()

String getLocalName()

gets the name of the element in a START_ELEMENT or END_ELEMENT event.

String getText()

returns the characters of a CHARACTERS , COMMENT , or CDATA event, the replacement value

for an ENTITY_REFERENCE , or the internal subset of a DTD .

int getAttributeCount()

QName getAttributeName(int index)

String getAttributeLocalName(int index)

String getAttributeValue(int index)

gets the attribute count and the names and values of the attributes, provided the current
event is START_ELEMENT .

String getAttributeValue(String namespaceURI, String name)

gets the value of the attribute with the given name, provided the current event is
START_ELEMENT . If namespaceURI is null , the namespace is not checked.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Generating XML Documents

You now know how to write Java programs that read XML. Let us now turn to the opposite process, producing
XML output. Of course, you could write an XML file simply by making a sequence of print calls, printing the

elements, attributes, and text content, but that would not be a good idea. The code is rather tedious, and you
can easily make mistakes if you don't pay attention to special symbols (such as " or <) in the attribute values

and text content.

A better approach is to build up a DOM tree with the contents of the document and then write out the tree
contents. To build a DOM tree, you start out with an empty document. You can get an empty document by
calling the newDocument method of the DocumentBuilder class.

Document doc = builder.newDocument();

Use the createElement method of the Document class to construct the elements of your document.

Element rootElement = doc.createElement(rootName);
Element childElement = doc.createElement(childName);

Use the createTextNode method to construct text nodes:

Text textNode = doc.createTextNode(textContents);

Add the root element to the document, and add the child nodes to their parents:

doc.appendChild(rootElement);
rootElement.appendChild(childElement);

childElement.appendChild(textNode);

As you build up the DOM tree, you may also need to set element attributes. Simply call the setAttribute

method of the Element class:

rootElement.setAttribute(name, value);

Somewhat curiously, the DOM API currently has no support for writing a DOM tree to an output stream. To
overcome this limitation, we use the Extensible Stylesheet Language Transformations (XSLT) API. For more
information about XSLT, turn to the section "XSL Transformations" on page 157. Right now, consider the code
that follows a "magic incantation" to produce XML output.

We apply the "do nothing" transformation to the document and capture its output. To include a DOCTYPE node in

the output, you also need to set the SYSTEM and PUBLIC identifiers as output properties.

Code View:
// construct the "do nothing" transformation

Transformer t = TransformerFactory.newInstance().newTransformer();

// set output properties to get a DOCTYPE node

t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, systemIdentifier);

t.setOutputProperty(OutputKeys.DOCTYPE_PUBLIC, publicIdentifier);

// set indentation

t.setOutputProperty(OutputKeys.INDENT, "yes");

t.setOutputProperty(OutputKeys.METHOD, "xml");

t.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2");
// apply the "do nothing" transformation and send the output to a file

t.transform(new DOMSource(doc), new StreamResult(new FileOutputStream(file)));

Note

The resulting XML file contains no whitespace (that is, no line breaks or
indentations). If you like whitespace, set the "OutputKeys.INDENT" property to the

string "yes".

Listing 2-10 on page 150 is a typical program that produces XML output. The program draws a modernist
painting—a random set of colored rectangles (see Figure 2-6). To save a masterpiece, we use the Scalable
Vector Graphics (SVG) format. SVG is an XML format to describe complex graphics in a device-independent
fashion. You can find more information about SVG at http://www.w3c.org/Graphics/SVG. To view SVG files,
download the Apache Batik viewer (Figure 2-7) from http://xmlgraphics.apache.org/batik.

Figure 2-6. Generating modern art

Figure 2-7. The Apache Batik SVG viewer

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.w3c.org/Graphics/SVG
http://xmlgraphics.apache.org/batik

We don't go into details about SVG. If you are interested in SVG, we suggest you start with the tutorial on the
Adobe site. For our purposes, we just need to know how to express a set of colored rectangles. Here is a
sample:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">

<svg width="300" height="150">

<rect x="231" y="61" width="9" height="12" fill="#6e4a13"/>

<rect x="107" y="106" width="56" height="5" fill="#c406be"/>

. . .
</svg>

As you can see, each rectangle is described as a rect node. The position, width, height, and fill color are

attributes. The fill color is an RGB value in hexadecimal.

Note

SVG uses attributes heavily. In fact, some attributes are quite complex. For
example, here is a path element:

<path d="M 100 100 L 300 100 L 200 300 z">

The M denotes a "moveto" command, L is "lineto," and z is "closepath" (!).
Apparently, the designers of this data format didn't have much confidence in using
XML for structured data. In your own XML formats, you might want to use elements
instead of complex attributes.

javax.xml.parsers.DocumentBuilder 1.4

Document newDocument()

returns an empty document.

org.w3c.dom.Document 1.4

Element createElement(String name)

returns an element with the given name.

Text createTextNode(String data)

returns a text node with the given data.

org.w3c.dom.Node 1.4

Node appendChild(Node child)

appends a node to the list of children of this node. Returns the appended
node.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

org.w3c.dom.Element 1.4

void setAttribute(String name, String value)

sets the attribute with the given name to the given value.

void setAttributeNS(String uri, String qname, String value)

sets the attribute with the given namespace URI and qualified name to the given value.

Parameters: uri The URI of the namespace, or null

 qname The qualified name. If it has an alias prefix, then uri

must not be null

 value The attribute value

javax.xml.transform.TransformerFactory 1.4

static TransformerFactory newInstance()

returns an instance of the TransformerFactory class.

Transformer newTransformer()

returns an instance of the Transformer class that carries out an identity

or "do nothing" transformation.

javax.xml.transform.Transformer 1.4

void setOutputProperty(String name, String value)

sets an output property. See http://www.w3.org/TR/xslt#output for a listing of the standard
output properties. The most useful ones are shown here:

doctype-public The public ID to be used in the DOCTYPE declaration

doctype-system The system ID to be used in the DOCTYPE declaration

indent "yes" or "no"

method "xml", "html", "text", or a custom string

void transform(Source from, Result to)

transforms an XML document.

javax.xml.transform.dom.DOMSource 1.4

DOMSource(Node n)

constructs a source from the given node. Usually, n is a document node.

javax.xml.transform.stream.StreamResult 1.4

StreamResult(File f)

StreamResult(OutputStream out)

StreamResult(Writer out)

StreamResult(String systemID)

constructs a stream result from a file, stream, writer, or system ID
(usually a relative or absolute URL).

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.w3.org/TR/xslt#output

Writing an XML Document with StAX

In the preceding section, you saw how to produce an XML document by writing a DOM tree. If you have no other
use for the DOM tree, that approach is not very efficient.

The StAX API lets you write an XML tree directly. Construct an XMLStreamWriter from an OutputStream, like

this:

XMLOutputFactory factory = XMLOutputFactory.newInstance();

XMLStreamWriter writer = factory.createXMLStreamWriter(out);

To produce the XML header, call

writer.writeStartDocument()

Then call

writer.writeStartElement(name);

Add attributes by calling

writer.writeAttribute(name, value);

Now you can add child elements by calling writeStartElement again, or write characters with

writer.writeCharacters(text);

When you have written all child nodes, call

writer.writeEndElement();

This causes the current element to be closed.

To write an element without children (such as), you use the call

writer.writeEmptyElement(name);

Finally, at the end of the document, call

writer.writeEndDocument();

This call closes any open elements.

As with the DOM/XSLT approach, you don't have to worry about escaping characters in attribute values and
character data. However, it is possible to produce malformed XML, such as a document with multiple root
nodes. Also, the current version of StAX has no support for producing indented output.

The program in Listing 2-10 shows you both approaches for writing XML.

Listing 2-10. XMLWriteTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.geom.*;

 3. import java.io.*;

 4. import java.util.*;

 5. import java.awt.event.*;

 6. import javax.swing.*;

 7. import javax.xml.parsers.*;

 8. import javax.xml.stream.*;

 9. import javax.xml.transform.*;

 10. import javax.xml.transform.dom.*;

 11. import javax.xml.transform.stream.*;

 12. import org.w3c.dom.*;

 13.

 14. /**

 15. * This program shows how to write an XML file. It saves a file describing a modern drawing

 16. * in SVG format.

 17. * @version 1.10 2004-09-04

 18. * @author Cay Horstmann

 19. */

 20. public class XMLWriteTest

 21. {

 22. public static void main(String[] args)

 23. {

 24. EventQueue.invokeLater(new Runnable()

 25. {

 26. public void run()

 27. {

 28. XMLWriteFrame frame = new XMLWriteFrame();

 29. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 30. frame.setVisible(true);

 31. }

 32. });

 33. }

 34. }

 35.

 36. /**

 37. * A frame with a component for showing a modern drawing.

 38. */

 39. class XMLWriteFrame extends JFrame

 40. {

 41. public XMLWriteFrame()

 42. {

 43. setTitle("XMLWriteTest");

 44. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 45.

 46. chooser = new JFileChooser();

 47.

 48. // add component to frame

 49.

 50. comp = new RectangleComponent();

 51. add(comp);

 52.

 53. // set up menu bar

 54.

 55. JMenuBar menuBar = new JMenuBar();

 56. setJMenuBar(menuBar);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 57.

 58. JMenu menu = new JMenu("File");

 59. menuBar.add(menu);

 60.

 61. JMenuItem newItem = new JMenuItem("New");

 62. menu.add(newItem);

 63. newItem.addActionListener(new ActionListener()

 64. {

 65. public void actionPerformed(ActionEvent event)

 66. {

 67. comp.newDrawing();

 68. }

 69. });

 70.

 71. JMenuItem saveItem = new JMenuItem("Save with DOM/XSLT");

 72. menu.add(saveItem);

 73. saveItem.addActionListener(new ActionListener()

 74. {

 75. public void actionPerformed(ActionEvent event)

 76. {

 77. try

 78. {

 79. saveDocument();

 80. }

 81. catch (Exception e)

 82. {

 83. JOptionPane.showMessageDialog(XMLWriteFrame.this, e.toString());

 84. }

 85. }

 86. });

 87.

 88. JMenuItem saveStAXItem = new JMenuItem("Save with StAX");

 89. menu.add(saveStAXItem);

 90. saveStAXItem.addActionListener(new ActionListener()

 91. {

 92. public void actionPerformed(ActionEvent event)

 93. {

 94. try

 95. {

 96. saveStAX();

 97. }

 98. catch (Exception e)

 99. {

100. JOptionPane.showMessageDialog(XMLWriteFrame.this, e.toString());

101. }

102. }

103. });

104.

105. JMenuItem exitItem = new JMenuItem("Exit");

106. menu.add(exitItem);

107. exitItem.addActionListener(new ActionListener()

108. {

109. public void actionPerformed(ActionEvent event)

110. {

111. System.exit(0);

112. }

113. });

114. }

115.

116. /**

117. * Saves the drawing in SVG format, using DOM/XSLT

118. */

119. public void saveDocument() throws TransformerException, IOException

120. {

121. if (chooser.showSaveDialog(this) != JFileChooser.APPROVE_OPTION) return;

122. File f = chooser.getSelectedFile();

123. Document doc = comp.buildDocument();

124. Transformer t = TransformerFactory.newInstance().newTransformer();

125. t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM,

126. "http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd");

127. t.setOutputProperty(OutputKeys.DOCTYPE_PUBLIC, "-//W3C//DTD SVG 20000802//EN");

128. t.setOutputProperty(OutputKeys.INDENT, "yes");

129. t.setOutputProperty(OutputKeys.METHOD, "xml");

130. t.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2");

131. t.transform(new DOMSource(doc), new StreamResult(new FileOutputStream(f)));

132. }

133.

134. /**

135. * Saves the drawing in SVG format, using StAX

136. */

137. public void saveStAX() throws FileNotFoundException, XMLStreamException

138. {

139. if (chooser.showSaveDialog(this) != JFileChooser.APPROVE_OPTION) return;

140. File f = chooser.getSelectedFile();

141. XMLOutputFactory factory = XMLOutputFactory.newInstance();

142. XMLStreamWriter writer = factory.createXMLStreamWriter(new FileOutputStream(f));

143. comp.writeDocument(writer);

144. writer.close();

145. }

146.

147. public static final int DEFAULT_WIDTH = 300;

148. public static final int DEFAULT_HEIGHT = 200;

149.

150. private RectangleComponent comp;

151. private JFileChooser chooser;

152. }

153.

154. /**

155. * A component that shows a set of colored rectangles

156. */

157. class RectangleComponent extends JComponent

158. {

159. public RectangleComponent()

160. {

161. rects = new ArrayList<Rectangle2D>();

162. colors = new ArrayList<Color>();

163. generator = new Random();

164.

165. DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

166. try

167. {

168. builder = factory.newDocumentBuilder();

169. }

170. catch (ParserConfigurationException e)

171. {

172. e.printStackTrace();

173. }

174. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

175.

176. /**

177. * Create a new random drawing.

178. */

179. public void newDrawing()

180. {

181. int n = 10 + generator.nextInt(20);

182. rects.clear();

183. colors.clear();

184. for (int i = 1; i <= n; i++)

185. {

186. int x = generator.nextInt(getWidth());

187. int y = generator.nextInt(getHeight());

188. int width = generator.nextInt(getWidth() - x);

189. int height = generator.nextInt(getHeight() - y);

190. rects.add(new Rectangle(x, y, width, height));

191. int r = generator.nextInt(256);

192. int g = generator.nextInt(256);

193. int b = generator.nextInt(256);

194. colors.add(new Color(r, g, b));

195. }

196. repaint();

197. }

198.

199. public void paintComponent(Graphics g)

200. {

201. if (rects.size() == 0) newDrawing();

202. Graphics2D g2 = (Graphics2D) g;

203. // draw all rectangles

204. for (int i = 0; i < rects.size(); i++)

205. {

206. g2.setPaint(colors.get(i));

207. g2.fill(rects.get(i));

208. }

209. }

210.

211. /**

212. * Creates an SVG document of the current drawing.

213. * @return the DOM tree of the SVG document

214. */

215. public Document buildDocument()

216. {

217. Document doc = builder.newDocument();

218. Element svgElement = doc.createElement("svg");

219. doc.appendChild(svgElement);

220. svgElement.setAttribute("width", "" + getWidth());

221. svgElement.setAttribute("height", "" + getHeight());

222. for (int i = 0; i < rects.size(); i++)

223. {

224. Color c = colors.get(i);

225. Rectangle2D r = rects.get(i);

226. Element rectElement = doc.createElement("rect");

227. rectElement.setAttribute("x", "" + r.getX());

228. rectElement.setAttribute("y", "" + r.getY());

229. rectElement.setAttribute("width", "" + r.getWidth());

230. rectElement.setAttribute("height", "" + r.getHeight());

231. rectElement.setAttribute("fill", colorToString(c));

232. svgElement.appendChild(rectElement);

233. }

234. return doc;

235. }

236.

237. /**

238. * Writers an SVG document of the current drawing.

239. * @param writer the document destination

240. */

241. public void writeDocument(XMLStreamWriter writer) throws XMLStreamException

242. {

243. writer.writeStartDocument();

244. writer.writeDTD("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 20000802//EN\" "

245. + "\"http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd\">");

246. writer.writeStartElement("svg");

247. writer.writeAttribute("width", "" + getWidth());

248. writer.writeAttribute("height", "" + getHeight());

249. for (int i = 0; i < rects.size(); i++)

250. {

251. Color c = colors.get(i);

252. Rectangle2D r = rects.get(i);

253. writer.writeEmptyElement("rect");

254. writer.writeAttribute("x", "" + r.getX());

255. writer.writeAttribute("y", "" + r.getY());

256. writer.writeAttribute("width", "" + r.getWidth());

257. writer.writeAttribute("height", "" + r.getHeight());

258. writer.writeAttribute("fill", colorToString(c));

259. }

260. writer.writeEndDocument(); // closes svg element

261. }

262.

263. /**

264. * Converts a color to a hex value.

265. * @param c a color

266. * @return a string of the form #rrggbb

267. */

268. private static String colorToString(Color c)

269. {

270. StringBuffer buffer = new StringBuffer();

271. buffer.append(Integer.toHexString(c.getRGB() & 0xFFFFFF));

272. while (buffer.length() < 6)

273. buffer.insert(0, '0');

274. buffer.insert(0, '#');

275. return buffer.toString();

276. }

277.

278. private ArrayList<Rectangle2D> rects;

279. private ArrayList<Color> colors;

280. private Random generator;

281. private DocumentBuilder builder;

282. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.xml.stream.XMLOutputFactory 6

static XMLOutputFactory newInstance()

returns an instance of the XMLOutputFactory class.

XMLStreamWriter createXMLStreamWriter(OutputStream in)

XMLStreamWriter createXMLStreamWriter(OutputStream in, String

characterEncoding)

XMLStreamWriter createXMLStreamWriter(Writer in)

XMLStreamWriter createXMLStreamWriter(Result in)

creates a writer that writes to the given stream, writer, or JAXP result.

javax.xml.stream.XMLStreamWriter 6

void writeStartDocument()

void writeStartDocument(String xmlVersion)

void writeStartDocument(String encoding, String xmlVersion)

writes the XML processing instruction at the top of the document. Note
that the encoding parameter is only used to write the attribute. It does

not set the character encoding of the output.

void setDefaultNamespace(String namespaceURI)

void setPrefix(String prefix, String namespaceURI)

sets the default namespace or the namespace associated with a prefix.
The declaration is scoped to the current element, or, if no element has
been written, to the document root.

void writeStartElement(String localName)

void writeStartElement(String namespaceURI, String localName)

writes a start tag, replacing the namespaceURI with the associated

prefix.

void writeEndElement()

closes the current element.

void writeEndDocument()

closes all open elements.

void writeEmptyElement(String localName)

void writeEmptyElement(String namespaceURI, String localName)

writes a self-closing tag, replacing the namespaceURI with the associated

prefix.

void writeAttribute(String localName, String value)

void writeAttribute(String namespaceURI, String localName,

String value)

writes an attribute for the current element, replacing the namespaceURI

with the associated prefix.

void writeCharacters(String text)

writes character data.

void writeCData(String text)

writes a CDATA block.

void writeDTD(String dtd)

writes the dtd string, which is assumed to contain a DOCTYPE declaration.

void writeComment(String comment)

writes a comment.

void close()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

closes this writer.

XSL Transformations

The XSL Transformations (XSLT) mechanism allows you to specify rules for transforming XML documents into
other formats, such as plain text, XHTML, or any other XML format. XSLT is commonly used to translate from
one machine-readable XML format to another, or to translate XML into a presentation format for human
consumption.

You need to provide an XSLT style sheet that describes the conversion of XML documents into some other
format. An XSLT processor reads an XML document and the style sheet, and it produces the desired output (see
Figure 2-8).

Figure 2-8. Applying XSL transformations

Here is a typical example. We want to transform XML files with employee records into HTML documents.
Consider this input file:

<staff>

 <employee>

 <name>Carl Cracker</name>

 <salary>75000</salary>

 <hiredate year="1987" month="12" day="15"/>

 </employee>

 <employee>

 <name>Harry Hacker</name>

 <salary>50000</salary>

 <hiredate year="1989" month="10" day="1"/>

 </employee>
 <employee>

 <name>Tony Tester</name>

 <salary>40000</salary>

 <hiredate year="1990" month="3" day="15"/>

 </employee>

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

</staff>

The desired output is an HTML table:

<table border="1">

<tr>

<td>Carl Cracker</td><td>$75000.0</td><td>1987-12-15</td>

</tr>

<tr>

<td>Harry Hacker</td><td>$50000.0</td><td>1989-10-1</td>

</tr>

<tr>

<td>Tony Tester</td><td>$40000.0</td><td>1990-3-15</td>

</tr>
</table>

The XSLT specification is quite complex, and entire books have been written on the subject. We can't possibly
discuss all the features of XSLT, so we just work through a representative example. You can find more
information in the book Essential XML by Don Box et al. (Addison-Wesley Professional 2000). The XSLT
specification is available at http://www.w3.org/TR/xslt.

A style sheet with transformation templates has this form:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:output method="html"/>

 template1
 template2
 . . .

</xsl:stylesheet>

In our example, the xsl:output element specifies the method as HTML. Other valid method settings are xml

and text.

Here is a typical template:

<xsl:template match="/staff/employee">
 <tr><xsl:apply-templates/></tr>

</xsl:template>

The value of the match attribute is an XPath expression. The template states: Whenever you see a node in the

XPath set /staff/employee, do the following:

1. Emit the string <tr>.

2. Keep applying templates as you process its children.

3. Emit the string </tr> after you are done with all children.

http://www.w3.org/TR/xslt

In other words, this template generates the HTML table row markers around every employee record.

The XSLT processor starts processing by examining the root element. Whenever a node matches one of the
templates, it applies the template. (If multiple templates match, the best matching one is used—see the
specification at http://www.w3.org/TR/xslt for the gory details.) If no template matches, the processor carries
out a default action. For text nodes, the default is to include the contents in the output. For elements, the
default action is to create no output but to keep processing the children.

Here is a template for transforming name nodes in an employee file:

<xsl:template match="/staff/employee/name">

 <td><xsl:apply-templates/></td>

</xsl:template>

As you can see, the template produces the <td>...</td> delimiters, and it asks the processor to recursively

visit the children of the name element. There is just one child, the text node. When the processor visits that

node, it emits the text contents (provided, of course, that there is no other matching template).

You have to work a little harder if you want to copy attribute values into the output. Here is an example:

<xsl:template match="/staff/employee/hiredate">

 <td><xsl:value-of select="@year"/>-<xsl:value-of

 select="@month"/>-<xsl:value-of select="@day"/></td>

</xsl:template>

When processing a hiredate node, this template emits

The string <td>

The value of the year attribute

A hyphen

The value of the month attribute

A hyphen

The value of the day attribute

A hyphen

The string </td>

The xsl:value-of statement computes the string value of a node set. The node set is specified by the XPath

value of the select attribute. In this case, the path is relative to the currently processed node. The node set is

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.w3.org/TR/xslt

converted to a string by concatenation of the string values of all nodes. The string value of an attribute node is
its value. The string value of a text node is its contents. The string value of an element node is the
concatenation of the string values of its child nodes (but not its attributes).

Listing 2-11 contains the style sheet for turning an XML file with employee records into an HTML table.

Listing 2-12 shows a different set of transformations. The input is the same XML file, and the output is plain text
in the familiar property file format:

employee.1.name=Carl Cracker

employee.1.salary=75000.0

employee.1.hiredate=1987-12-15

employee.2.name=Harry Hacker

employee.2.salary=50000.0

employee.2.hiredate=1989-10-1

employee.3.name=Tony Tester
employee.3.salary=40000.0

employee.3.hiredate=1990-3-15

That example uses the position() function, which yields the position of the current node as seen from its

parent. We get an entirely different output simply by switching the style sheet. Thus, you can safely use XML to
describe your data, even if some applications need the data in another format. Just use XSLT to generate the
alternative format.

It is extremely simple to generate XSL transformations in the Java platform. Set up a transformer factory for
each style sheet. Then get a transformer object, and tell it to transform a source to a result.

Code View:
File styleSheet = new File(filename);

StreamSource styleSource = new StreamSource(styleSheet);
Transformer t = TransformerFactory.newInstance().newTransformer(styleSource);

t.transform(source, result);

The parameters of the transform method are objects of classes that implement the Source and Result

interfaces. There are three implementations of the Source interface:

DOMSource

SAXSource

StreamSource

You can construct a StreamSource from a file, stream, reader, or URL, and a DOMSource from the node of a

DOM tree. For example, in the preceding section, we invoked the identity transformation as

t.transform(new DOMSource(doc), result);

In our example program, we do something slightly more interesting. Rather than starting out with an existing
XML file, we produce a SAX XML reader that gives the illusion of parsing an XML file by emitting appropriate SAX
events. Actually, our XML reader reads a flat file, as described in Chapter 1. The input file looks like this:

Carl Cracker|75000.0|1987|12|15

Harry Hacker|50000.0|1989|10|1

Tony Tester|40000.0|1990|3|15

Our XML reader generates SAX events as it processes the input. Here is a part of the parse method of the

EmployeeReader class that implements the XMLReader interface.

AttributesImpl attributes = new AttributesImpl();

handler.startDocument();

handler.startElement("", "staff", "staff", attributes);

while ((line = in.readLine()) != null)

{

 handler.startElement("", "employee", "employee", attributes);

 StringTokenizer t = new StringTokenizer(line, "|");

 handler.startElement("", "name", "name", attributes);
 String s = t.nextToken();

 handler.characters(s.toCharArray(), 0, s.length());

 handler.endElement("", "name", "name");

 . . .

 handler.endElement("", "employee", "employee");

}

handler.endElement("", rootElement, rootElement);

handler.endDocument();

The SAXSource for the transformer is constructed from the XML reader:

t.transform(new SAXSource(new EmployeeReader(),

 new InputSource(new FileInputStream(filename))), result);

This is an ingenious trick to convert non-XML legacy data into XML. Of course, most XSLT applications will
already have XML input data, and you can simply invoke the transform method on a StreamSource, like this:

t.transform(new StreamSource(file), result);

The transformation result is an object of a class that implements the Result interface. The Java library supplies

three classes:

DOMResult
SAXResult

StreamResult

To store the result in a DOM tree, use a DocumentBuilder to generate a new document node and wrap it into a

DOMResult:

Document doc = builder.newDocument();

t.transform(source, new DOMResult(doc));

To save the output in a file, use a StreamResult:

t.transform(source, new StreamResult(file));

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 2-13 contains the complete source code.

Listing 2-11. makehtml.xsl

Code View:
 1. <?xml version="1.0" encoding="ISO-8859-1"?>

 2.

 3. <xsl:stylesheet

 4. xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 5. version="1.0">

 6.

 7. <xsl:output method="html"/>

 8.

 9. <xsl:template match="/staff">

10. <table border="1"><xsl:apply-templates/></table>

11. </xsl:template>

12.

13. <xsl:template match="/staff/employee">

14. <tr><xsl:apply-templates/></tr>

15. </xsl:template>

16.

17. <xsl:template match="/staff/employee/name">

18. <td><xsl:apply-templates/></td>

19. </xsl:template>

20.

21. <xsl:template match="/staff/employee/salary">

22. <td>$<xsl:apply-templates/></td>

23. </xsl:template>

24.

25. <xsl:template match="/staff/employee/hiredate">

26. <td><xsl:value-of select="@year"/>-<xsl:value-of

27. select="@month"/>-<xsl:value-of select="@day"/></td>

28. </xsl:template>

29.

30. </xsl:stylesheet>

Listing 2-12. makeprop.xsl

Code View:
 1. <?xml version="1.0"?>

 2.

 3. <xsl:stylesheet

 4. xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 5. version="1.0">

 6.

 7. <xsl:output method="text"/>

 8. <xsl:template match="/staff/employee">

 9. employee.<xsl:value-of select="position()"/>.name=<xsl:value-of select="name/text()"/>

10. employee.<xsl:value-of select="position()"/>.salary=<xsl:value-of select="salary/text()"/>

11. employee.<xsl:value-of select="position()"/>.hiredate=<xsl:value-of select="hiredate/@year"/>

12. -<xsl:value-of select="hiredate/@month"/>-<xsl:value-of select="hiredate/@day"/>

13. </xsl:template>

14.

15. </xsl:stylesheet>

Listing 2-13. TransformTest.java

Code View:
 1. import java.io.*;

 2. import java.util.*;

 3. import javax.xml.transform.*;

 4. import javax.xml.transform.sax.*;

 5. import javax.xml.transform.stream.*;

 6. import org.xml.sax.*;

 7. import org.xml.sax.helpers.*;

 8.

 9. /**

 10. * This program demonstrates XSL transformations. It applies a transformation to a set

 11. * of employee records. The records are stored in the file employee.dat and turned into XML

 12. * format. Specify the stylesheet on the command line, e.g. java TransformTest makeprop.xsl

 13. * @version 1.01 2007-06-25

 14. * @author Cay Horstmann

 15. */

 16. public class TransformTest

 17. {

 18. public static void main(String[] args) throws Exception

 19. {

 20. String filename;

 21. if (args.length > 0) filename = args[0];

 22. else filename = "makehtml.xsl";

 23. File styleSheet = new File(filename);

 24. StreamSource styleSource = new StreamSource(styleSheet);

 25.

 26. Transformer t = TransformerFactory.newInstance().newTransformer(styleSource);

 27. t.setOutputProperty(OutputKeys.INDENT, "yes");

 28. t.setOutputProperty(OutputKeys.METHOD, "xml");

 29. t.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2");

 30.

 31. t.transform(new SAXSource(new EmployeeReader(), new InputSource(new FileInputStream(

 32. "employee.dat"))), new StreamResult(System.out));

 33. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 34. }

 35. /**

 36. * This class reads the flat file employee.dat and reports SAX parser events to act as if

 37. * it was parsing an XML file.

 38. */

 39. class EmployeeReader implements XMLReader

 40. {

 41. public void parse(InputSource source) throws IOException, SAXException

 42. {

 43. InputStream stream = source.getByteStream();

 44. BufferedReader in = new BufferedReader(new InputStreamReader(stream));

 45. String rootElement = "staff";

 46. AttributesImpl atts = new AttributesImpl();

 47.

 48. if (handler == null) throw new SAXException("No content handler");

 49.

 50. handler.startDocument();

 51. handler.startElement("", rootElement, rootElement, atts);

 52. String line;

 53. while ((line = in.readLine()) != null)

 54. {

 55. handler.startElement("", "employee", "employee", atts);

 56. StringTokenizer t = new StringTokenizer(line, "|");

 57.

 58. handler.startElement("", "name", "name", atts);

 59. String s = t.nextToken();

 60. handler.characters(s.toCharArray(), 0, s.length());

 61. handler.endElement("", "name", "name");

 62.

 63. handler.startElement("", "salary", "salary", atts);

 64. s = t.nextToken();

 65. handler.characters(s.toCharArray(), 0, s.length());

 66. handler.endElement("", "salary", "salary");

 67.

 68. atts.addAttribute("", "year", "year", "CDATA", t.nextToken());

 69. atts.addAttribute("", "month", "month", "CDATA", t.nextToken());

 70. atts.addAttribute("", "day", "day", "CDATA", t.nextToken());

 71. handler.startElement("", "hiredate", "hiredate", atts);

 72. handler.endElement("", "hiredate", "hiredate");

 73. atts.clear();

 74.

 75. handler.endElement("", "employee", "employee");

 76. }

 77.

 78. handler.endElement("", rootElement, rootElement);

 79. handler.endDocument();

 80. }

 81.

 82. public void setContentHandler(ContentHandler newValue)

 83. {

 84. handler = newValue;

 85. }

 86.

 87. public ContentHandler getContentHandler()

 88. {

 89. return handler;

 90. }

 91.

 92. // the following methods are just do-nothing implementations

 93. public void parse(String systemId) throws IOException, SAXException

 94. {

 95. }

 96.

 97. public void setErrorHandler(ErrorHandler handler)

 98. {

 99. }

100.

101. public ErrorHandler getErrorHandler()

102. {

103. return null;

104. }

105.

106. public void setDTDHandler(DTDHandler handler)

107. {

108. }

109.

110. public DTDHandler getDTDHandler()

111. {

112. return null;

113. }

114.

115. public void setEntityResolver(EntityResolver resolver)

116. {

117. }

118.

119. public EntityResolver getEntityResolver()

120. {

121. return null;

122. }

123.

124. public void setProperty(String name, Object value)

125. {

126. }

127.

128. public Object getProperty(String name)

129. {

130. return null;

131. }

132.

133. public void setFeature(String name, boolean value)

134. {

135. }

136.

137. public boolean getFeature(String name)

138. {

139. return false;

140. }

141.

142. private ContentHandler handler;

143. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.xml.transform.TransformerFactory 1.4

Transformer newTransformer(Source styleSheet)

returns an instance of the Transformer class that reads a style sheet

from the given source.

javax.xml.transform.stream.StreamSource 1.4

StreamSource(File f)

StreamSource(InputStream in)

StreamSource(Reader in)

StreamSource(String systemID)

constructs a stream source from a file, stream, reader, or system ID
(usually a relative or absolute URL).

javax.xml.transform.sax.SAXSource 1.4

SAXSource(XMLReader reader, InputSource source)

constructs a SAX source that obtains data from the given input source
and uses the given reader to parse the input.

org.xml.sax.XMLReader 1.4

void setContentHandler(ContentHandler handler)

sets the handler that is notified of parse events as the input is parsed.

void parse(InputSource source)

parses the input from the given input source and sends parse events to
the content handler.

javax.xml.transform.dom.DOMResult 1.4

DOMResult(Node n)

constructs a source from the given node. Usually, n is a new document

node.

org.xml.sax.helpers.AttributesImpl 1.4

void addAttribute(String uri, String lname, String qname, String type, String

value)

adds an attribute to this attribute collection.

Parameters: uri The URI of the namespace

 lname The local name without alias prefix

 qname The qualified name with alias prefix

 type The type, one of "CDATA", "ID", "IDREF", "IDREFS",

"NMTOKEN", "NMTOKENS", "ENTITY", "ENTITIES", or
"NOTATION"

 value The attribute value

void clear()

removes all attributes from this attribute collection.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

This example concludes our discussion of XML support in the Java library. You should now have a good
perspective on the major strengths of XML, in particular, for automated parsing and validation and as a powerful
transformation mechanism. Of course, all this technology is only going to work for you if you design your XML
formats well. You need to make sure that the formats are rich enough to express all your business needs, that
they are stable over time, and that your business partners are willing to accept your XML documents. Those
issues can be far more challenging than dealing with parsers, DTDs, or transformations.

In the next chapter, we discuss network programming on the Java platform, starting with the basics of network
sockets and moving on to higher level protocols for e-mail and the World Wide Web.

Chapter 3. Networking

CONNECTING TO A SERVER

IMPLEMENTING SERVERS

INTERRUPTIBLE SOCKETS

SENDING E-MAIL

MAKING URL CONNECTIONS

We begin this chapter by reviewing basic networking concepts. We then move on to writing Java programs that
connect to network services. We show you how network clients and servers are implemented. Finally, you will
see how to send e-mail from a Java program and how to harvest information from a web server.

Connecting to a Server

Before writing our first network program, let's learn about a great debugging tool for network programming that
you already have, namely, telnet. Telnet is preinstalled on most systems. You should be able to launch it by
typing telnet from a command shell.

Note

In Windows Vista, telnet is installed but deactivated by default. To activate it, go to
the Control Panel, select Programs, click "Turn Windows Features On or Off", and
select the "Telnet client" checkbox. The Windows firewall also blocks quite a few
network ports that we use in this chapter; you might need an administrator account
to unblock them.

You may have used telnet to connect to a remote computer, but you can use it to communicate with other
services provided by Internet hosts as well. Here is an example of what you can do. Type

telnet time-A.timefreq.bldrdoc.gov 13

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

As Figure 3-1 shows, you should get back a line like this:

54276 07-06-25 21:37:31 50 0 0 659.0 UTC(NIST) *

Figure 3-1. Output of the "time of day" service

[View full size image]

What is going on? You have connected to the "time of day" service that most UNIX machines constantly run.
The particular server that you connected to is operated by the National Institute of Standards and Technology in
Boulder, Colorado, and gives the measurement of a Cesium atomic clock. (Of course, the reported time is not
completely accurate due to network delays.)

By convention, the "time of day" service is always attached to "port" number 13.

Note

In network parlance, a port is not a physical device, but an abstraction to facilitate
communication between a server and a client (see Figure 3-2).

Figure 3-2. A client connecting to a server port

[View full size image]

The server software is continuously running on the remote machine, waiting for any network traffic that wants
to chat with port 13. When the operating system on the remote computer receives a network package that
contains a request to connect to port number 13, it wakes up the listening server process and establishes the
connection. The connection stays up until it is terminated by one of the parties.

When you began the telnet session with time-A.timefreq.bldrdoc.gov at port 13, a piece of network software

knew enough to convert the string "time-A.timefreq.bldrdoc.gov" to its correct Internet Protocol (IP)

address, 132.163.4.103. The telnet software then sent a connection request to that address, asking for a
connection to port 13. Once the connection was established, the remote program sent back a line of data and
then closed the connection. In general, of course, clients and servers engage in a more extensive dialog before
one or the other closes the connection.

Here is another experiment, along the same lines, that is a bit more interesting. Do the following:

Use telnet to connect to java.sun.com on port 80.1.

Type the following, exactly as it appears, without pressing BACKSPACE. Note that there are spaces around
the first slash but not the second.

GET / HTTP/1.0

2.

Now, press the ENTER key two times.3.

Figure 3-3 shows the response. It should look eerily familiar—you got a page of HTML-formatted text, namely,
the main web page for Java technology.

Figure 3-3. Using telnet to access an HTTP port

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

This is exactly the same process that your web browser goes through to get a web page. It uses HTTP to
request web pages from servers. Of course, the browser displays the HTML code more nicely.

Note

If you try this procedure with a web server that hosts multiple domains with the
same IP address, then you will not get the desired web page. (This is the case with
smaller web sites that share a single server, such as horstmann.com.) When

connecting to such a server, specify the desired host name, like this:

GET / HTTP/1.1

Host: horstmann.com

Then press the ENTER key two times. (Note that the HTTP version is 1.1.)

Our first network program in Listing 3-1 will do the same thing we did using telnet—connect to a port and print
out what it finds.

Listing 3-1. SocketTest.java

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import java.util.*;

 4.

 5. /**

 6. * This program makes a socket connection to the atomic clock in Boulder, Colorado, and

 7. * prints the time that the server sends.

 8. * @version 1.20 2004-08-03

 9. * @author Cay Horstmann

10. */

11. public class SocketTest

12. {

13. public static void main(String[] args)

14. {

15. try

16. {

17. Socket s = new Socket("time-A.timefreq.bldrdoc.gov", 13);

18. try

19. {

20. InputStream inStream = s.getInputStream();

21. Scanner in = new Scanner(inStream);

22.

23. while (in.hasNextLine())

24. {

25. String line = in.nextLine();

26. System.out.println(line);

27. }

28. }

29. finally

30. {

31. s.close();

32. }

33. }

34. catch (IOException e)

35. {

36. e.printStackTrace();

37. }

38. }

39. }

The key statements of this simple program are as follows:

Socket s = new Socket("time-A.timefreq.bldrdoc.gov", 13);

InputStream inStream = s.getInputStream();

The first line opens a socket, which is an abstraction for the network software that enables communication out
of and into this program. We pass the remote address and the port number to the socket constructor. If the
connection fails, then an UnknownHostException is thrown. If there is another problem, then an IOException

occurs. Because UnknownHostException is a subclass of IOException and this is a sample program, we just

catch the superclass.

Once the socket is open, the getInputStream method in java.net.Socket returns an InputStream object that

you can use just like any other stream. Once you have grabbed the stream, this program simply prints each

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

input line to standard output. This process continues until the stream is finished and the server disconnects.

This program works only with very simple servers, such as a "time of day" service. In more complex networking
programs, the client sends request data to the server, and the server might not immediately disconnect at the
end of a response. You will see how to implement that behavior in several examples throughout this chapter.

The Socket class is pleasant and easy to use because the Java library hides the complexities of establishing a

networking connection and sending data across it. The java.net package essentially gives you the same

programming interface you would use to work with a file.

Note

In this book, we cover only the Transmission Control Protocol (TCP). The Java
platform also supports the User Datagram Protocol (UDP), which can be used to
send packets (also called datagrams) with much less overhead than that for TCP.
The drawback is that packets need not be delivered in sequential order to the
receiving application and can even be dropped altogether. It is up to the recipient to
put the packets in order and to request retransmission of missing packets. UDP is
well suited for applications in which missing packets can be tolerated, for example,
in audio or video streams, or for continuous measurements.

java.net.Socket 1.0

Socket(String host, int port)

constructs a socket to connect to the given host and port.

InputStream getInputStream()

OutputStream getOutputStream()

gets streams to read data from the socket and write data to the socket.

Socket Timeouts

Reading from a socket blocks until data are available. If the host is unreachable, your application waits for a
long time and you are at the mercy of the underlying operating system to time out eventually.

You can decide what timeout value is reasonable for your particular application. Then, call the setSoTimeout

method to set a timeout value (in milliseconds).

Socket s = new Socket(. . .);

s.setSoTimeout(10000); // time out after 10 seconds

If the timeout value has been set for a socket, then all subsequent read and write operations throw a
SocketTimeoutException when the timeout has been reached before the operation has completed its work. You
can catch that exception and react to the timeout.

try

{

 InputStream in = s.getInputStream(); // read from in

 . . .

}

catch (InterruptedIOException exception)

{

 react to timeout

}

There is one additional timeout issue that you need to address: The constructor

Socket(String host, int port)

can block indefinitely until an initial connection to the host is established.

You can overcome this problem by first constructing an unconnected socket and then connecting it with a
timeout:

Socket s = new Socket();

s.connect(new InetSocketAddress(host, port), timeout);

See the "Interruptible Sockets" section beginning on page 184 if you want to allow users to interrupt the socket
connection at any time.

java.net.Socket 1.0

Socket() 1.1

creates a socket that has not yet been connected.

void connect(SocketAddress address) 1.4

connects this socket to the given address.

void connect(SocketAddress address, int

timeoutInMilliseconds) 1.4

connects this socket to the given address or returns if the time interval
expired.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setSoTimeout(int timeoutInMilliseconds) 1.1

sets the blocking time for read requests on this socket. If the timeout is
reached, then an InterruptedIOException is raised.

boolean isConnected() 1.4

returns true if the socket is connected.

boolean isClosed() 1.4

returns true if the socket is closed.

Internet Addresses

Usually, you don't have to worry too much about Internet addresses—the numerical host addresses that consist
of four bytes (or, with IPv6, 16 bytes) such as 132.163.4.102. However, you can use the InetAddress class if
you need to convert between host names and Internet addresses.

The java.net package supports IPv6 Internet addresses, provided the host operating system does.

The static getByName method returns an InetAddress object of a host. For example,

InetAddress address = InetAddress.getByName("time-A.timefreq.bldrdoc.gov");

returns an InetAddress object that encapsulates the sequence of four bytes 132.163.4.104. You can access the

bytes with the getAddress method.

byte[] addressBytes = address.getAddress();

Some host names with a lot of traffic correspond to multiple Internet addresses, to facilitate load balancing. For
example, at the time of this writing, the host name java.sun.com corresponds to three different Internet

addresses. One of them is picked at random when the host is accessed. You can get all hosts with the
getAllByName method.

InetAddress[] addresses = InetAddress.getAllByName(host);

Finally, you sometimes need the address of the local host. If you simply ask for the address of localhost, you

always get the local loopback address 127.0.0.1, which cannot be used by others to connect to your computer.
Instead, use the static getLocalHost method to get the address of your local host.

InetAddress address = InetAddress.getLocalHost();

Listing 3-2 is a simple program that prints the Internet address of your local host if you do not specify any
command-line parameters, or all Internet addresses of another host if you specify the host name on the
command line, such as

java InetAddressTest java.sun.com

Listing 3-2. InetAddressTest.java

Code View:
 1. import java.net.*;

 2.

 3. /**

 4. * This program demonstrates the InetAddress class. Supply a host name as command line

 5. * argument, or run without command line arguments to see the address of the local host.

 6. * @version 1.01 2001-06-26

 7. * @author Cay Horstmann

 8. */

 9. public class InetAddressTest

10. {

11. public static void main(String[] args)

12. {

13. try

14. {

15. if (args.length > 0)

16. {

17. String host = args[0];

18. InetAddress[] addresses = InetAddress.getAllByName(host);

19. for (InetAddress a : addresses)

20. System.out.println(a);

21. }

22. else

23. {

24. InetAddress localHostAddress = InetAddress.getLocalHost();

25. System.out.println(localHostAddress);

26. }

27. }

28. catch (Exception e)

29. {

30. e.printStackTrace();

31. }

32. }

33. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.net.InetAddress 1.0

static InetAddress getByName(String host)

static InetAddress[] getAllByName(String host)

constructs an InetAddress, or an array of all Internet addresses, for the

given host name.

static InetAddress getLocalHost()

constructs an InetAddress for the local host.

byte[] getAddress()

returns an array of bytes that contains the numerical address.

String getHostAddress()

returns a string with decimal numbers, separated by periods, for
example, "132.163.4.102".

String getHostName()

returns the host name.

Chapter 3. Networking

CONNECTING TO A SERVER

IMPLEMENTING SERVERS

INTERRUPTIBLE SOCKETS

SENDING E-MAIL

MAKING URL CONNECTIONS

We begin this chapter by reviewing basic networking concepts. We then move on to writing Java programs that
connect to network services. We show you how network clients and servers are implemented. Finally, you will
see how to send e-mail from a Java program and how to harvest information from a web server.

Connecting to a Server

Before writing our first network program, let's learn about a great debugging tool for network programming that
you already have, namely, telnet. Telnet is preinstalled on most systems. You should be able to launch it by
typing telnet from a command shell.

Note

In Windows Vista, telnet is installed but deactivated by default. To activate it, go to
the Control Panel, select Programs, click "Turn Windows Features On or Off", and
select the "Telnet client" checkbox. The Windows firewall also blocks quite a few
network ports that we use in this chapter; you might need an administrator account
to unblock them.

You may have used telnet to connect to a remote computer, but you can use it to communicate with other
services provided by Internet hosts as well. Here is an example of what you can do. Type

telnet time-A.timefreq.bldrdoc.gov 13

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

As Figure 3-1 shows, you should get back a line like this:

54276 07-06-25 21:37:31 50 0 0 659.0 UTC(NIST) *

Figure 3-1. Output of the "time of day" service

[View full size image]

What is going on? You have connected to the "time of day" service that most UNIX machines constantly run.
The particular server that you connected to is operated by the National Institute of Standards and Technology in
Boulder, Colorado, and gives the measurement of a Cesium atomic clock. (Of course, the reported time is not
completely accurate due to network delays.)

By convention, the "time of day" service is always attached to "port" number 13.

Note

In network parlance, a port is not a physical device, but an abstraction to facilitate
communication between a server and a client (see Figure 3-2).

Figure 3-2. A client connecting to a server port

[View full size image]

The server software is continuously running on the remote machine, waiting for any network traffic that wants
to chat with port 13. When the operating system on the remote computer receives a network package that
contains a request to connect to port number 13, it wakes up the listening server process and establishes the
connection. The connection stays up until it is terminated by one of the parties.

When you began the telnet session with time-A.timefreq.bldrdoc.gov at port 13, a piece of network software

knew enough to convert the string "time-A.timefreq.bldrdoc.gov" to its correct Internet Protocol (IP)

address, 132.163.4.103. The telnet software then sent a connection request to that address, asking for a
connection to port 13. Once the connection was established, the remote program sent back a line of data and
then closed the connection. In general, of course, clients and servers engage in a more extensive dialog before
one or the other closes the connection.

Here is another experiment, along the same lines, that is a bit more interesting. Do the following:

Use telnet to connect to java.sun.com on port 80.1.

Type the following, exactly as it appears, without pressing BACKSPACE. Note that there are spaces around
the first slash but not the second.

GET / HTTP/1.0

2.

Now, press the ENTER key two times.3.

Figure 3-3 shows the response. It should look eerily familiar—you got a page of HTML-formatted text, namely,
the main web page for Java technology.

Figure 3-3. Using telnet to access an HTTP port

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

This is exactly the same process that your web browser goes through to get a web page. It uses HTTP to
request web pages from servers. Of course, the browser displays the HTML code more nicely.

Note

If you try this procedure with a web server that hosts multiple domains with the
same IP address, then you will not get the desired web page. (This is the case with
smaller web sites that share a single server, such as horstmann.com.) When

connecting to such a server, specify the desired host name, like this:

GET / HTTP/1.1

Host: horstmann.com

Then press the ENTER key two times. (Note that the HTTP version is 1.1.)

Our first network program in Listing 3-1 will do the same thing we did using telnet—connect to a port and print
out what it finds.

Listing 3-1. SocketTest.java

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import java.util.*;

 4.

 5. /**

 6. * This program makes a socket connection to the atomic clock in Boulder, Colorado, and

 7. * prints the time that the server sends.

 8. * @version 1.20 2004-08-03

 9. * @author Cay Horstmann

10. */

11. public class SocketTest

12. {

13. public static void main(String[] args)

14. {

15. try

16. {

17. Socket s = new Socket("time-A.timefreq.bldrdoc.gov", 13);

18. try

19. {

20. InputStream inStream = s.getInputStream();

21. Scanner in = new Scanner(inStream);

22.

23. while (in.hasNextLine())

24. {

25. String line = in.nextLine();

26. System.out.println(line);

27. }

28. }

29. finally

30. {

31. s.close();

32. }

33. }

34. catch (IOException e)

35. {

36. e.printStackTrace();

37. }

38. }

39. }

The key statements of this simple program are as follows:

Socket s = new Socket("time-A.timefreq.bldrdoc.gov", 13);

InputStream inStream = s.getInputStream();

The first line opens a socket, which is an abstraction for the network software that enables communication out
of and into this program. We pass the remote address and the port number to the socket constructor. If the
connection fails, then an UnknownHostException is thrown. If there is another problem, then an IOException

occurs. Because UnknownHostException is a subclass of IOException and this is a sample program, we just

catch the superclass.

Once the socket is open, the getInputStream method in java.net.Socket returns an InputStream object that

you can use just like any other stream. Once you have grabbed the stream, this program simply prints each

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

input line to standard output. This process continues until the stream is finished and the server disconnects.

This program works only with very simple servers, such as a "time of day" service. In more complex networking
programs, the client sends request data to the server, and the server might not immediately disconnect at the
end of a response. You will see how to implement that behavior in several examples throughout this chapter.

The Socket class is pleasant and easy to use because the Java library hides the complexities of establishing a

networking connection and sending data across it. The java.net package essentially gives you the same

programming interface you would use to work with a file.

Note

In this book, we cover only the Transmission Control Protocol (TCP). The Java
platform also supports the User Datagram Protocol (UDP), which can be used to
send packets (also called datagrams) with much less overhead than that for TCP.
The drawback is that packets need not be delivered in sequential order to the
receiving application and can even be dropped altogether. It is up to the recipient to
put the packets in order and to request retransmission of missing packets. UDP is
well suited for applications in which missing packets can be tolerated, for example,
in audio or video streams, or for continuous measurements.

java.net.Socket 1.0

Socket(String host, int port)

constructs a socket to connect to the given host and port.

InputStream getInputStream()

OutputStream getOutputStream()

gets streams to read data from the socket and write data to the socket.

Socket Timeouts

Reading from a socket blocks until data are available. If the host is unreachable, your application waits for a
long time and you are at the mercy of the underlying operating system to time out eventually.

You can decide what timeout value is reasonable for your particular application. Then, call the setSoTimeout

method to set a timeout value (in milliseconds).

Socket s = new Socket(. . .);

s.setSoTimeout(10000); // time out after 10 seconds

If the timeout value has been set for a socket, then all subsequent read and write operations throw a
SocketTimeoutException when the timeout has been reached before the operation has completed its work. You
can catch that exception and react to the timeout.

try

{

 InputStream in = s.getInputStream(); // read from in

 . . .

}

catch (InterruptedIOException exception)

{

 react to timeout

}

There is one additional timeout issue that you need to address: The constructor

Socket(String host, int port)

can block indefinitely until an initial connection to the host is established.

You can overcome this problem by first constructing an unconnected socket and then connecting it with a
timeout:

Socket s = new Socket();

s.connect(new InetSocketAddress(host, port), timeout);

See the "Interruptible Sockets" section beginning on page 184 if you want to allow users to interrupt the socket
connection at any time.

java.net.Socket 1.0

Socket() 1.1

creates a socket that has not yet been connected.

void connect(SocketAddress address) 1.4

connects this socket to the given address.

void connect(SocketAddress address, int

timeoutInMilliseconds) 1.4

connects this socket to the given address or returns if the time interval
expired.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setSoTimeout(int timeoutInMilliseconds) 1.1

sets the blocking time for read requests on this socket. If the timeout is
reached, then an InterruptedIOException is raised.

boolean isConnected() 1.4

returns true if the socket is connected.

boolean isClosed() 1.4

returns true if the socket is closed.

Internet Addresses

Usually, you don't have to worry too much about Internet addresses—the numerical host addresses that consist
of four bytes (or, with IPv6, 16 bytes) such as 132.163.4.102. However, you can use the InetAddress class if
you need to convert between host names and Internet addresses.

The java.net package supports IPv6 Internet addresses, provided the host operating system does.

The static getByName method returns an InetAddress object of a host. For example,

InetAddress address = InetAddress.getByName("time-A.timefreq.bldrdoc.gov");

returns an InetAddress object that encapsulates the sequence of four bytes 132.163.4.104. You can access the

bytes with the getAddress method.

byte[] addressBytes = address.getAddress();

Some host names with a lot of traffic correspond to multiple Internet addresses, to facilitate load balancing. For
example, at the time of this writing, the host name java.sun.com corresponds to three different Internet

addresses. One of them is picked at random when the host is accessed. You can get all hosts with the
getAllByName method.

InetAddress[] addresses = InetAddress.getAllByName(host);

Finally, you sometimes need the address of the local host. If you simply ask for the address of localhost, you

always get the local loopback address 127.0.0.1, which cannot be used by others to connect to your computer.
Instead, use the static getLocalHost method to get the address of your local host.

InetAddress address = InetAddress.getLocalHost();

Listing 3-2 is a simple program that prints the Internet address of your local host if you do not specify any
command-line parameters, or all Internet addresses of another host if you specify the host name on the
command line, such as

java InetAddressTest java.sun.com

Listing 3-2. InetAddressTest.java

Code View:
 1. import java.net.*;

 2.

 3. /**

 4. * This program demonstrates the InetAddress class. Supply a host name as command line

 5. * argument, or run without command line arguments to see the address of the local host.

 6. * @version 1.01 2001-06-26

 7. * @author Cay Horstmann

 8. */

 9. public class InetAddressTest

10. {

11. public static void main(String[] args)

12. {

13. try

14. {

15. if (args.length > 0)

16. {

17. String host = args[0];

18. InetAddress[] addresses = InetAddress.getAllByName(host);

19. for (InetAddress a : addresses)

20. System.out.println(a);

21. }

22. else

23. {

24. InetAddress localHostAddress = InetAddress.getLocalHost();

25. System.out.println(localHostAddress);

26. }

27. }

28. catch (Exception e)

29. {

30. e.printStackTrace();

31. }

32. }

33. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.net.InetAddress 1.0

static InetAddress getByName(String host)

static InetAddress[] getAllByName(String host)

constructs an InetAddress, or an array of all Internet addresses, for the

given host name.

static InetAddress getLocalHost()

constructs an InetAddress for the local host.

byte[] getAddress()

returns an array of bytes that contains the numerical address.

String getHostAddress()

returns a string with decimal numbers, separated by periods, for
example, "132.163.4.102".

String getHostName()

returns the host name.

Implementing Servers

Now that we have implemented a basic network client that receives data from the Internet, let's implement a
simple server that can send information to clients. Once you start the server program, it waits for some client to
attach to its port. We chose port number 8189, which is not used by any of the standard services. The
ServerSocket class establishes a socket. In our case, the command

ServerSocket s = new ServerSocket(8189);

establishes a server that monitors port 8189. The command

Socket incoming = s.accept();

tells the program to wait indefinitely until a client connects to that port. Once someone connects to this port by
sending the correct request over the network, this method returns a Socket object that represents the

connection that was made. You can use this object to get input and output streams, as is shown in the following
code:

InputStream inStream = incoming.getInputStream();

OutputStream outStream = incoming.getOutputStream();

Everything that the server sends to the server output stream becomes the input of the client program, and all
the output from the client program ends up in the server input stream.

In all the examples in this chapter, we transmit text through sockets. We therefore turn the streams into
scanners and writers.

Scanner in = new Scanner(inStream);
PrintWriter out = new PrintWriter(outStream, true /* autoFlush */);

Let's send the client a greeting:

out.println("Hello! Enter BYE to exit.");

When you use telnet to connect to this server program at port 8189, you will see the preceding greeting on the
terminal screen.

In this simple server, we just read the client input, a line at a time, and echo it. This demonstrates that the
program receives the client's input. An actual server would obviously compute and return an answer that
depended on the input.

String line = in.nextLine();

out.println("Echo: " + line);

if (line.trim().equals("BYE")) done = true;

In the end, we close the incoming socket.

incoming.close();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

That is all there is to it. Every server program, such as an HTTP web server, continues performing this loop:

It receives a command from the client ("get me this information") through an incoming data stream.1.

It decodes the client command.2.

It gathers the information that the client requested.3.

It sends the information to the client through the outgoing data stream.4.

Listing 3-3 is the complete program.

Listing 3-3. EchoServer.java

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import java.util.*;

 4.

 5. /**

 6. * This program implements a simple server that listens to port 8189 and echoes back all

 7. * client input.

 8. * @version 1.20 2004-08-03

 9. * @author Cay Horstmann

10. */

11. public class EchoServer

12. {

13. public static void main(String[] args)

14. {

15. try

16. {

17. // establish server socket

18. ServerSocket s = new ServerSocket(8189);

19.

20. // wait for client connection

21. Socket incoming = s.accept();

22. try

23. {

24. InputStream inStream = incoming.getInputStream();

25. OutputStream outStream = incoming.getOutputStream();

26.

27. Scanner in = new Scanner(inStream);

28. PrintWriter out = new PrintWriter(outStream, true /* autoFlush */);

29.

30. out.println("Hello! Enter BYE to exit.");

31.

32. // echo client input

33. boolean done = false;

34. while (!done && in.hasNextLine())

35. {

36. String line = in.nextLine();

37. out.println("Echo: " + line);

38. if (line.trim().equals("BYE")) done = true;

39. }

40. }

41. finally

42. {

43. incoming.close();

44. }

45. }

46. catch (IOException e)

47. {

48. e.printStackTrace();

49. }

50. }

51. }

To try it out, compile and run the program. Then, use telnet to connect to the server localhost (or IP address

127.0.0.1) and port 8189.

If you are connected directly to the Internet, then anyone in the world can access your echo server, provided
they know your IP address and the magic port number.

When you connect to the port, you will see the message shown in Figure 3-4:

Hello! Enter BYE to exit.

Figure 3-4. Accessing an echo server

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Type anything and watch the input echo on your screen. Type BYE (all uppercase letters) to disconnect. The
server program will terminate as well.

java.net.ServerSocket 1.0

ServerSocket(int port)

creates a server socket that monitors a port.

Socket accept()

waits for a connection. This method blocks (i.e., idles) the current thread
until the connection is made. The method returns a Socket object
through which the program can communicate with the connecting client.

void close()

closes the server socket.

Serving Multiple Clients

There is one problem with the simple server in the preceding example. Suppose we want to allow multiple
clients to connect to our server at the same time. Typically, a server runs constantly on a server computer, and
clients from all over the Internet might want to use the server at the same time. Rejecting multiple connections

allows any one client to monopolize the service by connecting to it for a long time. We can do much better
through the magic of threads.

Every time we know the program has established a new socket connection—that is, when the call to accept was
successful—we will launch a new thread to take care of the connection between the server and that client. The
main program will just go back and wait for the next connection. For this to happen, the main loop of the server
should look like this:

while (true)

{

 Socket incoming = s.accept();

 Runnable r = new ThreadedEchoHandler(incoming);

 Thread t = new Thread(r);

 t.start();

}

The ThreadedEchoHandler class implements Runnable and contains the communication loop with the client in

its run method.

class ThreadedEchoHandler implements Runnable

{ . . .

 public void run()
 {

 try

 {

 InputStream inStream = incoming.getInputStream();

 OutputStream outStream = incoming.getOutputStream();

 process input and send response

 incoming.close();

 }

 catch(IOException e)
 {

 handle exception

 }
 }

}

Because each connection starts a new thread, multiple clients can connect to the server at the same time. You
can easily check this out.

Compile and run the server program (Listing 3-4).1.

Open several telnet windows as we have in Figure 3-5.

Figure 3-5. Several telnet windows communicating simultaneously

[View full size image]

2.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Switch between windows and type commands. Note that you can communicate through all of them
simultaneously.

3.

When you are done, switch to the window from which you launched the server program and use CTRL+C to
kill it.

4.

Note

In this program, we spawn a separate thread for each connection. This approach is
not satisfactory for high-performance servers. You can achieve greater server
throughput by using features of the java.nio package. See

http://www.ibm.com/developerworks/java/library/j-javaio for more information.

Listing 3-4. ThreadedEchoServer.java

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import java.util.*;

http://www.ibm.com/developerworks/java/library/j-javaio

 4.

 5. /**

 6. This program implements a multithreaded server that listens to port 8189 and echoes back

 7. all client input.

 8. @author Cay Horstmann

 9. @version 1.20 2004-08-03

10. */

11. public class ThreadedEchoServer

12. {

13. public static void main(String[] args)

14. {

15. try

16. {

17. int i = 1;

18. ServerSocket s = new ServerSocket(8189);

19.

20. while (true)

21. {

22. Socket incoming = s.accept();

23. System.out.println("Spawning " + i);

24. Runnable r = new ThreadedEchoHandler(incoming);

25. Thread t = new Thread(r);

26. t.start();

27. i++;

28. }

29. }

30. catch (IOException e)

31. {

32. e.printStackTrace();

33. }

34. }

35. }

36.

37. /**

38. This class handles the client input for one server socket connection.

39. */

40. class ThreadedEchoHandler implements Runnable

41. {

42. /**

43. Constructs a handler.

44. @param i the incoming socket

45. @param c the counter for the handlers (used in prompts)

46. */

47. public ThreadedEchoHandler(Socket i)

48. {

49. incoming = i;

50. }

51.

52. public void run()

53. {

54. try

55. {

56. try

57. {

58. InputStream inStream = incoming.getInputStream();

59. OutputStream outStream = incoming.getOutputStream();

60.

61. Scanner in = new Scanner(inStream);

62. PrintWriter out = new PrintWriter(outStream, true /* autoFlush */);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

63.

64. out.println("Hello! Enter BYE to exit.");

65.

66. // echo client input

67. boolean done = false;

68. while (!done && in.hasNextLine())

69. {

70. String line = in.nextLine();

71. out.println("Echo: " + line);

72. if (line.trim().equals("BYE"))

73. done = true;

74. }

75. }

76. finally

77. {

78. incoming.close();

79. }

80. }

81. catch (IOException e)

82. {

83. e.printStackTrace();

84. }

85. }

86.

87. private Socket incoming;

88. }

Half-Close

The half-close provides the ability for one end of a socket connection to terminate its output, while still receiving
data from the other end.

Here is a typical situation. Suppose you transmit data to the server but you don't know at the outset how much
data you have. With a file, you'd just close the file at the end of the data. However, if you close a socket, then
you immediately disconnect from the server, and you cannot read the response.

The half-close overcomes this problem. You can close the output stream of a socket, thereby indicating to the
server the end of the requested data, but keep the input stream open.

The client side looks like this:

Socket socket = new Socket(host, port);

Scanner in = new Scanner(socket.getInputStream());
PrintWriter writer = new PrintWriter(socket.getOutputStream());

// send request data

writer.print(. . .);

writer.flush();

socket.shutdownOutput();

// now socket is half closed

// read response data

while (in.hasNextLine()) != null) { String line = in.nextLine(); . . . }

socket.close();

The server side simply reads input until the end of the input stream is reached. Then it sends the response.

Of course, this protocol is only useful for one-shot services such as HTTP where the client connects, issues a
request, catches the response, and then disconnects.

java.net.Socket 1.0

void shutdownOutput() 1.3

sets the output stream to "end of stream."

void shutdownInput() 1.3

sets the input stream to "end of stream."

boolean isOutputShutdown() 1.4

returns true if output has been shut down.

boolean isInputShutdown() 1.4

returns true if input has been shut down.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Interruptible Sockets

When you connect to a socket, the current thread blocks until the connection has been established or a timeout
has elapsed. Similarly, when you read or write data through a socket, the current thread blocks until the
operation is successful or has timed out.

In interactive applications, you would like to give users an option to simply cancel a socket connection that does
not appear to produce results. However, if a thread blocks on an unresponsive socket, you cannot unblock it by
calling interrupt.

To interrupt a socket operation, you use a SocketChannel, a feature of the java.nio package. Open the

SocketChannel like this:

Code View:
SocketChannel channel = SocketChannel.open(new InetSocketAddress(host, port));

A channel does not have associated streams. Instead, it has read and write methods that make use of Buffer

objects. (See Chapter 1 for more information about NIO buffers.) These methods are declared in interfaces
ReadableByteChannel and WritableByteChannel.

If you don't want to deal with buffers, you can use the Scanner class to read from a SocketChannel because

Scanner has a constructor with a ReadableByteChannel parameter:

Scanner in = new Scanner(channel);

To turn a channel into an output stream, use the static Channels.newOutputStream method.

OutputStream outStream = Channels.newOutputStream(channel);

That's all you need to do. Whenever a thread is interrupted during an open, read, or write operation, the
operation does not block, but is terminated with an exception.

The program in Listing 3-5 contrasts interruptible and blocking sockets. A server sends numbers and pretends
to be stuck after the tenth number. Click on either button, and a thread is started that connects to the server
and prints the output. The first thread uses an interruptible socket; the second thread uses a blocking socket. If
you click the Cancel button within the first ten numbers, you can interrupt either thread.

However, after the first ten numbers, you can only interrupt the first thread. The second thread keeps blocking
until the server finally closes the connection (see Figure 3-6).

Figure 3-6. Interrupting a socket

[View full size image]

Listing 3-5. InterruptibleSocketTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.util.*;

 4. import java.net.*;

 5. import java.io.*;

 6. import java.nio.channels.*;

 7. import javax.swing.*;

 8.

 9. /**

 10. * This program shows how to interrupt a socket channel.

 11. * @author Cay Horstmann

 12. * @version 1.01 2007-06-25

 13. */

 14. public class InterruptibleSocketTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. JFrame frame = new InterruptibleSocketFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. class InterruptibleSocketFrame extends JFrame

 31. {

 32. public InterruptibleSocketFrame()

 33. {

 34. setSize(WIDTH, HEIGHT);

 35. setTitle("InterruptibleSocketTest");

 36.

 37. JPanel northPanel = new JPanel();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 38. add(northPanel, BorderLayout.NORTH);

 39.

 40. messages = new JTextArea();

 41. add(new JScrollPane(messages));

 42.

 43. interruptibleButton = new JButton("Interruptible");

 44. blockingButton = new JButton("Blocking");

 45.

 46. northPanel.add(interruptibleButton);

 47. northPanel.add(blockingButton);

 48.

 49. interruptibleButton.addActionListener(new ActionListener()

 50. {

 51. public void actionPerformed(ActionEvent event)

 52. {

 53. interruptibleButton.setEnabled(false);

 54. blockingButton.setEnabled(false);

 55. cancelButton.setEnabled(true);

 56. connectThread = new Thread(new Runnable()

 57. {

 58. public void run()

 59. {

 60. try

 61. {

 62. connectInterruptibly();

 63. }

 64. catch (IOException e)

 65. {

 66. messages.append("\nInterruptibleSocketTest.connectInterruptibly: "

 67. + e);

 68. }

 69. }

 70. });

 71. connectThread.start();

 72. }

 73. });

 74.

 75. blockingButton.addActionListener(new ActionListener()

 76. {

 77. public void actionPerformed(ActionEvent event)

 78. {

 79. interruptibleButton.setEnabled(false);

 80. blockingButton.setEnabled(false);

 81. cancelButton.setEnabled(true);

 82. connectThread = new Thread(new Runnable()

 83. {

 84. public void run()

 85. {

 86. try

 87. {

 88. connectBlocking();

 89. }

 90. catch (IOException e)

 91. {

 92. messages.append("\nInterruptibleSocketTest.connectBlocking: " + e);

 93. }

 94. }

 95. });

 96. connectThread.start();

 97. }

 98. });

 99.

100. cancelButton = new JButton("Cancel");

101. cancelButton.setEnabled(false);

102. northPanel.add(cancelButton);

103. cancelButton.addActionListener(new ActionListener()

104. {

105. public void actionPerformed(ActionEvent event)

106. {

107. connectThread.interrupt();

108. cancelButton.setEnabled(false);

109. }

110. });

111. server = new TestServer();

112. new Thread(server).start();

113. }

114.

115. /**

116. * Connects to the test server, using interruptible I/O

117. */

118. public void connectInterruptibly() throws IOException

119. {

120. messages.append("Interruptible:\n");

121. SocketChannel channel = SocketChannel.open(new InetSocketAddress("localhost", 8189));

122. try

123. {

124. in = new Scanner(channel);

125. while (!Thread.currentThread().isInterrupted())

126. {

127. messages.append("Reading ");

128. if (in.hasNextLine())

129. {

130. String line = in.nextLine();

131. messages.append(line);

132. messages.append("\n");

133. }

134. }

135. }

136. finally

137. {

138. channel.close();

139. EventQueue.invokeLater(new Runnable()

140. {

141. public void run()

142. {

143. messages.append("Channel closed\n");

144. interruptibleButton.setEnabled(true);

145. blockingButton.setEnabled(true);

146. }

147. });

148. }

149. }

150.

151. /**

152. * Connects to the test server, using blocking I/O

153. */

154. public void connectBlocking() throws IOException

155. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

156. messages.append("Blocking:\n");

157. Socket sock = new Socket("localhost", 8189);

158. try

159. {

160. in = new Scanner(sock.getInputStream());

161. while (!Thread.currentThread().isInterrupted())

162. {

163. messages.append("Reading ");

164. if (in.hasNextLine())

165. {

166. String line = in.nextLine();

167. messages.append(line);

168. messages.append("\n");

169. }

170. }

171. }

172. finally

173. {

174. sock.close();

175. EventQueue.invokeLater(new Runnable()

176. {

177. public void run()

178. {

179. messages.append("Socket closed\n");

180. interruptibleButton.setEnabled(true);

181. blockingButton.setEnabled(true);

182. }

183. });

184. }

185. }

186.

187. /**

188. * A multithreaded server that listens to port 8189 and sends numbers to the client,

189. * simulating a hanging server after 10 numbers.

190. */

191. class TestServer implements Runnable

192. {

193. public void run()

194. {

195. try

196. {

197. ServerSocket s = new ServerSocket(8189);

198.

199. while (true)

200. {

201. Socket incoming = s.accept();

202. Runnable r = new TestServerHandler(incoming);

203. Thread t = new Thread(r);

204. t.start();

205. }

206. }

207. catch (IOException e)

208. {

209. messages.append("\nTestServer.run: " + e);

210. }

211. }

212. }

213.

214. /**

215. * This class handles the client input for one server socket connection.

216. */

217. class TestServerHandler implements Runnable

218. {

219. /**

220. * Constructs a handler.

221. * @param i the incoming socket

222. */

223. public TestServerHandler(Socket i)

224. {

225. incoming = i;

226. }

227.

228. public void run()

229. {

230. try

231. {

232. OutputStream outStream = incoming.getOutputStream();

233. PrintWriter out = new PrintWriter(outStream, true /* autoFlush */);

234. while (counter < 100)

235. {

236. counter++;

237. if (counter <= 10) out.println(counter);

238. Thread.sleep(100);

239. }

240. incoming.close();

241. messages.append("Closing server\n");

242. }

243. catch (Exception e)

244. {

245. messages.append("\nTestServerHandler.run: " + e);

246. }

247. }

248.

249. private Socket incoming;

250. private int counter;

251. }

252.

253. private Scanner in;

254. private JButton interruptibleButton;

255. private JButton blockingButton;

256. private JButton cancelButton;

257. private JTextArea messages;

258. private TestServer server;

259. private Thread connectThread;

260.

261. public static final int WIDTH = 300;

262. public static final int HEIGHT = 300;

263. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.net.InetSocketAddress 1.4

InetSocketAddress(String hostname, int port)

constructs an address object with the given host and port, resolving the
host name during construction. If the host name cannot be resolved,
then the address object's unresolved property is set to true.

boolean isUnresolved()

returns true if this address object could not be resolved.

java.nio.channels.SocketChannel 1.4

static SocketChannel open(SocketAddress address)

opens a socket channel and connects it to a remote address.

java.nio.channels.Channels 1.4

static InputStream newInputStream(ReadableByteChannel

channel)

constructs an input stream that reads from the given channel.

static OutputStream newOutputStream(WritableByteChannel

channel)

constructs an output stream that writes to the given channel.

Sending E-Mail

In this section, we show you a practical example of socket programming: a program that sends e-mail to a
remote site.

To send e-mail, you make a socket connection to port 25, the SMTP port. The Simple Mail Transport Protocol
(SMTP) describes the format for e-mail messages. You can connect to any server that runs an SMTP service.
However, the server must be willing to accept your request. It used to be that SMTP servers were routinely
willing to route e-mail from anyone, but in these days of spam floods, most servers now have built-in checks
and accept requests only from users or IP address ranges that they trust.

Once you are connected to the server, send a mail header (in the SMTP format, which is easy to generate),
followed by the mail message.

Here are the details:

1. Open a socket to your host.

Socket s = new Socket("mail.yourserver.com", 25); // 25 is SMTP
PrintWriter out = new PrintWriter(s.getOutputStream());

2. Send the following information to the print stream:

HELO sending host
MAIL FROM: <sender e-mail address>
RCPT TO: <recipient e-mail address>
DATA

mail message
(any number of lines)
.
QUIT

The SMTP specification (RFC 821) states that lines must be terminated with \r followed by \n.

Some SMTP servers do not check the veracity of the information—you might be able to supply any sender you
like. (Keep this in mind the next time you get an e-mail message from president@whitehouse.gov inviting you
to a black-tie affair on the front lawn. It is fairly easy to find an SMTP server that will relay a fake message.)

The program in Listing 3-6 is a simple e-mail program. As you can see in Figure 3-7, you type in the sender,
recipient, mail message, and SMTP server. Then, click the Send button, and your message is sent.

Figure 3-7. The MailTest program

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The program makes a socket connection to the SMTP server and sends the sequence of commands just
discussed. It displays the commands and the responses that it receives.

Note

When this program appeared in the first edition of Core Java in 1996, most SMTP
servers accepted connections from anywhere, without making any checks at all.
Nowadays, most servers are less permissive, and you might find it more difficult to
run this program. The mail server of your Internet service provider may be
accessible when you connect from your home, from a trusted IP address. Other
servers use the "POP before SMTP" rule, requiring that you first download your e-
mail (which requires a password) before you send any messages. Try fetching your
e-mail before you send mail with this program. An extension to SMTP that requires
an encrypted password (http://tools.ietf.org/html/rfc2554) is becoming more
common. Our simple program does not support that authentication mechanism.

In this last section, you saw how to use socket-level programming to connect to an SMTP server and send an e-
mail message. It is nice to know that this can be done and to get a glimpse of what goes on "under the hood" of
an Internet service such as e-mail. However, if you are planning an application that incorporates e-mail, you will
probably want to work at a higher level and use a library that encapsulates the protocol details. For example,
Sun Microsystems has developed the JavaMail API as a standard extension of the Java platform. In the JavaMail
API, you simply issue a call such as

Transport.send(message);

http://tools.ietf.org/html/rfc2554

to send a message. The library takes care of message protocols, authentication, handling attachments, and so
on.

Listing 3-6. MailTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.util.*;

 4. import java.net.*;

 5. import java.io.*;

 6. import javax.swing.*;

 7.

 8. /**

 9. * This program shows how to use sockets to send plain text mail messages.

 10. * @author Cay Horstmann

 11. * @version 1.11 2007-06-25

 12. */

 13. public class MailTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. JFrame frame = new MailTestFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * The frame for the mail GUI.

 31. */

 32. class MailTestFrame extends JFrame

 33. {

 34. public MailTestFrame()

 35. {

 36. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 37. setTitle("MailTest");

 38.

 39. setLayout(new GridBagLayout());

 40.

 41. // we use the GBC convenience class of Core Java Volume I, Chapter 9

 42. add(new JLabel("From:"), new GBC(0, 0).setFill(GBC.HORIZONTAL));

 43.

 44. from = new JTextField(20);

 45. add(from, new GBC(1, 0).setFill(GBC.HORIZONTAL).setWeight(100, 0));

 46.

 47. add(new JLabel("To:"), new GBC(0, 1).setFill(GBC.HORIZONTAL));

 48.

 49. to = new JTextField(20);

 50. add(to, new GBC(1, 1).setFill(GBC.HORIZONTAL).setWeight(100, 0));

 51.

 52. add(new JLabel("SMTP server:"), new GBC(0, 2).setFill(GBC.HORIZONTAL));

 53.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 54. smtpServer = new JTextField(20);

 55. add(smtpServer, new GBC(1, 2).setFill(GBC.HORIZONTAL).setWeight(100, 0));

 56.

 57. message = new JTextArea();

 58. add(new JScrollPane(message), new GBC(0, 3, 2, 1).setFill(GBC.BOTH).setWeight(100, 100));

 59.

 60. comm = new JTextArea();

 61. add(new JScrollPane(comm), new GBC(0, 4, 2, 1).setFill(GBC.BOTH).setWeight(100, 100));

 62.

 63. JPanel buttonPanel = new JPanel();

 64. add(buttonPanel, new GBC(0, 5, 2, 1));

 65.

 66. JButton sendButton = new JButton("Send");

 67. buttonPanel.add(sendButton);

 68. sendButton.addActionListener(new ActionListener()

 69. {

 70. public void actionPerformed(ActionEvent event)

 71. {

 72. new SwingWorker<Void, Void>()

 73. {

 74. protected Void doInBackground() throws Exception

 75. {

 76. comm.setText("");

 77. sendMail();

 78. return null;

 79. }

 80. }.execute();

 81. }

 82. });

 83. }

 84.

 85. /**

 86. * Sends the mail message that has been authored in the GUI.

 87. */

 88. public void sendMail()

 89. {

 90. try

 91. {

 92. Socket s = new Socket(smtpServer.getText(), 25);

 93.

 94. InputStream inStream = s.getInputStream();

 95. OutputStream outStream = s.getOutputStream();

 96.

 97. in = new Scanner(inStream);

 98. out = new PrintWriter(outStream, true /* autoFlush */);

 99.

100. String hostName = InetAddress.getLocalHost().getHostName();

101.

102. receive();

103. send("HELO " + hostName);

104. receive();

105. send("MAIL FROM: <" + from.getText() + ">");

106. receive();

107. send("RCPT TO: <" + to.getText() + ">");

108. receive();

109. send("DATA");

110. receive();

111. send(message.getText());

112. send(".");

113. receive();

114. s.close();

115. }

116. catch (IOException e)

117. {

118. comm.append("Error: " + e);

119. }

120. }

121.

122. /**

123. * Sends a string to the socket and echoes it in the comm text area.

124. * @param s the string to send.

125. */

126. public void send(String s) throws IOException

127. {

128. comm.append(s);

129. comm.append("\n");

130. out.print(s.replaceAll("\n", "\r\n"));

131. out.print("\r\n");

132. out.flush();

133. }

134.

135. /**

136. * Receives a string from the socket and displays it in the comm text area.

137. */

138. public void receive() throws IOException

139. {

140. String line = in.nextLine();

141. comm.append(line);

142. comm.append("\n");

143. }

144.

145. private Scanner in;

146. private PrintWriter out;

147. private JTextField from;

148. private JTextField to;

149. private JTextField smtpServer;

150. private JTextArea message;

151. private JTextArea comm;

152.

153. public static final int DEFAULT_WIDTH = 300;

154. public static final int DEFAULT_HEIGHT = 300;

155. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Making URL Connections

To access web servers in a Java program, you will want to work on a higher level than making a socket
connection and issuing HTTP requests. In the following sections, we discuss the classes that the Java library
provides for this purpose.

URLs and URIs

The URL and URLConnection classes encapsulate much of the complexity of retrieving information from a

remote site. You can construct a URL object from a string:

URL url = new URL(urlString);

If you simply want to fetch the contents of the resource, then you can use the openStream method of the URL

class. This method yields an InputStream object. Use it in the usual way, for example, to construct a Scanner:

InputStream inStream = url.openStream();

Scanner in = new Scanner(inStream);

The java.net package makes a useful distinction between URLs (uniform resource locators) and URIs (uniform

resource identifiers).

A URI is a purely syntactical construct that contains the various parts of the string specifying a web resource. A
URL is a special kind of URI, namely, one with sufficient information to locate a resource. Other URIs, such as

mailto:cay@horstmann.com

are not locators—there is no data to locate from this identifier. Such a URI is called a URN (uniform resource
name).

In the Java library, the URI class has no methods for accessing the resource that the identifier specifies—its sole

purpose is parsing. In contrast, the URL class can open a stream to the resource. For that reason, the URL class

only works with schemes that the Java library knows how to handle, such as http:, https:, ftp:, the local file

system (file:), and JAR files (jar:).

To see why parsing is not trivial, consider how complex URIs can be. For example,

http://maps.yahoo.com/py/maps.py?csz=Cupertino+CA

ftp://username:password@ftp.yourserver.com/pub/file.txt

The URI specification gives rules for the makeup of these identifiers. A URI has the syntax

[scheme:]schemeSpecificPart[#fragment]

Here, the [. . .] denotes an optional part, and the : and # are included literally in the identifier.

If the scheme: part is present, the URI is called absolute. Otherwise, it is called relative.

http://maps.yahoo.com/py/maps.py?csz=Cupertino+CA

An absolute URI is opaque if the schemeSpecificPart does not begin with a / such as

mailto:cay@horstmann.com

All absolute nonopaque URIs and all relative URIs are hierarchical. Examples are

http://java.sun.com/index.html

../../java/net/Socket.html#Socket()

The schemeSpecificPart of a hierarchical URI has the structure

[//authority][path][?query]

where again [. . .] denotes optional parts.

For server-based URIs, the authority part has the form

[user-info@]host[:port]

The port must be an integer.

RFC 2396, which standardizes URIs, also supports a registry-based mechanism by which the authority has a

different format, but this is not in common use.

One of the purposes of the URI class is to parse an identifier and break it up into its various components. You

can retrieve them with the methods

getScheme

getSchemeSpecificPart

getAuthority

getUserInfo

getHost

getPort

getPath

getQuery
getFragment

The other purpose of the URI class is the handling of absolute and relative identifiers. If you have an absolute

URI such as

http://docs.mycompany.com/api/java/net/ServerSocket.html

and a relative URI such as

../../java/net/Socket.html#Socket()

then you can combine the two into an absolute URI.

http://docs.mycompany.com/api/java/net/Socket.html#Socket()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/index.html
http://docs.mycompany.com/api/java/net/ServerSocket.html
http://docs.mycompany.com/api/java/net/Socket.html#Socket()

This process is called resolving a relative URL.

The opposite process is called relativization. For example, suppose you have a base URI

http://docs.mycompany.com/api

and a URI

http://docs.mycompany.com/api/java/lang/String.html

Then the relativized URI is

java/lang/String.html

The URI class supports both of these operations:

relative = base.relativize(combined);

combined = base.resolve(relative);

Using a URLConnection to Retrieve Information

If you want additional information about a web resource, then you should use the URLConnection class, which

gives you much more control than the basic URL class.

When working with a URLConnection object, you must carefully schedule your steps, as follows:

1. Call the openConnection method of the URL class to obtain the URLConnection object:

URLConnection connection = url.openConnection();

2. Set any request properties, using the methods

setDoInput
setDoOutput
setIfModifiedSince
setUseCaches
setAllowUserInteraction
setRequestProperty
setConnectTimeout
setReadTimeout

We discuss these methods later in this section and in the API notes.

3. Connect to the remote resource by calling the connect method.

connection.connect();

Besides making a socket connection to the server, this method also queries the server for header
information.

4. After connecting to the server, you can query the header information. Two methods, getHeaderFieldKey

http://docs.mycompany.com/api
http://docs.mycompany.com/api/java/lang/String.html

and getHeaderField, enumerate all fields of the header. The method getHeaderFields gets a standard

Map object containing the header fields. For your convenience, the following methods query standard

fields:

getContentType
getContentLength
getContentEncoding
getDate
getExpiration
getLastModified

5. Finally, you can access the resource data. Use the getInputStream method to obtain an input stream for

reading the information. (This is the same input stream that the openStream method of the URL class

returns.) The other method, getContent, isn't very useful in practice. The objects that are returned by
standard content types such as text/plain and image/gif require classes in the com.sun hierarchy for

processing. You could register your own content handlers, but we do not discuss that technique in this
book.

Caution

Some programmers form the wrong mental image when using the URLConnection

class, thinking that the getInputStream and getOutputStream methods are similar
to those of the Socket class. But that isn't quite true. The URLConnection class

does quite a bit of magic behind the scenes, in particular the handling of request
and response headers. For that reason, it is important that you follow the setup
steps for the connection.

Let us now look at some of the URLConnection methods in detail. Several methods set properties of the

connection before connecting to the server. The most important ones are setDoInput and setDoOutput. By

default, the connection yields an input stream for reading from the server but no output stream for writing. If
you want an output stream (for example, for posting data to a web server), then you need to call

connection.setDoOutput(true);

Next, you may want to set some of the request headers. The request headers are sent together with the request
command to the server. Here is an example:

GET www.server.com/index.html HTTP/1.0

Referer: http://www.somewhere.com/links.html

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.4)

Host: www.server.com

Accept: text/html, image/gif, image/jpeg, image/png, */*
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: orangemilano=192218887821987

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The setIfModifiedSince method tells the connection that you are only interested in data that have been

modified since a certain date.

The setUseCaches and setAllowUserInteraction methods should only be called inside applets. The

setUseCaches method directs the browser to first check the browser cache. The setAllowUserInteraction

method allows an applet to pop up a dialog box for querying the user name and password for password-
protected resources (see Figure 3-8).

Figure 3-8. A network password dialog box

[View full size image]

Finally, you can use the catch-all setRequestProperty method to set any name/value pair that is meaningful

for the particular protocol. For the format of the HTTP request headers, see RFC 2616. Some of these
parameters are not well documented and are passed around by word of mouth from one programmer to the
next. For example, if you want to access a password-protected web page, you must do the following:

Concatenate the user name, a colon, and the password.

String input = username + ":" + password;

1.

Compute the base64 encoding of the resulting string. (The base64 encoding encodes a sequence of bytes
into a sequence of printable ASCII characters.)

2.

3.

String encoding = base64Encode(input);

2.

Call the setRequestProperty method with a name of "Authorization" and value "Basic " + encoding:

connection.setRequestProperty("Authorization", "Basic " + encoding);

3.

Tip

You just saw how to access a password-protected web page. To access a password-
protected file by FTP, you use an entirely different method. You simply construct a
URL of the form

ftp://username:password@ftp.yourserver.com/pub/file.txt

Once you call the connect method, you can query the response header information. First, let us see how to

enumerate all response header fields. The implementors of this class felt a need to express their individuality by
introducing yet another iteration protocol. The call

String key = connection.getHeaderFieldKey(n);

gets the nth key from the response header, where n starts from 1! It returns null if n is zero or larger than the
total number of header fields. There is no method to return the number of fields; you simply keep calling
getHeaderFieldKey until you get null. Similarly, the call

String value = connection.getHeaderField(n);

returns the nth value.

The method getHeaderFields returns a Map of response header fields that you can access as explained in

Chapter 2.

Map<String,List<String>> headerFields = connection.getHeaderFields();

Here is a set of response header fields from a typical HTTP request.

Date: Wed, 27 Aug 2008 00:15:48 GMT

Server: Apache/2.2.2 (Unix)

Last-Modified: Sun, 22 Jun 2008 20:53:38 GMT

Accept-Ranges: bytes

Content-Length: 4813

Connection: close

Content-Type: text/html

As a convenience, six methods query the values of the most common header types and convert them to
numeric types when appropriate. Table 3-1 shows these convenience methods. The methods with return type
long return the number of seconds since January 1, 1970 GMT.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Table 3-1. Convenience Methods for Response Header Values

Key Name Method Name Return Type

Date getDate long

Expires getExpiration long

Last-Modified getLastModified long

Content-Length getContentLength int

Content-Type getContentType String

Content-Encoding getContentEncoding String

The program in Listing 3-7 lets you experiment with URL connections. Supply a URL and an optional user name
and password on the command line when running the program, for example:

java URLConnectionTest http://www.yourserver.com user password

The program prints

All keys and values of the header.

The return values of the six convenience methods in Table 3-1.

The first ten lines of the requested resource.

The program is straightforward, except for the computation of the base64 encoding. There is an undocumented
class, sun.misc.BASE64Encoder, that you can use instead of the one that we provide in the example program.

Simply replace the call to base64Encode with

String encoding = new sun.misc.BASE64Encoder().encode(input.getBytes());

However, we supplied our own class because we do not like to rely on undocumented classes.

Note

The javax.mail.internet.MimeUtility class in the JavaMail standard extension

package also has a method for Base64 encoding. The JDK has a class
java.util.prefs.Base64 for the same purpose, but it is not public, so you cannot

use it in your code.

Listing 3-7. URLConnectionTest.java

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import java.util.*;

 4.

 5. /**

 6. * This program connects to a URL and displays the response header data and the first 10

 7. * lines of the requested data.

 8. *

 9. * Supply the URL and an optional username and password (for HTTP basic authentication) on

 10. * the command line.

 11. * @version 1.11 2007-06-26

 12. * @author Cay Horstmann

 13. */

 14. public class URLConnectionTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. try

 19. {

 20. String urlName;

 21. if (args.length > 0) urlName = args[0];

 22. else urlName = "http://java.sun.com";

 23.

 24. URL url = new URL(urlName);

 25. URLConnection connection = url.openConnection();

 26.

 27. // set username, password if specified on command line

 28.

 29. if (args.length > 2)

 30. {

 31. String username = args[1];

 32. String password = args[2];

 33. String input = username + ":" + password;

 34. String encoding = base64Encode(input);

 35. connection.setRequestProperty("Authorization", "Basic " + encoding);

 36. }

 37.

 38. connection.connect();

 39.

 40. // print header fields

 41.

 42. Map<String, List<String>> headers = connection.getHeaderFields();

 43. for (Map.Entry<String, List<String>> entry : headers.entrySet())

 44. {

 45. String key = entry.getKey();

 46. for (String value : entry.getValue())

 47. System.out.println(key + ": " + value);

 48. }

 49.

 50. // print convenience functions

 51.

 52. System.out.println("----------");

 53. System.out.println("getContentType: " + connection.getContentType());

 54. System.out.println("getContentLength: " + connection.getContentLength());

 55. System.out.println("getContentEncoding: " + connection.getContentEncoding());

 56. System.out.println("getDate: " + connection.getDate());

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 57. System.out.println("getExpiration: " + connection.getExpiration());

 58. System.out.println("getLastModifed: " + connection.getLastModified());

 59. System.out.println("----------");

 60.

 61. Scanner in = new Scanner(connection.getInputStream());

 62.

 63. // print first ten lines of contents

 64.

 65. for (int n = 1; in.hasNextLine() && n <= 10; n++)

 66. System.out.println(in.nextLine());

 67. if (in.hasNextLine()) System.out.println(". . .");

 68. }

 69. catch (IOException e)

 70. {

 71. e.printStackTrace();

 72. }

 73. }

 74. /**

 75. * Computes the Base64 encoding of a string

 76. * @param s a string

 77. * @return the Base 64 encoding of s

 78. */

 79. public static String base64Encode(String s)

 80. {

 81. ByteArrayOutputStream bOut = new ByteArrayOutputStream();

 82. Base64OutputStream out = new Base64OutputStream(bOut);

 83. try

 84. {

 85. out.write(s.getBytes());

 86. out.flush();

 87. }

 88. catch (IOException e)

 89. {

 90. }

 91. return bOut.toString();

 92. }

 93. }

 94.

 95. /**

 96. * This stream filter converts a stream of bytes to their Base64 encoding.

 97. *

 98. * Base64 encoding encodes 3 bytes into 4 characters. |11111122|22223333|33444444| Each set

 99. * of 6 bits is encoded according to the toBase64 map. If the number of input bytes is not a

100. * multiple of 3, then the last group of 4 characters is padded with one or two = signs. Each

101. * output line is at most 76 characters.

102. */

103. class Base64OutputStream extends FilterOutputStream

104. {

105. /**

106. * Constructs the stream filter

107. * @param out the stream to filter

108. */

109. public Base64OutputStream(OutputStream out)

110. {

111. super(out);

112. }

113.

114. public void write(int c) throws IOException

115. {

116. inbuf[i] = c;

117. i++;

118. if (i == 3)

119. {

120. super.write(toBase64[(inbuf[0] & 0xFC) >> 2]);

121. super.write(toBase64[((inbuf[0] & 0x03) << 4) | ((inbuf[1] & 0xF0) >> 4)]);

122. super.write(toBase64[((inbuf[1] & 0x0F) << 2) | ((inbuf[2] & 0xC0) >> 6)]);

123. super.write(toBase64[inbuf[2] & 0x3F]);

124. col += 4;

125. i = 0;

126. if (col >= 76)

127. {

128. super.write('\n');

129. col = 0;

130. }

131. }

132. }

133.

134. public void flush() throws IOException

135. {

136. if (i == 1)

137. {

138. super.write(toBase64[(inbuf[0] & 0xFC) >> 2]);

139. super.write(toBase64[(inbuf[0] & 0x03) << 4]);

140. super.write('=');

141. super.write('=');

142. }

143. else if (i == 2)

144. {

145. super.write(toBase64[(inbuf[0] & 0xFC) >> 2]);

146. super.write(toBase64[((inbuf[0] & 0x03) << 4) | ((inbuf[1] & 0xF0) >> 4)]);

147. super.write(toBase64[(inbuf[1] & 0x0F) << 2]);

148. super.write('=');

149. }

150. if (col > 0)

151. {

152. super.write('\n');

153. col = 0;

154. }

155. }

156.

157. private static char[] toBase64 = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K',

158. 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b',

159. 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',

160. 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

161. '+', '/' };

162.

163. private int col = 0;

164. private int i = 0;

165. private int[] inbuf = new int[3];

166. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

A commonly asked question is whether the Java platform supports access of secure
web pages (https: URLs). As of Java SE 1.4, Secure Sockets Layer (SSL) support is

a part of the standard library. Before Java SE 1.4, you were only able to make SSL
connections from applets by taking advantage of the SSL implementation of the
browser.

java.net.URL 1.0

InputStream openStream()

opens an input stream for reading the resource data.

URLConnection openConnection();

returns a URLConnection object that manages the connection to the

resource.

java.net.URLConnection 1.0

void setDoInput(boolean doInput)

boolean getDoInput()

If doInput is true, then the user can receive input from this

URLConnection.

void setDoOutput(boolean doOutput)

boolean getDoOutput()

If doOutput is true, then the user can send output to this

URLConnection.

void setIfModifiedSince(long time)

long getIfModifiedSince()

The ifModifiedSince property configures this URLConnection to fetch
only data that have been modified since a given time. The time is given
in seconds from midnight, GMT, January 1, 1970.

void setUseCaches(boolean useCaches)

boolean getUseCaches()

If useCaches is true, then data can be retrieved from a local cache.

Note that the URLConnection itself does not maintain such a cache. The
cache must be supplied by an external program such as a browser.

void setAllowUserInteraction(boolean allowUserInteraction)

boolean getAllowsUserInteraction()

If allowUserInteraction is true, then the user can be queried for

passwords. Note that the URLConnection itself has no facilities for

executing such a query. The query must be carried out by an external
program such as a browser or browser plug-in.

void setConnectTimeout(int timeout) 5.0

int getConnectTimeout() 5.0

sets or gets the timeout for the connection (in milliseconds). If the
timeout has elapsed before a connection was established, the connect

method of the associated input stream throws a
SocketTimeoutException.

void setReadTimeout(int timeout) 5.0

int getReadTimeout() 5.0

sets the timeout for reading data (in milliseconds). If the timeout has
elapsed before a read operation was successful, the read method throws

a SocketTimeoutException.

void setRequestProperty(String key, String value)

sets a request header field.

Map<String,List<String>> getRequestProperties() 1.4

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

returns a map of request properties. All values for the same key are
placed in a list.

void connect()

connects to the remote resource and retrieves response header
information.

Map<String,List<String>> Map getHeaderFields() 1.4

returns a map of response headers. All values for the same key are
placed in a map.

String getHeaderFieldKey(int n)

gets the key for the nth response header field, or null if n is 0 or

larger than the number of response header fields.

String getHeaderField(int n)

gets value of the nth response header field, or null if n is 0 or larger

than the number of response header fields.

int getContentLength()

gets the content length if available, or -1 if unknown.

String getContentType

gets the content type, such as text/plain or image/gif.

String getContentEncoding()

gets the content encoding, such as gzip. This value is not commonly

used, because the default identity encoding is not supposed to be

specified with a Content-Encoding header.

long getDate()

long getExpiration()

long getLastModifed()

gets the date of creation, expiration, and last modification of the
resource. The dates are specified as seconds from midnight, GMT,
January 1, 1970.

InputStream getInputStream()

OutputStream getOutputStream()

returns a stream for reading from the resource or writing to the
resource.

Object getContent()

selects the appropriate content handler to read the resource data and
convert it into an object. This method is not useful for reading standard
types such as text/plain or image/gif unless you install your own

content handler.

Posting Form Data

In the preceding section, you saw how to read data from a web server. Now we will show you how your
programs can send data back to a web server and to programs that the web server invokes.

To send information from a web browser to the web server, a user fills out a form, like the one in Figure 3-9.

Figure 3-9. An HTML form

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

When the user clicks the Submit button, the text in the text fields and the settings of the checkboxes and radio
buttons are sent back to the web server. The web server invokes a program that processes the user input.

Many technologies enable web servers to invoke programs. Among the best known ones are Java servlets,
JavaServer Faces, Microsoft Active Server Pages (ASP), and Common Gateway Interface (CGI) scripts. For
simplicity, we use the generic term script for a server-side program, no matter what technology is used.

The server-side script processes the form data and produces another HTML page that the web server sends back
to the browser. This sequence is illustrated in Figure 3-10. The response page can contain new information (for
example, in an information-search program) or just an acknowledgment. The web browser then displays the
response page.

Figure 3-10. Data flow during execution of a server-side script

[View full size image]

We do not discuss the implementation of server-side scripts in this book. Our interest is merely in writing client
programs that interact with existing server-side scripts.

When form data are sent to a web server, it does not matter whether the data are interpreted by a servlet, a
CGI script, or some other server-side technology. The client sends the data to the web server in a standard
format, and the web server takes care of passing it on to the program that generates the response.

Two commands, called GET and POST, are commonly used to send information to a web server.

In the GET command, you simply attach parameters to the end of the URL. The URL has the form

http://host/script?parameters

Each parameter has the form name=value. Parameters are separated by & characters. Parameter values are

encoded using the URL encoding scheme, following these rules:

Leave the characters A through Z, a through z, 0 through 9, and . - * _ unchanged.

Replace all spaces with + characters.

Encode all other characters into UTF-8 and encode each byte by a %, followed by a two-digit hexadecimal

number.

For example, to transmit the street name S. Main, you use S%2e+Main, as the hexadecimal number 2e (or

decimal 46) is the ASCII code of the "." character.

This encoding keeps any intermediate programs from messing with spaces and interpreting other special

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://

characters.

For example, at the time of this writing, the Yahoo! web site has a script, py/maps.py, at the host

maps.yahoo.com. The script requires two parameters with names addr and csz. To get a map of 1 Infinite

Loop, Cupertino, CA, you use the following URL:

http://maps.yahoo.com/py/maps.py?addr=1+Infinite+Loop&csz=Cupertino+CA

The GET command is simple, but it has a major limitation that makes it relatively unpopular: Most browsers

have a limit on the number of characters that you can include in a GET request.

In the POST command, you do not attach parameters to a URL. Instead, you get an output stream from the

URLConnection and write name/value pairs to the output stream. You still have to URL-encode the values and

separate them with & characters.

Let us look at this process in more detail. To post data to a script, you first establish a URLConnection.

URL url = new URL("http://host/script");

URLConnection connection = url.openConnection();

Then, you call the setDoOutput method to set up the connection for output.

connection.setDoOutput(true);

Next, you call getOutputStream to get a stream through which you can send data to the server. If you are

sending text to the server, it is convenient to wrap that stream into a PrintWriter.

PrintWriter out = new PrintWriter(connection.getOutputStream());

Now you are ready to send data to the server:

out.print(name1 + "=" + URLEncoder.encode(value1, "UTF-8") + "&");

out.print(name2 + "=" + URLEncoder.encode(value2, "UTF-8"));

Close the output stream.

out.close();

Finally, call getInputStream and read the server response.

Let us run through a practical example. The web site at http://esa.un.org/unpp/ contains a form to request
population data (see Figure 3-9 on page 208). If you look at the HTML source, you will see the following HTML
tag:

<form action="p2k0data.asp" method="post">

This tag means that the name of the script executed when the user clicks the Submit button is p2k0data.asp

and that you need to use the POST command to send data to the script.

Next, you need to find out the field names that the script expects. Look at the user interface components. Each

http://maps.yahoo.com/py/maps.py?addr=1+Infinite+Loop&csz=Cupertino+CA
http://esa.un.org/unpp/

of them has a name attribute, for example,

<select name="Variable">
<option value="12;">Population</option>

more options . . .

</select>

This tells you that the name of the field is Variable. This field specifies the population table type. If you specify

the table type "12;", you will get a table of the total population estimates. If you look further, you will also find

a field name Location with values such as 900 for the entire world and 404 for Kenya.

There are several other fields that need to be set. To get the population estimates of Kenya from 1950 to 2050,
you construct this string:

Panel=1&Variable=12%3b&Location=404&Varient=2&StartYear=1950&EndYear=2050&

 DoWhat=Download+as+%2eCSV+File

Send the string to the URL

http://esa.un.org/unpp/p2k0data.asp

The script sends back the following reply:

"Country","Variable","Variant","Year","Value"

"Kenya","Population (thousands)","Medium variant","1950",6077

"Kenya","Population (thousands)","Medium variant","1955",6984
"Kenya","Population (thousands)","Medium variant","1960",8115

"Kenya","Population (thousands)","Medium variant","1965",9524

...

As you can see, this particular script sends back a comma-separated data file. That is the reason we picked it as
an example—it is easy to see what happens with this script, whereas it can be confusing to decipher a complex
set of HTML tags that other scripts produce.

The program in Listing 3-8 sends POST data to any script. We provide a simple GUI to set the form data and
view the output (see Figure 3-11).

Figure 3-11. Harvesting information from a server

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://esa.un.org/unpp/p2k0data.asp

In the doPost method, we first open the connection, call setDoOutput(true), and open the output stream. We

then enumerate the names and values in a Map object. For each of them, we send the name, = character, value,

and & separator character:

out.print(name);

out.print('=');

out.print(URLEncoder.encode(value, "UTF-8"));

if (more pairs) out.print('&');

Finally, we read the response from the server.

There is one twist with reading the response. If a script error occurs, then the call to
connection.getInputStream() throws a FileNotFoundException. However, the server still sends an error

page back to the browser (such as the ubiquitous "Error 404 - page not found"). To capture this error page, you
cast the URLConnection object to the HttpURLConnection class and call its getErrorStream method:

InputStream err = ((HttpURLConnection) connection).getErrorStream();

More for curiosity's sake than for practical use, you might like to know exactly what information the
URLConnection sends to the server in addition to the data that you supply.

The URLConnection object first sends a request header to the server. When posting form data, the header

includes

Content-Type: application/x-www-form-urlencoded

The header for a POST must also include the content length, for example,

Content-Length: 124

The end of the header is indicated by a blank line. Then, the data portion follows. The web server strips off the
header and routes the data portion to the server-side script.

Note that the URLConnection object buffers all data that you send to the output stream because it must first

determine the total content length.

The technique that this program displays is useful whenever you need to query information from an existing
web site. Simply find out the parameters that you need to send (usually by inspecting the HTML source of a web
page that carries out the same query), and then strip out the HTML tags and other unnecessary information
from the reply.

Listing 3-8. PostTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import java.net.*;

 5. import java.util.*;

 6. import javax.swing.*;

 7.

 8. /**

 9. * This program demonstrates how to use the URLConnection class for a POST request.

 10. * @version 1.20 2007-06-25

 11. * @author Cay Horstmann

 12. */

 13. public class PostTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. JFrame frame = new PostTestFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 28.

 29. class PostTestFrame extends JFrame

 30. {

 31. /**

 32. * Makes a POST request and returns the server response.

 33. * @param urlString the URL to post to

 34. * @param nameValuePairs a map of name/value pairs to supply in the request.

 35. * @return the server reply (either from the input stream or the error stream)

 36. */

 37. public static String doPost(String urlString, Map<String, String> nameValuePairs)

 38. throws IOException

 39. {

 40. URL url = new URL(urlString);

 41. URLConnection connection = url.openConnection();

 42. connection.setDoOutput(true);

 43.

 44. PrintWriter out = new PrintWriter(connection.getOutputStream());

 45. boolean first = true;

 46. for (Map.Entry<String, String> pair : nameValuePairs.entrySet())

 47. {

 48. if (first) first = false;

 49. else out.print('&');

 50. String name = pair.getKey();

 51. String value = pair.getValue();

 52. out.print(name);

 53. out.print('=');

 54. out.print(URLEncoder.encode(value, "UTF-8"));

 55. }

 56.

 57. out.close();

 58. Scanner in;

 59. StringBuilder response = new StringBuilder();

 60. try

 61. {

 62. in = new Scanner(connection.getInputStream());

 63. }

 64. catch (IOException e)

 65. {

 66. if (!(connection instanceof HttpURLConnection)) throw e;

 67. InputStream err = ((HttpURLConnection) connection).getErrorStream();

 68. if (err == null) throw e;

 69. in = new Scanner(err);

 70. }

 71.

 72. while (in.hasNextLine())

 73. {

 74. response.append(in.nextLine());

 75. response.append("\n");

 76. }

 77.

 78. in.close();

 79. return response.toString();

 80. }

 81.

 82. public PostTestFrame()

 83. {

 84. setTitle("PostTest");

 85.

 86. northPanel = new JPanel();

 87. add(northPanel, BorderLayout.NORTH);

 88. northPanel.setLayout(new GridLayout(0, 2));

 89. northPanel.add(new JLabel("Host: ", SwingConstants.TRAILING));

 90. final JTextField hostField = new JTextField();

 91. northPanel.add(hostField);

 92. northPanel.add(new JLabel("Action: ", SwingConstants.TRAILING));

 93. final JTextField actionField = new JTextField();

 94. northPanel.add(actionField);

 95. for (int i = 1; i <= 8; i++)

 96. northPanel.add(new JTextField());

 97.

 98. final JTextArea result = new JTextArea(20, 40);

 99. add(new JScrollPane(result));

100.

101. JPanel southPanel = new JPanel();

102. add(southPanel, BorderLayout.SOUTH);

103. JButton addButton = new JButton("More");

104. southPanel.add(addButton);

105. addButton.addActionListener(new ActionListener()

106. {

107. public void actionPerformed(ActionEvent event)

108. {

109. northPanel.add(new JTextField());

110. northPanel.add(new JTextField());

111. pack();

112. }

113. });

114.

115. JButton getButton = new JButton("Get");

116. southPanel.add(getButton);

117. getButton.addActionListener(new ActionListener()

118. {

119. public void actionPerformed(ActionEvent event)

120. {

121. result.setText("");

122. final Map<String, String> post = new HashMap<String, String>();

123. for (int i = 4; i < northPanel.getComponentCount(); i += 2)

124. {

125. String name = ((JTextField) northPanel.getComponent(i)).getText();

126. if (name.length() > 0)

127. {

128. String value = ((JTextField) northPanel.getComponent(i + 1)).getText();

129. post.put(name, value);

130. }

131. }

132. new SwingWorker<Void, Void>()

133. {

134. protected Void doInBackground() throws Exception

135. {

136. try

137. {

138. String urlString = hostField.getText() + "/" + actionField.getText();

139. result.setText(doPost(urlString, post));

140. }

141. catch (IOException e)

142. {

143. result.setText("" + e);

144. }

145. return null;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

146. }

147. }.execute();

148. }

149. });

150.

151. pack();

152. }

153.

154. private JPanel northPanel;

155. }

java.net.HttpURLConnection 1.0

InputStream getErrorStream()

returns a stream from which you can read web server error messages.

java.net.URLEncoder 1.0

static String encode(String s, String encoding) 1.4

returns the URL-encoded form of the string s, using the given character

encoding scheme. (The recommended scheme is "UTF-8".) In URL

encoding, the characters 'A' - 'Z', 'a'- 'z', '0'- '9', '-', '_', '.' and '*' are left

unchanged. Space is encoded into '+', and all other characters are

encoded into sequences of encoded bytes of the form "%XY", where 0xXY
is the hexadecimal value of the byte.

java.net.URLDecoder 1.2

static string decode(String s, String encoding) 1.4

returns the decoding of the URL encoded string s under the given

character encoding scheme.

In this chapter, you have seen how to write network clients and servers in Java, and how to harvest information
from web servers. The next chapter covers database connectivity. You will learn how to work with relational
databases in Java, using the JDBC API. The chapter also has a brief introduction to hierarchical databases (such
as LDAP directories) and the JNDI API.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 4. Database Programming

THE DESIGN OF JDBC

THE STRUCTURED QUERY LANGUAGE

JDBC CONFIGURATION

EXECUTING SQL STATEMENTS

QUERY EXECUTION

SCROLLABLE AND UPDATABLE RESULT SETS

ROW SETS

METADATA

TRANSACTIONS

CONNECTION MANAGEMENT IN WEB AND ENTERPRISE APPLICATIONS

INTRODUCTION TO LDAP

In 1996, Sun released the first version of the JDBC API. This API lets programmers connect to a database and
then query or update it, using the Structured Query Language (SQL). (SQL, usually pronounced "sequel," is an
industry standard for relational database access.) JDBC has since become one of the most commonly used APIs
in the Java library.

JDBC has been updated several times. As part of the release of Java SE 1.2 in 1998, a second version of JDBC
was issued. JDBC 3 is included with Java SE 1.4 and 5.0. As this book is published, JDBC 4, the version included

with Java SE 6, is the most current version.

In this chapter, we explain the key ideas behind JDBC. We introduce you to (or refresh your memory of) SQL,
the industry-standard Structured Query Language for relational databases. We then provide enough details and
examples to let you start using JDBC for common programming situations. The chapter close with a brief
introduction to hierarchical databases, the Lightweight Directory Access Protocol (LDAP), and the Java Naming
and Directory Interface (JNDI).

Note

According to Sun, JDBC is a trademarked term and not an acronym for Java
Database Connectivity. It was named to be reminiscent of ODBC, a standard
database API pioneered by Microsoft and since incorporated into the SQL standard.

The Design of JDBC

From the start, the developers of the Java technology at Sun were aware of the potential that Java showed for
working with databases. In 1995, they began working on extending the standard Java library to deal with SQL
access to databases. What they first hoped to do was to extend Java so that it could talk to any random
database, using only "pure" Java. It didn't take them long to realize that this is an impossible task: There are
simply too many databases out there, using too many protocols. Moreover, although database vendors were all
in favor of Sun providing a standard network protocol for database access, they were only in favor of it if Sun
decided to use their network protocol.

What all the database vendors and tool vendors did agree on was that it would be useful if Sun provided a pure
Java API for SQL access along with a driver manager to allow third-party drivers to connect to specific
databases. Database vendors could provide their own drivers to plug in to the driver manager. There would then
be a simple mechanism for registering third-party drivers with the driver manager. As a result, two APIs were
created. Application programmers use the JDBC API, and database vendors and tool providers use the JDBC
Driver API.

This organization follows the very successful model of Microsoft's ODBC, which provided a C programming
language interface for database access. Both JDBC and ODBC are based on the same idea: Programs written
according to the API talk to the driver manager, which, in turn, uses a driver to talk to the actual database.

All this means the JDBC API is all that most programmers will ever have to deal with—see Figure 4-1.

Figure 4-1. JDBC-to-database communication path

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

A list of currently available JDBC drivers can be found at the web site
http://developers.sun.com/product/jdbc/drivers.

http://developers.sun.com/product/jdbc/drivers

JDBC Driver Types

The JDBC specification classifies drivers into the following types:

A type 1 driver translates JDBC to ODBC and relies on an ODBC driver to communicate with the database.
Sun included one such driver, the JDBC/ODBC bridge, with earlier versions of the JDK. However, the
bridge requires deployment and proper configuration of an ODBC driver. When JDBC was first released,
the bridge was handy for testing, but it was never intended for production use. At this point, many better
drivers are available, and we advise against using the JDBC/ODBC bridge.

A type 2 driver is written partly in Java and partly in native code; it communicates with the client API of a
database. When you use such a driver, you must install some platform-specific code onto the client in
addition to a Java library.

A type 3 driver is a pure Java client library that uses a database-independent protocol to communicate
database requests to a server component, which then translates the requests into a database-specific
protocol. This can simplify deployment because the platform-specific code is located only on the server.

A type 4 driver is a pure Java library that translates JDBC requests directly to a database-specific protocol.

Most database vendors supply either a type 3 or type 4 driver with their database. Furthermore, a number of
third-party companies specialize in producing drivers with better standards conformance, support for more
platforms, better performance, or, in some cases, simply better reliability than the drivers that are provided by
the database vendors.

In summary, the ultimate goal of JDBC is to make possible the following:

Programmers can write applications in the Java programming language to access any database, using
standard SQL statements—or even specialized extensions of SQL—while still following Java language
conventions.

Database vendors and database tool vendors can supply the low-level drivers. Thus, they can optimize
their drivers for their specific products.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

If you are curious as to why Sun just didn't adopt the ODBC model, their response,
as given at the JavaOne conference in May 1996, was this:

ODBC is hard to learn.

ODBC has a few commands with lots of complex options. The preferred style
in the Java programming language is to have simple and intuitive methods,
but to have lots of them.

ODBC relies on the use of void* pointers and other C features that are not
natural in the Java programming language.

An ODBC-based solution is inherently less safe and harder to deploy than a
pure Java solution.

Typical Uses of JDBC

The traditional client/server model has a rich GUI on the client and a database on the server (see Figure 4-2).
In this model, a JDBC driver is deployed on the client.

Figure 4-2. A traditional client/server application

However, the world is moving away from client/server and toward a three-tier model or even more advanced n-
tier models. In the three-tier model, the client does not make database calls. Instead, it calls on a middleware
layer on the server that in turn makes the database queries. The three-tier model has a couple of advantages. It
separates visual presentation (on the client) from the business logic (in the middle tier) and the raw data (in the

database). Therefore, it becomes possible to access the same data and the same business rules from multiple
clients, such as a Java application or applet or a web form.

Communication between the client and middle tier can occur through HTTP (when you use a web browser as the
client) or another mechanism such as remote method invocation (RMI)—see Chapter 10. JDBC manages the
communication between the middle tier and the back-end database. Figure 4-3 shows the basic architecture.
There are, of course, many variations of this model. In particular, the Java Enterprise Edition defines a structure
for application servers that manage code modules called Enterprise JavaBeans, and provides valuable services
such as load balancing, request caching, security, and object-relational mapping. In that architecture, JDBC still
plays an important role for issuing complex database queries. (For more information on the Enterprise Edition,
see http://java.sun.com/javaee.)

Figure 4-3. A three-tier application

[View full size image]

Note

You can use JDBC in applets and Web Start applications, but you probably don't
want to. By default, the security manager permits a network connection only to the
server from which the applet is downloaded. That means the web server and the
database server (or the relay component of a type 3 driver) must be on the same
machine, which is not a typical setup. You would need to use code signing to
overcome this problem.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/javaee

Chapter 4. Database Programming

THE DESIGN OF JDBC

THE STRUCTURED QUERY LANGUAGE

JDBC CONFIGURATION

EXECUTING SQL STATEMENTS

QUERY EXECUTION

SCROLLABLE AND UPDATABLE RESULT SETS

ROW SETS

METADATA

TRANSACTIONS

CONNECTION MANAGEMENT IN WEB AND ENTERPRISE APPLICATIONS

INTRODUCTION TO LDAP

In 1996, Sun released the first version of the JDBC API. This API lets programmers connect to a database and
then query or update it, using the Structured Query Language (SQL). (SQL, usually pronounced "sequel," is an
industry standard for relational database access.) JDBC has since become one of the most commonly used APIs
in the Java library.

JDBC has been updated several times. As part of the release of Java SE 1.2 in 1998, a second version of JDBC
was issued. JDBC 3 is included with Java SE 1.4 and 5.0. As this book is published, JDBC 4, the version included

with Java SE 6, is the most current version.

In this chapter, we explain the key ideas behind JDBC. We introduce you to (or refresh your memory of) SQL,
the industry-standard Structured Query Language for relational databases. We then provide enough details and
examples to let you start using JDBC for common programming situations. The chapter close with a brief
introduction to hierarchical databases, the Lightweight Directory Access Protocol (LDAP), and the Java Naming
and Directory Interface (JNDI).

Note

According to Sun, JDBC is a trademarked term and not an acronym for Java
Database Connectivity. It was named to be reminiscent of ODBC, a standard
database API pioneered by Microsoft and since incorporated into the SQL standard.

The Design of JDBC

From the start, the developers of the Java technology at Sun were aware of the potential that Java showed for
working with databases. In 1995, they began working on extending the standard Java library to deal with SQL
access to databases. What they first hoped to do was to extend Java so that it could talk to any random
database, using only "pure" Java. It didn't take them long to realize that this is an impossible task: There are
simply too many databases out there, using too many protocols. Moreover, although database vendors were all
in favor of Sun providing a standard network protocol for database access, they were only in favor of it if Sun
decided to use their network protocol.

What all the database vendors and tool vendors did agree on was that it would be useful if Sun provided a pure
Java API for SQL access along with a driver manager to allow third-party drivers to connect to specific
databases. Database vendors could provide their own drivers to plug in to the driver manager. There would then
be a simple mechanism for registering third-party drivers with the driver manager. As a result, two APIs were
created. Application programmers use the JDBC API, and database vendors and tool providers use the JDBC
Driver API.

This organization follows the very successful model of Microsoft's ODBC, which provided a C programming
language interface for database access. Both JDBC and ODBC are based on the same idea: Programs written
according to the API talk to the driver manager, which, in turn, uses a driver to talk to the actual database.

All this means the JDBC API is all that most programmers will ever have to deal with—see Figure 4-1.

Figure 4-1. JDBC-to-database communication path

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

A list of currently available JDBC drivers can be found at the web site
http://developers.sun.com/product/jdbc/drivers.

http://developers.sun.com/product/jdbc/drivers

JDBC Driver Types

The JDBC specification classifies drivers into the following types:

A type 1 driver translates JDBC to ODBC and relies on an ODBC driver to communicate with the database.
Sun included one such driver, the JDBC/ODBC bridge, with earlier versions of the JDK. However, the
bridge requires deployment and proper configuration of an ODBC driver. When JDBC was first released,
the bridge was handy for testing, but it was never intended for production use. At this point, many better
drivers are available, and we advise against using the JDBC/ODBC bridge.

A type 2 driver is written partly in Java and partly in native code; it communicates with the client API of a
database. When you use such a driver, you must install some platform-specific code onto the client in
addition to a Java library.

A type 3 driver is a pure Java client library that uses a database-independent protocol to communicate
database requests to a server component, which then translates the requests into a database-specific
protocol. This can simplify deployment because the platform-specific code is located only on the server.

A type 4 driver is a pure Java library that translates JDBC requests directly to a database-specific protocol.

Most database vendors supply either a type 3 or type 4 driver with their database. Furthermore, a number of
third-party companies specialize in producing drivers with better standards conformance, support for more
platforms, better performance, or, in some cases, simply better reliability than the drivers that are provided by
the database vendors.

In summary, the ultimate goal of JDBC is to make possible the following:

Programmers can write applications in the Java programming language to access any database, using
standard SQL statements—or even specialized extensions of SQL—while still following Java language
conventions.

Database vendors and database tool vendors can supply the low-level drivers. Thus, they can optimize
their drivers for their specific products.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

If you are curious as to why Sun just didn't adopt the ODBC model, their response,
as given at the JavaOne conference in May 1996, was this:

ODBC is hard to learn.

ODBC has a few commands with lots of complex options. The preferred style
in the Java programming language is to have simple and intuitive methods,
but to have lots of them.

ODBC relies on the use of void* pointers and other C features that are not
natural in the Java programming language.

An ODBC-based solution is inherently less safe and harder to deploy than a
pure Java solution.

Typical Uses of JDBC

The traditional client/server model has a rich GUI on the client and a database on the server (see Figure 4-2).
In this model, a JDBC driver is deployed on the client.

Figure 4-2. A traditional client/server application

However, the world is moving away from client/server and toward a three-tier model or even more advanced n-
tier models. In the three-tier model, the client does not make database calls. Instead, it calls on a middleware
layer on the server that in turn makes the database queries. The three-tier model has a couple of advantages. It
separates visual presentation (on the client) from the business logic (in the middle tier) and the raw data (in the

database). Therefore, it becomes possible to access the same data and the same business rules from multiple
clients, such as a Java application or applet or a web form.

Communication between the client and middle tier can occur through HTTP (when you use a web browser as the
client) or another mechanism such as remote method invocation (RMI)—see Chapter 10. JDBC manages the
communication between the middle tier and the back-end database. Figure 4-3 shows the basic architecture.
There are, of course, many variations of this model. In particular, the Java Enterprise Edition defines a structure
for application servers that manage code modules called Enterprise JavaBeans, and provides valuable services
such as load balancing, request caching, security, and object-relational mapping. In that architecture, JDBC still
plays an important role for issuing complex database queries. (For more information on the Enterprise Edition,
see http://java.sun.com/javaee.)

Figure 4-3. A three-tier application

[View full size image]

Note

You can use JDBC in applets and Web Start applications, but you probably don't
want to. By default, the security manager permits a network connection only to the
server from which the applet is downloaded. That means the web server and the
database server (or the relay component of a type 3 driver) must be on the same
machine, which is not a typical setup. You would need to use code signing to
overcome this problem.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/javaee

The Structured Query Language

JDBC lets you communicate with databases using SQL, which is the command language for essentially all
modern relational databases. Desktop databases usually have a GUI that lets users manipulate the data
directly, but server-based databases are accessed purely through SQL.

The JDBC package can be thought of as nothing more than an API for communicating SQL statements to
databases. We briefly introduce SQL in this section. If you have never seen SQL before, you might not find this
material sufficient. If so, you should turn to one of the many books on the topic. We recommend Learning SQL
by Alan Beaulieu (O'Reilly 2005) or the opinionated classic, A Guide to the SQL Standard by C. J. Date and Hugh
Darwen (Addison-Wesley 1997).

You can think of a database as a bunch of named tables with rows and columns. Each column has a column
name. Each row contains a set of related data.

As the example database for this book, we use a set of database tables that describe a collection of classic
computer science books (see Table 4-1 through Table 4-4).

Table 4-1. The Authors Table

Author_ID Name Fname

ALEX Alexander Christopher

BROO Brooks Frederick P.

...

Table 4-2. The Books Table

Title ISBN Publisher_ID Price

A Guide to the SQL Standard 0-201-96426-0 0201 47.95

A Pattern Language: Towns, Buildings,
Construction

0-19-501919-9 019 65.00

...

Table 4-3. The BooksAuthors Table

ISBN Author_ID Seq_No

0-201-96426-0 DATE 1

0-201-96426-0 DARW 2

0-19-501919-9 ALEX 1

...

Table 4-4. The Publishers Table

Publisher_ID Name URL

0201 Addison-Wesley www.aw-bc.com

0407 John Wiley & Sons www.wiley.com

...

Figure 4-4 shows a view of the Books table. Figure 4-5 shows the result of joining this table with the

Publishers table. The Books and the Publishers table each contain an identifier for the publisher. When we

join both tables on the publisher code, we obtain a query result made up of values from the joined tables. Each
row in the result contains the information about a book, together with the publisher name and web page URL.
Note that the publisher names and URLs are duplicated across several rows because we have several rows with
the same publisher.

Figure 4-4. Sample table containing books

[View full size image]

Figure 4-5. Two tables joined together

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The benefit of joining tables is to avoid unnecessary duplication of data in the database tables. For example, a
naive database design might have had columns for the publisher name and URL right in the Books table. But

then the database itself, and not just the query result, would have many duplicates of these entries. If a
publisher's web address changed, all entries would need to be updated. Clearly, this is somewhat error prone.
In the relational model, we distribute data into multiple tables such that no information is ever unnecessarily
duplicated. For example, each publisher URL is contained only once in the publisher table. If the information
needs to be combined, then the tables are joined.

In the figures, you can see a graphical tool to inspect and link the tables. Many vendors have tools to express
queries in a simple form by connecting column names and filling information into forms. Such tools are often
called query by example (QBE) tools. In contrast, a query that uses SQL is written out in text, with SQL syntax.
For example,

Code View:
SELECT Books.Title, Books.Publisher_Id, Books.Price, Publishers.Name, Publishers.URL

FROM Books, Publishers

WHERE Books.Publisher_Id = Publishers.Publisher_Id

In the remainder of this section, you will learn how to write such queries. If you are already familiar with SQL,
just skip this section.

By convention, SQL keywords are written in capital letters, although this is not necessary.

The SELECT statement is quite flexible. You can simply select all rows in the Books table with the following

query:

SELECT * FROM Books

The FROM clause is required in every SQL SELECT statement. The FROM clause tells the database which tables to

examine to find the data.

You can choose the columns that you want.

SELECT ISBN, Price, Title

FROM Books

You can restrict the rows in the answer with the WHERE clause.

SELECT ISBN, Price, Title

FROM Books

WHERE Price <= 29.95

Be careful with the "equals" comparison. SQL uses = and <> rather than == or != as in the Java programming

language, for equality testing.

Note

Some database vendors support the use of != for inequality testing. This is not

standard SQL, so we recommend against such use.

The WHERE clause can also use pattern matching by means of the LIKE operator. The wildcard characters are not

the usual * and ?, however. Use a % for zero or more characters and an underscore for a single character. For

example,

SELECT ISBN, Price, Title

FROM Books

WHERE Title NOT LIKE '%n_x%'

excludes books with titles that contain words such as UNIX or Linux.

Note that strings are enclosed in single quotes, not double quotes. A single quote inside a string is denoted as a
pair of single quotes. For example,

SELECT Title

FROM Books

WHERE Title LIKE '%''%'

reports all titles that contain a single quote.

You can select data from multiple tables.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

SELECT * FROM Books, Publishers

Without a WHERE clause, this query is not very interesting. It lists all combinations of rows from both tables. In

our case, where Books has 20 rows and Publishers has 8 rows, the result is a set of rows with 20 x 8 entries

and lots of duplications. We really want to constrain the query to say that we are only interested in matching
books with their publishers.

SELECT * FROM Books, Publishers

WHERE Books.Publisher_Id = Publishers.Publisher_Id

This query result has 20 rows, one for each book, because each book has one publisher in the Publisher table.

Whenever you have multiple tables in a query, the same column name can occur in two different places. That
happened in our example. There is a column called Publisher_Id in both the Books and the Publishers table.

When an ambiguity would otherwise result, you must prefix each column name with the name of the table to
which it belongs, such as Books.Publisher_Id.

You can use SQL to change the data inside a database as well. For example, suppose you want to reduce by
$5.00 the current price of all books that have "C++" in their title.

UPDATE Books

SET Price = Price - 5.00

WHERE Title LIKE '%C++%'

Similarly, to delete all C++ books, you use a DELETE query.

DELETE FROM Books

WHERE Title LIKE '%C++%'

Moreover, SQL comes with built-in functions for taking averages, finding maximums and minimums in a column,
and much more. A good source for this information is http://sqlzoo.net. (That site also contains a nifty
interactive SQL tutorial.)

Typically, to insert values into a table, you use the INSERT statement:

INSERT INTO Books

VALUES ('A Guide to the SQL Standard', '0-201-96426-0', '0201', 47.95)

You need a separate INSERT statement for every row being inserted in the table.

Of course, before you can query, modify, and insert data, you must have a place to store data. Use the CREATE

TABLE statement to make a new table. You specify the name and data type for each column. For example,

CREATE TABLE Books

(

 Title CHAR(60),

 ISBN CHAR(13),
 Publisher_Id CHAR(6),

 Price DECIMAL(10,2)

)

http://sqlzoo.net

Table 4-5 shows the most common SQL data types.

Table 4-5. Common SQL Data Types

Data Types Description

INTEGER or INT Typically, a 32-bit integer

SMALLINT Typically, a 16-bit integer

NUMERIC(m,n), DECIMAL(m,n) or

DEC(m,n)

Fixed-point decimal number with m total digits and n

digits after the decimal point

FLOAT(n) A floating-point number with n binary digits of precision

REAL Typically, a 32-bit floating-point number

DOUBLE Typically, a 64-bit floating-point number

CHARACTER(n) or CHAR(n) Fixed-length string of length n

VARCHAR(n) Variable-length strings of maximum length n

BOOLEAN A Boolean value

DATE Calendar date, implementation dependent

TIME Time of day, implementation dependent

TIMESTAMP Date and time of day, implementation dependent

BLOB A binary large object

CLOB A character large object

In this book, we do not discuss the additional clauses, such as keys and constraints, that you can use with the
CREATE TABLE statement.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

JDBC Configuration

Of course, you need a database program for which a JDBC driver is available. There are many excellent choices,
such as IBM DB2, Microsoft SQL Server, MySQL, Oracle, and PostgreSQL.

You must also create a database for your experimental use. We assume you name it COREJAVA. Create a new

database, or have your database administrator create one with the appropriate permissions. You need to be
able to create, update, and drop tables in the database.

If you have never installed a client/server database before, you might find that setting up the database is
somewhat complex and that diagnosing the cause for failure can be difficult. It might be best to seek expert
help if your setup is not working correctly.

If this is your first experience with databases, we recommend that you use the Apache Derby database that is a
part of some versions of JDK 6. (If you use a JDK that doesn't include it, download Apache Derby from
http://db.apache.org/derby.)

Note

Sun refers to the version of Apache Derby that is included in the JDK as JavaDB. To
avoid confusion, we call it Derby in this chapter.

You need to gather a number of items before you can write your first database program. The following sections
cover these items.

Database URLs

When connecting to a database, you must use various database-specific parameters such as host names, port
numbers, and database names.

JDBC uses a syntax similar to that of ordinary URLs to describe data sources. Here are examples of the syntax:

jdbc:derby://localhost:1527/COREJAVA;create=true

jdbc:postgresql:COREJAVA

These JDBC URLs specify a Derby database and a PostgreSQL database named COREJAVA.

The general syntax is

jdbc:subprotocol:other stuff

where a subprotocol selects the specific driver for connecting to the database.

The format for the other stuff parameter depends on the subprotocol used. You will need to look up your
vendor's documentation for the specific format.

http://db.apache.org/derby

Driver JAR Files

You need to obtain the JAR file in which the driver for your database is located. If you use Derby, you need the
file derbyclient.jar. With another database, you need to locate the appropriate driver. For example, the

PostgreSQL drivers are available at http://jdbc.postgresql.org.

Include the driver JAR file on the class path when running a program that accesses the database. (You don't
need the JAR file for compiling.)

When you launch programs from the command line, simply use the command

java -classpath .:driverJar ProgramName

On Windows, use a semicolon to separate the current directory (denoted by the . character) from the driver JAR

location.

Starting the Database

The database server needs to be started before you can connect to it. The details depend on your database.

With the Derby database, follow these steps:

1. Open a command shell and change to a directory that will hold the database files.

2. Locate the file derbyrun.jar. With some versions of the JDK, it is contained in the jdk/db/lib directory,

with others in a separate JavaDB installation directory. We denote the directory containing
lib/derbyrun.jar with derby.

3. Run the command

java -jar derby/lib/derbyrun.jar server start

4. Double-check that the database is working correctly. Create a file ij.properties that contains these

lines:

ij.driver=org.apache.derby.jdbc.ClientDriver
ij.protocol=jdbc:derby://localhost:1527/
ij.database=COREJAVA;create=true

From another command shell, run Derby's interactive scripting tool (called ij) by executing

java -jar derby/lib/derbyrun.jar ij -p ij.properties

Now you can issue SQL commands such as

CREATE TABLE Greetings (Message CHAR(20));
INSERT INTO Greetings VALUES ('Hello, World!');
SELECT * FROM Greetings;
DROP TABLE Greetings;

Note that each command must be terminated by a semicolon. To exit, type

EXIT;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://jdbc.postgresql.org

5. When you are done using the database, stop the server with the command

java -jar derby/lib/derbyrun.jar server shutdown

If you use another database, you need to consult the documentation to find out how to start and stop your
database server, and how to connect to it and issue SQL commands.

Registering the Driver Class

Some JDBC JAR files (such as the Derby driver that is included with Java SE 6) automatically register the driver
class. In that case, you can skip the manual registration step that we describe in this section. A JAR file can
automatically register the driver class if it contains a file META-INF/services/java.sql.Driver. You can simply
unzip your driver JAR file to check.

Note

This registration mechanism uses a little-known part of the JAR specification; see
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html#Service%20Provider.
Automatic registration is a requirement for a JDBC4-compliant driver.

If your driver JAR doesn't support automatic registration, you need to find out the name of the JDBC driver
classes used by your vendor. Typical driver names are

org.apache.derby.jdbc.ClientDriver

org.postgresql.Driver

There are two ways to register the driver with the DriverManager. One way is to load the driver class in your

Java program. For example,

Class.forName("org.postgresql.Driver"); // force loading of driver class

This statement causes the driver class to be loaded, thereby executing a static initializer that registers the
driver.

Alternatively, you can set the jdbc.drivers property. You can specify the property with a command-line
argument, such as

java -Djdbc.drivers=org.postgresql.Driver ProgramName

Or your application can set the system property with a call such as

System.setProperty("jdbc.drivers", "org.postgresql.Driver");

http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html#Service%20Provider

You can also supply multiple drivers; separate them with colons, such as

org.postgresql.Driver:org.apache.derby.jdbc.ClientDriver

Connecting to the Database

In your Java program, you open a database connection with code that is similar to the following example:

String url = "jdbc:postgresql:COREJAVA";

String username = "dbuser";

String password = "secret";

Connection conn = DriverManager.getConnection(url, username, password);

The driver manager iterates through the registered drivers to find a driver that can use the subprotocol
specified in the database URL.

The getConnection method returns a Connection object. In the following sections, you will see how to use the

Connection object to execute SQL statements.

To connect to the database, you will need to know your database user name and password.

Note

By default, Derby lets you connect with any user name, and it does not check
passwords. A separate schema is generated for each user. The default user name is
app.

The test program in Listing 4-1 puts these steps to work. It loads connection parameters from a file named
database.properties and connects to the database. The database.properties file supplied with the sample

code contains connection information for the Derby database. If you use a different database, you need to put
your database-specific connection information into that file. Here is an example for connecting to a PostgreSQL
database:

jdbc.drivers=org.postgresql.Driver

jdbc.url=jdbc:postgresql:COREJAVA

jdbc.username=dbuser

jdbc.password=secret

After connecting to the database, the test program executes the following SQL statements:

CREATE TABLE Greetings (Message CHAR(20))

INSERT INTO Greetings VALUES ('Hello, World!')

SELECT * FROM Greetings

The result of the SELECT statement is printed, and you should see an output of

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Hello, World!

Then the table is removed by executing the statement

DROP TABLE Greetings

To run this test, start your database and launch the program as

java -classpath .:driverJAR TestDB

Tip

One way to debug JDBC-related problems is to enable JDBC tracing. Call the
DriverManager.setLogWriter method to send trace messages to a PrintWriter.
The trace output contains a detailed listing of the JDBC activity. Most JDBC driver
implementations provide additional mechanisms for tracing. For example, with
Derby, add a traceFile option to the JDBC URL, such as

jdbc:derby://localhost:1527/COREJAVA;create=true;traceFile=trace.out.

Listing 4-1. TestDB.java

Code View:
 1. import java.sql.*;

 2. import java.io.*;

 3. import java.util.*;

 4.

 5. /**

 6. * This program tests that the database and the JDBC driver are correctly configured.

 7. * @version 1.01 2004-09-24

 8. * @author Cay Horstmann

 9. */

10. class TestDB

11. {

12. public static void main(String args[])

13. {

14. try

15. {

16. runTest();

17. }

18. catch (SQLException ex)

19. {

20. for (Throwable t : ex)

21. t.printStackTrace();

22. }

23. catch (IOException ex)

24. {

25. ex.printStackTrace();

26. }

27. }

28.

29. /**

30. * Runs a test by creating a table, adding a value, showing the table contents, and

31. * removing the table.

32. */

33. public static void runTest() throws SQLException, IOException

34. {

35. Connection conn = getConnection();

36. try

37. {

38. Statement stat = conn.createStatement();

39.

40. stat.executeUpdate("CREATE TABLE Greetings (Message CHAR(20))");

41. stat.executeUpdate("INSERT INTO Greetings VALUES ('Hello, World!')");

42.

43. ResultSet result = stat.executeQuery("SELECT * FROM Greetings");

44. if (result.next())

45. System.out.println(result.getString(1));

46. result.close();

47. stat.executeUpdate("DROP TABLE Greetings");

48. }

49. finally

50. {

51. conn.close();

52. }

53. }

54.

55. /**

56. * Gets a connection from the properties specified in the file database.properties

57. * @return the database connection

58. */

59. public static Connection getConnection() throws SQLException, IOException

60. {

61. Properties props = new Properties();

62. FileInputStream in = new FileInputStream("database.properties");

63. props.load(in);

64. in.close();

65.

66. String drivers = props.getProperty("jdbc.drivers");

67. if (drivers != null) System.setProperty("jdbc.drivers", drivers);

68. String url = props.getProperty("jdbc.url");

69. String username = props.getProperty("jdbc.username");

70. String password = props.getProperty("jdbc.password");

71.

72. return DriverManager.getConnection(url, username, password);

73. }

74. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.sql.DriverManager 1.1

static Connection getConnection(String url, String user,

String password)

establishes a connection to the given database and returns a
Connection object.

Executing SQL Statements

To execute a SQL statement, you first create a Statement object. To create statement objects, use the

Connection object that you obtained from the call to DriverManager.getConnection.

Statement stat = conn.createStatement();

Next, place the statement that you want to execute into a string, for example,

String command = "UPDATE Books"

 + " SET Price = Price - 5.00"
 + " WHERE Title NOT LIKE '%Introduction%'";

Then call the executeUpdate method of the Statement class:

stat.executeUpdate(command);

The executeUpdate method returns a count of the rows that were affected by the SQL statement, or zero for

statements that do not return a row count. For example, the call to executeUpdate in the preceding example

returns the number of rows whose price was lowered by $5.00.

The executeUpdate method can execute actions such as INSERT, UPDATE, and DELETE as well as data definition

statements such as CREATE TABLE and DROP TABLE. However, you need to use the executeQuery method to

execute SELECT queries. There is also a catch-all execute statement to execute arbitrary SQL statements. It's

commonly used only for queries that a user supplies interactively.

When you execute a query, you are interested in the result. The executeQuery object returns an object of type

ResultSet that you use to walk through the result one row at a time.

ResultSet rs = stat.executeQuery("SELECT * FROM Books")

The basic loop for analyzing a result set looks like this:

while (rs.next())

{

 look at a row of the result set

}

Caution

The iteration protocol of the ResultSet class is subtly different from the protocol of

the java.util.Iterator interface. Here, the iterator is initialized to a position

before the first row. You must call the next method once to move the iterator to the

first row. Also, there is no hasNext method. You keep calling next until it returns

false.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The order of the rows in a result set is completely arbitrary. Unless you specifically ordered the result with an
ORDER BY clause, you should not attach any significance to the row order.

When inspecting an individual row, you will want to know the contents of the fields. A large number of accessor
methods give you this information.

String isbn = rs.getString(1);

double price = rs.getDouble("Price");

There are accessors for various types, such as getString and getDouble. Each accessor has two forms, one

that takes a numeric argument and one that takes a string argument. When you supply a numeric argument,
you refer to the column with that number. For example, rs.getString(1) returns the value of the first column

in the current row.

Caution

Unlike array indexes, database column numbers start at 1.

When you supply a string argument, you refer to the column in the result set with that name. For example,
rs.getDouble("Price") returns the value of the column with name Price. Using the numeric argument is a bit

more efficient, but the string arguments make the code easier to read and maintain.

Each get method makes reasonable type conversions when the type of the method doesn't match the type of

the column. For example, the call rs.getString("Price") converts the floating-point value of the Price

column to a string.

java.sql.Connection 1.1

Statement createStatement()

creates a Statement object that can be used to execute SQL queries and

updates without parameters.

void close()

immediately closes the current connection and the JDBC resources that it
created.

java.sql.Statement 1.1

ResultSet executeQuery(String sqlQuery)

executes the SQL statement given in the string and returns a ResultSet

object to view the query result.

int executeUpdate(String sqlStatement)

executes the SQL INSERT, UPDATE, or DELETE statement specified by the

string. Also executes Data Definition Language (DDL) statements such as
CREATE TABLE. Returns the number of rows affected, or -1 for a
statement without an update count.

boolean execute(String sqlStatement)

executes the SQL statement specified by the string. Multiple result sets
and update counts may be produced. Returns true if the first result is a

result set, false otherwise. Call getResultSet or getUpdateCount to
retrieve the first result. See the section "Multiple Results" on page 253
for details on processing multiple results.

ResultSet getResultSet()

returns the result set of the preceding query statement, or null if the

preceding statement did not have a result set. Call this method only
once per executed statement.

int getUpdateCount()

returns the number of rows affected by the preceding update statement,
or -1 if the preceding statement was a statement without an update
count. Call this method only once per executed statement.

void close()

closes this statement object and its associated result set.

boolean isClosed() 6

returns true if this statement is closed.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.sql.ResultSet 1.1

boolean next()

makes the current row in the result set move forward by one. Returns
false after the last row. Note that you must call this method to advance

to the first row.

Xxx getXxx(int columnNumber)

Xxx getXxx(String columnLabel)

(Xxx is a type such as int, double, String, Date, etc.)

returns the value of the column with the given column number or label,
converted to the specified type. The column label is the label specified in
the SQL AS clause or the column name if AS is not used.

int findColumn(String columnName)

gives the column index associated with a column name.

void close()

immediately closes the current result set.

boolean isClosed() 6

returns true if this statement is closed.

Managing Connections, Statements, and Result Sets

Every Connection object can create one or more Statement objects. You can use the same Statement object

for multiple, unrelated commands and queries. However, a statement has at most one open result set. If you
issue multiple queries whose results you analyze concurrently, then you need multiple Statement objects.

Be forewarned, though, that at least one commonly used database (Microsoft SQL Server) has a JDBC driver
that allows only one active statement at a time. Use the getMaxStatements method of the DatabaseMetaData

class to find out the number of concurrently open statements that your JDBC driver supports.

This sounds restrictive, but in practice, you should probably not fuss with multiple concurrent result sets. If the
result sets are related, then you should be able to issue a combined query and analyze a single result. It is
much more efficient to let the database combine queries than it is for a Java program to iterate through multiple
result sets.

When you are done using a ResultSet, Statement, or Connection, you should call the close method

immediately. These objects use large data structures, and you don't want to wait for the garbage collector to

deal with them.

The close method of a Statement object automatically closes the associated result set if the statement has an

open result set. Similarly, the close method of the Connection class closes all statements of the connection.

If your connections are short-lived, you don't have to worry about closing statements and result sets. Just make
absolutely sure that a connection object cannot possibly remain open by placing the close statement in a

finally block:

try

{

 Connection conn = . . .;

 try

 {

 Statement stat = conn.createStatement();

 ResultSet result = stat.executeQuery(queryString);

 process query result

 }

 finally

 {

 conn.close();

 }

}
catch (SQLException ex)

{

 handle exception

}

Tip

Use the try/finally block just to close the connection, and use a separate

try/catch block to handle exceptions. Separating the try blocks makes your code

easier to read and maintain.

Analyzing SQL Exceptions

Each SQLException has a chain of SQLException objects that is retrieved with the getNextException method.

This exception chain is in addition to the "cause" chain of Throwable objects that every exception has. (See

Volume I, Chapter 11 for details about Java exceptions.) One would need two nested loops to fully enumerate
all these exceptions. Fortunately, Java SE 6 enhanced the SQLException class to implement the

Iterable<Throwable> interface. The iterator() method yields an Iterator<Throwable> that iterates through

both chains, first moving through the cause chain of the first SQLException, then moving on to the next

SQLException, and so on. You can simply use an enhanced for loop:

for (Throwable t : sqlException)

{

 do something with t

}

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You can call getSQLState and getErrorCode on an SQLException to analyze it further. The first method yields a

string that is standardized by either X/Open or SQL:2003. (Call the DatabaseMetaData method

getSQLStateType to find out which standard is used by your driver.) The error code is vendor specific.

As of Java SE 6, the SQL exceptions have been organized into an inheritance tree (shown in Figure 4-6). This
allows you to catch specific error types in a vendor-independent way.

Figure 4-6. SQL exception types

[View full size image]

In addition, the database driver can report nonfatal conditions as warnings. You can retrieve warnings from
connections, statements, and result sets. The SQLWarning class is a subclass of SQLException (even though a

SQLWarning is not thrown as an exception). You call getSQLState and getErrorCode to get further information

about the warnings. Similar to SQL exceptions, warnings are chained. To retrieve all warnings, use this loop:

SQLWarning w = stat.getWarning();

while (w != null)

{

 do something with w

 w = w.nextWarning();

}

The DataTruncation subclass of SQLWarning is used when data are read from the database and unexpectedly

truncated. If data truncation happens in an update statement, a DataTruncation is thrown as an exception.

java.sql.SQLException 1.1

SQLException getNextException()

gets the next SQL exception chained to this one, or null at the end of

the chain.

Iterator<Throwable> iterator() 6

gets an iterator that yields the chained SQL exceptions and their causes.

String getSQLState()

gets the "SQL state," a standardized error code.

int getErrorCode()

gets the vendor-specific error code.

java.sql.Warning 1.1

SQLWarning getNextWarning()

returns the next warning chained to this one, or null at the end of the

chain.

java.sql.Connection 1.1
java.sql.Statement 1.1
java.sql.ResultSet 1.1

QLWarning getWarnings()

SQLWarning getWarnings()

returns the first of the pending warnings, or null if no warnings are

pending.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.sql.DataTruncation 1.1

boolean getParameter()

returns true if the data truncation applies to a parameter, false if it

applies to a column.

int getIndex()

returns the index of the truncated parameter or column.

int getDataSize()

returns the number of bytes that should have been transferred, or -1 if
the value is unknown.

int getTransferSize()

returns the number of bytes that were actually transferred, or -1 if the
value is unknown.

Populating a Database

We now want to write our first real JDBC program. Of course, it would be nice if we could execute some of the
fancy queries that we discussed earlier. Unfortunately, we have a problem: Right now, there are no data in the
database. We need to populate the database, and there is a simple way of doing that: with a set of SQL
instructions to create tables and insert data into them. Most database programs can process a set of SQL
instructions from a text file, but there are pesky differences about statement terminators and other syntactical
issues.

For that reason, we used JDBC to create a simple program that reads a file with SQL instructions, one
instruction per line, and executes them.

Specifically, the program reads data from a text file in a format such as

Code View:
CREATE TABLE Publisher (Publisher_Id CHAR(6), Name CHAR(30), URL CHAR(80));

INSERT INTO Publishers VALUES ('0201', 'Addison-Wesley', 'www.aw-bc.com');

INSERT INTO Publishers VALUES ('0471', 'John Wiley & Sons', 'www.wiley.com');

. . .

Listing 4-2 contains the code for the program that reads the SQL statement file and executes the statements. It
is not important that you read through the code; we merely provde the program so that you can populate your
database and run the examples in the remainder of this chapter.

Make sure that your database server is running, and run the program as follows:

java -classpath .:driverPath ExecSQL Books.sql

java -classpath .:driverPath ExecSQL Authors.sql

java -classpath .:driverPath ExecSQL Publishers.sql

java -classpath .:driverPath ExecSQL BooksAuthors.sql

Before running the program, check that the file database.properties is set up properly for your

environment—see "Connecting to the Database" on page 229.

Note

Your database may also have a utility to read the SQL files directly. For example,
with Derby, you can run

java -jar derby/lib/derbyrun.jar ij -p ij.properties Books.sql

(The ij.properties file is described in the section "Starting the Database" on page

228.)

Alternatively, if you are familiar with Ant, you can use the Ant sql task.

In the data format for the ExecSQL command, we allow an optional semicolon at the

end of each line because most database utilities, as well as Ant, expect this format.

The following steps briefly describe the ExecSQL program:

1. Connect to the database. The getConnection method reads the properties in the file
database.properties and adds the jdbc.drivers property to the system properties. The driver manager

uses the jdbc.drivers property to load the appropriate database driver. The getConnection method

uses the jdbc.url, jdbc.username, and jdbc.password properties to open the database connection.

2. Open the file with the SQL statements. If no file name was supplied, then prompt the user to enter the
statements on the console.

3. Execute each statement with the generic execute method. If it returns true, the statement had a result

set. The four SQL files that we provide for the book database all end in a SELECT * statement so that you

can see that the data were successfully inserted.

4. If there was a result set, print out the result. Because this is a generic result set, we need to use metadata
to find out how many columns the result has. For more information, see the section "Metadata" on page
263.

5. If there is any SQL exception, print the exception and any chained exceptions that may be contained in it.

6. Close the connection to the database.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 4-2 shows the code for the program.

Listing 4-2. ExecSQL.java

Code View:
 1. import java.io.*;

 2. import java.util.*;

 3. import java.sql.*;

 4.

 5. /**

 6. * Executes all SQL statements in a file. Call this program as

 7. * java -classpath driverPath:. ExecSQL commandFile

 8. * @version 1.30 2004-08-05

 9. * @author Cay Horstmann

 10. */

 11. class ExecSQL

 12. {

 13. public static void main(String args[])

 14. {

 15. try

 16. {

 17. Scanner in;

 18. if (args.length == 0) in = new Scanner(System.in);

 19. else in = new Scanner(new File(args[0]));

 20.

 21. Connection conn = getConnection();

 22. try

 23. {

 24. Statement stat = conn.createStatement();

 25.

 26. while (true)

 27. {

 28. if (args.length == 0) System.out.println("Enter command or EXIT to exit:");

 29.

 30. if (!in.hasNextLine()) return;

 31.

 32. String line = in.nextLine();

 33. if (line.equalsIgnoreCase("EXIT")) return;

 34. if (line.trim().endsWith(";")) // remove trailing semicolon

 35. {

 36. line = line.trim();

 37. line = line.substring(0, line.length() - 1);

 38. }

 39. try

 40. {

 41. boolean hasResultSet = stat.execute(line);

 42. if (hasResultSet) showResultSet(stat);

 43. }

 44. catch (SQLException ex)

 45. {

 46. for (Throwable e : ex)

 47. e.printStackTrace();

 48. }

 49. }

 50. }

 51. finally

 52. {

 53. conn.close();

 54. }

 55. }

 56. catch (SQLException e)

 57. {

 58. for (Throwable t : e)

 59. t.printStackTrace();

 60. }

 61. catch (IOException e)

 62. {

 63. e.printStackTrace();

 64. }

 65. }

 66.

 67. /**

 68. * Gets a connection from the properties specified in the file database.properties

 69. * @return the database connection

 70. */

 71. public static Connection getConnection() throws SQLException, IOException

 72. {

 73. Properties props = new Properties();

 74. FileInputStream in = new FileInputStream("database.properties");

 75. props.load(in);

 76. in.close();

 77.

 78. String drivers = props.getProperty("jdbc.drivers");

 79. if (drivers != null) System.setProperty("jdbc.drivers", drivers);

 80.

 81. String url = props.getProperty("jdbc.url");

 82. String username = props.getProperty("jdbc.username");

 83. String password = props.getProperty("jdbc.password");

 84.

 85. return DriverManager.getConnection(url, username, password);

 86. }

 87.

 88. /**

 89. * Prints a result set.

 90. * @param stat the statement whose result set should be printed

 91. */

 92. public static void showResultSet(Statement stat) throws SQLException

 93. {

 94. ResultSet result = stat.getResultSet();

 95. ResultSetMetaData metaData = result.getMetaData();

 96. int columnCount = metaData.getColumnCount();

 97.

 98. for (int i = 1; i <= columnCount; i++)

 99. {

100. if (i > 1) System.out.print(", ");

101. System.out.print(metaData.getColumnLabel(i));

102. }

103. System.out.println();

104.

105. while (result.next())

106. {

107. for (int i = 1; i <= columnCount; i++)

108. {

109. if (i > 1) System.out.print(", ");

110. System.out.print(result.getString(i));

111. }

112. System.out.println();

113. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

114. result.close();

115. }

116. }

Query Execution

In this section, we write a program that executes queries against the COREJAVA database. For this program to work,

you must have populated the COREJAVA database with tables, as described in the preceding section. Figure 4-7

shows the QueryDB application in action.

Figure 4-7. The QueryDB application

You can select the author and the publisher or leave either of them as "Any." Click the Query button; all books
matching your selection will be displayed in the text area.

You can also change the data in the database. Select a publisher and type an amount into the text box next to the
Change prices button. When you click the button, all prices of that publisher are adjusted by the amount you
entered, and the text area contains a message indicating how many rows were changed. However, to minimize
unintended changes to the database, you can't change all prices at once. The author field is ignored when you
change prices. After a price change, you might want to run a query to verify the new prices.

Prepared Statements

In this program, we use one new feature, prepared statements. Consider the query for all books by a particular
publisher, independent of the author. The SQL query is

SELECT Books.Price, Books.Title

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

FROM Books, Publishers

WHERE Books.Publisher_Id = Publishers.Publisher_Id

AND Publishers.Name = the name from the list box

Rather than build a separate query statement every time the user launches such a query, we can prepare a query
with a host variable and use it many times, each time filling in a different string for the variable. That technique
benefits performance. Whenever the database executes a query, it first computes a strategy of how to efficiently
execute the query. By preparing the query and reusing it, you ensure that the planning step is done only once.

Each host variable in a prepared query is indicated with a ? . If there is more than one variable, then you must keep

track of the positions of the ? when setting the values. For example, our prepared query becomes

Code View:
String publisherQuery =

 "SELECT Books.Price, Books.Title" +
 " FROM Books, Publishers" +

 " WHERE Books.Publisher_Id = Publishers.Publisher_Id AND Publishers.Name = ?";

PreparedStatement publisherQueryStat = conn.prepareStatement(publisherQuery);

Before executing the prepared statement, you must bind the host variables to actual values with a set method. As
with the ResultSet get methods, there are different set methods for the various types. Here, we want to set a

string to a publisher name.

publisherQueryStat.setString(1, publisher);

The first argument is the position number of the host variable that we want to set. The position 1 denotes the first ?
. The second argument is the value that we want to assign to the host variable.

If you reuse a prepared query that you have already executed, all host variables stay bound unless you change
them with a set method or call the clearParameters method. That means you only need to call a set Xxx method

on those host variables that change from one query to the next.

Once all variables have been bound to values, you can execute the query

ResultSet rs = publisherQueryStat.executeQuery();

Tip

Building a query manually, by concatenating strings, is tedious and potentially
dangerous. You have to worry about special characters such as quotes and, if your
query involves user input, you have to guard against injection attacks. Therefore, you
should use prepared statements whenever your query involves variables.

The price update feature is implemented as an UPDATE statement. Note that we call executeUpdate , not

executeQuery , because the UPDATE statement does not return a result set. The return value of executeUpdate is

the count of changed rows. We display the count in the text area.

int r = priceUpdateStmt.executeUpdate();

result.setText(r + " rows updated");

Note

A PreparedStatement object becomes invalid after the associated Connection object is

closed. However, many database drivers automatically cache prepared statements. If
the same query is prepared twice, the database simply reuses the query strategy.
Therefore, don't worry about the overhead of calling prepareStatement .

The following list briefly describes the structure of the example program.

The author and publisher text boxes are populated by running two queries that return all author and publisher
names in the database.

The listener for the Query button checks which query type is requested. If this is the first time this query type
is executed, then the prepared statement variable is null , and the prepared statement is constructed. Then,

the values are bound to the query and the query is executed.

The queries involving authors are complex. Because a book can have multiple authors, the BooksAuthors

table gives the correspondence between authors and books. For example, the book with ISBN 0-201-96426-0
has two authors with codes DATE and DARW . The BooksAuthors table has the rows

0-201-96426-0, DATE, 1

0-201-96426-0, DARW, 2

to indicate this fact. The third column lists the order of the authors. (We can't just use the position of the rows
in the table. There is no fixed row ordering in a relational table.) Thus, the query has to join the Books ,

BooksAuthors , and Authors tables to compare the author name with the one selected by the user.

Code View:
SELECT Books.Price, Books.Title FROM Books, BooksAuthors, Authors, Publishers

WHERE Authors.Author_Id = BooksAuthors.Author_Id AND BooksAuthors.ISBN = Books.ISBN

AND Books.Publisher_Id = Publishers.Publisher_Id AND Authors.Name = ? AND Publishers.Name = ?

Tip

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Some Java programmers avoid complex SQL statements such as this one. A
surprisingly common, but very inefficient, workaround is to write lots of Java code that
iterates through multiple result sets. But the database is a lot better at executing query
code than a Java program can be—that's the core competency of a database. A rule of
thumb: If you can do it in SQL, don't do it in Java.

The listener of the Change prices button executes an UPDATE statement. Note that the WHERE clause of the

UPDATE statement needs the publisher code and we know only the publisher name. This problem is solved with

a nested subquery.

Code View:
UPDATE Books

SET Price = Price + ?

WHERE Books.Publisher_Id = (SELECT Publisher_Id FROM Publishers WHERE Name = ?)

We initialize the connection and statement objects in the constructor. We hang on to them for the life of the
program. Just before the program exits, we trap the "window closing" event, and these objects are closed.

Listing 4-3 is the complete program code.

Listing 4-3. QueryDB.java

Code View:
 1. import java.sql.*;

 2. import java.awt.*;

 3. import java.awt.event.*;

 4. import java.io.*;

 5. import java.util.*;

 6. import javax.swing.*;

 7.

 8. /**

 9. * This program demonstrates several complex database queries.

 10. * @version 1.23 2007-06-28

 11. * @author Cay Horstmann

 12. */

 13. public class QueryDB

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. JFrame frame = new QueryDBFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame displays combo boxes for query parameters, a text area for command results,

 31. * and buttons to launch a query and an update.

 32. */

 33. class QueryDBFrame extends JFrame

 34. {

 35. public QueryDBFrame()

 36. {

 37. setTitle("QueryDB");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39. setLayout(new GridBagLayout());

 40.

 41. authors = new JComboBox();

 42. authors.setEditable(false);

 43. authors.addItem("Any");

 44.

 45. publishers = new JComboBox();

 46. publishers.setEditable(false);

 47. publishers.addItem("Any");

 48.

 49. result = new JTextArea(4, 50);

 50. result.setEditable(false);

 51.

 52. priceChange = new JTextField(8);

 53. priceChange.setText("-5.00");

 54.

 55. try

 56. {

 57. conn = getConnection();

 58. Statement stat = conn.createStatement();

 59. String query = "SELECT Name FROM Authors";

 60. ResultSet rs = stat.executeQuery(query);

 61. while (rs.next())

 62. authors.addItem(rs.getString(1));

 63. rs.close();

 64.

 65. query = "SELECT Name FROM Publishers";

 66. rs = stat.executeQuery(query);

 67. while (rs.next())

 68. publishers.addItem(rs.getString(1));

 69. rs.close();

 70. stat.close();

 71. }

 72. catch (SQLException e)

 73. {

 74. for (Throwable t : e)

 75. result.append(t.getMessage());

 76. }

 77. catch (IOException e)

 78. {

 79. result.setText("" + e);

 80. }

 81.

 82. // we use the GBC convenience class of Core Java Volume I, Chapter 9

 83. add(authors, new GBC(0, 0, 2, 1));

 84.

 85. add(publishers, new GBC(2, 0, 2, 1));

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 86.

 87. JButton queryButton = new JButton("Query");

 88. queryButton.addActionListener(new ActionListener()

 89. {

 90. public void actionPerformed(ActionEvent event)

 91. {

 92. executeQuery();

 93. }

 94. });

 95. add(queryButton, new GBC(0, 1, 1, 1).setInsets(3));

 96.

 97. JButton changeButton = new JButton("Change prices");

 98. changeButton.addActionListener(new ActionListener()

 99. {

100. public void actionPerformed(ActionEvent event)

101. {

102. changePrices();

103. }

104. });

105. add(changeButton, new GBC(2, 1, 1, 1).setInsets(3));

106.

107. add(priceChange, new GBC(3, 1, 1, 1).setFill(GBC.HORIZONTAL));

108.

109. add(new JScrollPane(result), new GBC(0, 2, 4, 1).setFill(GBC.BOTH).setWeight(100, 100));

110.

111. addWindowListener(new WindowAdapter()

112. {

113. public void windowClosing(WindowEvent event)

114. {

115. try

116. {

117. if (conn != null) conn.close();

118. }

119. catch (SQLException e)

120. {

121. for (Throwable t : e)

122. t.printStackTrace();

123. }

124. }

125. });

126. }

127.

128. /**

129. * Executes the selected query.

130. */

131. private void executeQuery()

132. {

133. ResultSet rs = null;

134. try

135. {

136. String author = (String) authors.getSelectedItem();

137. String publisher = (String) publishers.getSelectedItem();

138. if (!author.equals("Any") && !publisher.equals("Any"))

139. {

140. if (authorPublisherQueryStmt == null) authorPublisherQueryStmt = conn

141. .prepareStatement(authorPublisherQuery);

142. authorPublisherQueryStmt.setString(1, author);

143. authorPublisherQueryStmt.setString(2, publisher);

144. rs = authorPublisherQueryStmt.executeQuery();

145. }

146. else if (!author.equals("Any") && publisher.equals("Any"))

147. {

148. if (authorQueryStmt == null) authorQueryStmt = conn.prepareStatement(authorQuery);

149. authorQueryStmt.setString(1, author);

150. rs = authorQueryStmt.executeQuery();

151. }

152. else if (author.equals("Any") && !publisher.equals("Any"))

153. {

154. if (publisherQueryStmt == null) publisherQueryStmt = conn

155. .prepareStatement(publisherQuery);

156. publisherQueryStmt.setString(1, publisher);

157. rs = publisherQueryStmt.executeQuery();

158. }

159. else

160. {

161. if (allQueryStmt == null) allQueryStmt = conn.prepareStatement(allQuery);

162. rs = allQueryStmt.executeQuery();

163. }

164.

165. result.setText("");

166. while (rs.next())

167. {

168. result.append(rs.getString(1));

169. result.append(", ");

170. result.append(rs.getString(2));

171. result.append("\n");

172. }

173. rs.close();

174. }

175. catch (SQLException e)

176. {

177. for (Throwable t : e)

178. result.append(t.getMessage());

179. }

180. }

181.

182. /**

183. * Executes an update statement to change prices.

184. */

185. public void changePrices()

186. {

187. String publisher = (String) publishers.getSelectedItem();

188. if (publisher.equals("Any"))

189. {

190. result.setText("I am sorry, but I cannot do that.");

191. return;

192. }

193. try

194. {

195. if (priceUpdateStmt == null) priceUpdateStmt = conn.prepareStatement(priceUpdate);

196. priceUpdateStmt.setString(1, priceChange.getText());

197. priceUpdateStmt.setString(2, publisher);

198. int r = priceUpdateStmt.executeUpdate();

199. result.setText(r + " records updated.");

200. }

201. catch (SQLException e)

202. {

203. for (Throwable t : e)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

204. result.append(t.getMessage());

205. }

206. }

207.

208. /**

209. * Gets a connection from the properties specified in the file database.properties

210. * @return the database connection

211. */

212. public static Connection getConnection() throws SQLException, IOException

213. {

214. Properties props = new Properties();

215. FileInputStream in = new FileInputStream("database.properties");

216. props.load(in);

217. in.close();

218.

219. String drivers = props.getProperty("jdbc.drivers");

220. if (drivers != null) System.setProperty("jdbc.drivers", drivers);

221. String url = props.getProperty("jdbc.url");

222. String username = props.getProperty("jdbc.username");

223. String password = props.getProperty("jdbc.password");

224.

225. return DriverManager.getConnection(url, username, password);

226. }

227.

228. public static final int DEFAULT_WIDTH = 400;

229. public static final int DEFAULT_HEIGHT = 400;

230.

231. private JComboBox authors;

232. private JComboBox publishers;

233. private JTextField priceChange;

234. private JTextArea result;

235. private Connection conn;

236. private PreparedStatement authorQueryStmt;

237. private PreparedStatement authorPublisherQueryStmt;

238. private PreparedStatement publisherQueryStmt;

239. private PreparedStatement allQueryStmt;

240. private PreparedStatement priceUpdateStmt;

241.

242. private static final String authorPublisherQuery = "SELECT Books.Price,

243. Books.Title FROM Books, BooksAuthors, Authors, Publishers"

244. + " WHERE Authors.Author_Id = BooksAuthors.Author_Id AND

245. BooksAuthors.ISBN = Books.ISBN" + " AND Books.Publisher_Id =

246. Publishers.Publisher_Id AND Authors.Name = ?" + " AND Publishers.Name = ?";

247.

248. private static final String authorQuery = "SELECT Books.Price, Books.Title FROM Books,

249. BooksAuthors, Authors" + " WHERE Authors.Author_Id =

250. BooksAuthors.Author_Id AND BooksAuthors.ISBN = Books.ISBN"

251. + " AND Authors.Name = ?";

252.

253. private static final String publisherQuery = "SELECT Books.Price, Books.Title FROM Books,

254. Publishers" + " WHERE Books.Publisher_Id = Publishers.Publisher_Id

255. AND Publishers.Name = ?";

256.

257. private static final String allQuery = "SELECT Books.Price, Books.Title FROM Books";

258.

259. private static final String priceUpdate = "UPDATE Books " + "SET Price = Price + ? "

260. + " WHERE Books.Publisher_Id = (SELECT Publisher_Id FROM Publishers WHERE Name = ?)";

261. }

java.sql.Connection 1.1

PreparedStatement prepareStatement(String sql)

returns a PreparedStatement object containing the precompiled statement.

The string sql contains a SQL statement that can contain one or more

parameter placeholders denoted by ? characters.

java.sql.PreparedStatement 1.1

void set Xxx (int n, Xxx x)

(Xxx is a type such as int , double , String , Date , etc.)

sets the value of the n th parameter to x .

void clearParameters()

clears all current parameters in the prepared statement.

ResultSet executeQuery()

executes a prepared SQL query and returns a ResultSet object.

int executeUpdate()

executes the prepared SQL INSERT , UPDATE , or DELETE statement

represented by the PreparedStatement object. Returns the number of rows

affected, or 0 for DDL statements such as CREATE TABLE .

Reading and Writing LOBs

In addition to numbers, strings, and dates, many databases can store large objects (LOBs) such as images or other
data. In SQL, binary large objects are called BLOBs, and character large objects are called CLOBs.

To read a LOB, execute a SELECT statement and then call the getBlob or getClob method on the ResultSet . You

get an object of type Blob or Clob . To get the binary data from a Blob , call the getBytes or getInputStream . For

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

example, if you have a table with book cover images, you can retrieve an image like this:

Code View:
PreparedStatement stat = conn.prepareStatement("SELECT Cover FROM BookCovers WHERE ISBN=?");

stat.set(1, isbn);

ResultSet result = stat.executeQuery();

if (result.next())

{

 Blob coverBlob = result.getBlob(1);

 Image coverImage = ImageIO.read(coverBlob.getInputStream());

}

Similarly, if you retrieve a Clob object, you can get character data by calling the getSubString or

getCharacterStream method.

To place a LOB into a database, you call createBlob or createClob on your Connection object, get an output
stream or writer to the LOB, write the data, and store the object in the database. For example, here is how you
store an image:

Code View:
Blob coverBlob = connection.createBlob();

int offset = 0;

OutputStream out = coverBlob.setBinaryStream(offset);
ImageIO.write(coverImage, "PNG", out);

PreparedStatement stat = conn.prepareStatement("INSERT INTO Cover VALUES (?, ?)");

stat.set(1, isbn);

stat.set(2, coverBlob);

stat.executeUpdate();

java.sql.ResultSet 1.1

Blob getBlob(int columnIndex) 1.2

Blob getBlob(String columnLabel) 1.2

Clob getClob(int columnIndex) 1.2

Clob getClob(String columnLabel) 1.2

gets the BLOB or CLOB at the given column.

java.sql.Blob 1.2

long length()

gets the length of this BLOB.

byte[] getBytes(long startPosition, long length)

gets the data in the given range from this BLOB.

InputStream getBinaryStream()

InputStream getBinaryStream(long startPosition, long length)

returns a stream to read the data in this BLOB or the given range.

OutputStream setBinaryStream(long startPosition) 1.4

returns an output stream for writing into this BLOB, starting at the given
position.

java.sql.Clob 1.4

long length()

gets the number of characters of this CLOB.

String getSubString(long startPosition, long length)

gets the characters in the given range from this BLOB.

Reader getCharacterStream()

Reader getCharacterStream(long startPosition, long length)

returns a reader (not a stream) to read the characters in this CLOB or the
given range.

Writer setCharacterStream(long startPosition) 1.4

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

returns a writer (not a stream) for writing into this CLOB, starting at the
given position.

java.sql.Connection 1.1

Blob createBlob() 6

Clob createClob() 6

creates an empty BLOB or CLOB.

SQL Escapes

The "escape" syntax supports features that are commonly supported by databases, but with database-specific
syntax variations. It is the job of the JDBC driver to translate the escape syntax to the syntax of a particular
database.

Escapes are provided for the following features:

Date and time literals

Calling scalar functions

Calling stored procedures

Outer joins

The escape character in LIKE clauses

Date and time literals vary widely among databases. To embed a date or time literal, specify the value in ISO 8601
format (http://www.cl.cam.ac.uk/~mgk25/iso-time.html). The driver will then translate it into the native format.
Use d , t , ts for DATE , TIME , or TIMESTAMP values:

{d '2008-01-24'}

{t '23:59:59'}

{ts '2008-01-24 23:59:59.999'}

A scalar function is a function that returns a single value. Many functions are widely available in databases, but with
varying names. The JDBC specification provides standard names and translates them into the database-specific
names. To call a function, embed the standard function name and arguments like this:

{fn left(?, 20)}

{fn user()}

You can find a complete list of supported function names in the JDBC specification.

A stored procedure is a procedure that executes in the database, written in a database-specific language. To call a
stored procedure, use the call escape. You need not supply parentheses if the procedure has no parameters. Use =

to capture a return value:

{call PROC1(?, ?)}

{call PROC2}

{call ? = PROC3(?)}

An outer join of two tables does not require that the rows of each table match according to the join condition. For
example, the query

Code View:
SELECT * FROM {oj Books LEFT OUTER JOIN Publishers ON Books.Publisher_Id = Publisher.Publisher_Id}

contains books for which Publisher_Id has no match in the Publishers table, with NULL values to indicate that no

match exists. You would need a RIGHT OUTER JOIN to include publishers without matching books, or a FULL OUTER

JOIN to return both. The escape syntax is needed because not all databases use a standard notation for these joins.

Finally, the _ and % characters have special meanings in a LIKE clause, to match a single character or a sequence of
characters. There is no standard way to use them literally. If you want to match all strings containing a _ , use this

construct:

... WHERE ? LIKE %!_% {escape '!'}

Here we define ! as the escape character. The combination !_ denotes a literal underscore.

Multiple Results

It is possible for a query to return multiple results. This can happen when executing a stored procedure, or with
databases that also allow submission of multiple SELECT statements in a single query. Here is how you retrieve all

result sets.

1. Use the execute method to execute the SQL statement.

2. Retrieve the first result or update count.

3. Repeatedly call the getMoreResults method to move on to the next result set. (This call automatically closes

the previous result set.)

4. Finish when there are no more result sets or update counts.

The execute and getMoreResults methods return true if the next item in the chain is a result set. The

getUpdateCount method returns -1 if the next item in the chain is not an update count.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The following loop traverses all results:

boolean done = false;

boolean isResult = stmt.execute(command);

while (!done)

{
 if (isResult)

 {

 ResultSet result = stmt.getResultSet();

 do something with result

 }

 else

 {

 int updateCount = stmt.getUpdateCount();

 if (updateCount >= 0)

 do something with updateCount

 else

 done = true;

 }

 isResult = stmt.getMoreResults();

}

java.sql.Statement 1.1

boolean getMoreResults()

gets the next result for this statement. Returns true if the next result exists

and is a result set.

Retrieving Autogenerated Keys

Most databases support some mechanism for auto-numbering rows in a database. Unfortunately, the mechanisms
differ widely among vendors. These automatic numbers are often used as primary keys. Although JDBC doesn't
offer a vendor-independent solution for generating these keys, it does provide an efficient way of retrieving them.
When you insert a new row into a table and a key is automatically generated, you can retrieve it with the following
code:

stmt.executeUpdate(insertStatement, Statement.RETURN_GENERATED_KEYS);

ResultSet rs = stmt.getGeneratedKeys();

if (rs.next())
{

 int key = rs.getInt(1);

 . . .

}

java.sql.Statement 1.1

boolean execute(String statement, int autogenerated) 1.4

int executeUpdate(String statement, int autogenerated) 1.4

executes the given SQL statement, as previously described. If
autogenerated is set to Statement.RETURN_GENERATED_KEYS and the

statement is an INSERT statement, the first column contains the

autogenerated key.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Scrollable and Updatable Result Sets

As you have seen, the next method of the ResultSet class iterates over the rows in a result set. That is

certainly adequate for a program that needs to analyze the data. However, consider a visual data display that
shows a table or query result (such as Figure 4-5 on page 224). You usually want the user to be able to move
both forward and backward in the result set. In a scrollable result, you can move forward and backward through
a result set and even jump to any position.

Furthermore, once users see the contents of a result set displayed, they may be tempted to edit it. In an
updatable result set, you can programmatically update entries so that the database is automatically updated.
We discuss these capabilities in the following sections.

Scrollable Result Sets

By default, result sets are not scrollable or updatable. To obtain scrollable result sets from your queries, you
must obtain a different Statement object with the method

Statement stat = conn.createStatement(type, concurrency);

For a prepared statement, use the call

PreparedStatement stat = conn.prepareStatement(command, type, concurrency);

The possible values of type and concurrency are listed in Table 4-6 and Table 4-7. You have the following

choices:

Do you want the result set to be scrollable or not? If not, use ResultSet.TYPE_FORWARD_ONLY.

If the result set is scrollable, do you want it to be able to reflect changes in the database that occurred
after the query that yielded it? (In our discussion, we assume the ResultSet.TYPE_SCROLL_INSENSITIVE

setting for scrollable result sets. This assumes that the result set does not "sense" database changes that
occurred after execution of the query.)

Do you want to be able to update the database by editing the result set? (See the next section for
details.)

Table 4-6. ResultSet Type Values

Value Explanation

TYPE_FORWARD_ONLY The result set is not scrollable (default).

TYPE_SCROLL_INSENSITIVE The result set is scrollable but not sensitive to database changes.

TYPE_SCROLL_SENSITIVE The result set is scrollable and sensitive to database changes.

Table 4-7. ResultSet Concurrency Values

Value Explanation

CONCUR_READ_ONLY The result set cannot be used to update the database (default).

CONCUR_UPDATABLE The result set can be used to update the database.

For example, if you simply want to be able to scroll through a result set but you don't want to edit its data, you
use:

Statement stat = conn.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);

All result sets that are returned by method calls

ResultSet rs = stat.executeQuery(query)

are now scrollable. A scrollable result set has a cursor that indicates the current position.

Note

Not all database drivers support scrollable or updatable result sets. (The
supportsResultSetType and supportsResultSetConcurrency methods of the

DatabaseMetaData class tell you which types and concurrency modes are supported

by a particular database, using a particular driver.) Even if a database supports all
result set modes, a particular query might not be able to yield a result set with all
the properties that you requested. (For example, the result set of a complex query
might not be updatable.) In that case, the executeQuery method returns a

ResultSet of lesser capabilities and adds an SQLWarning to the connection object.

(The section "Analyzing SQL Exceptions" on page 236 shows how to retrieve the
warning.) Alternatively, you can use the getType and getConcurrency methods of
the ResultSet class to find out what mode a result set actually has. If you do not

check the result set capabilities and issue an unsupported operation, such as
previous on a result set that is not scrollable, then the operation throws a

SQLException.

Scrolling is very simple. You use

if (rs.previous()) . . .

to scroll backward. The method returns true if the cursor is positioned on an actual row; false if it now is

positioned before the first row.

You can move the cursor backward or forward by a number of rows with the call

rs.relative(n);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

If n is positive, the cursor moves forward. If n is negative, it moves backward. If n is zero, the call has no
effect. If you attempt to move the cursor outside the current set of rows, it is set to point either after the last
row or before the first row, depending on the sign of n. Then, the method returns false and the cursor does not
move. The method returns true if the cursor is positioned on an actual row.

Alternatively, you can set the cursor to a particular row number:

rs.absolute(n);

You get the current row number with the call

int currentRow = rs.getRow();

The first row in the result set has number 1. If the return value is 0, the cursor is not currently on a row—it is
either before the first row or after the last row.

The convenience methods first, last, beforeFirst, and afterLast move the cursor to the first, to the last,
before the first, or after the last position.

Finally, the methods isFirst, isLast, isBeforeFirst, and isAfterLast test whether the cursor is at one of

these special positions.

Using a scrollable result set is very simple. The hard work of caching the query data is carried out behind the
scenes by the database driver.

Updatable Result Sets

If you want to edit result set data and have the changes automatically reflected in the database, you create an
updatable result set. Updatable result sets don't have to be scrollable, but if you present data to a user for
editing, you usually want to allow scrolling as well.

To obtain updatable result sets, you create a statement as follows:

Statement stat = conn.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_UPDATABLE);

The result sets returned by a call to executeQuery are then updatable.

Note

Not all queries return updatable result sets. If your query is a join that involves
multiple tables, the result might not be updatable. If your query involves only a
single table or if it joins multiple tables by their primary keys, you should expect the
result set to be updatable. Call the getConcurrency method of the ResultSet class

to find out for sure.

For example, suppose you want to raise the prices of some books, but you don't have a simple criterion for
issuing an UPDATE statement. Then, you can iterate through all books and update prices, based on arbitrary

conditions.

String query = "SELECT * FROM Books";

ResultSet rs = stat.executeQuery(query);

while (rs.next())

{

 if (. . .)

 {

 double increase = . . .

 double price = rs.getDouble("Price");

 rs.updateDouble("Price", price + increase);

 rs.updateRow(); // make sure to call updateRow after updating fields

 }
}

There are updateXxx methods for all data types that correspond to SQL types, such as updateDouble,

updateString, and so on. As with the getXxx methods, you specify the name or the number of the column. You

then specify the new value for the field.

Note

If you use the updateXxx method whose first parameter is the column number, be

aware that this is the column number in the result set. It could well be different
from the column number in the database.

The updateXxx method changes only the row values, not the database. When you are done with the field

updates in a row, you must call the updateRow method. That method sends all updates in the current row to the

database. If you move the cursor to another row without calling updateRow, all updates are discarded from the

row set and they are never communicated to the database. You can also call the cancelRowUpdates method to

cancel the updates to the current row.

The preceding example shows how you modify an existing row. If you want to add a new row to the database,
you first use the moveToInsertRow method to move the cursor to a special position, called the insert row. You

build up a new row in the insert row position by issuing updateXxx instructions. Finally, when you are done, call

the insertRow method to deliver the new row to the database. When you are done inserting, call

moveToCurrentRow to move the cursor back to the position before the call to moveToInsertRow. Here is an

example:

rs.moveToInsertRow();

rs.updateString("Title", title);

rs.updateString("ISBN", isbn);

rs.updateString("Publisher_Id", pubid);
rs.updateDouble("Price", price);

rs.insertRow();

rs.moveToCurrentRow();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note that you cannot influence where the new data is added in the result set or the database.

If you don't specify a column value in the insert row, it is set to a SQL NULL. However, if the column has a NOT

NULL constraint, an exception is thrown and the row is not inserted.

Finally, you can delete the row under the cursor.

rs.deleteRow();

The deleteRow method immediately removes the row from both the result set and the database.

The updateRow, insertRow, and deleteRow methods of the ResultSet class give you the same power as

executing UPDATE, INSERT, and DELETE SQL statements. However, programmers who are accustomed to the

Java programming language might find it more natural to manipulate the database contents through result sets
than by constructing SQL statements.java.sql.ResultSet 1.1

Caution

If you are not careful, you can write staggeringly inefficient code with updatable
result sets. It is much more efficient to execute an UPDATE statement than it is to

make a query and iterate through the result, changing data along the way.
Updatable result sets make sense for interactive programs in which a user can make
arbitrary changes, but for most programmatic changes, a SQL UPDATE is more

appropriate.

Note

JDBC 2 delivered further enhancements to result sets, such as the capability of
updating a result set with the most recent data if the data have been modified by
another concurrent database connection. JDBC 3 added yet another refinement,
specifying the behavior of result sets when a transaction is committed. However,
these advanced features are outside the scope of this introductory chapter. We refer
you to the JDBC API Tutorial and Reference by Maydene Fisher, Jon Ellis, and
Jonathan Bruce (Addison-Wesley 2003) and the JDBC specification documents at
http://java.sun.com/javase/technologies/database for more information.

http://java.sun.com/javase/technologies/database

java.sql.Connection 1.1

Statement createStatement(int type, int concurrency) 1.2

PreparedStatement prepareStatement(String command, int type, int concurrency)

1.2

creates a statement or prepared statement that yields result sets with the given type and
concurrency.

Parameters: command The command to prepare

 type One of the constants TYPE_FORWARD_ONLY,

TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE

of the ResultSet interface

 concurrency One of the constants CONCUR_READ_ONLY or
CONCUR_UPDATABLE of the ResultSet interface

java.sql.ResultSet 1.1

int getType() 1.2

returns the type of this result set, one of TYPE_FORWARD_ONLY,

TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE.

int getConcurrency() 1.2

returns the concurrency setting of this result set, one of
CONCUR_READ_ONLY or CONCUR_UPDATABLE.

boolean previous() 1.2

moves the cursor to the preceding row. Returns true if the cursor is

positioned on a row or false if the cursor is positioned before the first

row.

int getRow() 1.2

gets the number of the current row. Rows are numbered starting with 1.

boolean absolute(int r) 1.2

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

moves the cursor to row r. Returns true if the cursor is positioned on a

row.

boolean relative(int d) 1.2

moves the cursor by d rows. If d is negative, the cursor is moved

backward. Returns true if the cursor is positioned on a row.

boolean first() 1.2

boolean last() 1.2

moves the cursor to the first or last row. Returns true if the cursor is

positioned on a row.

void beforeFirst() 1.2

void afterLast() 1.2

moves the cursor before the first or after the last row.

boolean isFirst() 1.2

boolean isLast() 1.2

tests whether the cursor is at the first or last row.

boolean isBeforeFirst() 1.2

boolean isAfterLast() 1.2

tests whether the cursor is before the first or after the last row.

void moveToInsertRow() 1.2

moves the cursor to the insert row. The insert row is a special row for
inserting new data with the updateXxx and insertRow methods.

void moveToCurrentRow() 1.2

moves the cursor back from the insert row to the row that it occupied
when the moveToInsertRow method was called.

void insertRow() 1.2

inserts the contents of the insert row into the database and the result
set.

void deleteRow() 1.2

deletes the current row from the database and the result set.

void updateXxx(int column, Xxx data) 1.2

void updateXxx(String columnName, Xxx data) 1.2

(Xxx is a type such as int, double, String, Date, etc.)

updates a field in the current row of the result set.

void updateRow() 1.2

sends the current row updates to the database.

void cancelRowUpdates() 1.2

cancels the current row updates.

java.sql.DatabaseMetaData 1.1

boolean supportsResultSetType(int type) 1.2

returns true if the database can support result sets of the given type. type is one of the

constants TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE of

the ResultSet interface.

boolean supportsResultSetConcurrency(int type, int concurrency) 1.2

returns true if the database can support result sets of the given combination of type and

concurrency.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Parameters: type One of the constants TYPE_FORWARD_ONLY,

TYPE_SCROLL_INSENSITIVE, or TYPE_SCROLL_SENSITIVE

of the ResultSet interface

 concurrency One of the constants CONCUR_READ_ONLY or

CONCUR_UPDATABLE of the ResultSet interface

Row Sets

Scrollable result sets are powerful, but they have a major drawback. You need to keep the database connection
open during the entire user interaction. However, users can walk away from their computer for a long time,
leaving the connection occupied. That is not good—database connections are scarce resources. In such a
situation, use a row set. The RowSet interface extends the ResultSet interface, but row sets don't have to be

tied to a database connection.

Row sets are also suitable if you need to move a query result to a different tier of a complex application, or to
another device such as a cell phone. You would never want to move a result set—its data structures can be
huge, and it is tethered to the database connection.

The javax.sql.rowset package provides the following interfaces that extend the RowSet interface:

A CachedRowSet allows disconnected operation. We discuss cached row sets in the following section.

A WebRowSet is a cached row set that can be saved to an XML file. The XML file can be moved to another

tier of a web application, where it is opened by another WebRowSet object.

The FilteredRowSet and JoinRowSet interfaces support lightweight operations on row sets that are

equivalent to SQL SELECT and JOIN operations. These operations are carried out on the data stored in row

sets, without having to make a database connection.

A JdbcRowSet is a thin wrapper around a ResultSet. It adds useful getters and setters from the RowSet

interface, turning a result set into a "bean." (See Chapter 8 for more information on beans.)

Sun Microsystems expects database vendors to produce efficient implementations of these interfaces.
Fortunately, they also supply reference implementations so that you can use row sets even if your database
vendor doesn't support them. The reference implementations are in the package com.sun.rowset. The class

names end in Impl, for example, CachedRowSetImpl.

Cached Row Sets

A cached row set contains all data from a result set. Because CachedRowSet is a subinterface of the ResultSet
interface, you can use a cached row set exactly as you would use a result set. Cached row sets confer an
important benefit: You can close the connection and still use the row set. As you will see in our sample program
in Listing 4-4, this greatly simplifies the implementation of interactive applications. Each user command simply
opens the database connection, issues a query, puts the result in a cached row set, and then closes the
database connection.

It is even possible to modify the data in a cached row set. Of course, the modifications are not immediately
reflected in the database. Instead, you need to make an explicit request to accept the accumulated changes.
The CachedRowSet then reconnects to the database and issues SQL statements to write the accumulated

changes.

You can populate a CachedRowSet from a result set:

ResultSet result = . . .;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

CachedRowSet crs = new com.sun.rowset.CachedRowSetImpl();

 // or use an implementation from your database vendor

crs.populate(result);
conn.close(); // now ok to close the database connection

Alternatively, you can let the CachedRowSet object establish a connection automatically. Set up the database

parameters:

crs.setURL("jdbc:derby://localhost:1527/COREJAVA");

crs.setUsername("dbuser");

crs.setPassword("secret");

Then set the query statement and any parameters.

crs.setCommand("SELECT * FROM Books WHERE PUBLISHER = ?");

crs.setString(1, publisherName);

Finally, populate the row set with the query result:

crs.execute();

This call establishes a database connection, issues the query, populates the row set, and disconnects.

If your query result is very large, you would not want to put it into the row set in its entirety. After all, your
users will probably only look at a few of the rows. In that case, specify a page size:

CachedRowSet crs = . . .;
crs.setCommand(command);

crs.setPageSize(20);

. . .

crs.execute();

Now you will only get 20 rows. To get the next batch of rows, call

crs.nextPage();

You can inspect and modify the row set with the same methods you use for result sets. If you modified the row
set contents, you must write it back to the database by calling

crs.acceptChanges(conn);

or

crs.acceptChanges();

The second call works only if you configured the row set with the information (such as URL, user name, and
password) that is required to connect to a database.

In the section "Updatable Result Sets" on page 256, you saw that not all result sets are updatable. Similarly, a

row set that contains the result of a complex query will not be able to write back changes to the database. You
should be safe if your row set contains data from a single table.

Caution

If you populated the row set from a result set, the row set does not know the name
of the table to update. You need to call setTable to set the table name.

Another complexity arises if data in the database have changed after you populated the row set. This is clearly a
sign of trouble that could lead to inconsistent data. The reference implementation checks whether the original
row set values (that is, the values before editing) are identical to the current values in the database. If so, they
are replaced with the edited values. Otherwise, a SyncProviderException is thrown, and none of the changes

are written. Other implementations may use other strategies for synchronization.

javax.sql.RowSet 1.4

String getURL()

void setURL(String url)

gets or sets the database URL.

String getUsername()

void setUsername(String username)

gets or sets the user name for connecting to the database.

String getPassword()

void setPassword(String password)

gets or sets the password for connecting to the database.

String getCommand()

void setCommand(String command)

gets or sets the command that is executed to populate this row set.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void execute()

populates this row set by issuing the statement set with setCommand. For

the driver manager to obtain a connection, the URL, user name, and
password must be set.

javax.sql.rowset.CachedRowSet 5.0

void execute(Connection conn)

populates this row set by issuing the statement set with setCommand.

This method uses the given connection and closes it.

void populate(ResultSet result)

populates this cached row set with the data from the given result set.

String getTableName()

void setTableName(String tableName)

gets or sets the name of the table from which this cached row set was
populated.

int getPageSize()

void setPageSize(int size)

gets or sets the page size.

boolean nextPage()

boolean previousPage()

loads the next or previous page of rows. Returns true if there is a next

or previous page.

void acceptChanges()

void acceptChanges(Connection conn)

reconnects to the database and writes the changes that are the result of
editing the row set. May throw a SyncProviderException if the data

cannot be written back because the database data have changed.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Metadata

In the preceding sections, you saw how to populate, query, and update database tables. However, JDBC can
give you additional information about the structure of a database and its tables. For example, you can get a list
of the tables in a particular database or the column names and types of a table. This information is not useful
when you are implementing a business application with a predefined database. After all, if you design the
tables, you know their structure. Structural information is, however, extremely useful for programmers who
write tools that work with any database.

In SQL, data that describe the database or one of its parts are called metadata (to distinguish them from the
actual data stored in the database). You can get three kinds of metadata: about a database, about a result set,
and about parameters of prepared statements.

To find out more about the database, you request an object of type DatabaseMetaData from the database

connection.

DatabaseMetaData meta = conn.getMetaData();

Now you are ready to get some metadata. For example, the call

ResultSet mrs = meta.getTables(null, null, null, new String[] { "TABLE" });

returns a result set that contains information about all tables in the database. (See the API note at the end of
this section for other parameters to this method.)

Each row in the result set contains information about a table in the database. The third column is the name of
the table. (Again, see the API note for the other columns.) The following loop gathers all table names:

while (mrs.next())

 tableNames.addItem(mrs.getString(3));

There is a second important use for database metadata. Databases are complex, and the SQL standard leaves
plenty of room for variability. Well over 100 methods in the DatabaseMetaData class can inquire about the

database, including calls with exotic names such as

meta.supportsCatalogsInPrivilegeDefinitions()

and

meta.nullPlusNonNullIsNull()

Clearly, these are geared toward advanced users with special needs, in particular, those who need to write
highly portable code that works with multiple databases.

The DatabaseMetaData class gives data about the database. A second metadata class, ResultSetMetaData,

reports information about a result set. Whenever you have a result set from a query, you can inquire about the
number of columns and each column's name, type, and field width. Here is a typical loop:

ResultSet mrs = stat.executeQuery("SELECT * FROM " + tableName);

ResultSetMetaData meta = mrs.getMetaData();

for (int i = 1; i <= meta.getColumnCount(); i++)

{

 String columnName = meta.getColumnLabel(i);

 int columnWidth = meta.getColumnDisplaySize(i);

 . . .

}

In this section, we show you how to write such a simple tool. The program in Listing 4-4 uses metadata to let
you browse all tables in a database. The program also illustrates the use of a cached row set.

The combo box on top displays all tables in the database. Select one of them, and the center of the frame is
filled with the field names of that table and the values of the first row, as shown in Figure 4-8. Click Next and
Previous to scroll through the rows in the table. You can also delete a row and edit the row values. Click the
Save button to save the changes to the database.

Figure 4-8. The ViewDB application

Note

Many databases come with much more sophisticated tools for viewing and editing
tables. If your database doesn't, check out iSQL-Viewer (http://isql.sourceforge.net)
or SQuirreL (http://squirrel-sql.sourceforge.net). These programs can view the
tables in any JDBC database. Our example program is not intended as a
replacement for these tools, but it shows you how to implement a tool for working
with arbitrary tables.

Listing 4-4. ViewDB.java

Code View:
 1. import com.sun.rowset.*;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://isql.sourceforge.net
http://squirrel-sql.sourceforge.net

 2. import java.sql.*;

 3. import java.awt.*;

 4. import java.awt.event.*;

 5. import java.io.*;

 6. import java.util.*;

 7. import javax.swing.*;

 8. import javax.sql.*;

 9. import javax.sql.rowset.*;

 10.

 11. /**

 12. * This program uses metadata to display arbitrary tables in a database.

 13. * @version 1.31 2007-06-28

 14. * @author Cay Horstmann

 15. */

 16. public class ViewDB

 17. {

 18. public static void main(String[] args)

 19. {

 20. EventQueue.invokeLater(new Runnable()

 21. {

 22. public void run()

 23. {

 24. JFrame frame = new ViewDBFrame();

 25. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 26. frame.setVisible(true);

 27. }

 28. });

 29. }

 30. }

 31.

 32. /**

 33. * The frame that holds the data panel and the navigation buttons.

 34. */

 35. class ViewDBFrame extends JFrame

 36. {

 37. public ViewDBFrame()

 38. {

 39. setTitle("ViewDB");

 40. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 41.

 42. tableNames = new JComboBox();

 43. tableNames.addActionListener(new ActionListener()

 44. {

 45. public void actionPerformed(ActionEvent event)

 46. {

 47. showTable((String) tableNames.getSelectedItem());

 48. }

 49. });

 50. add(tableNames, BorderLayout.NORTH);

 51.

 52. try

 53. {

 54. readDatabaseProperties();

 55. Connection conn = getConnection();

 56. try

 57. {

 58. DatabaseMetaData meta = conn.getMetaData();

 59. ResultSet mrs = meta.getTables(null, null, null, new String[] { "TABLE" });

 60. while (mrs.next())

 61. tableNames.addItem(mrs.getString(3));

 62. }

 63. finally

 64. {

 65. conn.close();

 66. }

 67. }

 68. catch (SQLException e)

 69. {

 70. JOptionPane.showMessageDialog(this, e);

 71. }

 72. catch (IOException e)

 73. {

 74. JOptionPane.showMessageDialog(this, e);

 75. }

 76.

 77. JPanel buttonPanel = new JPanel();

 78. add(buttonPanel, BorderLayout.SOUTH);

 79.

 80. previousButton = new JButton("Previous");

 81. previousButton.addActionListener(new ActionListener()

 82. {

 83. public void actionPerformed(ActionEvent event)

 84. {

 85. showPreviousRow();

 86. }

 87. });

 88. buttonPanel.add(previousButton);

 89.

 90. nextButton = new JButton("Next");

 91. nextButton.addActionListener(new ActionListener()

 92. {

 93. public void actionPerformed(ActionEvent event)

 94. {

 95. showNextRow();

 96. }

 97. });

 98. buttonPanel.add(nextButton);

 99.

100. deleteButton = new JButton("Delete");

101. deleteButton.addActionListener(new ActionListener()

102. {

103. public void actionPerformed(ActionEvent event)

104. {

105. deleteRow();

106. }

107. });

108. buttonPanel.add(deleteButton);

109.

110. saveButton = new JButton("Save");

111. saveButton.addActionListener(new ActionListener()

112. {

113. public void actionPerformed(ActionEvent event)

114. {

115. saveChanges();

116. }

117. });

118. buttonPanel.add(saveButton);

119. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

120.

121. /**

122. * Prepares the text fields for showing a new table, and shows the first row.

123. * @param tableName the name of the table to display

124. */

125. public void showTable(String tableName)

126. {

127. try

128. {

129. // open connection

130. Connection conn = getConnection();

131. try

132. {

133. // get result set

134. Statement stat = conn.createStatement();

135. ResultSet result = stat.executeQuery("SELECT * FROM " + tableName);

136. // copy into cached row set

137. crs = new CachedRowSetImpl();

138. crs.setTableName(tableName);

139. crs.populate(result);

140. }

141. finally

142. {

143. conn.close();

144. }

145.

146. if (scrollPane != null) remove(scrollPane);

147. dataPanel = new DataPanel(crs);

148. scrollPane = new JScrollPane(dataPanel);

149. add(scrollPane, BorderLayout.CENTER);

150. validate();

151. showNextRow();

152. }

153. catch (SQLException e)

154. {

155. JOptionPane.showMessageDialog(this, e);

156. }

157. }

158.

159. /**

160. * Moves to the previous table row.

161. */

162. public void showPreviousRow()

163. {

164. try

165. {

166. if (crs == null || crs.isFirst()) return;

167. crs.previous();

168. dataPanel.showRow(crs);

169. }

170. catch (SQLException e)

171. {

172. for (Throwable t : e)

173. t.printStackTrace();

174. }

175. }

176.

177. /**

178. * Moves to the next table row.

179. */

180. public void showNextRow()

181. {

182. try

183. {

184. if (crs == null || crs.isLast()) return;

185. crs.next();

186. dataPanel.showRow(crs);

187. }

188. catch (SQLException e)

189. {

190. JOptionPane.showMessageDialog(this, e);

191. }

192. }

193.

194. /**

195. * Deletes current table row.

196. */

197. public void deleteRow()

198. {

199. try

200. {

201. Connection conn = getConnection();

202. try

203. {

204. crs.deleteRow();

205. crs.acceptChanges(conn);

206. if (!crs.isLast()) crs.next();

207. else if (!crs.isFirst()) crs.previous();

208. else crs = null;

209. dataPanel.showRow(crs);

210. }

211. finally

212. {

213. conn.close();

214. }

215. }

216. catch (SQLException e)

217. {

218. JOptionPane.showMessageDialog(this, e);

219. }

220. }

221.

222. /**

223. * Saves all changes.

224. */

225. public void saveChanges()

226. {

227. try

228. {

229. Connection conn = getConnection();

230. try

231. {

232. dataPanel.setRow(crs);

233. crs.acceptChanges(conn);

234. }

235. finally

236. {

237. conn.close();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

238. }

239. }

240. catch (SQLException e)

241. {

242. JOptionPane.showMessageDialog(this, e);

243. }

244. }

245.

246. private void readDatabaseProperties() throws IOException

247. {

248. props = new Properties();

249. FileInputStream in = new FileInputStream("database.properties");

250. props.load(in);

251. in.close();

252. String drivers = props.getProperty("jdbc.drivers");

253. if (drivers != null) System.setProperty("jdbc.drivers", drivers);

254. }

255.

256. /**

257. * Gets a connection from the properties specified in the file database.properties

258. * @return the database connection

259. */

260. private Connection getConnection() throws SQLException

261. {

262. String url = props.getProperty("jdbc.url");

263. String username = props.getProperty("jdbc.username");

264. String password = props.getProperty("jdbc.password");

265.

266. return DriverManager.getConnection(url, username, password);

267. }

268.

269. public static final int DEFAULT_WIDTH = 400;

270. public static final int DEFAULT_HEIGHT = 200;

271.

272. private JButton previousButton;

273. private JButton nextButton;

274. private JButton deleteButton;

275. private JButton saveButton;

276. private DataPanel dataPanel;

277. private Component scrollPane;

278. private JComboBox tableNames;

279. private Properties props;

280. private CachedRowSet crs;

281. }

282.

283. /**

284. * This panel displays the contents of a result set.

285. */

286. class DataPanel extends JPanel

287. {

288. /**

289. * Constructs the data panel.

290. * @param rs the result set whose contents this panel displays

291. */

292. public DataPanel(RowSet rs) throws SQLException

293. {

294. fields = new ArrayList<JTextField>();

295. setLayout(new GridBagLayout());

296. GridBagConstraints gbc = new GridBagConstraints();

297. gbc.gridwidth = 1;

298. gbc.gridheight = 1;

299.

300. ResultSetMetaData rsmd = rs.getMetaData();

301. for (int i = 1; i <= rsmd.getColumnCount(); i++)

302. {

303. gbc.gridy = i - 1;

304.

305. String columnName = rsmd.getColumnLabel(i);

306. gbc.gridx = 0;

307. gbc.anchor = GridBagConstraints.EAST;

308. add(new JLabel(columnName), gbc);

309.

310. int columnWidth = rsmd.getColumnDisplaySize(i);

311. JTextField tb = new JTextField(columnWidth);

312. if (!rsmd.getColumnClassName(i).equals("java.lang.String"))

313. tb.setEditable(false);

314.

315. fields.add(tb);

316.

317. gbc.gridx = 1;

318. gbc.anchor = GridBagConstraints.WEST;

319. add(tb, gbc);

320. }

321. }

322.

323. /**

324. * Shows a database row by populating all text fields with the column values.

325. */

326. public void showRow(ResultSet rs) throws SQLException

327. {

328. for (int i = 1; i <= fields.size(); i++)

329. {

330. String field = rs.getString(i);

331. JTextField tb = (JTextField) fields.get(i - 1);

332. tb.setText(field);

333. }

334. }

335.

336. /**

337. * Updates changed data into the current row of the row set

338. */

339. public void setRow(RowSet rs) throws SQLException

340. {

341. for (int i = 1; i <= fields.size(); i++)

342. {

343. String field = rs.getString(i);

344. JTextField tb = (JTextField) fields.get(i - 1);

345. if (!field.equals(tb.getText()))

346. rs.updateString(i, tb.getText());

347. }

348. rs.updateRow();

349. }

350.

351. private ArrayList<JTextField> fields;

352. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.sql.Connection 1.1

DatabaseMetaData getMetaData()

returns the metadata for the connection as a DatabaseMetaData object.

java.sql.DatabaseMetaData 1.1

ResultSet getTables(String catalog, String schemaPattern, String

tableNamePattern, String types[])

returns a description of all tables in a catalog that match the schema and table name
patterns and the type criteria. (A schema describes a group of related tables and access
permissions. A catalog describes a related group of schemas. These concepts are important
for structuring large databases.)

The catalog and schemaPattern parameters can be "" to retrieve those tables without a
catalog or schema, or null to return tables regardless of catalog or schema.

The types array contains the names of the table types to include. Typical types are TABLE,

VIEW, SYSTEM TABLE, GLOBAL TEMPORARY, LOCAL TEMPORARY, ALIAS, and SYNONYM. If types is

null, then tables of all types are returned.

The result set has five columns, all of which are of type String, as shown in Table 4-8.

Table 4-8. The Result Set of the getTables Method

Column Name Explanation

1 TABLE_CAT Table catalog (may be null)

2 TABLE_SCHEM Table schema (may be null)

3 TABLE_NAME Table name

4 TABLE_TYPE Table type

5 REMARKS Comment on the table

int getJDBCMajorVersion() 1.4

int getJDBCMinorVersion() 1.4

returns the major or minor JDBC version numbers of the driver that established the database

connection. For example, a JDBC 3.0 driver has major version number 3 and minor version
number 0.

int getMaxConnections()

returns the maximum number of concurrent connections allowed to this database.

int getMaxStatements()

returns the maximum number of concurrently open statements allowed per database
connection, or 0 if the number is unlimited or unknown.

java.sql.ResultSet 1.1

ResultSetMetaData getMetaData()

returns the metadata associated with the current ResultSet columns.

java.sql.ResultSetMetaData 1.1

int getColumnCount()

returns the number of columns in the current ResultSet object.

int getColumnDisplaySize(int column)

returns the maximum width of the column specified by the index parameter.

Parameters: column The column number

String getColumnLabel(int column)

returns the suggested title for the column.

Parameters: column The column number

String getColumnName(int column)

returns the column name associated with the column index specified.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Parameters: column The column number

Transactions

You can group a set of statements to form a transaction. The transaction can be committed when all has gone
well. Or, if an error has occurred in one of them, it can be rolled back as if none of the statements had been
issued.

The major reason for grouping statements into transactions is database integrity. For example, suppose we
want to transfer money from one bank account to another. Then, it is important that we simultaneously debit
one account and credit another. If the system fails after debiting the first account but before crediting the other
account, the debit needs to be undone.

If you group update statements to a transaction, then the transaction either succeeds in its entirety and it can
be committed, or it fails somewhere in the middle. In that case, you can carry out a rollback and the database
automatically undoes the effect of all updates that occurred since the last committed transaction.

By default, a database connection is in autocommit mode, and each SQL statement is committed to the
database as soon as it is executed. Once a statement is committed, you cannot roll it back. Turn off this default
when you use transactions:

conn.setAutoCommit(false);

Create a statement object in the normal way:

Statement stat = conn.createStatement();

Call executeUpdate any number of times:

stat.executeUpdate(command1);

stat.executeUpdate(command2);

stat.executeUpdate(command3);

. . .

If all statements have been executed without error, call the commit method:

conn.commit();

However, if an error occurred, call

conn.rollback();

Then, all statements until the last commit are automatically reversed. You typically issue a rollback when your
transaction was interrupted by a SQLException.

Save Points

With some drivers, you can gain finer-grained control over the rollback process by using save points. Creating a
save point marks a point to which you can later return without having to abandon the entire transaction. For
example,

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
Statement stat = conn.createStatement(); // start transaction; rollback() goes here

stat.executeUpdate(command1);

Savepoint svpt = conn.setSavepoint(); // set savepoint; rollback(svpt) goes here

stat.executeUpdate(command2);

if (. . .) conn.rollback(svpt); // undo effect of command2
. . .

conn.commit();

When you no longer need a save point, you should release it:

conn.releaseSavepoint(svpt);

Batch Updates

Suppose a program needs to execute many INSERT statements to populate a database table. You can improve
the performance of the program by using a batch update. In a batch update, a sequence of statements is
collected and submitted as a batch.

Note

Use the supportsBatchUpdates method of the DatabaseMetaData class to find out

if your database supports this feature.

The statements in a batch can be actions such as INSERT, UPDATE, and DELETE as well as data definition

statements such as CREATE TABLE and DROP TABLE. An exception is thrown if you add a SELECT statement to a
batch. (Conceptually, a SELECT statement makes no sense in a batch because it returns a result set without

updating the database.)

To execute a batch, you first create a Statement object in the usual way:

Statement stat = conn.createStatement();

Now, instead of calling executeUpdate, you call the addBatch method:

String command = "CREATE TABLE . . ."
stat.addBatch(command);

while (. . .)

{

 command = "INSERT INTO . . . VALUES (" + . . . + ")";

 stat.addBatch(command);

}

Finally, you submit the entire batch:

int[] counts = stat.executeBatch();

The call to executeBatch returns an array of the row counts for all submitted statements.

For proper error handling in batch mode, you want to treat the batch execution as a single transaction. If a
batch fails in the middle, you want to roll back to the state before the beginning of the batch.

First, turn autocommit mode off, then collect the batch, execute it, commit it, and finally restore the original
autocommit mode:java.sql.Connection 1.1

boolean autoCommit = conn.getAutoCommit();

conn.setAutoCommit(false);

Statement stat = conn.getStatement();

. . .

// keep calling stat.addBatch(. . .);

. . .
stat.executeBatch();

conn.commit();

conn.setAutoCommit(autoCommit);

java.sql.Connection 1.1

boolean getAutoCommit()

void setAutoCommit(boolean b)

gets or sets the autocommit mode of this connection to b. If autocommit

is true, all statements are committed as soon as their execution is

completed.

void commit()

commits all statements that were issued since the last commit.

void rollback()

undoes the effect of all statements that were issued since the last
commit.

Savepoint setSavepoint() 1.4

Savepoint setSavepoint(String name) 1.4

sets an unnamed or named save point.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void rollback(Savepoint svpt) 1.4

rolls back until the given save point.

void releaseSavepoint(Savepoint svpt) 1.4

releases the given save point.

java.sql.Savepoint 1.4

int getSavepointId()

gets the ID of this unnamed save point, or throws a SQLException if this

is a named save point.

String getSavepointName()

gets the name of this save point, or throws a SQLException if this is an

unnamed save point.

java.sql.Statement 1.1

void addBatch(String command) 1.2

adds the command to the current batch of commands for this statement.

int[] executeBatch() 1.2

executes all commands in the current batch. Each value in the returned
array corresponds to one of the batch statements. If it is nonnegative, it
is a row count. If it is the value SUCCESS_NO_INFO, the statement

succeeded, but no row count is available. If it is EXECUTE_FAILED, then

the statement failed.

java.sql.DatabaseMetaData 1.1

boolean supportsBatchUpdates() 1.2

returns true if the driver supports batch updates.

Advanced SQL Types

Table 4-9 lists the SQL data types supported by JDBC and their equivalents in the Java programming language.

Table 4-9. SQL Data Types and Their Corresponding Java Types

SQL Data Type Java Data Type

INTEGER or INT int

SMALLINT short

NUMERIC(m,n), DECIMAL(m,n) or DEC(m,n) java.math.BigDecimal

FLOAT(n) double

REAL float

DOUBLE double

CHARACTER(n) or CHAR(n) String

VARCHAR(n), LONG VARCHAR String

BOOLEAN boolean

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

BLOB java.sql.Blob

CLOB java.sql.Clob

ARRAY java.sql.Array

ROWID java.sql.RowId

NCHAR(n), NVARCHAR(n), LONG NVARCHAR String

NCLOB java.sql.NClob

SQLXML java.sql.SQLXML

A SQL ARRAY is a sequence of values. For example, in a Student table, you can have a Scores column that is an

ARRAY OF INTEGER. The getArray method returns an object of the interface type java.sql.Array. That

interface has methods to fetch the array values.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

When you get a LOB or an array from a database, the actual contents are fetched from the database only when
you request individual values. This is a useful performance enhancement, as the data can be quite voluminous.

Some databases support ROWID values that describe the location of a row such that it can be retrieved very

rapidly. JDBC 4 introduced an interface java.sql.RowId and supplied methods to supply the row ID in queries

and retrieve it from results.

A national character string (NCHAR and its variants) stores strings in a local character encoding and sorts them

using a local sorting convention. JDBC 4 provided methods for converting between Java String objects and

national character strings in queries and results.

Some databases can store user-defined structured types. JDBC 3 provided a mechanism for automatically
mapping structured SQL types to Java objects.

Some databases provide native storage for XML data. JDBC 4 introduced a SQLXML interface that can mediate

between the internal XML representation and the DOM Source/Result intefaces, as well as binary streams. See
the API documentation for the SQLXML class for details.

We do not discuss these advanced SQL types any further. You can find more information on these topics in the
JDBC API Tutorial and Reference and the JDBC 4 specifications.

Connection Management in Web and Enterprise Applications

The simplistic database connection setup with a database.properties file, as described in the preceding

sections, is suitable for small test programs, but it won't scale for larger applications.

When a JDBC application is deployed in a web or enterprise environment, the management of database
connections is integrated with the JNDI. The properties of data sources across the enterprise can be stored in a
directory. Using a directory allows for centralized management of user names, passwords, database names, and
JDBC URLs.

In such an environment, you use the following code to establish a database connection:

Code View:
Context jndiContext = new InitialContext();

DataSource source = (DataSource) jndiContext.lookup("java:comp/env/jdbc/corejava");

Connection conn = source.getConnection();

Note that the DriverManager is no longer involved. Instead, the JNDI service locates a data source. A data
source is an interface that allows for simple JDBC connections as well as more advanced services, such as
executing distributed transactions that involve multiple databases. The DataSource interface is defined in the

javax.sql standard extension package.

Note

In a Java EE 5 container, you don't even have to program the JNDI lookup. Simply
use the Resource annotation on a DataSource field, and the data source reference

will be set when your application is loaded:

@Resource("jdbc/corejava")

private DataSource source;

Of course, the data source needs to be configured somewhere. If you write database programs that execute in a
servlet container such as Apache Tomcat or in an application server such as GlassFish, then you place the
database configuration (including the JNDI name, JDBC URL, user name, and password) in a configuration file,
or you set it in an admin GUI.

Management of user names and logins is just one of the issues that require special attention. A second issue
involves the cost of establishing database connections. Our sample database programs used two strategies for
obtaining a database connection. The QueryDB program in Listing 4-3 established a single database connection

at the start of the program and closed it at the end of the program. The ViewDB program in Listing 4-4 opened a

new connection whenever one was needed.

However, neither of these approaches is satisfactory. Database connections are a finite resource. If a user walks
away from an application for some time, the connection should not be left open. Conversely, obtaining a

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

connection for each query and closing it afterward is very costly.

The solution is to pool the connections. This means that database connections are not physically closed but are
kept in a queue and reused. Connection pooling is an important service, and the JDBC specification provides
hooks for implementors to supply it. However, the JDK itself does not provide any implementation, and
database vendors don't usually include one with their JDBC driver either. Instead, vendors of web containers
and application servers supply connection pool implementations.

Using a connection pool is completely transparent to the programmer. You acquire a connection from a source
of pooled connections by obtaining a data source and calling getConnection. When you are done using the

connection, call close. That doesn't close the physical connection but tells the pool that you are done using it.

The connection pool typically makes an effort to pool prepared statements as well.

You have now learned about the JDBC fundamentals and know enough to implement simple database
applications. However, as we mentioned at the beginning of this chapter, databases are complex and quite a
few advanced topics are beyond the scope of this introductory chapter. For an overview of advanced JDBC
capabilities, refer to the JDBC API Tutorial and Reference or the JDBC specifications.

Introduction to LDAP

In the preceding sections, you have seen how to interact with a relational database. In this section, we briefly
look at hierarchical databases that use LDAP, the Lightweight Directory Access Protocol. This section is adapted
from Core JavaServer Faces, 2nd ed., by Geary and Horstmann (Prentice Hall PTR 2007).

A hierarchical database is preferred over a relational database when the application data naturally follows a tree
structure and when read operations greatly outnumber write operations. LDAP is most commonly used for the
storage of directories that contain data such as user names, passwords, and permissions.

Note

For an in-depth discussion of LDAP, we recommend the "LDAP bible": Understanding
and Deploying LDAP Directory Services, 2nd ed., by Timothy Howes et al.
(AddisonWesley Professional 2003).

An LDAP directory keeps all data in a tree structure, not in a set of tables as a relational database would. Each
entry in the tree has the following:

Zero or more attributes. An attribute has an ID and a value. An example attribute is cn=John Q. Public.

(The ID cn stores the "common name." See Table 4-10 for the meaning of commonly used LDAP

attributes.)

Table 4-10. Commonly Used LDAP Attributes

Attribute ID Meaning

dc Domain component

cn Common name

sn Surname

dn Distinguished name

o Organization

ou Organizational unit

uid Unique identifier

One or more object classes. An object class defines the set of required and optional attributes for this
element. For example, the object class person defines a required attribute cn and an optional attribute

telephoneNumber. Of course, the object classes are different from Java classes, but they also support a

notion of inheritance. For example, organizationalPerson is a subclass of person with additional

attributes.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

A distinguished name (for example, uid=jqpublic,ou=people,dc=mycompany,dc=com). A distinguished

name is a sequence of attributes that trace a path joining the entry with the root of the tree. There might
be alternate paths, but one of them must be specified as distinguished.

Figure 4-9 on the following page shows an example of a directory tree.

Figure 4-9. A directory tree

[View full size image]

How to organize a directory tree, and what information to put in it, can be a matter of intense debate. We do
not discuss the issues here. Instead, we simply assume that an organizational scheme has been established and
that the directory has been populated with the relevant user data.

Configuring an LDAP Server

You have several options for running an LDAP server to try out the programs in this section. Here are the most
common choices:

IBM Tivoli Directory Server

Microsoft Active Directory

Novell eDirectory

OpenLDAP

Sun Java System Directory Server for Solaris

We give you brief instructions for configuring OpenLDAP (http://openldap.org), a free server available for Linux
and Windows and built into Mac OS X. If you use another directory server, the basic steps are similar.

If you use OpenLDAP, you need to edit the slapd.conf file before starting the LDAP server. (On Linux, the

default location for the slapd.conf file is /etc/ldap, /etc/openldap, or /usr/local/etc/openldap.) Edit the

suffix entry in slapd.conf to match the sample data set. This entry specifies the distinguished name suffix for

this server. It should read

suffix "dc=mycompany,dc=com"

You also need to configure an LDAP user with administrative rights to edit the directory data. In OpenLDAP, add
these lines to slapd.conf:

rootdn "cn=Manager,dc=mycompany,dc=com"

rootpw secret

We recommend that you specify authorization settings, although they are not strictly necessary for running the
examples in this section. The following settings in slapd.conf permit the Manager user to read and write
passwords, and everyone else to read all other attributes.

access to attr=userPassword

 by dn.base="cn=Manager,dc=mycompany,dc=com" write

 by self write
 by * none

access to *

 by dn.base="cn=Manager,dc=mycompany,dc=com" write

 by self write

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://openldap.org

 by * read

You can now start the LDAP server. On Linux, run the slapd service (typically in the /usr/sbin or

/usr/local/libexec directory).

Next, populate the server with the sample data. Most LDAP servers allow the import of Lightweight Directory
Interchange Format (LDIF) data. LDIF is a human-readable format that simply lists all directory entries,
including their distinguished names, object classes, and attributes. Listing 4-5 shows an LDIF file that describes
our sample data.

For example, with OpenLDAP, you use the ldapadd tool to add the data to the directory:

ldapadd -f sample.ldif -x -D "cn=Manager,dc=mycompany,dc=com" -w secret

Listing 4-5. sample.ldif

Code View:
 1. # Define top-level entry

 2. dn: dc=mycompany,dc=com

 3. objectClass: dcObject

 4. objectClass: organization

 5. dc: mycompany

 6. o: Core Java Team

 7.

 8. # Define an entry to contain people

 9. # searches for users are based on this entry

10. dn: ou=people,dc=mycompany,dc=com

11. objectClass: organizationalUnit

12. ou: people

13.

14. # Define a user entry for John Q. Public

15. dn: uid=jqpublic,ou=people,dc=mycompany,dc=com

16. objectClass: person

17. objectClass: uidObject

18. uid: jqpublic

19. sn: Public

20. cn: John Q. Public

21. telephoneNumber: +1 408 555 0017

22. userPassword: wombat

23.

24. # Define a user entry for Jane Doe

25. dn: uid=jdoe,ou=people,dc=mycompany,dc=com

26. objectClass: person

27. objectClass: uidObject

28. uid: jdoe

29. sn: Doe

30. cn: Jane Doe

31. telephoneNumber: +1 408 555 0029

32. userPassword: heffalump

33.

34. # Define an entry to contain LDAP groups

35. # searches for roles are based on this entry

36. dn: ou=groups,dc=mycompany,dc=com

37. objectClass: organizationalUnit

38. ou: groups

39.

40. # Define an entry for the "techstaff" group

41. dn: cn=techstaff,ou=groups,dc=mycompany,dc=com

42. objectClass: groupOfUniqueNames

43. cn: techstaff

44. uniqueMember: uid=jdoe,ou=people,dc=mycompany,dc=com

45.

46. # Define an entry for the "staff" group

47. dn: cn=staff,ou=groups,dc=mycompany,dc=com

48. objectClass: groupOfUniqueNames

49. cn: staff

50. uniqueMember: uid=jqpublic,ou=people,dc=mycompany,dc=com

51. uniqueMember: uid=jdoe,ou=people,dc=mycompany,dc=com

Before proceeding, it is a good idea to double-check that the directory contains the data that you need. We
suggest that you download JXplorer (http://www.jxplorer.org) or Jarek Gawor's LDAP Browser/Editor
(http://www-unix.mcs.anl.gov/~gawor/ldap). These convenient Java programs let you browse the contents of
any LDAP server. Supply the following options:

Host: localhost

Port: 389

Base DN: dc=mycompany,dc=com

User DN: cn=Manager,dc=mycompany,dc=com

Password: secret

Make sure the LDAP server has started, then connect. If everything is in order, you should see a directory tree
similar to that shown in Figure 4-10.

Figure 4-10. Inspecting an LDAP directory tree

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.jxplorer.org
http://www-unix.mcs.anl.gov/~gawor/ldap

Accessing LDAP Directory Information

Once your LDAP database is populated, connect to it with a Java program. Start by getting a directory context
to the LDAP directory, with the following incantation:

Hashtable env = new Hashtable();

env.put(Context.SECURITY_PRINCIPAL, username);

env.put(Context.SECURITY_CREDENTIALS, password);

DirContext initial = new InitialDirContext(env);

DirContext context = (DirContext) initial.lookup("ldap://localhost:389");

Here, we connect to the LDAP server at the local host. The port number 389 is the default LDAP port.

If you connect to the LDAP database with an invalid user/password combination, an AuthenticationException
is thrown.

Note

Sun's JNDI tutorial suggests an alternative way to connect to the server:

Code View:
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://localhost:389");

env.put(Context.SECURITY_PRINCIPAL, userDN);

env.put(Context.SECURITY_CREDENTIALS, password);

DirContext context = new InitialDirContext(env);

However, it seems undesirable to hardwire the Sun LDAP provider into your code. JNDI has
an elaborate mechanism for configuring providers, and you should not lightly bypass it.

To list the attributes of a given entry, specify its distinguished name and then use the getAttributes method:

Code View:
Attributes attrs = context.getAttributes("uid=jqpublic,ou=people,dc=mycompany,dc=com");

You can get a specific attribute with the get method, for example,

Attribute commonNameAttribute = attrs.get("cn");

To enumerate all attributes, you use the NamingEnumeration class. The designers of this class felt that they too

could improve on the standard Java iteration protocol, and they gave us this usage pattern:

NamingEnumeration<? extends Attribute> attrEnum = attrs.getAll();

while (attrEnum.hasMore())
{

 Attribute attr = attrEnum.next();

 String id = attr.getID();

 . . .
}

Note the use of hasMore instead of hasNext.

If you know that an attribute has a single value, you can call the get method to retrieve it:

String commonName = (String) commonNameAttribute.get();

If an attribute can have multiple values, you need to use another NamingEnumeration to list them all:

NamingEnumeration<?> valueEnum = attr.getAll();

while (valueEnum.hasMore())

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

{

 Object value = valueEnum.next();

 . . .
}

Note

As of Java SE 5.0, NamingEnumeration is a generic type. The type bound <?

extends Attribute> means that the enumeration yields objects of some subtype of

Attribute. Therefore, you don't need to cast the value that next returns—it has

type Attribute. However, a NamingEnumeration<?> has no idea what it

enumerates. Its next method returns an Object.

You now know how to query the directory for user data. Next, let us take up operations for modifying the
directory contents.

To add a new entry, gather the set of attributes in a BasicAttributes object. (The BasicAttributes class

implements the Attributes interface.)

Attributes attrs = new BasicAttributes();

attrs.put("uid", "alee");
attrs.put("sn", "Lee");

attrs.put("cn", "Amy Lee");

attrs.put("telephoneNumber", "+1 408 555 0033");

String password = "woozle";

attrs.put("userPassword", password.getBytes());

// the following attribute has two values

Attribute objclass = new BasicAttribute("objectClass");

objclass.add("uidObject");
objclass.add("person");

attrs.put(objclass);

Then call the createSubcontext method. Provide the distinguished name of the new entry and the attribute set.

context.createSubcontext("uid=alee,ou=people,dc=mycompany,dc=com", attrs);

Caution

When assembling the attributes, remember that the attributes are checked against
the schema. Don't supply unknown attributes, and be sure to supply all attributes
that are required by the object class. For example, if you omit the sn of person, the

createSubcontext method will fail.

To remove an entry, call the destroySubcontext method:

context.destroySubcontext("uid=alee,ou=people,dc=mycompany,dc=com");

Finally, you might want to edit the attributes of an existing entry with this call:

context.modifyAttributes(distinguishedName, flag, attrs);

The flag parameter is one of the three constants ADD_ATTRIBUTE, REMOVE_ATTRIBUTE, or REPLACE_ATTRIBUTE

defined in the DirContext class. The attrs parameter contains a set of the attributes to be added, removed, or

replaced.

Conveniently, the BasicAttributes(String, Object) constructor constructs an attribute set with a single

attribute. For example,

context.modifyAttributes("uid=alee,ou=people,dc=mycompany,dc=com",

 DirContext.ADD_ATTRIBUTE,
 new BasicAttributes("title", "CTO"));

context.modifyAttributes("uid=alee,ou=people,dc=mycompany,dc=com",

 DirContext.REMOVE_ATTRIBUTE,

 new BasicAttributes("telephoneNumber", "+1 408 555 0033"));

context.modifyAttributes("uid=alee,ou=people,dc=mycompany,dc=com",

 DirContext.REPLACE_ATTRIBUTE,
 new BasicAttributes("userPassword", password.getBytes()));

Finally, when you are done with a context, you should close it:

context.close();

The program in Listing 4-6 demonstrates how to access a hierarchical database through LDAP. The program lets
you view, modify, and delete information in a database with the sample data in Listing 4-5.

Enter a uid into the text field and click the Find button to find an entry. If you edit the entry and click Save,

your changes are saved. If you edited the uid field, a new entry is created. Otherwise, the existing entry is

updated. You can also delete the entry by clicking the Delete button (see Figure 4-11).

Figure 4-11. Accessing a hierarchical database

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Here is a brief description of the program:

The configuration for the LDAP server is contained in the file ldapserver.properties. The file defines the

URL, user name, and password of the server, like this:

ldap.username=cn=Manager,dc=mycompany,dc=com

ldap.password=secret

ldap.url=ldap://localhost:389

The getContext method reads the file and obtains the directory context.

When the user clicks the Find button, the findEntry method fetches the attribute set for the entry with

the given uid. The attribute set is used to construct a new DataPanel.

The DataPanel constructor iterates over the attribute set and adds a label and text field for each ID/value

pair.

When the user clicks the Delete button, the deleteEntry method deletes the entry with the given uid and

discards the data panel.

When the user clicks the Save button, the DataPanel constructs a BasicAttributes object with the

current contents of the text fields. The saveEntry method checks whether the uid has changed. If the

user edited the uid, a new entry is created. Otherwise, the modified attributes are updated. The

modification code is simple because we have only one attribute with multiple values, namely,
objectClass. In general, you would need to work harder to handle multiple values for each attribute.

Similar to the program in Listing 4-4, we close the directory context when the frame window is closing.

You now know enough about directory operations to carry out the tasks that you will commonly need when
working with LDAP directories. A good source for more advanced information is the JNDI tutorial at
http://java.sun.com/products/jndi/tutorial.

http://java.sun.com/products/jndi/tutorial

Listing 4-6. LDAPTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import java.util.*;

 5. import javax.naming.*;

 6. import javax.naming.directory.*;

 7. import javax.swing.*;

 8.

 9. /**

 10. * This program demonstrates access to a hierarchical database through LDAP

 11. * @version 1.01 2007-06-28

 12. * @author Cay Horstmann

 13. */

 14. public class LDAPTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. JFrame frame = new LDAPFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. /**

 31. * The frame that holds the data panel and the navigation buttons.

 32. */

 33. class LDAPFrame extends JFrame

 34. {

 35. public LDAPFrame()

 36. {

 37. setTitle("LDAPTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. JPanel northPanel = new JPanel();

 41. northPanel.setLayout(new java.awt.GridLayout(1, 2, 3, 1));

 42. northPanel.add(new JLabel("uid", SwingConstants.RIGHT));

 43. uidField = new JTextField();

 44. northPanel.add(uidField);

 45. add(northPanel, BorderLayout.NORTH);

 46.

 47. JPanel buttonPanel = new JPanel();

 48. add(buttonPanel, BorderLayout.SOUTH);

 49.

 50. findButton = new JButton("Find");

 51. findButton.addActionListener(new ActionListener()

 52. {

 53. public void actionPerformed(ActionEvent event)

 54. {

 55. findEntry();

 56. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 57. });

 58. buttonPanel.add(findButton);

 59.

 60. saveButton = new JButton("Save");

 61. saveButton.addActionListener(new ActionListener()

 62. {

 63. public void actionPerformed(ActionEvent event)

 64. {

 65. saveEntry();

 66. }

 67. });

 68. buttonPanel.add(saveButton);

 69.

 70. deleteButton = new JButton("Delete");

 71. deleteButton.addActionListener(new ActionListener()

 72. {

 73. public void actionPerformed(ActionEvent event)

 74. {

 75. deleteEntry();

 76. }

 77. });

 78. buttonPanel.add(deleteButton);

 79.

 80. addWindowListener(new WindowAdapter()

 81. {

 82. public void windowClosing(WindowEvent event)

 83. {

 84. try

 85. {

 86. if (context != null) context.close();

 87. }

 88. catch (NamingException e)

 89. {

 90. e.printStackTrace();

 91. }

 92. }

 93. });

 94. }

 95.

 96. /**

 97. * Finds the entry for the uid in the text field.

 98. */

 99. public void findEntry()

100. {

101. try

102. {

103. if (scrollPane != null) remove(scrollPane);

104. String dn = "uid=" + uidField.getText() + ",ou=people,dc=mycompany,dc=com";

105. if (context == null) context = getContext();

106. attrs = context.getAttributes(dn);

107. dataPanel = new DataPanel(attrs);

108. scrollPane = new JScrollPane(dataPanel);

109. add(scrollPane, BorderLayout.CENTER);

110. validate();

111. uid = uidField.getText();

112. }

113. catch (NamingException e)

114. {

115. JOptionPane.showMessageDialog(this, e);

116. }

117. catch (IOException e)

118. {

119. JOptionPane.showMessageDialog(this, e);

120. }

121. }

122.

123. /**

124. * Saves the changes that the user made.

125. */

126. public void saveEntry()

127. {

128. try

129. {

130. if (dataPanel == null) return;

131. if (context == null) context = getContext();

132. if (uidField.getText().equals(uid)) // update existing entry

133. {

134. String dn = "uid=" + uidField.getText() + ",ou=people,dc=mycompany,dc=com";

135. Attributes editedAttrs = dataPanel.getEditedAttributes();

136. NamingEnumeration<? extends Attribute> attrEnum = attrs.getAll();

137. while (attrEnum.hasMore())

138. {

139. Attribute attr = attrEnum.next();

140. String id = attr.getID();

141. Attribute editedAttr = editedAttrs.get(id);

142. if (editedAttr != null && !attr.get().equals(editedAttr.get())) context

143. .modifyAttributes(dn, DirContext.REPLACE_ATTRIBUTE,

144. new BasicAttributes(id, editedAttr.get()));

145. }

146. }

147. else

148. // create new entry

149. {

150. String dn = "uid=" + uidField.getText() + ",ou=people,dc=mycompany,dc=com";

151. attrs = dataPanel.getEditedAttributes();

152. Attribute objclass = new BasicAttribute("objectClass");

153. objclass.add("uidObject");

154. objclass.add("person");

155. attrs.put(objclass);

156. attrs.put("uid", uidField.getText());

157. context.createSubcontext(dn, attrs);

158. }

159.

160. findEntry();

161. }

162. catch (NamingException e)

163. {

164. JOptionPane.showMessageDialog(LDAPFrame.this, e);

165. e.printStackTrace();

166. }

167. catch (IOException e)

168. {

169. JOptionPane.showMessageDialog(LDAPFrame.this, e);

170. e.printStackTrace();

171. }

172. }

173.

174. /**

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

175. * Deletes the entry for the uid in the text field.

176. */

177. public void deleteEntry()

178. {

179. try

180. {

181. String dn = "uid=" + uidField.getText() + ",ou=people,dc=mycompany,dc=com";

182. if (context == null) context = getContext();

183. context.destroySubcontext(dn);

184. uidField.setText("");

185. remove(scrollPane);

186. scrollPane = null;

187. repaint();

188. }

189. catch (NamingException e)

190. {

191. JOptionPane.showMessageDialog(LDAPFrame.this, e);

192. e.printStackTrace();

193. }

194. catch (IOException e)

195. {

196. JOptionPane.showMessageDialog(LDAPFrame.this, e);

197. e.printStackTrace();

198. }

199. }

200.

201. /**

202. * Gets a context from the properties specified in the file ldapserver.properties

203. * @return the directory context

204. */

205. public static DirContext getContext() throws NamingException, IOException

206. {

207. Properties props = new Properties();

208. FileInputStream in = new FileInputStream("ldapserver.properties");

209. props.load(in);

210. in.close();

211.

212. String url = props.getProperty("ldap.url");

213. String username = props.getProperty("ldap.username");

214. String password = props.getProperty("ldap.password");

215.

216. Hashtable<String, String> env = new Hashtable<String, String>();

217. env.put(Context.SECURITY_PRINCIPAL, username);

218. env.put(Context.SECURITY_CREDENTIALS, password);

219. DirContext initial = new InitialDirContext(env);

220. DirContext context = (DirContext) initial.lookup(url);

221.

222. return context;

223. }

224.

225. public static final int DEFAULT_WIDTH = 300;

226. public static final int DEFAULT_HEIGHT = 200;

227.

228. private JButton findButton;

229. private JButton saveButton;

230. private JButton deleteButton;

231.

232. private JTextField uidField;

233. private DataPanel dataPanel;

234. private Component scrollPane;

235.

236. private DirContext context;

237. private String uid;

238. private Attributes attrs;

239. }

240.

241. /**

242. * This panel displays the contents of a result set.

243. */

244. class DataPanel extends JPanel

245. {

246. /**

247. * Constructs the data panel.

248. * @param attributes the attributes of the given entry

249. */

250. public DataPanel(Attributes attrs) throws NamingException

251. {

252. setLayout(new java.awt.GridLayout(0, 2, 3, 1));

253.

254. NamingEnumeration<? extends Attribute> attrEnum = attrs.getAll();

255. while (attrEnum.hasMore())

256. {

257. Attribute attr = attrEnum.next();

258. String id = attr.getID();

259.

260. NamingEnumeration<?> valueEnum = attr.getAll();

261. while (valueEnum.hasMore())

262. {

263. Object value = valueEnum.next();

264. if (id.equals("userPassword")) value = new String((byte[]) value);

265.

266. JLabel idLabel = new JLabel(id, SwingConstants.RIGHT);

267. JTextField valueField = new JTextField("" + value);

268. if (id.equals("objectClass")) valueField.setEditable(false);

269. if (!id.equals("uid"))

270. {

271. add(idLabel);

272. add(valueField);

273. }

274. }

275. }

276. }

277.

278. public Attributes getEditedAttributes()

279. {

280. Attributes attrs = new BasicAttributes();

281. for (int i = 0; i < getComponentCount(); i += 2)

282. {

283. JLabel idLabel = (JLabel) getComponent(i);

284. JTextField valueField = (JTextField) getComponent(i + 1);

285. String id = idLabel.getText();

286. String value = valueField.getText();

287. if (id.equals("userPassword")) attrs.put("userPassword", value.getBytes());

288. else if (!id.equals("") && !id.equals("objectClass")) attrs.put(id, value);

289. }

290. return attrs;

291. }

292. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.naming.directory.InitialDirContext 1.3

InitialDirContext(Hashtable env)

constructs a directory context, using the given environment settings. The
hash table can contain bindings for Context.SECURITY_PRINCIPAL,

Context.SECURITY_CREDENTIALS, and other keys—see the API

documentation for the javax.naming.Context interface for details.

javax.naming.Context 1.3

Object lookup(String name)

looks up the object with the given name. The return value depends on
the nature of this context. It commonly is a subtree context or a leaf
object.

Context createSubcontext(String name)

creates a subcontext with the given name. The subcontext becomes a
child of this context. All path components of the name, except for the
last one, must exist.

void destroySubcontext(String name)

destroys the subcontext with the given name. All path components of
the name, except for the last one, must exist.

void close()

closes this context.

javax.naming.directory.DirContext 1.3

Attributes getAttributes(String name)

gets the attributes of the entry with the given name.

void modifyAttributes(String name, int flag, Attributes

modes)

modifies the attributes of the entry with the given name. The value flag

is one of DirContext.ADD_ATTRIBUTE, DirContext.REMOVE_ATTRIBUTE,
or DirContext.REPLACE_ATTRIBUTE.

javax.naming.directory.Attributes 1.3

Attribute get(String id)

gets the attribute with the given ID.

NamingEnumeration<? extends Attribute> getAll()

yields an enumeration that iterates through all attributes in this attribute
set.

Attribute put(Attribute attr)

Attribute put(String id, Object value)

adds an attribute to this attribute set.

javax.naming.directory.BasicAttributes 1.3

BasicAttributes(String id, Object value)

constructs an attribute set that contains a single attribute with the given
ID and value.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.naming.directory.Attribute 1.3

String getID()

gets the ID of this attribute.

Object get()

gets the first attribute value of this attribute if the values are ordered or
an arbitrary value if they are unordered.

NamingEnumeration<?> getAll()

yields an enumeration that iterates through all values of this attribute.

javax.naming.NamingEnumeration<T> 1.3

boolean hasMore()

returns true if this enumeration object has more elements.

T next()

returns the next element of this enumeration.

In this chapter, you have learned how to work with relational databases in Java, and you were introduced to
hierarchical databases. The next chapter covers the important topic of internationalization, showing you how to
make your software usable for customers around the world.

Chapter 5. Internationalization

LOCALES

NUMBER FORMATS

DATE AND TIME

COLLATION

MESSAGE FORMATTING

TEXT FILES AND CHARACTER SETS

RESOURCE BUNDLES

A COMPLETE EXAMPLE

There's a big world out there; we hope that lots of its inhabitants will be interested in your software. The
Internet, after all, effortlessly spans the barriers between countries. On the other hand, when you pay no
attention to an international audience, you are putting up a barrier.

The Java programming language was the first language designed from the ground up to support
internationalization. From the beginning, it had the one essential feature needed for effective
internationalization: It used Unicode for all strings. Unicode support makes it easy to write programs in the Java
programming language that manipulate strings in any one of multiple languages.

Many programmers believe that all they need to do to internationalize their application is to support Unicode
and to translate the messages in the user interface. However, as this chapter demonstrates, there is a lot more
to internationalizing programs than just Unicode support. Dates, times, currencies—even numbers—are
formatted differently in different parts of the world. You need an easy way to configure menu and button
names, message strings, and keyboard shortcuts for different languages.

In this chapter, we show you how to write internationalized Java applications and applets and how to localize
date, time, numbers, text, and GUIs. We show you tools that Java offers for writing internationalized programs.
We close this chapter with a complete example, a retirement calculator applet that can change how it displays
its results depending on the location of the machine that is downloading it.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

For additional information on internationalization, check out the informative web site
http://www.joconner.com/javai18n, as well as the official Sun site
http://java.sun.com/javase/technologies/core/basic/intl/.

Locales

When you look at an application that is adapted to an international market, the most obvious difference you
notice is the language. This observation is actually a bit too limiting for true internationalization: Countries can
share a common language, but you still might need to do some work to make computer users of both countries
happy.[1]

[1] "We have really everything in common with America nowadays, except, of course, language." Oscar Wilde.

In all cases, menus, button labels, and program messages will need to be translated to the local language; they
might also need to be rendered in a different script. There are many more subtle differences; for example,
numbers are formatted quite differently in English and in German. The number

123,456.78

should be displayed as

123.456,78

for a German user. That is, the role of the decimal point and the decimal comma separator are reversed. There
are similar variations in the display of dates. In the United States, dates are somewhat irrationally displayed as
month/day/year. Germany uses the more sensible order of day/month/year, whereas in China, the usage is
year/month/day. Thus, the date

3/22/61

should be presented as

22.03.1961

to a German user. Of course, if the month names are written out explicitly, then the difference in languages
becomes apparent. The English

http://www.joconner.com/javai18n
http://java.sun.com/javase/technologies/core/basic/intl/

March 22, 1961

should be presented as

22. März 1961

in German, or

1961 3 22

in Chinese.

There are several formatter classes that take these differences into account. To control the formatting, you use
the Locale class. A locale describes

A language.

Optionally, a location.

Optionally, a variant.

For example, in the United States, you use a locale with

language=English, location=United States.

In Germany, you use a locale with

language=German, location=Germany.

Switzerland has four official languages (German, French, Italian, and Rhaeto-Romance). A German speaker in
Switzerland would want to use a locale with

language=German, location=Switzerland

This locale would make formatting work similarly to how it would work for the German locale; however,
currency values would be expressed in Swiss francs, not German marks.

If you only specify the language, say,

language=German

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

then the locale cannot be used for country-specific issues such as currencies.

Variants are, fortunately, rare and are needed only for exceptional or system-dependent situations. For
example, the Norwegians are having a hard time agreeing on the spelling of their language (a derivative of
Danish). They use two spelling rule sets: a traditional one called Bokmål and a new one called Nynorsk. The
traditional spelling would be expressed as a variant

language=Norwegian, location=Norway, variant=Bokmål

To express the language and location in a concise and standardized manner, the Java programming language
uses codes that were defined by the International Organization for Standardization (ISO). The local language is
expressed as a lowercase two-letter code, following ISO 639-1, and the country code is expressed as an
uppercase two-letter code, following ISO 3166-1. Tables 5-1 and 5-2 show some of the most common codes.

Table 5-1. Common ISO 639-1 Language Codes

Language Code

Chinese zh

Danish da

Dutch nl

English en

French fr

Finnish fi

German de

Greek el

Italian it

Japanese ja

Korean ko

Norwegian no

Portuguese pt

Spanish sp

Swedish sv

Turkish tr

Table 5-2. Common ISO 3166-1 Country Codes

Country Code

Austria AT

Belgium BE

Country Code

Canada CA

China CN

Denmark DK

Finland FI

Germany DE

Great Britain GB

Greece GR

Ireland IE

Italy IT

Japan JP

Korea KR

The Netherlands NL

Norway NO

Portugal PT

Spain ES

Sweden SE

Switzerland CH

Taiwan TW

Turkey TR

United States US

Note

For a full list of ISO 639-1 codes, see, for example,
http://www.loc.gov/standards/iso639-2/php/code_list.php. You can find a full list of
the ISO 3166-1 codes at http://www.iso.org/iso/en/prods-
services/iso3166ma/02iso-3166-code-lists/index.html.

These codes do seem a bit random, especially because some of them are derived from local languages (German
= Deutsch = de, Chinese = zhongwen = zh), but at least they are standardized.

To describe a locale, you concatenate the language, country code, and variant (if any) and pass this string to
the constructor of the Locale class.

Canada CA

China CN

Denmark DK

Finland FI

Germany DE

Great Britain GB

Greece GR

Ireland IE

Italy IT

Japan JP

Korea KR

The Netherlands NL

Norway NO

Portugal PT

Spain ES

Sweden SE

Switzerland CH

Taiwan TW

Turkey TR

United States US

Note

For a full list of ISO 639-1 codes, see, for example,
http://www.loc.gov/standards/iso639-2/php/code_list.php. You can find a full list of
the ISO 3166-1 codes at http://www.iso.org/iso/en/prods-
services/iso3166ma/02iso-3166-code-lists/index.html.

These codes do seem a bit random, especially because some of them are derived from local languages (German
= Deutsch = de, Chinese = zhongwen = zh), but at least they are standardized.

To describe a locale, you concatenate the language, country code, and variant (if any) and pass this string to
the constructor of the Locale class.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/en/prods-
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/en/prods-

Locale german = new Locale("de");

Locale germanGermany = new Locale("de", "DE");

Locale germanSwitzerland = new Locale("de", "CH");
Locale norwegianNorwayBokmål = new Locale("no", "NO", "B");

For your convenience, Java SE predefines a number of locale objects:

Locale.CANADA

Locale.CANADA_FRENCH

Locale.CHINA

Locale.FRANCE

Locale.GERMANY

Locale.ITALY

Locale.JAPAN
Locale.KOREA

Locale.PRC

Locale.TAIWAN

Locale.UK

Locale.US

Java SE also predefines a number of language locales that specify just a language without a location:

Locale.CHINESE

Locale.ENGLISH

Locale.FRENCH

Locale.GERMAN
Locale.ITALIAN

Locale.JAPANESE

Locale.KOREAN

Locale.SIMPLIFIED_CHINESE

Locale.TRADITIONAL_CHINESE

Besides constructing a locale or using a predefined one, you have two other methods for obtaining a locale
object.

The static getDefault method of the Locale class initially gets the default locale as stored by the local

operating system. You can change the default Java locale by calling setDefault; however, that change only
affects your program, not the operating system. Similarly, in an applet, the getLocale method returns the

locale of the user viewing the applet.

Finally, all locale-dependent utility classes can return an array of the locales they support. For example,

Locale[] supportedLocales = DateFormat.getAvailableLocales();

returns all locales that the DateFormat class can handle.

Tip

For testing, you might want to switch the default locale of your program. Supply
language and region properties when you launch your program. For example, here
we set the default locale to German (Switzerland):

java -Duser.language=de -Duser.region=CH Program

Once you have a locale, what can you do with it? Not much, as it turns out. The only useful methods in the
Locale class are the ones for identifying the language and country codes. The most important one is

getDisplayName. It returns a string describing the locale. This string does not contain the cryptic two-letter

codes, but it is in a form that can be presented to a user, such as

German (Switzerland)

Actually, there is a problem here. The display name is issued in the default locale. That might not be
appropriate. If your user already selected German as the preferred language, you probably want to present the
string in German. You can do just that by giving the German locale as a parameter: The code

Locale loc = new Locale("de", "CH");

System.out.println(loc.getDisplayName(Locale.GERMAN));

prints

Deutsch (Schweiz)

This example shows why you need Locale objects. You feed it to locale-aware methods that produce text that is

presented to users in different locations. You can see many examples in the following sections.

java.util.Locale 1.1

Locale(String language)

Locale(String language, String country)

Locale(String language, String country, String variant)

constructs a locale with the given language, country, and variant.

static Locale getDefault()

returns the default locale.

static void setDefault(Locale loc)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

sets the default locale.

String getDisplayName()

returns a name describing the locale, expressed in the current locale.

String getDisplayName(Locale loc)

returns a name describing the locale, expressed in the given locale.

String getLanguage()

returns the language code, a lowercase two-letter ISO-639 code.

String getDisplayLanguage()

returns the name of the language, expressed in the current locale.

String getDisplayLanguage(Locale loc)

returns the name of the language, expressed in the given locale.

String getCountry()

returns the country code as an uppercase two-letter ISO-3166 code.

String getDisplayCountry()

returns the name of the country, expressed in the current locale.

String getDisplayCountry(Locale loc)

returns the name of the country, expressed in the given locale.

String getVariant()

returns the variant string.

String getDisplayVariant()

returns the name of the variant, expressed in the current locale.

String getDisplayVariant(Locale loc)

returns the name of the variant, expressed in the given locale.

String toString()

returns a description of the locale, with the language, country, and
variant separated by underscores (e.g., "de_CH").

java.awt.Applet 1.0

Locale getLocale() [1.1]

gets the locale for this applet.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 5. Internationalization

LOCALES

NUMBER FORMATS

DATE AND TIME

COLLATION

MESSAGE FORMATTING

TEXT FILES AND CHARACTER SETS

RESOURCE BUNDLES

A COMPLETE EXAMPLE

There's a big world out there; we hope that lots of its inhabitants will be interested in your software. The
Internet, after all, effortlessly spans the barriers between countries. On the other hand, when you pay no
attention to an international audience, you are putting up a barrier.

The Java programming language was the first language designed from the ground up to support
internationalization. From the beginning, it had the one essential feature needed for effective
internationalization: It used Unicode for all strings. Unicode support makes it easy to write programs in the Java
programming language that manipulate strings in any one of multiple languages.

Many programmers believe that all they need to do to internationalize their application is to support Unicode
and to translate the messages in the user interface. However, as this chapter demonstrates, there is a lot more
to internationalizing programs than just Unicode support. Dates, times, currencies—even numbers—are
formatted differently in different parts of the world. You need an easy way to configure menu and button
names, message strings, and keyboard shortcuts for different languages.

In this chapter, we show you how to write internationalized Java applications and applets and how to localize
date, time, numbers, text, and GUIs. We show you tools that Java offers for writing internationalized programs.
We close this chapter with a complete example, a retirement calculator applet that can change how it displays
its results depending on the location of the machine that is downloading it.

Note

For additional information on internationalization, check out the informative web site
http://www.joconner.com/javai18n, as well as the official Sun site
http://java.sun.com/javase/technologies/core/basic/intl/.

Locales

When you look at an application that is adapted to an international market, the most obvious difference you
notice is the language. This observation is actually a bit too limiting for true internationalization: Countries can
share a common language, but you still might need to do some work to make computer users of both countries
happy.[1]

[1] "We have really everything in common with America nowadays, except, of course, language." Oscar Wilde.

In all cases, menus, button labels, and program messages will need to be translated to the local language; they
might also need to be rendered in a different script. There are many more subtle differences; for example,
numbers are formatted quite differently in English and in German. The number

123,456.78

should be displayed as

123.456,78

for a German user. That is, the role of the decimal point and the decimal comma separator are reversed. There
are similar variations in the display of dates. In the United States, dates are somewhat irrationally displayed as
month/day/year. Germany uses the more sensible order of day/month/year, whereas in China, the usage is
year/month/day. Thus, the date

3/22/61

should be presented as

22.03.1961

to a German user. Of course, if the month names are written out explicitly, then the difference in languages
becomes apparent. The English

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.joconner.com/javai18n
http://java.sun.com/javase/technologies/core/basic/intl/

March 22, 1961

should be presented as

22. März 1961

in German, or

1961 3 22

in Chinese.

There are several formatter classes that take these differences into account. To control the formatting, you use
the Locale class. A locale describes

A language.

Optionally, a location.

Optionally, a variant.

For example, in the United States, you use a locale with

language=English, location=United States.

In Germany, you use a locale with

language=German, location=Germany.

Switzerland has four official languages (German, French, Italian, and Rhaeto-Romance). A German speaker in
Switzerland would want to use a locale with

language=German, location=Switzerland

This locale would make formatting work similarly to how it would work for the German locale; however,
currency values would be expressed in Swiss francs, not German marks.

If you only specify the language, say,

language=German

then the locale cannot be used for country-specific issues such as currencies.

Variants are, fortunately, rare and are needed only for exceptional or system-dependent situations. For
example, the Norwegians are having a hard time agreeing on the spelling of their language (a derivative of
Danish). They use two spelling rule sets: a traditional one called Bokmål and a new one called Nynorsk. The
traditional spelling would be expressed as a variant

language=Norwegian, location=Norway, variant=Bokmål

To express the language and location in a concise and standardized manner, the Java programming language
uses codes that were defined by the International Organization for Standardization (ISO). The local language is
expressed as a lowercase two-letter code, following ISO 639-1, and the country code is expressed as an
uppercase two-letter code, following ISO 3166-1. Tables 5-1 and 5-2 show some of the most common codes.

Table 5-1. Common ISO 639-1 Language Codes

Language Code

Chinese zh

Danish da

Dutch nl

English en

French fr

Finnish fi

German de

Greek el

Italian it

Japanese ja

Korean ko

Norwegian no

Portuguese pt

Spanish sp

Swedish sv

Turkish tr

Table 5-2. Common ISO 3166-1 Country Codes

Country Code

Austria AT

Belgium BE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Country Code

Canada CA

China CN

Denmark DK

Finland FI

Germany DE

Great Britain GB

Greece GR

Ireland IE

Italy IT

Japan JP

Korea KR

The Netherlands NL

Norway NO

Portugal PT

Spain ES

Sweden SE

Switzerland CH

Taiwan TW

Turkey TR

United States US

Note

For a full list of ISO 639-1 codes, see, for example,
http://www.loc.gov/standards/iso639-2/php/code_list.php. You can find a full list of
the ISO 3166-1 codes at http://www.iso.org/iso/en/prods-
services/iso3166ma/02iso-3166-code-lists/index.html.

These codes do seem a bit random, especially because some of them are derived from local languages (German
= Deutsch = de, Chinese = zhongwen = zh), but at least they are standardized.

To describe a locale, you concatenate the language, country code, and variant (if any) and pass this string to
the constructor of the Locale class.

Canada CA

China CN

Denmark DK

Finland FI

Germany DE

Great Britain GB

Greece GR

Ireland IE

Italy IT

Japan JP

Korea KR

The Netherlands NL

Norway NO

Portugal PT

Spain ES

Sweden SE

Switzerland CH

Taiwan TW

Turkey TR

United States US

Note

For a full list of ISO 639-1 codes, see, for example,
http://www.loc.gov/standards/iso639-2/php/code_list.php. You can find a full list of
the ISO 3166-1 codes at http://www.iso.org/iso/en/prods-
services/iso3166ma/02iso-3166-code-lists/index.html.

These codes do seem a bit random, especially because some of them are derived from local languages (German
= Deutsch = de, Chinese = zhongwen = zh), but at least they are standardized.

To describe a locale, you concatenate the language, country code, and variant (if any) and pass this string to
the constructor of the Locale class.

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/en/prods-
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/en/prods-

Locale german = new Locale("de");

Locale germanGermany = new Locale("de", "DE");

Locale germanSwitzerland = new Locale("de", "CH");
Locale norwegianNorwayBokmål = new Locale("no", "NO", "B");

For your convenience, Java SE predefines a number of locale objects:

Locale.CANADA

Locale.CANADA_FRENCH

Locale.CHINA

Locale.FRANCE

Locale.GERMANY

Locale.ITALY

Locale.JAPAN
Locale.KOREA

Locale.PRC

Locale.TAIWAN

Locale.UK

Locale.US

Java SE also predefines a number of language locales that specify just a language without a location:

Locale.CHINESE

Locale.ENGLISH

Locale.FRENCH

Locale.GERMAN
Locale.ITALIAN

Locale.JAPANESE

Locale.KOREAN

Locale.SIMPLIFIED_CHINESE

Locale.TRADITIONAL_CHINESE

Besides constructing a locale or using a predefined one, you have two other methods for obtaining a locale
object.

The static getDefault method of the Locale class initially gets the default locale as stored by the local

operating system. You can change the default Java locale by calling setDefault; however, that change only
affects your program, not the operating system. Similarly, in an applet, the getLocale method returns the

locale of the user viewing the applet.

Finally, all locale-dependent utility classes can return an array of the locales they support. For example,

Locale[] supportedLocales = DateFormat.getAvailableLocales();

returns all locales that the DateFormat class can handle.

Tip

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

For testing, you might want to switch the default locale of your program. Supply
language and region properties when you launch your program. For example, here
we set the default locale to German (Switzerland):

java -Duser.language=de -Duser.region=CH Program

Once you have a locale, what can you do with it? Not much, as it turns out. The only useful methods in the
Locale class are the ones for identifying the language and country codes. The most important one is

getDisplayName. It returns a string describing the locale. This string does not contain the cryptic two-letter

codes, but it is in a form that can be presented to a user, such as

German (Switzerland)

Actually, there is a problem here. The display name is issued in the default locale. That might not be
appropriate. If your user already selected German as the preferred language, you probably want to present the
string in German. You can do just that by giving the German locale as a parameter: The code

Locale loc = new Locale("de", "CH");

System.out.println(loc.getDisplayName(Locale.GERMAN));

prints

Deutsch (Schweiz)

This example shows why you need Locale objects. You feed it to locale-aware methods that produce text that is

presented to users in different locations. You can see many examples in the following sections.

java.util.Locale 1.1

Locale(String language)

Locale(String language, String country)

Locale(String language, String country, String variant)

constructs a locale with the given language, country, and variant.

static Locale getDefault()

returns the default locale.

static void setDefault(Locale loc)

sets the default locale.

String getDisplayName()

returns a name describing the locale, expressed in the current locale.

String getDisplayName(Locale loc)

returns a name describing the locale, expressed in the given locale.

String getLanguage()

returns the language code, a lowercase two-letter ISO-639 code.

String getDisplayLanguage()

returns the name of the language, expressed in the current locale.

String getDisplayLanguage(Locale loc)

returns the name of the language, expressed in the given locale.

String getCountry()

returns the country code as an uppercase two-letter ISO-3166 code.

String getDisplayCountry()

returns the name of the country, expressed in the current locale.

String getDisplayCountry(Locale loc)

returns the name of the country, expressed in the given locale.

String getVariant()

returns the variant string.

String getDisplayVariant()

returns the name of the variant, expressed in the current locale.

String getDisplayVariant(Locale loc)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

returns the name of the variant, expressed in the given locale.

String toString()

returns a description of the locale, with the language, country, and
variant separated by underscores (e.g., "de_CH").

java.awt.Applet 1.0

Locale getLocale() [1.1]

gets the locale for this applet.

Number Formats

We already mentioned how number and currency formatting is highly locale dependent. The Java library
supplies a collection of formatter objects that can format and parse numeric values in the java.text package.

You go through the following steps to format a number for a particular locale:

1. Get the locale object, as described in the preceding section.

2. Use a "factory method" to obtain a formatter object.

3. Use the formatter object for formatting and parsing.

The factory methods are static methods of the NumberFormat class that take a Locale argument. There are

three factory methods: getNumberInstance, getCurrencyInstance, and getPercentInstance. These methods

return objects that can format and parse numbers, currency amounts, and percentages, respectively. For
example, here is how you can format a currency value in German:

Locale loc = new Locale("de", "DE");

NumberFormat currFmt = NumberFormat.getCurrencyInstance(loc);

double amt = 123456.78;

String result = currFmt.format(amt);

The result is

123.456,78€

Note that the currency symbol is € and that it is placed at the end of the string. Also, note the reversal of
decimal points and decimal commas.

Conversely, to read in a number that was entered or stored with the conventions of a certain locale, use the
parse method. For example, the following code parses the value that the user typed into a text field. The parse
method can deal with decimal points and commas, as well as digits in other languages.

TextField inputField;

. . .

NumberFormat fmt = NumberFormat.getNumberInstance();

// get number formatter for default locale

Number input = fmt.parse(inputField.getText().trim());

double x = input.doubleValue();

The return type of parse is the abstract type Number. The returned object is either a Double or a Long wrapper

object, depending on whether the parsed number was a floating-point number. If you don't care about the
distinction, you can simply use the doubleValue method of the Number class to retrieve the wrapped number.

Caution

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Objects of type Number are not automatically unboxed—you cannot simply assign a

Number object to a primitive type. Instead, use the doubleValue or intValue

method.

If the text for the number is not in the correct form, the method throws a ParseException. For example,

leading whitespace in the string is not allowed. (Call trim to remove it.) However, any characters that follow the

number in the string are simply ignored, so no exception is thrown.

Note that the classes returned by the getXxxInstance factory methods are not actually of type NumberFormat.

The NumberFormat type is an abstract class, and the actual formatters belong to one of its subclasses. The

factory methods merely know how to locate the object that belongs to a particular locale.

You can get a list of the currently supported locales with the static getAvailableLocales method. That method

returns an array of the locales for which number formatter objects can be obtained.

The sample program for this section lets you experiment with number formatters (see Figure 5-1). The combo
box at the top of the figure contains all locales with number formatters. You can choose between number,
currency, and percentage formatters. Each time you make another choice, the number in the text field is
reformatted. If you go through a few locales, then you get a good impression of how many ways a number or
currency value can be formatted. You can also type a different number and click the Parse button to call the
parse method, which tries to parse what you entered. If your input is successfully parsed, then it is passed to

format and the result is displayed. If parsing fails, then a "Parse error" message is displayed in the text field.

Figure 5-1. The NumberFormatTest program

The code, shown in Listing 5-1, is fairly straightforward. In the constructor, we call
NumberFormat.getAvailableLocales. For each locale, we call getDisplayName, and we fill a combo box with

the strings that the getDisplayName method returns. (The strings are not sorted; we tackle this issue in the

"Collation" section beginning on page 318.) Whenever the user selects another locale or clicks one of the radio
buttons, we create a new formatter object and update the text field. When the user clicks the Parse button, we
call the parse method to do the actual parsing, based on the locale selected.

Listing 5-1. NumberFormatTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.text.*;

 4. import java.util.*;

 5.

 6. import javax.swing.*;

 7.

 8. /**

 9. * This program demonstrates formatting numbers under various locales.

 10. * @version 1.13 2007-07-25

 11. * @author Cay Horstmann

 12. */

 13. public class NumberFormatTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. JFrame frame = new NumberFormatFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame contains radio buttons to select a number format, a combo box to pick a locale,

 31. * a text field to display a formatted number, and a button to parse the text field contents.

 32. */

 33. class NumberFormatFrame extends JFrame

 34. {

 35. public NumberFormatFrame()

 36. {

 37. setLayout(new GridBagLayout());

 38.

 39. ActionListener listener = new ActionListener()

 40. {

 41. setTitle("NumberFormatTest");

 42. public void actionPerformed(ActionEvent event)

 43. {

 44. updateDisplay();

 45. }

 46. };

 47.

 48. JPanel p = new JPanel();

 49. addRadioButton(p, numberRadioButton, rbGroup, listener);

 50. addRadioButton(p, currencyRadioButton, rbGroup, listener);

 51. addRadioButton(p, percentRadioButton, rbGroup, listener);

 52.

 53. add(new JLabel("Locale:"), new GBC(0, 0).setAnchor(GBC.EAST));

 54. add(p, new GBC(1, 1));

 55. add(parseButton, new GBC(0, 2).setInsets(2));

 56. add(localeCombo, new GBC(1, 0).setAnchor(GBC.WEST));

 57. add(numberText, new GBC(1, 2).setFill(GBC.HORIZONTAL));

 58. locales = (Locale[]) NumberFormat.getAvailableLocales().clone();

 59. Arrays.sort(locales, new Comparator<Locale>()

 60. {

 61. public int compare(Locale l1, Locale l2)

 62. {

 63. return l1.getDisplayName().compareTo(l2.getDisplayName());

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 64. }

 65. });

 66. for (Locale loc : locales)

 67. localeCombo.addItem(loc.getDisplayName());

 68. localeCombo.setSelectedItem(Locale.getDefault().getDisplayName());

 69. currentNumber = 123456.78;

 70. updateDisplay();

 71.

 72. localeCombo.addActionListener(listener);

 73.

 74. parseButton.addActionListener(new ActionListener()

 75. {

 76. public void actionPerformed(ActionEvent event)

 77. {

 78. String s = numberText.getText().trim();

 79. try

 80. {

 81. Number n = currentNumberFormat.parse(s);

 82. if (n != null)

 83. {

 84. currentNumber = n.doubleValue();

 85. updateDisplay();

 86. }

 87. else

 88. {

 89. numberText.setText("Parse error: " + s);

 90. }

 91. }

 92. catch (ParseException e)

 93. {

 94. numberText.setText("Parse error: " + s);

 95. }

 96. }

 97. });

 98. pack();

 99. }

100.

101. /**

102. * Adds a radio button to a container.

103. * @param p the container into which to place the button

104. * @param b the button

105. * @param g the button group

106. * @param listener the button listener

107. */

108. public void addRadioButton(Container p, JRadioButton b, ButtonGroup g,

109. ActionListener listener)

110. {

111. b.setSelected(g.getButtonCount() == 0);

112. b.addActionListener(listener);

113. g.add(b);

114. p.add(b);

115. }

116.

117. /**

118. * Updates the display and formats the number according to the user settings.

119. */

120. public void updateDisplay()

121. {

122. Locale currentLocale = locales[localeCombo.getSelectedIndex()];

123. currentNumberFormat = null;

124. if (numberRadioButton.isSelected()) currentNumberFormat = NumberFormat

125. .getNumberInstance(currentLocale);

126. else if (currencyRadioButton.isSelected()) currentNumberFormat = NumberFormat

127. .getCurrencyInstance(currentLocale);

128. else if (percentRadioButton.isSelected()) currentNumberFormat = NumberFormat

129. .getPercentInstance(currentLocale);

130. String n = currentNumberFormat.format(currentNumber);

131. numberText.setText(n);

132. }

133.

134. private Locale[] locales;

135. private double currentNumber;

136. private JComboBox localeCombo = new JComboBox();

137. private JButton parseButton = new JButton("Parse");

138. private JTextField numberText = new JTextField(30);

139. private JRadioButton numberRadioButton = new JRadioButton("Number");

140. private JRadioButton currencyRadioButton = new JRadioButton("Currency");

141. private JRadioButton percentRadioButton = new JRadioButton("Percent");

142. private ButtonGroup rbGroup = new ButtonGroup();

143. private NumberFormat currentNumberFormat;

144. }

java.text.NumberFormat 1.1

static Locale[] getAvailableLocales()

returns an array of Locale objects for which NumberFormat formatters
are available.

static NumberFormat getNumberInstance()

static NumberFormat getNumberInstance(Locale l)

static NumberFormat getCurrencyInstance()

static NumberFormat getCurrencyInstance(Locale l)

static NumberFormat getPercentInstance()

static NumberFormat getPercentInstance(Locale l)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

returns a formatter for numbers, currency amounts, or percentage
values for the current locale or for the given locale.

String format(double x)

String format(long x)

returns the string resulting from formatting the given floating-point
number or integer.

Number parse(String s)

parses the given string and returns the number value, as a Double if the
input string described a floating-point number, and as a Long otherwise.
The beginning of the string must contain a number; no leading
whitespace is allowed. The number can be followed by other characters,
which are ignored. Throws ParseException if parsing was not

successful.

void setParseIntegerOnly(boolean b)

boolean isParseIntegerOnly()

sets or gets a flag to indicate whether this formatter should parse only
integer values.

void setGroupingUsed(boolean b)

boolean isGroupingUsed()

sets or gets a flag to indicate whether this formatter emits and
recognizes decimal separators (such as 100,000).

void setMinimumIntegerDigits(int n)

int getMinimumIntegerDigits()

void setMaximumIntegerDigits(int n)

int getMaximumIntegerDigits()

void setMinimumFractionDigits(int n)

int getMinimumFractionDigits()

void setMaximumFractionDigits(int n)

int getMaximumFractionDigits()

sets or gets the maximum or minimum number of digits allowed in the
integer or fractional part of a number.

Currencies

To format a currency value, you can use the NumberFormat.getCurrencyInstance method. However, that

method is not very flexible—it returns a formatter for a single currency. Suppose you prepare an invoice for an
American customer in which some amounts are in dollars and others are in Euros. You can't just use two
formatters

Code View:
NumberFormat dollarFormatter = NumberFormat.getCurrencyInstance(Locale.US);

NumberFormat euroFormatter = NumberFormat.getCurrencyInstance(Locale.GERMANY);

Your invoice would look very strange, with some values formatted like $100,000 and others like 100.000 €.
(Note that the Euro value uses a decimal point, not a comma.)

Instead, use the Currency class to control the currency that is used by the formatters. You get a Currency
object by passing a currency identifier to the static Currency.getInstance method. Then call the setCurrency

method for each formatter. Here is how you would set up the Euro formatter for your American customer:

NumberFormat euroFormatter = NumberFormat.getCurrencyInstance(Locale.US);

euroFormatter.setCurrency(Currency.getInstance("EUR"));

The currency identifiers are defined by ISO 4217—see http://www.iso.org/iso/en/prods-
services/popstds/currencycodeslist.html. Table 5-3 provides a partial list.

Table 5-3. Currency Identifiers

Currency Value Identifier

U.S. Dollar USD

Euro EUR

British Pound GBP

Japanese Yen JPY

Chinese Renminbi (Yuan) CNY

Indian Rupee INR

Russian Ruble RUB

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.iso.org/iso/en/prods-

java.util.Currency 1.4

static Currency getInstance(String currencyCode)

static Currency getInstance(Locale locale)

returns the Currency instance for the given ISO 4217 currency code or

the country of the given locale.

String toString()

String getCurrencyCode()

gets the ISO 4217 currency code of this currency.

String getSymbol()

String getSymbol(Locale locale)

gets the formatting symbol of this currency for the default locale or the
given locale. For example, the symbol for USD can be "$" or "US$",
depending on the locale.

int getDefaultFractionDigits()

gets the default number of fraction digits of this currency.

Date and Time

When you are formatting date and time, you should be concerned with four locale-dependent issues:

The names of months and weekdays should be presented in the local language.

There will be local preferences for the order of year, month, and day.

The Gregorian calendar might not be the local preference for expressing dates.

The time zone of the location must be taken into account.

The Java DateFormat class handles these issues. It is easy to use and quite similar to the NumberFormat class. First,

you get a locale. You can use the default locale or call the static getAvailableLocales method to obtain an array

of locales that support date formatting. Then, you call one of the three factory methods:

fmt = DateFormat.getDateInstance(dateStyle, loc);

fmt = DateFormat.getTimeInstance(timeStyle, loc);

fmt = DateFormat.getDateTimeInstance(dateStyle, timeStyle, loc);

To specify the desired style, these factory methods have a parameter that is one of the following constants:

DateFormat.DEFAULT

DateFormat.FULL (e.g., Wednesday, September 12, 2007 8:51:03 PM PDT for the U.S. locale)

DateFormat.LONG (e.g., September 12, 2007 8:51:03 PM PDT for the U.S. locale)

DateFormat.MEDIUM (e.g., Sep 12, 2007 8:51:03 PM for the U.S. locale)

DateFormat.SHORT (e.g., 9/12/07 8:51 PM for the U.S. locale)

The factory method returns a formatting object that you can then use to format dates.

Date now = new Date();

String s = fmt.format(now);

Just as with the NumberFormat class, you can use the parse method to parse a date that the user typed. For

example, the following code parses the value that the user typed into a text field, using the default locale.

TextField inputField;

. . .

DateFormat fmt = DateFormat.getDateInstance(DateFormat.MEDIUM);

Date input = fmt.parse(inputField.getText().trim());

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Unfortunately, the user must type the date exactly in the expected format. For example, if the format is set to
MEDIUM in the U.S. locale, then dates are expected to look like

Sep 12, 2007

If the user types

Sep 12 2007

(without the comma) or the short format

9/12/07

then a ParseException results.

A lenient flag interprets dates leniently. For example, February 30, 2007 will be automatically converted to March

2, 2007. This seems dangerous, but, unfortunately, it is the default. You should probably turn off this feature. The
calendar object that interprets the parsed date will throw IllegalArgumentException when the user enters an

invalid day/month/year combination.

Listing 5-2 shows the DateFormat class in action. You can select a locale and see how the date and time are

formatted in different places around the world. If you see question-mark characters in the output, then you don't
have the fonts installed for displaying characters in the local language. For example, if you pick a Chinese locale,
the date might be expressed as

2007 9 12

Figure 5-2 shows the program (after Chinese fonts were installed). As you can see, it correctly displays the output.

Figure 5-2. The DateFormatTest program

You can also experiment with parsing. Enter a date or time, click the Parse lenient checkbox if desired, and click the
Parse date or Parse time button.

We use a helper class EnumCombo to solve a technical problem (see Listing 5-3). We wanted to fill a combo with

values such as Short , Medium , and Long and then automatically convert the user's selection to integer values

DateFormat.SHORT , DateFormat.MEDIUM , and DateFormat.LONG . Rather than writing repetitive code, we use

reflection: We convert the user's choice to upper case, replace all spaces with underscores, and then find the value
of the static field with that name. (See Volume I, Chapter 5 for more details about reflection.)

Tip

To compute times in different time zones, use the TimeZone class. See

http://java.sun.com/developer/JDCTechTips/2003/tt1104.html#2 for a brief tutorial.

Listing 5-2. DateFormatTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.text.*;

 4. import java.util.*;

 5.

 6. import javax.swing.*;

 7.

 8. /**

 9. * This program demonstrates formatting dates under various locales.

 10. * @version 1.13 2007-07-25

 11. * @author Cay Horstmann

 12. */

 13. public class DateFormatTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. JFrame frame = new DateFormatFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame contains combo boxes to pick a locale, date and time formats, text fields

 31. * to display formatted date and time, buttons to parse the text field contents, and a

 32. * "lenient" checkbox.

 33. */

 34. class DateFormatFrame extends JFrame

 35. {

 36. public DateFormatFrame()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/developer/JDCTechTips/2003/tt1104.html#2

 37. {

 38. setTitle("DateFormatTest");

 39.

 40. setLayout(new GridBagLayout());

 41. add(new JLabel("Locale"), new GBC(0, 0).setAnchor(GBC.EAST));

 42. add(new JLabel("Date style"), new GBC(0, 1).setAnchor(GBC.EAST));

 43. add(new JLabel("Time style"), new GBC(2, 1).setAnchor(GBC.EAST));

 44. add(new JLabel("Date"), new GBC(0, 2).setAnchor(GBC.EAST));

 45. add(new JLabel("Time"), new GBC(0, 3).setAnchor(GBC.EAST));

 46. add(localeCombo, new GBC(1, 0, 2, 1).setAnchor(GBC.WEST));

 47. add(dateStyleCombo, new GBC(1, 1).setAnchor(GBC.WEST));

 48. add(timeStyleCombo, new GBC(3, 1).setAnchor(GBC.WEST));

 49. add(dateParseButton, new GBC(3, 2).setAnchor(GBC.WEST));

 50. add(timeParseButton, new GBC(3, 3).setAnchor(GBC.WEST));

 51. add(lenientCheckbox, new GBC(0, 4, 2, 1).setAnchor(GBC.WEST));

 52. add(dateText, new GBC(1, 2, 2, 1).setFill(GBC.HORIZONTAL));

 53. add(timeText, new GBC(1, 3, 2, 1).setFill(GBC.HORIZONTAL));

 54.

 55. locales = (Locale[]) DateFormat.getAvailableLocales().clone();

 56. Arrays.sort(locales, new Comparator<Locale>()

 57. {

 58. public int compare(Locale l1, Locale l2)

 59. {

 60. return l1.getDisplayName().compareTo(l2.getDisplayName());

 61. }

 62. });

 63. for (Locale loc : locales)

 64. localeCombo.addItem(loc.getDisplayName());

 65. localeCombo.setSelectedItem(Locale.getDefault().getDisplayName());

 66. currentDate = new Date();

 67. currentTime = new Date();

 68. updateDisplay();

 69.

 70. ActionListener listener = new ActionListener()

 71. {

 72. public void actionPerformed(ActionEvent event)

 73. {

 74. updateDisplay();

 75. }

 76. };

 77.

 78. localeCombo.addActionListener(listener);

 79. dateStyleCombo.addActionListener(listener);

 80. timeStyleCombo.addActionListener(listener);

 81.

 82. dateParseButton.addActionListener(new ActionListener()

 83. {

 84. public void actionPerformed(ActionEvent event)

 85. {

 86. String d = dateText.getText().trim();

 87. try

 88. {

 89. currentDateFormat.setLenient(lenientCheckbox.isSelected());

 90. Date date = currentDateFormat.parse(d);

 91. currentDate = date;

 92. updateDisplay();

 93. }

 94. catch (ParseException e)

 95. {

 96. dateText.setText("Parse error: " + d);

 97. }

 98. catch (IllegalArgumentException e)

 99. {

100. dateText.setText("Argument error: " + d);

101. }

102. }

103. });

104.

105. timeParseButton.addActionListener(new ActionListener()

106. {

107. public void actionPerformed(ActionEvent event)

108. {

109. String t = timeText.getText().trim();

110. try

111. {

112. currentDateFormat.setLenient(lenientCheckbox.isSelected());

113. Date date = currentTimeFormat.parse(t);

114. currentTime = date;

115. updateDisplay();

116. }

117. catch (ParseException e)

118. {

119. timeText.setText("Parse error: " + t);

120. }

121. catch (IllegalArgumentException e)

122. {

123. timeText.setText("Argument error: " + t);

124. }

125. }

126. });

127. pack();

128. }

129.

130. /**

131. * Updates the display and formats the date according to the user settings.

132. */

133. public void updateDisplay()

134. {

135. Locale currentLocale = locales[localeCombo.getSelectedIndex()];

136. int dateStyle = dateStyleCombo.getValue();

137. currentDateFormat = DateFormat.getDateInstance(dateStyle, currentLocale);

138. String d = currentDateFormat.format(currentDate);

139. dateText.setText(d);

140. int timeStyle = timeStyleCombo.getValue();

141. currentTimeFormat = DateFormat.getTimeInstance(timeStyle, currentLocale);

142. String t = currentTimeFormat.format(currentTime);

143. timeText.setText(t);

144. }

145.

146. private Locale[] locales;

147. private Date currentDate;

148. private Date currentTime;

149. private DateFormat currentDateFormat;

150. private DateFormat currentTimeFormat;

151. private JComboBox localeCombo = new JComboBox();

152. private EnumCombo dateStyleCombo = new EnumCombo(DateFormat.class, new String[] { "Default",

153. "Full", "Long", "Medium", "Short" });

154. private EnumCombo timeStyleCombo = new EnumCombo(DateFormat.class, new String[] { "Default",

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

155. "Full", "Long", "Medium", "Short" });

156. private JButton dateParseButton = new JButton("Parse date");

157. private JButton timeParseButton = new JButton("Parse time");

158. private JTextField dateText = new JTextField(30);

159. private JTextField timeText = new JTextField(30);

160. private JCheckBox lenientCheckbox = new JCheckBox("Parse lenient", true);

161. }

Listing 5-3. EnumCombo.java

Code View:
 1. import java.util.*;

 2. import javax.swing.*;

 3.

 4. /**

 5. A combo box that lets users choose from among static field

 6. values whose names are given in the constructor.

 7. @version 1.13 2007-07-25

 8. @author Cay Horstmann

 9. */

10. public class EnumCombo extends JComboBox

11. {

12. /**

13. Constructs an EnumCombo.

14. @param cl a class

15. @param labels an array of static field names of cl

16. */

17. public EnumCombo(Class<?> cl, String[] labels)

18. {

19. for (String label : labels)

20. {

21. String name = label.toUpperCase().replace(' ', '_');

22. int value = 0;

23. try

24. {

25. java.lang.reflect.Field f = cl.getField(name);

26. value = f.getInt(cl);

27. }

28. catch (Exception e)

29. {

30. label = "(" + label + ")";

31. }

32. table.put(label, value);

33. addItem(label);

34. }

35. setSelectedItem(labels[0]);

36. }

37.

38. /**

39. Returns the value of the field that the user selected.

40. @return the static field value

41. */

42. public int getValue()

43. {

44. return table.get(getSelectedItem());

45. }

46.

47. private Map<String, Integer> table = new TreeMap<String, Integer>();

48. }

java.text.DateFormat 1.1

static Locale[] getAvailableLocales()

returns an array of Locale objects for which DateFormat formatters are available.

static DateFormat getDateInstance(int dateStyle)

static DateFormat getDateInstance(int dateStyle, Locale l)

static DateFormat getTimeInstance(int timeStyle)

static DateFormat getTimeInstance(int timeStyle, Locale l)

static DateFormat getDateTimeInstance(int dateStyle, int timeStyle)

static DateFormat getDateTimeInstance(int dateStyle, int timeStyle, Locale l)

returns a formatter for date, time, or date and time for the default locale or the given locale.

Parameters: dateStyle, timeStyle One of DEFAULT , FULL , LONG , MEDIUM , SHORT

String format(Date d)

returns the string resulting from formatting the given date/time.

Date parse(String s)

parses the given string and returns the date/time described in it. The beginning of the string
must contain a date or time; no leading whitespace is allowed. The date can be followed by other
characters, which are ignored. Throws a ParseException if parsing was not successful.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setLenient(boolean b)

boolean isLenient()

sets or gets a flag to indicate whether parsing should be lenient or strict. In lenient mode, dates
such as February 30, 1999 will be automatically converted to March 2, 1999 . The default is

lenient mode.

void setCalendar(Calendar cal)

Calendar getCalendar()

sets or gets the calendar object used for extracting year, month, day, hour, minute, and second
from the Date object. Use this method if you do not want to use the default calendar for the

locale (usually the Gregorian calendar).

void setTimeZone(TimeZone tz)

TimeZone getTimeZone()

sets or gets the time zone object used for formatting the time. Use this method if you do not
want to use the default time zone for the locale. The default time zone is the time zone of the
default locale, as obtained from the operating system. For the other locales, it is the preferred
time zone in the geographical location.

void setNumberFormat(NumberFormat f)

NumberFormat getNumberFormat()

sets or gets the number format used for formatting the numbers used for representing year,
month, day, hour, minute, and second.

java.util.TimeZone 1.1

static String[] getAvailableIDs()

gets all supported time zone IDs.

static TimeZone getDefault()

gets the default TimeZone for this computer.

static TimeZone getTimeZone(String timeZoneId)

gets the TimeZone for the given ID.

String getID()

gets the ID of this time zone.

String getDisplayName()

String getDisplayName(Locale locale)

String getDisplayName(boolean daylight, int style)

String getDisplayName(boolean daylight, int style, Locale

locale)

gets the display name of this time zone in the default locale or in the given
locale. If the daylight parameter is true, the daylight-savings name is

returned. The style parameter can be SHORT or LONG .

boolean useDaylightTime()

returns true if this TimeZone uses daylight-savings time.

boolean inDaylightTime(Date date)

returns true if the given date is in daylight-savings time in this TimeZone .

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Collation

Most programmers know how to compare strings with the compareTo method of the String class. The value of

a.compareTo(b) is a negative number if a is lexicographically less than b, zero if they are identical, and positive

otherwise.

Unfortunately, unless all your words are in uppercase English ASCII characters, this method is useless. The
problem is that the compareTo method in the Java programming language uses the values of the Unicode

character to determine the ordering. For example, lowercase characters have a higher Unicode value than do
uppercase characters, and accented characters have even higher values. This leads to absurd results; for example,
the following five strings are ordered according to the compareTo method:

America
Zulu

able

zebra

Ångström

For dictionary ordering, you want to consider upper case and lower case to be equivalent. To an English speaker,
the sample list of words would be ordered as

able
America

Ångström

zebra

Zulu

However, that order would not be acceptable to a Swedish user. In Swedish, the letter Å is different from the letter
A, and it is collated after the letter Z! That is, a Swedish user would want the words to be sorted as

able

America

zebra

Zulu
Ångström

Fortunately, once you are aware of the problem, collation is quite easy. As always, you start by obtaining a Locale

object. Then, you call the getInstance factory method to obtain a Collator object. Finally, you use the compare

method of the collator, not the compareTo method of the String class, whenever you want to sort strings.

Locale loc = . . .;

Collator coll = Collator.getInstance(loc);

if (coll.compare(a, b) < 0) // a comes before b . . .;

Most important, the Collator class implements the Comparator interface. Therefore, you can pass a collator

object to the Collections.sort method to sort a list of strings:

Collections.sort(strings, coll);

Collation Strength

You can set a collator's strength to select how selective it should be. Character differences are classified as
primary, secondary, tertiary, and identical. For example, in English, the difference between "A" and "Z" is
considered primary, the difference between "A" and "Å" is secondary, and between "A" and "a" is tertiary.

By setting the strength of the collator to Collator.PRIMARY, you tell it to pay attention only to primary

differences. By setting the strength to Collator.SECONDARY, you instruct the collator to take secondary

differences into account. That is, two strings will be more likely to be considered different when the strength is set
to "secondary" or "tertiary," as shown in Table 5-4.

Table 5-4. Collations with Different Strengths (English Locale)

Primary Secondary Tertiary

Angstrom = Ångström Angstrom Ångström Angstrom Ångström

Able = able Able = able Able able

When the strength has been set to Collator.IDENTICAL, no differences are allowed. This setting is mainly useful

in conjunction with the second, rather technical, collator setting, the decomposition mode, which we discuss in the
next section.

Decomposition

Occasionally, a character or sequence of characters can be described in more than one way in Unicode. For
example, an "Å" can be Unicode character U+00C5, or it can be expressed as a plain A (U+0065) followed by a °
("combining ring above"; U+030A). Perhaps more surprisingly, the letter sequence "ffi" can be described with a
single character "Latin small ligature ffi" with code U+FB03. (One could argue that this is a presentation issue and
it should not have resulted in different Unicode characters, but we don't make the rules.)

The Unicode standard defines four normalization forms (D, KD, C, and KC) for strings. See
http://www.unicode.org/unicode/reports/tr15/tr15-23.html for the details. Two of them are used for collation. In
normalization form D, accented characters are decomposed into their base letters and combining accents. For
example, Å is turned into a sequence of an A and a combining ring above °. Normalization form KD goes further
and decomposes compatibility characters such as the ffi ligature or the trademark symbol ™.

You choose the degree of normalization that you want the collator to use. The value Collator.NO_DECOMPOSITION

does not normalize strings at all. This option is faster, but it might not be appropriate for text that expresses
characters in multiple forms. The default, Collator.CANONICAL_DECOMPOSITION, uses normalization form D. This

is the most useful form for text that contains accents but not ligatures. Finally, "full decomposition" uses
normalization form KD. See Table 5-5 for examples.

Table 5-5. Differences Between Decomposition Modes

No Decomposition Canonical Decomposition Full Decomposition

Å A° Å = A° Å = A°

™ TM ™ TM ™ = TM

It is wasteful to have the collator decompose a string many times. If one string is compared many times against
other strings, then you can save the decomposition in a collation key object. The getCollationKey method

returns a CollationKey object that you can use for further, faster comparisons. Here is an example:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.unicode.org/unicode/reports/tr15/tr15-23.html

String a = . . .;

CollationKey aKey = coll.getCollationKey(a);

if(aKey.compareTo(coll.getCollationKey(b)) == 0) // fast comparison

 . . .

Finally, you might want to convert strings into their normalized forms even when you don't do collation; for
example, when storing strings in a database or communicating with another program. As of Java SE 6, the
java.text.Normalizer class carries out the normalization process. For example,

Code View:
String name = "Ångström";

String normalized = Normalizer.normalize(name, Normalizer.Form.NFD); // uses normalization form D

The normalized string contains ten characters. The "Å" and "ö" are replaced by "A°" and "o¨" sequences.

However, that is not usually the best form for storage and transmission. Normalization form C first applies
decomposition and then combines the accents back in a standardized order. According to the W3C, this is the
recommended mode for transferring data over the Internet.

The program in Listing 5-4 lets you experiment with collation order. Type a word into the text field and click the
Add button to add it to the list of words. Each time you add another word, or change the locale, strength, or
decomposition mode, the list of words is sorted again. An = sign indicates words that are considered identical (see

Figure 5-3).

Figure 5-3. The CollationTest program

The locale names in the combo box are displayed in sorted order, using the collator of the default locale. If you run
this program with the US English locale, note that "Norwegian (Norway,Nynorsk)" comes before "Norwegian
(Norway)", even though the Unicode value of the comma character is greater than the Unicode value of the closing
parenthesis.

Listing 5-4. CollationTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.text.*;

 4. import java.util.*;

 5. import java.util.List;

 6.

 7. import javax.swing.*;

 8.

 9. /**

 10. * This program demonstrates collating strings under various locales.

 11. * @version 1.13 2007-07-25

 12. * @author Cay Horstmann

 13. */

 14. public class CollationTest

 15. {

 16. public static void main(String[] args)

 17. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22.

 23. JFrame frame = new CollationFrame();

 24. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 25. frame.setVisible(true);

 26. }

 27. });

 28. }

 29. }

 30.

 31. /**

 32. * This frame contains combo boxes to pick a locale, collation strength and decomposition

 33. * rules, a text field and button to add new strings, and a text area to list the

 34. * collated strings.

 35. */

 36. class CollationFrame extends JFrame

 37. {

 38. public CollationFrame()

 39. {

 40. setTitle("CollationTest");

 41.

 42. setLayout(new GridBagLayout());

 43. add(new JLabel("Locale"), new GBC(0, 0).setAnchor(GBC.EAST));

 44. add(new JLabel("Strength"), new GBC(0, 1).setAnchor(GBC.EAST));

 45. add(new JLabel("Decomposition"), new GBC(0, 2).setAnchor(GBC.EAST));

 46. add(addButton, new GBC(0, 3).setAnchor(GBC.EAST));

 47. add(localeCombo, new GBC(1, 0).setAnchor(GBC.WEST));

 48. add(strengthCombo, new GBC(1, 1).setAnchor(GBC.WEST));

 49. add(decompositionCombo, new GBC(1, 2).setAnchor(GBC.WEST));

 50. add(newWord, new GBC(1, 3).setFill(GBC.HORIZONTAL));

 51. add(new JScrollPane(sortedWords), new GBC(0, 4, 2, 1).setFill(GBC.BOTH));

 52.

 53. locales = (Locale[]) Collator.getAvailableLocales().clone();

 54. Arrays.sort(locales, new Comparator<Locale>()

 55. {

 56. private Collator collator = Collator.getInstance(Locale.getDefault());

 57.

 58. public int compare(Locale l1, Locale l2)

 59. {

 60. return collator.compare(l1.getDisplayName(), l2.getDisplayName());

 61. }

 62. });

 63. for (Locale loc : locales)

 64. localeCombo.addItem(loc.getDisplayName());

 65. localeCombo.setSelectedItem(Locale.getDefault().getDisplayName());

 66.

 67. strings.add("America");

 68. strings.add("able");

 69. strings.add("Zulu");

 70. strings.add("zebra");

 71. strings.add("\u00C5ngstr\u00F6m");

 72. strings.add("A\u030angstro\u0308m");

 73. strings.add("Angstrom");

 74. strings.add("Able");

 75. strings.add("office");

 76. strings.add("o\uFB03ce");

 77. strings.add("Java\u2122");

 78. strings.add("JavaTM");

 79. updateDisplay();

 80.

 81. addButton.addActionListener(new ActionListener()

 82. {

 83. public void actionPerformed(ActionEvent event)

 84. {

 85. strings.add(newWord.getText());

 86. updateDisplay();

 87. }

 88. });

 89.

 90. ActionListener listener = new ActionListener()

 91. {

 92. public void actionPerformed(ActionEvent event)

 93. {

 94. updateDisplay();

 95. }

 96. };

 97.

 98. localeCombo.addActionListener(listener);

 99. strengthCombo.addActionListener(listener);

100. decompositionCombo.addActionListener(listener);

101. pack();

102. }

103.

104. /**

105. * Updates the display and collates the strings according to the user settings.

106. */

107. public void updateDisplay()

108. {

109. Locale currentLocale = locales[localeCombo.getSelectedIndex()];

110. localeCombo.setLocale(currentLocale);

111.

112. currentCollator = Collator.getInstance(currentLocale);

113. currentCollator.setStrength(strengthCombo.getValue());

114. currentCollator.setDecomposition(decompositionCombo.getValue());

115.

116. Collections.sort(strings, currentCollator);

117.

118. sortedWords.setText("");

119. for (int i = 0; i < strings.size(); i++)

120. {

121. String s = strings.get(i);

122. if (i > 0 && currentCollator.compare(s, strings.get(i - 1)) == 0) sortedWords

123. .append("= ");

124. sortedWords.append(s + "\n");

125. }

126. pack();

127. }

128.

129. private List<String> strings = new ArrayList<String>();

130. private Collator currentCollator;

131. private Locale[] locales;

132. private JComboBox localeCombo = new JComboBox();

133.

134. private EnumCombo strengthCombo = new EnumCombo(Collator.class, new String[] { "Primary",

135. "Secondary", "Tertiary", "Identical" });

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

136. private EnumCombo decompositionCombo = new EnumCombo(Collator.class, new String[] {

137. "Canonical Decomposition", "Full Decomposition", "No Decomposition" });

138. private JTextField newWord = new JTextField(20);

139. private JTextArea sortedWords = new JTextArea(20, 20);

140. private JButton addButton = new JButton("Add");

141. }

java.text.Collator 1.1

static Locale[] getAvailableLocales()

returns an array of Locale objects for which Collator objects are

available.

static Collator getInstance()

static Collator getInstance(Locale l)

returns a collator for the default locale or the given locale.

int compare(String a, String b)

returns a negative value if a comes before b, 0 if they are considered

identical, and a positive value otherwise.

boolean equals(String a, String b)

returns true if they are considered identical, false otherwise.

void setStrength(int strength)

int getStrength()

sets or gets the strength of the collator. Stronger collators tell more words
apart. Strength values are Collator.PRIMARY, Collator.SECONDARY, and

Collator.TERTIARY.

void setDecomposition(int decomp)

int getDecompositon()

sets or gets the decomposition mode of the collator. The more a collator
decomposes a string, the more strict it will be in deciding whether two
strings should be considered identical. Decomposition values are
Collator.NO_DECOMPOSITION, Collator.CANONICAL_DECOMPOSITION, and

Collator.FULL_DECOMPOSITION.

CollationKey getCollationKey(String a)

returns a collation key that contains a decomposition of the characters in a
form that can be quickly compared against another collation key.

java.text.CollationKey 1.1

int compareTo(CollationKey b)

returns a negative value if this key comes before b, 0 if they are

considered identical, and a positive value otherwise.

java.text.Normalizer 6

static String normalize(CharSequence str, Normalizer.Form form)

returns the normalized form of str. The form value is one of ND, NKD, NC,

or NKC.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Message Formatting

The Java library has a MessageFormat class that formats text with variable parts, like this:

"On {2}, a {0} destroyed {1} houses and caused {3} of damage."

The numbers in braces are placeholders for actual names and values. The static method MessageFormat.format

lets you substitute values for the variables. As of JDK 5.0, it is a "varargs" method, so you can simply supply the
parameters as follows:

Code View:
String msg = MessageFormat.format("On {2}, a {0} destroyed {1} houses and caused {3} of damage.",

 "hurricane", 99, new GregorianCalendar(1999, 0, 1).getTime(), 10.0E8);

In this example, the placeholder {0} is replaced with "hurricane", {1} is replaced with 99, and so on.

The result of our example is the string

Code View:
On 1/1/99 12:00 AM, a hurricane destroyed 99 houses and caused 100,000,000 of damage.

That is a start, but it is not perfect. We don't want to display the time "12:00 AM," and we want the damage
amount printed as a currency value. The way we do this is by supplying an optional format for some of the
placeholders:

Code View:
"On {2,date,long}, a {0} destroyed {1} houses and caused {3,number,currency} of damage."

This example code prints:

Code View:
On January 1, 1999, a hurricane destroyed 99 houses and caused $100,000,000 of damage.

In general, the placeholder index can be followed by a type and a style. Separate the index, type, and style by
commas. The type can be any of

number

time

date

choice

If the type is number, then the style can be

integer

currency

percent

or it can be a number format pattern such as $,##0. (See the documentation of the DecimalFormat class for more

information about the possible formats.)

If the type is either time or date, then the style can be

short

medium

long

full

or a date format pattern such as yyyy-MM-dd. (See the documentation of the SimpleDateFormat class for more

information about the possible formats.)

Choice formats are more complex, and we take them up in the next section.

Caution

The static MessageFormat.format method uses the current locale to format the

values. To format with an arbitrary locale, you have to work a bit harder because
there is no "varargs" method that you can use. You need to place the values to be
formatted into an Object[] array, like this:

MessageFormat mf = new MessageFormat(pattern, loc);

String msg = mf.format(new Object[] { values });

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.text.MessageFormat 1.1

MessageFormat(String pattern)

MessageFormat(String pattern, Locale loc)

constructs a message format object with the specified pattern and locale.

void applyPattern(String pattern)

sets the pattern of a message format object to the specified pattern.

void setLocale(Locale loc)

Locale getLocale()

sets or gets the locale to be used for the placeholders in the message. The
locale is only used for subsequent patterns that you set by calling the
applyPattern method.

static String format(String pattern, Object... args)

formats the pattern string by using args[i] as input for placeholder {i}.

StringBuffer format(Object args, StringBuffer result,

FieldPosition pos)

formats the pattern of this MessageFormat. The args parameter must be

an array of objects. The formatted string is appended to result, and

result is returned. If pos equals new
FieldPosition(MessageFormat.Field.ARGUMENT), its beginIndex and

endIndex properties are set to the location of the text that replaces the

{1} placeholder. Supply null if you are not interested in position
information.

java.text.Format 1.1

String format(Object obj)

formats the given object, according to the rules of this formatter. This
method calls format(obj, new StringBuffer(), new

FieldPosition(1)).toString().

Choice Formats

Let's look closer at the pattern of the preceding section:

"On {2}, a {0} destroyed {1} houses and caused {3} of damage."

If we replace the disaster placeholder {0} with "earthquake", then the sentence is not grammatically correct in
English.

On January 1, 1999, a earthquake destroyed . . .

That means what we really want to do is integrate the article "a" into the placeholder:

"On {2}, {0} destroyed {1} houses and caused {3} of damage."

The {0} would then be replaced with "a hurricane" or "an earthquake". That is especially appropriate if this

message needs to be translated into a language where the gender of a word affects the article. For example, in
German, the pattern would be

"{0} zerstörte am {2} {1} Häuser und richtete einen Schaden von {3} an."

The placeholder would then be replaced with the grammatically correct combination of article and noun, such as
"Ein Wirbelsturm", "Eine Naturkatastrophe".

Now let us turn to the {1} parameter. If the disaster isn't all that catastrophic, then {1} might be replaced with

the number 1, and the message would read:

On January 1, 1999, a mudslide destroyed 1 houses and . . .

We would ideally like the message to vary according to the placeholder value, so that it can read

no houses

one house

2 houses

. . .

depending on the placeholder value. The choice formatting option was designed for this purpose.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

A choice format is a sequence of pairs, each of which contains

A lower limit

A format string

The lower limit and format string are separated by a # character, and the pairs are separated by | characters.

For example,

{1,choice,0#no houses|1#one house|2#{1} houses}

Table 5-6 shows the effect of this format string for various values of {1}.

Table 5-6. String Formatted by Choice Format

{1} Result

0 "no houses"

1 "one house"

3 "3 houses"

-1 "no houses"

Why do we use {1} twice in the format string? When the message format applies the choice format on the {1}
placeholder and the value is $2, the choice format returns "{1} houses". That string is then formatted again by

the message format, and the answer is spliced into the result.

Note

This example shows that the designer of the choice format was a bit muddleheaded. If
you have three format strings, you need two limits to separate them. In general, you
need one fewer limit than you have format strings. As you saw in Table 5-4, the
MessageFormat class ignores the first limit.

The syntax would have been a lot clearer if the designer of this class realized that the
limits belong between the choices, such as

no houses|1|one house|2|{1} houses // not the actual format

You can use the < symbol to denote that a choice should be selected if the lower bound is strictly less than the

value.

You can also use the symbol (expressed as the Unicode character code \u2264) as a synonym for #. If you like,

you can even specify a lower bound of - as -\u221E for the first value.

For example,

- <no houses|0<one house|2 {1} houses

or, using Unicode escapes,

-\u221E<no houses|0<one house|2\u2264{1} houses

Let's finish our natural disaster scenario. If we put the choice string inside the original message string, we get the
following format instruction:

Code View:
String pattern = "On {2,date,long}, {0} destroyed {1,choice,0#no houses|1#one house|2#{1}

 houses}" + "and caused {3,number,currency} of damage.";

Or, in German,

Code View:
String pattern = "{0} zerstörte am {2,date,long} {1,choice,0#kein Haus|1#ein Haus|2#{1} Häuser}"

 + "und richtete einen Schaden von {3,number,currency} an.";

Note that the ordering of the words is different in German, but the array of objects you pass to the format method

is the same. The order of the placeholders in the format string takes care of the changes in the word ordering.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Text Files and Character Sets

As you know, the Java programming language itself is fully Unicode based. However, operating systems
typically have their own character encoding, such as ISO-8859 -1 (an 8-bit code sometimes called the "ANSI"
code) in the United States, or Big5 in Taiwan.

When you save data to a text file, you should respect the local character encoding so that the users of your
program can open the text file with their other applications. Specify the character encoding in the FileWriter

constructor:

out = new FileWriter(filename, "ISO-8859-1");

You can find a complete list of the supported encodings in Volume I, Chapter 12.

Unfortunately, there is currently no connection between locales and character encodings. For example, if your
user has selected the Taiwanese locale zh_TW, no method in the Java programming language tells you that the

Big5 character encoding would be the most appropriate.

Character Encoding of Source Files

It is worth keeping in mind that you, the programmer, will need to communicate with the Java compiler. And
you do that with tools on your local system. For example, you can use the Chinese version of Notepad to write
your Java source code files. The resulting source code files are not portable because they use the local character
encoding (GB or Big5, depending on which Chinese operating system you use). Only the compiled class files are
portable—they will automatically use the "modified UTF-8" encoding for identifiers and strings. That means that
even when a program is compiling and running, three character encodings are involved:

Source files: local encoding

Class files: modified UTF-8

Virtual machine: UTF-16

(See Volume I, Chapter 12 for a definition of the modified UTF-8 and UTF-16 formats.)

Tip

You can specify the character encoding of your source files with the -encoding flag,

for example,

javac -encoding Big5 Myfile.java

To make your source files portable, restrict yourself to using the plain ASCII encoding. That is, you should
change all non-ASCII characters to their equivalent Unicode encodings. For example, rather than using the
string "Häuser", use "H\u0084user". The JDK contains a utility, native2ascii, that you can use to convert the

native character encoding to plain ASCII. This utility simply replaces every non-ASCII character in the input with
a \u followed by the four hex digits of the Unicode value. To use the native2ascii program, provide the input

and output file names.

native2ascii Myfile.java Myfile.temp

You can convert the other way with the -reverse option:

native2ascii -reverse Myfile.temp Myfile.java

You can specify another encoding with the -encoding option. The encoding name must be one of those listed in

the encodings table in Volume I, Chapter 12.

native2ascii -encoding Big5 Myfile.java Myfile.temp

Tip

It is a good idea to restrict yourself to plain ASCII class names. Because the name
of the class also turns into the name of the class file, you are at the mercy of the
local file system to handle any non-ASCII coded names. Here is a depressing
example. Windows 95 used the so-called Code Page 437 or original PC encoding, for
its file names. If you compiled a class Bär and tried to run it in Windows 95, you got

an error message "cannot find class BΣr".

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Resource Bundles

When localizing an application, you'll probably have a dauntingly large number of message strings, button
labels, and so on, that all need to be translated. To make this task feasible, you'll want to define the message
strings in an external location, usually called a resource. The person carrying out the translation can then simply
edit the resource files without having to touch the source code of the program.

In Java, you use property files to specify string resources, and you implement classes for resources of other
types.

Note

Java technology resources are not the same as Windows or Macintosh resources. A
Macintosh or Windows executable program stores resources such as menus, dialog
boxes, icons, and messages in a section separate from the program code. A
resource editor can inspect and update these resources without affecting the
program code.

Note

Volume I, Chapter 10 describes a concept of JAR file resources, whereby data files,
sounds, and images can be placed in a JAR file. The getResource method of the

class Class finds the file, opens it, and returns a URL to the resource. By placing the

files into the JAR file, you leave the job of finding the files to the class loader, which
already knows how to locate items in a JAR file. However, that mechanism has no
locale support.

Locating Resource Bundles

When localizing an application, you produce a set of resource bundles. Each bundle is a property file or a class
that describes locale-specific items (such as messages, labels, and so on). For each bundle, you provide
versions for all locales that you want to support.

You need to use a specific naming convention for these bundles. For example, resources specific for Germany go
to a file bundleName_de_DE, whereas those that are shared by all German-speaking countries go into

bundleName_de. In general, use

bundleName_language_country

for all country-specific resources, and use

bundleName_language

for all language-specific resources. Finally, as a fallback, you can put defaults into a file without any suffix.

You load a bundle with the command

Code View:

ResourceBundle currentResources = ResourceBundle.getBundle(bundleName, currentLocale);

The getBundle method attempts to load the bundle that matches the current locale by language, country, and
variant. If it is not successful, then the variant, country, and language are dropped in turn. Then the same
search is applied to the default locale, and finally, the default bundle file is consulted. If even that attempt fails,
the method throws a MissingResourceException.

That is, the getBundle method tries to load the following bundles:

bundleName_currentLocaleLanguage_currentLocaleCountry_currentLocaleVariant

bundleName_currentLocaleLanguage_currentLocaleCountry

bundleName_currentLocaleLanguage

bundleName_defaultLocaleLanguage_defaultLocaleCountry_defaultLocaleVariant

bundleName_defaultLocaleLanguage_defaultLocaleCountry

bundleName_defaultLocaleLanguage

bundleName

Once the getBundle method has located a bundle, say, bundleName_de_DE, it will still keep looking for

bundleName_de and bundleName. If these bundles exist, they become the parents of the bundleName_de_DE
bundle in a resource hierarchy. Later, when looking up a resource, the parents are searched if a lookup was not
successful in the current bundle. That is, if a particular resource was not found in bundleName_de_DE, then the

bundleName_de and bundleName will be queried as well.

This is clearly a very useful service and one that would be tedious to program by hand. The resource bundle
mechanism of the Java programming language automatically locates the items that are the best match for a
given locale. It is easy to add more and more localizations to an existing program: All you have to do is add
additional resource bundles.

Tip

You need not place all resources for your application into a single bundle. You could
have one bundle for button labels, one for error messages, and so on.

Property Files

Internationalizing strings is quite straightforward. You place all your strings into a property file such as
MyProgramStrings.properties. This is simply a text file with one key/value pair per line. A typical file would

look like this:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

computeButton=Rechnen

colorName=black

defaultPaperSize=210x297

Then you name your property files as described in the preceding section, for example:

MyProgramStrings.properties

MyProgramStrings_en.properties

MyProgramStrings_de_DE.properties

You can load the bundle simply as

Code View:
ResourceBundle bundle = ResourceBundle.getBundle("MyProgramStrings", locale);

To look up a specific string, call

String computeButtonLabel = bundle.getString("computeButton");

Caution

Files for storing properties are always ASCII files. If you need to place Unicode
characters into a properties file, encode them by using the \uxxxx encoding. For

example, to specify "colorName=Grün", use

colorName=Gr\u00FCn

You can use the native2ascii tool to generate these files.

Bundle Classes

To provide resources that are not strings, you define classes that extend the ResourceBundle class. You use the

standard naming convention to name your classes, for example

MyProgramResources.java

MyProgramResources_en.java

MyProgramResources_de_DE.java

You load the class with the same getBundle method that you use to load a property file:

Code View:
ResourceBundle bundle = ResourceBundle.getBundle("MyProgramResources", locale);

Caution

When searching for bundles, a bundle in a class is given prefererence over a
property file when the two bundles have the same base names.

Each resource bundle class implements a lookup table. You provide a key string for each setting you want to
localize, and you use that key string to retrieve the setting. For example,

Color backgroundColor = (Color) bundle.getObject("backgroundColor");

double[] paperSize = (double[]) bundle.getObject("defaultPaperSize");

The simplest way of implementing resource bundle classes is to extend the ListResourceBundle class. The

ListResourceBundle lets you place all your resources into an object array and then does the lookup for you.

Follow this code outline:

public class bundleName_language_country extends ListResourceBundle
{

 public Object[][] getContents() { return contents; }

 private static final Object[][] contents =

 {

 { key1, value2},

 { key2, value2},

 . . .

 }

}

For example,

public class ProgramResources_de extends ListResourceBundle

{

 public Object[][] getContents() { return contents; }
 private static final Object[][] contents =

 {

 { "backgroundColor", Color.black },

 { "defaultPaperSize", new double[] { 210, 297 } }

 }

}

public class ProgramResources_en_US extends ListResourceBundle

{

 public Object[][] getContents() { return contents; }

 private static final Object[][] contents =

 {

 { "backgroundColor", Color.blue },

 { "defaultPaperSize", new double[] { 216, 279 } }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 }

}

Note

The paper sizes are given in millimeters. Everyone on the planet, with the exception
of the United States and Canada, uses ISO 216 paper sizes. For more information,
see http://www.cl.cam.ac.uk/~mgk25/iso-paper.html. According to the U.S. Metric
Association (http://lamar.colostate.edu/~hillger), only three countries in the world
have not yet officially adopted the metric system: Liberia, Myanmar (Burma), and
the United States of America.

Alternatively, your resource bundle classes can extend the ResourceBundle class. Then you need to implement
two methods, to enumerate all keys and to look up the value for a given key:

Enumeration<String> getKeys()

Object handleGetObject(String key)

The getObject method of the ResourceBundle class calls the handleGetObject method that you supply.

Note

As of Java SE 6, you can choose alternate mechanisms for storing your resources.
For example, you can customize the resource loading mechanism to fetch resources
from XML files or databases. See
http://java.sun.com/developer/technicalArticles/javase/i18n_enhance for more
information.

http://www.cl.cam.ac.uk/~mgk25/iso-paper.html
http://lamar.colostate.edu/~hillger
http://java.sun.com/developer/technicalArticles/javase/i18n_enhance

java.util.ResourceBundle 1.1

static ResourceBundle getBundle(String baseName, Locale loc)

static ResourceBundle getBundle(String baseName)

loads the resource bundle class with the given name, for the given locale
or the default locale, and its parent classes. If the resource bundle
classes are located in a package, then the base name must contain the
full package name, such as "intl.ProgramResources". The resource

bundle classes must be public so that the getBundle method can

access them.

Object getObject(String name)

looks up an object from the resource bundle or its parents.

String getString(String name)

looks up an object from the resource bundle or its parents and casts it as
a string.

String[] getStringArray(String name)

looks up an object from the resource bundle or its parents and casts it as
a string array.

Enumeration<String> getKeys()

returns an enumeration object to enumerate the keys of this resource
bundle. It enumerates the keys in the parent bundles as well.

Object handleGetObject(String key)

should be overridden to look up the resource value associated with the
given key if you define your own resource lookup mechanism.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

A Complete Example

In this section, we apply the material from this chapter to localize a retirement calculator applet. The applet
calculates whether or not you are saving enough money for your retirement. You enter your age, how much
money you save every month, and so on (see Figure 5-4).

Figure 5-4. The retirement calculator in English

[View full size image]

The text area and the graph show the balance of the retirement account for every year. If the numbers turn
negative toward the later part of your life and the bars in the graph appear below the x-axis, you need to do
something; for example, save more money, postpone your retirement, die earlier, or be younger.

The retirement calculator works in three locales (English, German, and Chinese). Here are some of the
highlights of the internationalization:

The labels, buttons, and messages are translated into German and Chinese. You can find them in the
classes RetireResources_de, RetireResources_zh. English is used as the fallback—see the

RetireResources file. To generate the Chinese messages, we first typed the file, using Notepad running in

Chinese Windows, and then we used the native2ascii utility to convert the characters to Unicode.

Whenever the locale changes, we reset the labels and reformat the contents of the text fields.

The text fields handle numbers, currency amounts, and percentages in the local format.

The computation field uses a MessageFormat. The format string is stored in the resource bundle of each

language.

Just to show that it can be done, we use different colors for the bar graph, depending on the language
chosen by the user.

Listings 5-5 through 5-8 show the code. Listings 5-9 through 5-11 are the property files for the localized
strings. Figures 5-5 and 5-6 show the outputs in German and Chinese, respectively. To see Chinese characters,
be sure you have Chinese fonts installed and configured with your Java runtime. Otherwise, all Chinese
characters show up as "missing character" icons.

Figure 5-5. The retirement calculator in German

[View full size image]

Figure 5-6. The retirement calculator in Chinese

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 5-5. Retire.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.geom.*;

 4. import java.util.*;

 5. import java.text.*;

 6. import javax.swing.*;

 7.

 8. /**

 9. * This applet shows a retirement calculator. The UI is displayed in English, German,

 10. * and Chinese.

 11. * @version 1.22 2007-07-25

 12. * @author Cay Horstmann

 13. */

 14. public class Retire extends JApplet

 15. {

 16. public void init()

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. initUI();

 23. }

 24. });

 25. }

 26.

 27. public void initUI()

 28. {

 29. setLayout(new GridBagLayout());

 30. add(languageLabel, new GBC(0, 0).setAnchor(GBC.EAST));

 31. add(savingsLabel, new GBC(0, 1).setAnchor(GBC.EAST));

 32. add(contribLabel, new GBC(2, 1).setAnchor(GBC.EAST));

 33. add(incomeLabel, new GBC(4, 1).setAnchor(GBC.EAST));

 34. add(currentAgeLabel, new GBC(0, 2).setAnchor(GBC.EAST));

 35. add(retireAgeLabel, new GBC(2, 2).setAnchor(GBC.EAST));

 36. add(deathAgeLabel, new GBC(4, 2).setAnchor(GBC.EAST));

 37. add(inflationPercentLabel, new GBC(0, 3).setAnchor(GBC.EAST));

 38. add(investPercentLabel, new GBC(2, 3).setAnchor(GBC.EAST));

 39. add(localeCombo, new GBC(1, 0, 3, 1));

 40. add(savingsField, new GBC(1, 1).setWeight(100, 0).setFill(GBC.HORIZONTAL));

 41. add(contribField, new GBC(3, 1).setWeight(100, 0).setFill(GBC.HORIZONTAL));

 42. add(incomeField, new GBC(5, 1).setWeight(100, 0).setFill(GBC.HORIZONTAL));

 43. add(currentAgeField, new GBC(1, 2).setWeight(100, 0).setFill(GBC.HORIZONTAL));

 44. add(retireAgeField, new GBC(3, 2).setWeight(100, 0).setFill(GBC.HORIZONTAL));

 45. add(deathAgeField, new GBC(5, 2).setWeight(100, 0).setFill(GBC.HORIZONTAL));

 46. add(inflationPercentField, new GBC(1, 3).setWeight(100, 0).setFill(GBC.HORIZONTAL));

 47. add(investPercentField, new GBC(3, 3).setWeight(100, 0).setFill(GBC.HORIZONTAL));

 48. add(retireCanvas, new GBC(0, 4, 4, 1).setWeight(100, 100).setFill(GBC.BOTH));

 49. add(new JScrollPane(retireText), new GBC(4, 4, 2, 1).setWeight(0, 100).setFill(GBC.BOTH));

 50.

 51. computeButton.setName("computeButton");

 52. computeButton.addActionListener(new ActionListener()

 53. {

 54. public void actionPerformed(ActionEvent event)

 55. {

 56. getInfo();

 57. updateData();

 58. updateGraph();

 59. }

 60. });

 61. add(computeButton, new GBC(5, 3));

 62.

 63. retireText.setEditable(false);

 64. retireText.setFont(new Font("Monospaced", Font.PLAIN, 10));

 65.

 66. info.setSavings(0);

 67. info.setContrib(9000);

 68. info.setIncome(60000);

 69. info.setCurrentAge(35);

 70. info.setRetireAge(65);

 71. info.setDeathAge(85);

 72. info.setInvestPercent(0.1);

 73. info.setInflationPercent(0.05);

 74.

 75. int localeIndex = 0; // US locale is default selection

 76. for (int i = 0; i < locales.length; i++)

 77. // if current locale one of the choices, select it

 78. if (getLocale().equals(locales[i])) localeIndex = i;

 79. setCurrentLocale(locales[localeIndex]);

 80.

 81. localeCombo.addActionListener(new ActionListener()

 82. {

 83. public void actionPerformed(ActionEvent event)

 84. {

 85. setCurrentLocale((Locale) localeCombo.getSelectedItem());

 86. validate();

 87. }

 88. });

 89. }

 90.

 91. /**

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 92. * Sets the current locale.

 93. * @param locale the desired locale

 94. */

 95. public void setCurrentLocale(Locale locale)

 96. currentLocale = locale;

 97. localeCombo.setSelectedItem(currentLocale);

 98. localeCombo.setLocale(currentLocale);

 99. {

100.

101. res = ResourceBundle.getBundle("RetireResources", currentLocale);

102. resStrings = ResourceBundle.getBundle("RetireStrings", currentLocale);

103. currencyFmt = NumberFormat.getCurrencyInstance(currentLocale);

104. numberFmt = NumberFormat.getNumberInstance(currentLocale);

105. percentFmt = NumberFormat.getPercentInstance(currentLocale);

106.

107. updateDisplay();

108. updateInfo();

109. updateData();

110. updateGraph();

111. }

112.

113. /**

114. * Updates all labels in the display.

115. */

116. public void updateDisplay()

117. {

118. languageLabel.setText(resStrings.getString("language"));

119. savingsLabel.setText(resStrings.getString("savings"));

120. contribLabel.setText(resStrings.getString("contrib"));

121. incomeLabel.setText(resStrings.getString("income"));

122. currentAgeLabel.setText(resStrings.getString("currentAge"));

123. retireAgeLabel.setText(resStrings.getString("retireAge"));

124. deathAgeLabel.setText(resStrings.getString("deathAge"));

125. inflationPercentLabel.setText(resStrings.getString("inflationPercent"));

126. investPercentLabel.setText(resStrings.getString("investPercent"));

127. computeButton.setText(resStrings.getString("computeButton"));

128. }

129.

130. /**

131. * Updates the information in the text fields.

132. */

133. public void updateInfo()

134. {

135. savingsField.setText(currencyFmt.format(info.getSavings()));

136. contribField.setText(currencyFmt.format(info.getContrib()));

137. incomeField.setText(currencyFmt.format(info.getIncome()));

138. currentAgeField.setText(numberFmt.format(info.getCurrentAge()));

139. retireAgeField.setText(numberFmt.format(info.getRetireAge()));

140. deathAgeField.setText(numberFmt.format(info.getDeathAge()));

141. investPercentField.setText(percentFmt.format(info.getInvestPercent()));

142. inflationPercentField.setText(percentFmt.format(info.getInflationPercent()));

143. }

144.

145. /**

146. * Updates the data displayed in the text area.

147. */

148. public void updateData()

149. {

150. retireText.setText("");

151. MessageFormat retireMsg = new MessageFormat("");

152. retireMsg.setLocale(currentLocale);

153. retireMsg.applyPattern(resStrings.getString("retire"));

154.

155. for (int i = info.getCurrentAge(); i <= info.getDeathAge(); i++)

156. {

157. Object[] args = { i, info.getBalance(i) };

158. retireText.append(retireMsg.format(args) + "\n");

159. }

160. }

161.

162. /**

163. * Updates the graph.

164. */

165. public void updateGraph()

166. {

167. retireCanvas.setColorPre((Color) res.getObject("colorPre"));

168. retireCanvas.setColorGain((Color) res.getObject("colorGain"));

169. retireCanvas.setColorLoss((Color) res.getObject("colorLoss"));

170. retireCanvas.setInfo(info);

171. repaint();

172. }

173.

174. /**

175. * Reads the user input from the text fields.

176. */

177. public void getInfo()

178. {

179. try

180. {

181. info.setSavings(currencyFmt.parse(savingsField.getText()).doubleValue());

182. info.setContrib(currencyFmt.parse(contribField.getText()).doubleValue());

183. info.setIncome(currencyFmt.parse(incomeField.getText()).doubleValue());

184. info.setCurrentAge(numberFmt.parse(currentAgeField.getText()).intValue());

185. info.setRetireAge(numberFmt.parse(retireAgeField.getText()).intValue());

186. info.setDeathAge(numberFmt.parse(deathAgeField.getText()).intValue());

187. info.setInvestPercent(percentFmt.parse(investPercentField.getText()).doubleValue());

188. info.setInflationPercent(percentFmt.parse(

189. inflationPercentField.getText()).doubleValue());

190. }

191. catch (ParseException e)

192. {

193. }

194. }

195.

196. private JTextField savingsField = new JTextField(10);

197. private JTextField contribField = new JTextField(10);

198. private JTextField incomeField = new JTextField(10);

199. private JTextField currentAgeField = new JTextField(4);

200. private JTextField retireAgeField = new JTextField(4);

201. private JTextField deathAgeField = new JTextField(4);

202. private JTextField inflationPercentField = new JTextField(6);

203. private JTextField investPercentField = new JTextField(6);

204. private JTextArea retireText = new JTextArea(10, 25);

205. private RetireCanvas retireCanvas = new RetireCanvas();

206. private JButton computeButton = new JButton();

207. private JLabel languageLabel = new JLabel();

208. private JLabel savingsLabel = new JLabel();

209. private JLabel contribLabel = new JLabel();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

210. private JLabel incomeLabel = new JLabel();

211. private JLabel currentAgeLabel = new JLabel();

212. private JLabel retireAgeLabel = new JLabel();

213. private JLabel deathAgeLabel = new JLabel();

214. private JLabel inflationPercentLabel = new JLabel();

215. private JLabel investPercentLabel = new JLabel();

216.

217. private RetireInfo info = new RetireInfo();

218.

219. private Locale[] locales = { Locale.US, Locale.CHINA, Locale.GERMANY };

220. private Locale currentLocale;

221. private JComboBox localeCombo = new LocaleCombo(locales);

222. private ResourceBundle res;

223. private ResourceBundle resStrings;

224. private NumberFormat currencyFmt;

225. private NumberFormat numberFmt;

226. private NumberFormat percentFmt;

227. }

228.

229. /**

230. * The information required to compute retirement income data.

231. */

232. class RetireInfo

233. {

234. /**

235. * Gets the available balance for a given year.

236. * @param year the year for which to compute the balance

237. * @return the amount of money available (or required) in that year

238. */

239. public double getBalance(int year)

240. {

241. if (year < currentAge) return 0;

242. else if (year == currentAge)

243. {

244. age = year;

245. balance = savings;

246. return balance;

247. }

248. else if (year == age) return balance;

249. if (year != age + 1) getBalance(year - 1);

250. age = year;

251. if (age < retireAge) balance += contrib;

252. else balance -= income;

253. balance = balance * (1 + (investPercent - inflationPercent));

254. return balance;

255. }

256.

257. /**

258. * Gets the amount of prior savings.

259. * @return the savings amount

260. */

261. public double getSavings()

262. {

263. return savings;

264. }

265.

266. /**

267. * Sets the amount of prior savings.

268. * @param newValue the savings amount

269. */

270. public void setSavings(double newValue)

271. {

272. savings = newValue;

273. }

274.

275. /**

276. * Gets the annual contribution to the retirement account.

277. * @return the contribution amount

278. */

279. public double getContrib()

280. {

281. return contrib;

282. }

283.

284. /**

285. * Sets the annual contribution to the retirement account.

286. * @param newValue the contribution amount

287. */

288. public void setContrib(double newValue)

289. {

290. contrib = newValue;

291. }

292.

293. /**

294. * Gets the annual income.

295. * @return the income amount

296. */

297. public double getIncome()

298. {

299. return income;

300. }

301.

302. /**

303. * Sets the annual income.

304. * @param newValue the income amount

305. */

306. public void setIncome(double newValue)

307. {

308. income = newValue;

309. }

310.

311. /**

312. * Gets the current age.

313. * @return the age

314. */

315. public int getCurrentAge()

316. {

317. return currentAge;

318. }

319.

320. /**

321. * Sets the current age.

322. * @param newValue the age

323. */

324. public void setCurrentAge(int newValue)

325. {

326. currentAge = newValue;

327. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

328.

329. /**

330. * Gets the desired retirement age.

331. * @return the age

332. */

333. public int getRetireAge()

334. {

335. return retireAge;

336. }

337.

338. /**

339. * Sets the desired retirement age.

340. * @param newValue the age

341. */

342. public void setRetireAge(int newValue)

343. {

344. retireAge = newValue;

345. }

346.

347. /**

348. * Gets the expected age of death.

349. * @return the age

350. */

351. public int getDeathAge()

352. {

353. return deathAge;

354. }

355.

356. /**

357. * Sets the expected age of death.

358. * @param newValue the age

359. */

360. public void setDeathAge(int newValue)

361. {

362. deathAge = newValue;

363. }

364.

365. /**

366. * Gets the estimated percentage of inflation.

367. * @return the percentage

368. */

369. public double getInflationPercent()

370. {

371. return inflationPercent;

372. }

373.

374. /**

375. * Sets the estimated percentage of inflation.

376. * @param newValue the percentage

377. */

378. public void setInflationPercent(double newValue)

379. {

380. inflationPercent = newValue;

381. }

382.

383. /**

384. * Gets the estimated yield of the investment.

385. * @return the percentage

386. */

387. public double getInvestPercent()

388. {

389. return investPercent;

390. }

391.

392. /**

393. * Sets the estimated yield of the investment.

394. * @param newValue the percentage

395. */

396. public void setInvestPercent(double newValue)

397. {

398. investPercent = newValue;

399. }

400.

401. private double savings;

402. private double contrib;

403. private double income;

404. private int currentAge;

405. private int retireAge;

406. private int deathAge;

407. private double inflationPercent;

408. private double investPercent;

409.

410. private int age;

411. private double balance;

412. }

413.

414. /**

415. * This panel draws a graph of the investment result.

416. */

417. class RetireCanvas extends JPanel

418. {

419. public RetireCanvas()

420. {

421. setSize(PANEL_WIDTH, PANEL_HEIGHT);

422. }

423.

424. /**

425. * Sets the retirement information to be plotted.

426. * @param newInfo the new retirement info.

427. */

428. public void setInfo(RetireInfo newInfo)

429. {

430. info = newInfo;

431. repaint();

432. }

433.

434. public void paintComponent(Graphics g)

435. {

436. Graphics2D g2 = (Graphics2D) g;

437. if (info == null) return;

438.

439. double minValue = 0;

440. double maxValue = 0;

441. int i;

442. for (i = info.getCurrentAge(); i <= info.getDeathAge(); i++)

443. {

444. double v = info.getBalance(i);

445. if (minValue > v) minValue = v;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

446. if (maxValue < v) maxValue = v;

447. }

448. if (maxValue == minValue) return;

449.

450. int barWidth = getWidth() / (info.getDeathAge() - info.getCurrentAge() + 1);

451. double scale = getHeight() / (maxValue - minValue);

452.

453. for (i = info.getCurrentAge(); i <= info.getDeathAge(); i++)

454. {

455. int x1 = (i - info.getCurrentAge()) * barWidth + 1;

456. int y1;

457. double v = info.getBalance(i);

458. int height;

459. int yOrigin = (int) (maxValue * scale);

460.

461. if (v >= 0)

462. {

463. y1 = (int) ((maxValue - v) * scale);

464. height = yOrigin - y1;

465. }

466. else

467. {

468. y1 = yOrigin;

469. height = (int) (-v * scale);

470. }

471.

472. if (i < info.getRetireAge()) g2.setPaint(colorPre);

473. else if (v >= 0) g2.setPaint(colorGain);

474. else g2.setPaint(colorLoss);

475. Rectangle2D bar = new Rectangle2D.Double(x1, y1, barWidth - 2, height);

476. g2.fill(bar);

477. g2.setPaint(Color.black);

478. g2.draw(bar);

479. }

480. }

481.

482. /**

483. * Sets the color to be used before retirement.

484. * @param color the desired color

485. */

486. public void setColorPre(Color color)

487. {

488. colorPre = color;

489. repaint();

490. }

491.

492. /**

493. * Sets the color to be used after retirement while the account balance is positive.

494. * @param color the desired color

495. */

496. public void setColorGain(Color color)

497. {

498. colorGain = color;

499. repaint();

500. }

501.

502. /**

503. * Sets the color to be used after retirement when the account balance is negative.

504. * @param color the desired color

505. */

506. public void setColorLoss(Color color)

507. {

508. colorLoss = color;

509. repaint();

510. }

511.

512. private RetireInfo info = null;

513. private Color colorPre;

514. private Color colorGain;

515. private Color colorLoss;

516. private static final int PANEL_WIDTH = 400;

517. private static final int PANEL_HEIGHT = 200;

518. }

Listing 5-6. RetireResources.java

Code View:
 1. import java.awt.*;

 2.

 3. /**

 4. * These are the English non-string resources for the retirement calculator.

 5. * @version 1.21 2001-08-27

 6. * @author Cay Horstmann

 7. */

 8. public class RetireResources extends java.util.ListResourceBundle

 9. {

10. public Object[][] getContents()

11. {

12. return contents;

13. }

14.

15. static final Object[][] contents = {

16. // BEGIN LOCALIZE

17. { "colorPre", Color.blue }, { "colorGain", Color.white }, { "colorLoss", Color.red }

18. // END LOCALIZE

19. };

20. }

Listing 5-7. RetireResources_de.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. import java.awt.*;

 2.

 3. /**

 4. * These are the German non-string resources for the retirement calculator.

 5. * @version 1.21 2001-08-27

 6. * @author Cay Horstmann

 7. */

 8. public class RetireResources_de extends java.util.ListResourceBundle

 9. {

10. public Object[][] getContents()

11. {

12. return contents;

13. }

14.

15. static final Object[][] contents = {

16. // BEGIN LOCALIZE

17. { "colorPre", Color.yellow }, { "colorGain", Color.black }, { "colorLoss", Color.red }

18. // END LOCALIZE

19. };

20. }

Listing 5-8. RetireResources_zh.java

Code View:
 1. import java.awt.*;

 2.

 3. /**

 4. * These are the Chinese non-string resources for the retirement calculator.

 5. * @version 1.21 2001-08-27

 6. * @author Cay Horstmann

 7. */

 8. public class RetireResources_zh extends java.util.ListResourceBundle

 9. {

10. public Object[][] getContents()

11. {

12. return contents;

13. }

14.

15. static final Object[][] contents = {

16. // BEGIN LOCALIZE

17. { "colorPre", Color.red }, { "colorGain", Color.blue }, { "colorLoss", Color.yellow }

18. // END LOCALIZE

19. };

20. }

Listing 5-9. RetireStrings.properties

 1. language=Language

 2. computeButton=Compute

 3. savings=Prior Savings

 4. contrib=Annual Contribution

 5. income=Retirement Income

 6. currentAge=Current Age

 7. retireAge=Retirement Age

 8. deathAge=Life Expectancy

 9. inflationPercent=Inflation

10. investPercent=Investment Return

11. retire=Age: {0,number} Balance: {1,number,currency}

Listing 5-10. RetireStrings_de.properties

 1. language=Sprache

 2. computeButton=Rechnen

 3. savings=Vorherige Ersparnisse

 4. contrib=J\u00e4hrliche Einzahlung

 5. income=Einkommen nach Ruhestand

 6. currentAge=Jetziges Alter

 7. retireAge=Ruhestandsalter

 8. deathAge=Lebenserwartung

 9. inflationPercent=Inflation

10. investPercent=Investitionsgewinn

11. retire=Alter: {0,number} Guthaben: {1,number,currency}

Listing 5-11. RetireStrings_zh.properties

 1. language=\u8bed\u8a00

 2. computeButton=\u8ba1\u7b97

 3. savings=\u65e2\u5b58

 4. contrib=\u6bcf\u5e74\u5b58\u91d1

 5. income=\u9000\u4f11\u6536\u5165

 6. currentAge=\u73b0\u9f84

 7. retireAge=\u9000\u4f11\u5e74\u9f84

 8. deathAge=\u9884\u671f\u5bff\u547d

 9. inflationPercent=\u901a\u8d27\u81a8\u6da8

10. investPercent=\u6295\u8d44\u62a5\u916c

11. retire=\u5e74\u9f84: {0,number} \u603b\u7ed3: {1,number,currency}

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.applet.Applet 1.0

Locale getLocale() 1.1

gets the current locale of the applet. The current locale is determined
from the client computer that executes the applet.

You have now seen how to use the internationalization features of the Java language. You use resource bundles
to provide translations into multiple languages, and you use formatters and collators for locale-specific text
processing.

In the next chapter, we delve into advanced Swing programming.

Chapter 6. Advanced Swing

LISTS

TABLES

TREES

TEXT COMPONENTS

PROGRESS INDICATORS

COMPONENT ORGANIZERS

In this chapter, we continue our discussion of the Swing user interface toolkit from Volume I. Swing is a rich
toolkit, and Volume I covered only basic and commonly used components. That leaves us with three
significantly more complex components for lists, tables, and trees, the exploration of which occupies a large part
of this chapter. We then turn to text components and go beyond the simple text fields and text areas that you
have seen in Volume I. We show you how to add validations and spinners to text fields and how you can display
structured text such as HTML. Next, you will see a number of components for displaying progress of a slow
activity. We finish the chapter by covering component organizers such as tabbed panes and desktop panes with
internal frames.

Lists

If you want to present a set of choices to a user, and a radio button or checkbox set consumes too much space,
you can use a combo box or a list. Combo boxes were covered in Volume I because they are relatively simple.
The JList component has many more features, and its design is similar to that of the tree and table

components. For that reason, it is our starting point for the discussion of complex Swing components.

Of course, you can have lists of strings, but you can also have lists of arbitrary objects, with full control of how
they appear. The internal architecture of the list component that makes this generality possible is rather
elegant. Unfortunately, the designers at Sun felt that they needed to show off that elegance, rather than hiding
it from the programmer who just wants to use the component. You will find that the list control is somewhat
awkward to use for common cases because you need to manipulate some of the machinery that makes the
general cases possible. We walk you through the simple and most common case, a list box of strings, and then
give a more complex example that shows off the flexibility of the list component.

The JList Component

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The JList component shows a number of items inside a single box. Figure 6-1 shows an admittedly silly

example. The user can select the attributes for the fox, such as "quick," "brown," "hungry," "wild," and, because
we ran out of attributes, "static," "private," and "final." You can thus have the static final fox jump over the lazy
dog.

Figure 6-1. A list box

To construct this list component, you first start out with an array of strings, then pass the array to the JList

constructor:

String[] words= { "quick", "brown", "hungry", "wild", ... };

JList wordList = new JList(words);

Alternatively, you can use an anonymous array:

Code View:
JList wordList = new JList(new String[] {"quick", "brown", "hungry", "wild", ... });

List boxes do not scroll automatically. To make a list box scroll, you must insert it into a scroll pane:

JScrollPane scrollPane = new JScrollPane(wordList);

You then add the scroll pane, not the list, into the surrounding panel.

We must admit that the separation of the list display and the scrolling mechanism is elegant in theory, but it is
a pain in practice. Essentially all lists that we ever encountered needed scrolling. It seems cruel to force
programmers to go through hoops in the default case just so they can appreciate that elegance.

By default, the list component displays eight items; use the setVisibleRowCount method to change that value:

wordList.setVisibleRowCount(4); // display 4 items

You can set the layout orientation to one of three values:

JList.VERTICAL (the default)— Arrange all items vertically.

JList.VERTICAL_WRAP— Start new columns if there are more items than the visible row count (see Figure

6-2).

Figure 6-2. Lists with vertical and horizontal wrap

[View full size image]

JList.HORIZONTAL_WRAP— Start new columns if there are more items than the visible row count, but fill

them horizontally. Look at the placement of the words "quick," "brown," and "hungry" in Figure 6-2 to see
the difference between vertical and horizontal wrap.

By default, a user can select multiple items. To add more items to a selection, press the CTRL key while clicking
on each item. To select a contiguous range of items, click on the first one, then hold down the SHIFT key and
click on the last one.

You can also restrict the user to a more limited selection mode with the setSelectionMode method:

wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 // select one item at a time

wordList.setSelectionMode(ListSelectionModel.SINGLE_INTERVAL_SELECTION);

 // select one item or one range of items

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You might recall from Volume I that the basic user interface components send out action events when the user
activates them. List boxes use a different notification mechanism. Rather than listening to action events, you
need to listen to list selection events. Add a list selection listener to the list component, and implement the
method

public void valueChanged(ListSelectionEvent evt)

in the listener.

When the user selects items, a flurry of list selection events is generated. For example, suppose the user clicks
on a new item. When the mouse button goes down, an event reports a change in selection. This is a transitional
event—the call

event.isAdjusting()

returns true if the selection is not yet final. Then, when the mouse button goes up, there is another event, this

time with isAdjusting returning false. If you are not interested in the transitional events, then you can wait
for the event for which isAdjusting is false. However, if you want to give the user instant feedback as soon as

the mouse button is clicked, you need to process all events.

Once you are notified that an event has happened, you will want to find out what items are currently selected.
The getSelectedValues method returns an array of objects containing all selected items. Cast each array

element to a string.

Object[] values = list.getSelectedValues();

for (Object value : values)

 do something with (String) value;

Caution

You cannot cast the return value of getSelectedValues from an Object[] array to

a String[] array. The return value was not created as an array of strings, but as an

array of objects, each of which happens to be a string. To process the return value
as an array of strings, use the following code:

int length = values.length;

String[] words = new String[length];

System.arrayCopy(values, 0, words, 0, length);

If your list does not allow multiple selections, you can call the convenience method getSelectedValue. It

returns the first selected value (which you know to be the only value if multiple selections are disallowed).

String value = (String) list.getSelectedValue();

Note

List components do not react to double clicks from a mouse. As envisioned by the
designers of Swing, you use a list to select an item, and then you click a button to
make something happen. However, some user interfaces allow a user to double-
click on a list item as a shortcut for item selection and acceptance of a default
action. If you want to implement this behavior, you have to add a mouse listener to
the list box, then trap the mouse event as follows:

public void mouseClicked(MouseEvent evt)

{

 if (evt.getClickCount() == 2)

 {

 JList source = (JList) evt.getSource();

 Object[] selection = source.getSelectedValues();

 doAction(selection);

 }

}

Listing 6-1 is the listing of the program that demonstrates a list box filled with strings. Notice how the
valueChanged method builds up the message string from the selected items.

Listing 6-1. ListTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import javax.swing.*;

 4. import javax.swing.event.*;

 5.

 6. /**

 7. * This program demonstrates a simple fixed list of strings.

 8. * @version 1.23 2007-08-01

 9. * @author Cay Horstmann

 10. */

 11. public class ListTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new ListFrame();

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * This frame contains a word list and a label that shows a sentence made up from the chosen

 29. * words. Note that you can select multiple words with Ctrl+click and Shift+click.

 30. */

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 31. class ListFrame extends JFrame

 32. {

 33. public ListFrame()

 34. {

 35. setTitle("ListTest");

 36. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 37.

 38. String[] words = { "quick", "brown", "hungry", "wild", "silent", "huge", "private",

 39. "abstract", "static", "final" };

 40.

 41. wordList = new JList(words);

 42. wordList.setVisibleRowCount(4);

 43. JScrollPane scrollPane = new JScrollPane(wordList);

 44.

 45. listPanel = new JPanel();

 46. listPanel.add(scrollPane);

 47. wordList.addListSelectionListener(new ListSelectionListener()

 48. {

 49. public void valueChanged(ListSelectionEvent event)

 50. {

 51. Object[] values = wordList.getSelectedValues();

 52.

 53. StringBuilder text = new StringBuilder(prefix);

 54. for (int i = 0; i < values.length; i++)

 55. {

 56. String word = (String) values[i];

 57. text.append(word);

 58. text.append(" ");

 59. }

 60. text.append(suffix);

 61.

 62. label.setText(text.toString());

 63. }

 64. });

 65.

 66. buttonPanel = new JPanel();

 67. group = new ButtonGroup();

 68. makeButton("Vertical", JList.VERTICAL);

 69. makeButton("Vertical Wrap", JList.VERTICAL_WRAP);

 70. makeButton("Horizontal Wrap", JList.HORIZONTAL_WRAP);

 71.

 72. add(listPanel, BorderLayout.NORTH);

 73. label = new JLabel(prefix + suffix);

 74. add(label, BorderLayout.CENTER);

 75. add(buttonPanel, BorderLayout.SOUTH);

 76. }

 77.

 78. /**

 79. * Makes a radio button to set the layout orientation.

 80. * @param label the button label

 81. * @param orientation the orientation for the list

 82. */

 83. private void makeButton(String label, final int orientation)

 84. {

 85. JRadioButton button = new JRadioButton(label);

 86. buttonPanel.add(button);

 87. if (group.getButtonCount() == 0) button.setSelected(true);

 88. group.add(button);

 89. button.addActionListener(new ActionListener()

 90. {

 91. public void actionPerformed(ActionEvent event)

 92. {

 93. wordList.setLayoutOrientation(orientation);

 94. listPanel.revalidate();

 95. }

 96. });

 97. }

 98.

 99. private static final int DEFAULT_WIDTH = 400;

100. private static final int DEFAULT_HEIGHT = 300;

101. private JPanel listPanel;

102. private JList wordList;

103. private JLabel label;

104. private JPanel buttonPanel;

105. private ButtonGroup group;

106. private String prefix = "The ";

107. private String suffix = "fox jumps over the lazy dog.";

108. }

javax.swing.JList 1.2

JList(Object[] items)

constructs a list that displays these items.

int getVisibleRowCount()

void setVisibleRowCount(int c)

gets or sets the preferred number of rows in the list that can be displayed without a scroll
bar.

int getLayoutOrientation() 1.4

void setLayoutOrientation(int orientation) 1.4

gets or sets the layout orientation

Parameters: orientation One of VERTICAL, VERTICAL_WRAP, HORIZONTAL_WRAP

int getSelectionMode()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setSelectionMode(int mode)

gets or sets the mode that determines whether single-item or multiple-item selections are
allowed.

Parameters: mode One of SINGLE_SELECTION,

SINGLE_INTERVAL_SELECTION,

MULTIPLE_INTERVAL_SELECTION

void addListSelectionListener(ListSelectionListener listener)

adds to the list a listener that's notified each time a change to the selection occurs.

Object[] getSelectedValues()

returns the selected values or an empty array if the selection is empty.

Object getSelectedValue()

returns the first selected value or null if the selection is empty.

javax.swing.event.ListSelectionListener 1.2

void valueChanged(ListSelectionEvent e)

is called whenever the list selection changes.

List Models

In the preceding section, you saw the most common method for using a list component:

Specify a fixed set of strings for display in the list.1.

Place the list inside a scroll pane.2.

Trap the list selection events.3.

In the remainder of the section on lists, we cover more complex situations that require a bit more finesse:

Very long lists

Lists with changing contents

Lists that don't contain strings

In the first example, we constructed a JList component that held a fixed collection of strings. However, the

collection of choices in a list box is not always fixed. How do we add or remove items in the list box? Somewhat
surprisingly, there are no methods in the JList class to achieve this. Instead, you have to understand a little

more about the internal design of the list component. The list component uses the model-view-controller design
pattern to separate the visual appearance (a column of items that are rendered in some way) from the
underlying data (a collection of objects).

The JList class is responsible for the visual appearance of the data. It actually knows very little about how the

data are stored—all it knows is that it can retrieve the data through some object that implements the
ListModel interface:

public interface ListModel

{

 int getSize();

 Object getElementAt(int i);

 void addListDataListener(ListDataListener l);
 void removeListDataListener(ListDataListener l);

}

Through this interface, the JList can get a count of elements and retrieve each one of the elements. Also, the

JList object can add itself as a ListDataListener. That way, if the collection of elements changes, the JList

gets notified so that it can repaint itself.

Why is this generality useful? Why doesn't the JList object simply store an array of objects?

Note that the interface doesn't specify how the objects are stored. In particular, it doesn't force them to be
stored at all! The getElementAt method is free to recompute each value whenever it is called. This is potentially

useful if you want to show a very large collection without having to store the values.

Here is a somewhat silly example: We let the user choose among all three-letter words in a list box (see Figure
6-3).

Figure 6-3. Choosing from a very long list of selections

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

There are 26 x 26 x 26 = 17,576 three-letter combinations. Rather than storing all these combinations, we
recompute them as requested when the user scrolls through them.

This turns out to be easy to implement. The tedious part, adding and removing listeners, has been done for us
in the AbstractListModel class, which we extend. We only need to supply the getSize and getElementAt

methods:

class WordListModel extends AbstractListModel

{

 public WordListModel(int n) { length = n; }

 public int getSize() { return (int) Math.pow(26, length); }

 public Object getElementAt(int n)

 {
 // compute nth string

 . . .

 }

 . . .

}

The computation of the nth string is a bit technical—you'll find the details in Listing 6-2.

Now that we have supplied a model, we can simply build a list that lets the user scroll through the elements
supplied by the model:

JList wordList = new JList(new WordListModel(3));

wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

JScrollPane scrollPane = new JScrollPane(wordList);

The point is that the strings are never stored. Only those strings that the user actually requests to see are
generated.

We must make one other setting. We must tell the list component that all items have a fixed width and height.
The easiest way to set the cell dimensions is to specify a prototype cell value:

wordList.setPrototypeCellValue("www");

The prototype cell value is used to determine the size for all cells. (We use the string "www" because "w" is the
widest lowercase letter in most fonts.)

Alternatively, you can set a fixed cell size:

wordList.setFixedCellWidth(50);

wordList.setFixedCellHeight(15);

If you don't set a prototype value or a fixed cell size, the list component computes the width and height of each
item. That can take a long time.

As a practical matter, very long lists are rarely useful. It is extremely cumbersome for a user to scroll through a
huge selection. For that reason, we believe that the list control has been completely overengineered. A selection
that a user can comfortably manage on the screen is certainly small enough to be stored directly in the list
component. That arrangement would have saved programmers from the pain of having to deal with the list
model as a separate entity. On the other hand, the JList class is consistent with the JTree and JTable class

where this generality is useful.

Listing 6-2. LongListTest.java

Code View:
 1. import java.awt.*;

 2.

 3. import javax.swing.*;

 4. import javax.swing.event.*;

 5.

 6. /**

 7. * This program demonstrates a list that dynamically computes list entries.

 8. * @version 1.23 2007-08-01

 9. * @author Cay Horstmann

 10. */

 11. public class LongListTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new LongListFrame();

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * This frame contains a long word list and a label that shows a sentence made up from

 29. * the chosen word.

 30. */

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 31. class LongListFrame extends JFrame

 32. {

 33. public LongListFrame()

 34. {

 35. setTitle("LongListTest");

 36. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 37.

 38. wordList = new JList(new WordListModel(3));

 39. wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 40. wordList.setPrototypeCellValue("www");

 41. JScrollPane scrollPane = new JScrollPane(wordList);

 42.

 43. JPanel p = new JPanel();

 44. p.add(scrollPane);

 45. wordList.addListSelectionListener(new ListSelectionListener()

 46. {

 47. public void valueChanged(ListSelectionEvent evt)

 48. {

 49. StringBuilder word = (StringBuilder) wordList.getSelectedValue();

 50. setSubject(word.toString());

 51. }

 52.

 53. });

 54.

 55. Container contentPane = getContentPane();

 56. contentPane.add(p, BorderLayout.NORTH);

 57. label = new JLabel(prefix + suffix);

 58. contentPane.add(label, BorderLayout.CENTER);

 59. setSubject("fox");

 60. }

 61.

 62. /**

 63. * Sets the subject in the label.

 64. * @param word the new subject that jumps over the lazy dog

 65. */

 66. public void setSubject(String word)

 67. {

 68. StringBuilder text = new StringBuilder(prefix);

 69. text.append(word);

 70. text.append(suffix);

 71. label.setText(text.toString());

 72. }

 73.

 74. private static final int DEFAULT_WIDTH = 400;

 75. private static final int DEFAULT_HEIGHT = 300;

 76. private JList wordList;

 77. private JLabel label;

 78. private String prefix = "The quick brown ";

 79. private String suffix = " jumps over the lazy dog.";

 80. }

 81.

 82. /**

 83. * A model that dynamically generates n-letter words.

 84. */

 85. class WordListModel extends AbstractListModel

 86. {

 87. /**

 88. * Constructs the model.

 89. * @param n the word length

 90. */

 91. public WordListModel(int n)

 92. {

 93. length = n;

 94. }

 95.

 96. public int getSize()

 97. {

 98. return (int) Math.pow(LAST - FIRST + 1, length);

 99. }

100.

101. public Object getElementAt(int n)

102. {

103. StringBuilder r = new StringBuilder();

104. ;

105. for (int i = 0; i < length; i++)

106. {

107. char c = (char) (FIRST + n % (LAST - FIRST + 1));

108. r.insert(0, c);

109. n = n / (LAST - FIRST + 1);

110. }

111. return r;

112. }

113.

114. private int length;

115. public static final char FIRST = 'a';

116. public static final char LAST = 'z';

117. }

javax.swing.JList 1.2

JList(ListModel dataModel)

constructs a list that displays the elements in the specified model.

Object getPrototypeCellValue()

void setPrototypeCellValue(Object newValue)

gets or sets the prototype cell value that is used to determine the width
and height of each cell in the list. The default is null, which forces the

size of each cell to be measured.

void setFixedCellWidth(int width)

if the width is greater than zero, specifies the width (in pixels) of every

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

cell in the list. The default value is -1, which forces the size of each cell
to be measured.

void setFixedCellHeight(int height)

if the height is greater than zero, specifies the height (in pixels) of every
cell in the list. The default value is -1, which forces the size of each cell
to be measured.

javax.swing.ListModel 1.2

int getSize()

returns the number of elements of the model.

Object getElementAt(int position)

returns an element of the model at the given position.

Inserting and Removing Values

You cannot directly edit the collection of list values. Instead, you must access the model and then add or
remove elements. That, too, is easier said than done. Suppose you want to add more values to a list. You can
obtain a reference to the model:

ListModel model = list.getModel();

But that does you no good—as you saw in the preceding section, the ListModel interface has no methods to

insert or remove elements because, after all, the whole point of having a list model is that it need not store the
elements.

Let's try it the other way around. One of the constructors of JList takes a vector of objects:

Vector<String> values = new Vector<String>();

values.addElement("quick");

values.addElement("brown");

. . .

JList list = new JList(values);

You can now edit the vector and add or remove elements, but the list does not know that this is happening, so it
cannot react to the changes. In particular, the list cannot update its view when you add the values. Therefore,
this constructor is not very useful.

Instead, you should construct a DefaultListModel object, fill it with the initial values, and associate it with the

list. The DefaultListModel class implements the ListModel interface and manages a collection of objects.

DefaultListModel model = new DefaultListModel();

model.addElement("quick");

model.addElement("brown");
. . .

JList list = new JList(model);

Now you can add or remove values from the model object. The model object then notifies the list of the

changes, and the list repaints itself.

model.removeElement("quick");

model.addElement("slow");

For historical reasons, the DefaultListModel class doesn't use the same method names as the collection

classes.

The default list model uses a vector internally to store the values.

Caution

There are JList constructors that construct a list from an array or vector of objects or

strings. You might think that these constructors use a DefaultListModel to store

these values. That is not the case—the constructors build a trivial model that can
access the values without any provisions for notification if the content changes. For
example, here is the code for the constructor that constructs a JList from a Vector:

public JList(final Vector<?> listData)
{

 this (new AbstractListModel()

 {

 public int getSize() { return listData.size(); }

 public Object getElementAt(int i) { return listData.elementAt(i); }

 });

}

That means, if you change the contents of the vector after the list is constructed, then
the list might show a confusing mix of old and new values until it is completely
repainted. (The keyword final in the preceding constructor does not prevent you

from changing the vector elsewhere—it only means that the constructor itself won't
modify the value of the listData reference; the keyword is required because the

listData object is used in the inner class.)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.JList 1.2

ListModel getModel()

gets the model of this list.

javax.swing.DefaultListModel 1.2

void addElement(Object obj)

adds the object to the end of the model.

boolean removeElement(Object obj)

removes the first occurrence of the object from the model. Returns true

if the object was contained in the model, false otherwise.

Rendering Values

So far, all lists that you have seen in this chapter contained strings. It is actually just as easy to show a list of
icons—simply pass an array or vector filled with Icon objects. More interestingly, you can easily represent your

list values with any drawing whatsoever.

Although the JList class can display strings and icons automatically, you need to install a list cell renderer into

the JList object for all custom drawing. A list cell renderer is any class that implements the following interface:

Code View:
interface ListCellRenderer
{

 Component getListCellRendererComponent(JList list, Object value, int index,

 boolean isSelected, boolean cellHasFocus);
}

This method is called for each cell. It returns a component that paints the cell contents. The component is
placed at the appropriate location whenever a cell needs to be rendered.

One way to implement a cell renderer is to create a class that extends JComponent, like this:

Code View:
class MyCellRenderer extends JComponent implements ListCellRenderer

{

 public Component getListCellRendererComponent(JList list, Object value, int index,

 boolean isSelected, boolean cellHasFocus)

 {

 // stash away information that is needed for painting and size measurement

 return this;
 }

 public void paintComponent(Graphics g)

 {

 // paint code goes here

 }

 public Dimension getPreferredSize()

 {

 // size measurement code goes here

 }

 // instance fields

}

In Listing 6-3, we display the font choices graphically by showing the actual appearance of each font (see Figure
6-4). In the paintComponent method, we display each name in its own font. We also need to make sure to

match the usual colors of the look and feel of the JList class. We obtain these colors by calling the
getForeground/getBackground and getSelectionForeground/getSelectionBackground methods of the JList

class. In the getPreferredSize method, we need to measure the size of the string, using the techniques that

you saw in Volume I, Chapter 7.

Figure 6-4. A list box with rendered cells

To install the cell renderer, simply call the setCellRenderer method:

fontList.setCellRenderer(new FontCellRenderer());

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Now all list cells are drawn with the custom renderer.

Actually, a simpler method for writing custom renderers works in many cases. If the rendered image just
contains text, an icon, and possibly a change of color, then you can get by with configuring a JLabel. For

example, to show the font name in its own font, we can use the following renderer:

Code View:
class FontCellRenderer extends JLabel implements ListCellRenderer

{

 public Component getListCellRendererComponent(JList list, Object value, int index,

 boolean isSelected, boolean cellHasFocus)

 {

 JLabel label = new JLabel();

 Font font = (Font) value;

 setText(font.getFamily());

 setFont(font);

 setOpaque(true);

 setBackground(isSelected ? list.getSelectionBackground() : list.getBackground());

 setForeground(isSelected ? list.getSelectionForeground() : list.getForeground());
 return this;

 }

}

Note that here we don't write any paintComponent or getPreferredSize methods; the JLabel class already

implements these methods to our satisfaction. All we do is configure the label appropriately by setting its text,
font, and color.

This code is a convenient shortcut for those cases in which an existing component—in this case,
JLabel—already provides all functionality needed to render a cell value.

We could have used a JLabel in our sample program, but we gave you the more general code so that you can

modify it when you need to do arbitrary drawings in list cells.

Caution

It is not a good idea to construct a new component in each call to
getListCellRendererComponent. If the user scrolls through many list entries, a

new component would be constructed every time. Reconfiguring an existing
component is safe and much more efficient.

Listing 6-3. ListRenderingTest.java

Code View:
 1. import java.util.*;

 2. import java.awt.*;

 3.

 4. import javax.swing.*;

 5. import javax.swing.event.*;

 6.

 7. /**

 8. * This program demonstrates the use of cell renderers in a list box.

 9. * @version 1.23 2007-08-01

 10. * @author Cay Horstmann

 11. */

 12. public class ListRenderingTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new ListRenderingFrame();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. /**

 29. * This frame contains a list with a set of fonts and a text area that is set to the

 30. * selected font.

 31. */

 32. class ListRenderingFrame extends JFrame

 33. {

 34. public ListRenderingFrame()

 35. {

 36. setTitle("ListRenderingTest");

 37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 38.

 39. ArrayList fonts = new ArrayList();

 40. final int SIZE = 24;

 41. fonts.add(new Font("Serif", Font.PLAIN, SIZE));

 42. fonts.add(new Font("SansSerif", Font.PLAIN, SIZE));

 43. fonts.add(new Font("Monospaced", Font.PLAIN, SIZE));

 44. fonts.add(new Font("Dialog", Font.PLAIN, SIZE));

 45. fonts.add(new Font("DialogInput", Font.PLAIN, SIZE));

 46. fontList = new JList(fonts.toArray());

 47. fontList.setVisibleRowCount(4);

 48. fontList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 49. fontList.setCellRenderer(new FontCellRenderer());

 50. JScrollPane scrollPane = new JScrollPane(fontList);

 51.

 52. JPanel p = new JPanel();

 53. p.add(scrollPane);

 54. fontList.addListSelectionListener(new ListSelectionListener()

 55. {

 56. public void valueChanged(ListSelectionEvent evt)

 57. {

 58. Font font = (Font) fontList.getSelectedValue();

 59. text.setFont(font);

 60. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 61.

 62. });

 63.

 64. Container contentPane = getContentPane();

 65. contentPane.add(p, BorderLayout.SOUTH);

 66. text = new JTextArea("The quick brown fox jumps over the lazy dog");

 67. text.setFont((Font) fonts.get(0));

 68. text.setLineWrap(true);

 69. text.setWrapStyleWord(true);

 70. contentPane.add(text, BorderLayout.CENTER);

 71. }

 72.

 73. private JTextArea text;

 74. private JList fontList;

 75. private static final int DEFAULT_WIDTH = 400;

 76. private static final int DEFAULT_HEIGHT = 300;

 77. }

 78.

 79. /**

 80. * A cell renderer for Font objects that renders the font name in its own font.

 81. */

 82. class FontCellRenderer extends JComponent implements ListCellRenderer

 83. {

 84. public Component getListCellRendererComponent(JList list, Object value, int index,

 85. boolean isSelected, boolean cellHasFocus)

 86. {

 87. font = (Font) value;

 88. background = isSelected ? list.getSelectionBackground() : list.getBackground();

 89. foreground = isSelected ? list.getSelectionForeground() : list.getForeground();

 90. return this;

 91. }

 92.

 93. public void paintComponent(Graphics g)

 94. {

 95. String text = font.getFamily();

 96. FontMetrics fm = g.getFontMetrics(font);

 97. g.setColor(background);

 98. g.fillRect(0, 0, getWidth(), getHeight());

 99. g.setColor(foreground);

100. g.setFont(font);

101. g.drawString(text, 0, fm.getAscent());

102. }

103.

104. public Dimension getPreferredSize()

105. {

106. String text = font.getFamily();

107. Graphics g = getGraphics();

108. FontMetrics fm = g.getFontMetrics(font);

109. return new Dimension(fm.stringWidth(text), fm.getHeight());

110. }

111.

112. private Font font;

113. private Color background;

114. private Color foreground;

115. }

javax.swing.JList 1.2

Color getBackground()

returns the background color for unselected cells.

Color getSelectionBackground()

returns the background color for selected cells.

Color getForeground()

returns the foreground color for unselected cells.

Color getSelectionForeground()

returns the foreground color for selected cells.

void setCellRenderer(ListCellRenderer cellRenderer)

sets the renderer that paints the cells in the list.

javax.swing.ListCellRenderer 1.2

Component getListCellRendererComponent(JList list, Object item, int index,

boolean isSelected, boolean hasFocus)

returns a component whose paint method draws the cell contents. If the list cells do not

have fixed size, that component must also implement getPreferredSize.

Parameters: list The list whose cell is being drawn

 item The item to be drawn

 index The index where the item is stored in the model

 isSelected true if the specified cell was selected

 hasFocus true if the specified cell has the focus

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 6. Advanced Swing

LISTS

TABLES

TREES

TEXT COMPONENTS

PROGRESS INDICATORS

COMPONENT ORGANIZERS

In this chapter, we continue our discussion of the Swing user interface toolkit from Volume I. Swing is a rich
toolkit, and Volume I covered only basic and commonly used components. That leaves us with three
significantly more complex components for lists, tables, and trees, the exploration of which occupies a large part
of this chapter. We then turn to text components and go beyond the simple text fields and text areas that you
have seen in Volume I. We show you how to add validations and spinners to text fields and how you can display
structured text such as HTML. Next, you will see a number of components for displaying progress of a slow
activity. We finish the chapter by covering component organizers such as tabbed panes and desktop panes with
internal frames.

Lists

If you want to present a set of choices to a user, and a radio button or checkbox set consumes too much space,
you can use a combo box or a list. Combo boxes were covered in Volume I because they are relatively simple.
The JList component has many more features, and its design is similar to that of the tree and table

components. For that reason, it is our starting point for the discussion of complex Swing components.

Of course, you can have lists of strings, but you can also have lists of arbitrary objects, with full control of how
they appear. The internal architecture of the list component that makes this generality possible is rather
elegant. Unfortunately, the designers at Sun felt that they needed to show off that elegance, rather than hiding
it from the programmer who just wants to use the component. You will find that the list control is somewhat
awkward to use for common cases because you need to manipulate some of the machinery that makes the
general cases possible. We walk you through the simple and most common case, a list box of strings, and then
give a more complex example that shows off the flexibility of the list component.

The JList Component

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The JList component shows a number of items inside a single box. Figure 6-1 shows an admittedly silly

example. The user can select the attributes for the fox, such as "quick," "brown," "hungry," "wild," and, because
we ran out of attributes, "static," "private," and "final." You can thus have the static final fox jump over the lazy
dog.

Figure 6-1. A list box

To construct this list component, you first start out with an array of strings, then pass the array to the JList

constructor:

String[] words= { "quick", "brown", "hungry", "wild", ... };

JList wordList = new JList(words);

Alternatively, you can use an anonymous array:

Code View:
JList wordList = new JList(new String[] {"quick", "brown", "hungry", "wild", ... });

List boxes do not scroll automatically. To make a list box scroll, you must insert it into a scroll pane:

JScrollPane scrollPane = new JScrollPane(wordList);

You then add the scroll pane, not the list, into the surrounding panel.

We must admit that the separation of the list display and the scrolling mechanism is elegant in theory, but it is
a pain in practice. Essentially all lists that we ever encountered needed scrolling. It seems cruel to force
programmers to go through hoops in the default case just so they can appreciate that elegance.

By default, the list component displays eight items; use the setVisibleRowCount method to change that value:

wordList.setVisibleRowCount(4); // display 4 items

You can set the layout orientation to one of three values:

JList.VERTICAL (the default)— Arrange all items vertically.

JList.VERTICAL_WRAP— Start new columns if there are more items than the visible row count (see Figure

6-2).

Figure 6-2. Lists with vertical and horizontal wrap

[View full size image]

JList.HORIZONTAL_WRAP— Start new columns if there are more items than the visible row count, but fill

them horizontally. Look at the placement of the words "quick," "brown," and "hungry" in Figure 6-2 to see
the difference between vertical and horizontal wrap.

By default, a user can select multiple items. To add more items to a selection, press the CTRL key while clicking
on each item. To select a contiguous range of items, click on the first one, then hold down the SHIFT key and
click on the last one.

You can also restrict the user to a more limited selection mode with the setSelectionMode method:

wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 // select one item at a time

wordList.setSelectionMode(ListSelectionModel.SINGLE_INTERVAL_SELECTION);

 // select one item or one range of items

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You might recall from Volume I that the basic user interface components send out action events when the user
activates them. List boxes use a different notification mechanism. Rather than listening to action events, you
need to listen to list selection events. Add a list selection listener to the list component, and implement the
method

public void valueChanged(ListSelectionEvent evt)

in the listener.

When the user selects items, a flurry of list selection events is generated. For example, suppose the user clicks
on a new item. When the mouse button goes down, an event reports a change in selection. This is a transitional
event—the call

event.isAdjusting()

returns true if the selection is not yet final. Then, when the mouse button goes up, there is another event, this

time with isAdjusting returning false. If you are not interested in the transitional events, then you can wait
for the event for which isAdjusting is false. However, if you want to give the user instant feedback as soon as

the mouse button is clicked, you need to process all events.

Once you are notified that an event has happened, you will want to find out what items are currently selected.
The getSelectedValues method returns an array of objects containing all selected items. Cast each array

element to a string.

Object[] values = list.getSelectedValues();

for (Object value : values)

 do something with (String) value;

Caution

You cannot cast the return value of getSelectedValues from an Object[] array to

a String[] array. The return value was not created as an array of strings, but as an

array of objects, each of which happens to be a string. To process the return value
as an array of strings, use the following code:

int length = values.length;

String[] words = new String[length];

System.arrayCopy(values, 0, words, 0, length);

If your list does not allow multiple selections, you can call the convenience method getSelectedValue. It

returns the first selected value (which you know to be the only value if multiple selections are disallowed).

String value = (String) list.getSelectedValue();

Note

List components do not react to double clicks from a mouse. As envisioned by the
designers of Swing, you use a list to select an item, and then you click a button to
make something happen. However, some user interfaces allow a user to double-
click on a list item as a shortcut for item selection and acceptance of a default
action. If you want to implement this behavior, you have to add a mouse listener to
the list box, then trap the mouse event as follows:

public void mouseClicked(MouseEvent evt)

{

 if (evt.getClickCount() == 2)

 {

 JList source = (JList) evt.getSource();

 Object[] selection = source.getSelectedValues();

 doAction(selection);

 }

}

Listing 6-1 is the listing of the program that demonstrates a list box filled with strings. Notice how the
valueChanged method builds up the message string from the selected items.

Listing 6-1. ListTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import javax.swing.*;

 4. import javax.swing.event.*;

 5.

 6. /**

 7. * This program demonstrates a simple fixed list of strings.

 8. * @version 1.23 2007-08-01

 9. * @author Cay Horstmann

 10. */

 11. public class ListTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new ListFrame();

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * This frame contains a word list and a label that shows a sentence made up from the chosen

 29. * words. Note that you can select multiple words with Ctrl+click and Shift+click.

 30. */

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 31. class ListFrame extends JFrame

 32. {

 33. public ListFrame()

 34. {

 35. setTitle("ListTest");

 36. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 37.

 38. String[] words = { "quick", "brown", "hungry", "wild", "silent", "huge", "private",

 39. "abstract", "static", "final" };

 40.

 41. wordList = new JList(words);

 42. wordList.setVisibleRowCount(4);

 43. JScrollPane scrollPane = new JScrollPane(wordList);

 44.

 45. listPanel = new JPanel();

 46. listPanel.add(scrollPane);

 47. wordList.addListSelectionListener(new ListSelectionListener()

 48. {

 49. public void valueChanged(ListSelectionEvent event)

 50. {

 51. Object[] values = wordList.getSelectedValues();

 52.

 53. StringBuilder text = new StringBuilder(prefix);

 54. for (int i = 0; i < values.length; i++)

 55. {

 56. String word = (String) values[i];

 57. text.append(word);

 58. text.append(" ");

 59. }

 60. text.append(suffix);

 61.

 62. label.setText(text.toString());

 63. }

 64. });

 65.

 66. buttonPanel = new JPanel();

 67. group = new ButtonGroup();

 68. makeButton("Vertical", JList.VERTICAL);

 69. makeButton("Vertical Wrap", JList.VERTICAL_WRAP);

 70. makeButton("Horizontal Wrap", JList.HORIZONTAL_WRAP);

 71.

 72. add(listPanel, BorderLayout.NORTH);

 73. label = new JLabel(prefix + suffix);

 74. add(label, BorderLayout.CENTER);

 75. add(buttonPanel, BorderLayout.SOUTH);

 76. }

 77.

 78. /**

 79. * Makes a radio button to set the layout orientation.

 80. * @param label the button label

 81. * @param orientation the orientation for the list

 82. */

 83. private void makeButton(String label, final int orientation)

 84. {

 85. JRadioButton button = new JRadioButton(label);

 86. buttonPanel.add(button);

 87. if (group.getButtonCount() == 0) button.setSelected(true);

 88. group.add(button);

 89. button.addActionListener(new ActionListener()

 90. {

 91. public void actionPerformed(ActionEvent event)

 92. {

 93. wordList.setLayoutOrientation(orientation);

 94. listPanel.revalidate();

 95. }

 96. });

 97. }

 98.

 99. private static final int DEFAULT_WIDTH = 400;

100. private static final int DEFAULT_HEIGHT = 300;

101. private JPanel listPanel;

102. private JList wordList;

103. private JLabel label;

104. private JPanel buttonPanel;

105. private ButtonGroup group;

106. private String prefix = "The ";

107. private String suffix = "fox jumps over the lazy dog.";

108. }

javax.swing.JList 1.2

JList(Object[] items)

constructs a list that displays these items.

int getVisibleRowCount()

void setVisibleRowCount(int c)

gets or sets the preferred number of rows in the list that can be displayed without a scroll
bar.

int getLayoutOrientation() 1.4

void setLayoutOrientation(int orientation) 1.4

gets or sets the layout orientation

Parameters: orientation One of VERTICAL, VERTICAL_WRAP, HORIZONTAL_WRAP

int getSelectionMode()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setSelectionMode(int mode)

gets or sets the mode that determines whether single-item or multiple-item selections are
allowed.

Parameters: mode One of SINGLE_SELECTION,

SINGLE_INTERVAL_SELECTION,

MULTIPLE_INTERVAL_SELECTION

void addListSelectionListener(ListSelectionListener listener)

adds to the list a listener that's notified each time a change to the selection occurs.

Object[] getSelectedValues()

returns the selected values or an empty array if the selection is empty.

Object getSelectedValue()

returns the first selected value or null if the selection is empty.

javax.swing.event.ListSelectionListener 1.2

void valueChanged(ListSelectionEvent e)

is called whenever the list selection changes.

List Models

In the preceding section, you saw the most common method for using a list component:

Specify a fixed set of strings for display in the list.1.

Place the list inside a scroll pane.2.

Trap the list selection events.3.

In the remainder of the section on lists, we cover more complex situations that require a bit more finesse:

Very long lists

Lists with changing contents

Lists that don't contain strings

In the first example, we constructed a JList component that held a fixed collection of strings. However, the

collection of choices in a list box is not always fixed. How do we add or remove items in the list box? Somewhat
surprisingly, there are no methods in the JList class to achieve this. Instead, you have to understand a little

more about the internal design of the list component. The list component uses the model-view-controller design
pattern to separate the visual appearance (a column of items that are rendered in some way) from the
underlying data (a collection of objects).

The JList class is responsible for the visual appearance of the data. It actually knows very little about how the

data are stored—all it knows is that it can retrieve the data through some object that implements the
ListModel interface:

public interface ListModel

{

 int getSize();

 Object getElementAt(int i);

 void addListDataListener(ListDataListener l);
 void removeListDataListener(ListDataListener l);

}

Through this interface, the JList can get a count of elements and retrieve each one of the elements. Also, the

JList object can add itself as a ListDataListener. That way, if the collection of elements changes, the JList

gets notified so that it can repaint itself.

Why is this generality useful? Why doesn't the JList object simply store an array of objects?

Note that the interface doesn't specify how the objects are stored. In particular, it doesn't force them to be
stored at all! The getElementAt method is free to recompute each value whenever it is called. This is potentially

useful if you want to show a very large collection without having to store the values.

Here is a somewhat silly example: We let the user choose among all three-letter words in a list box (see Figure
6-3).

Figure 6-3. Choosing from a very long list of selections

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

There are 26 x 26 x 26 = 17,576 three-letter combinations. Rather than storing all these combinations, we
recompute them as requested when the user scrolls through them.

This turns out to be easy to implement. The tedious part, adding and removing listeners, has been done for us
in the AbstractListModel class, which we extend. We only need to supply the getSize and getElementAt

methods:

class WordListModel extends AbstractListModel

{

 public WordListModel(int n) { length = n; }

 public int getSize() { return (int) Math.pow(26, length); }

 public Object getElementAt(int n)

 {
 // compute nth string

 . . .

 }

 . . .

}

The computation of the nth string is a bit technical—you'll find the details in Listing 6-2.

Now that we have supplied a model, we can simply build a list that lets the user scroll through the elements
supplied by the model:

JList wordList = new JList(new WordListModel(3));

wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

JScrollPane scrollPane = new JScrollPane(wordList);

The point is that the strings are never stored. Only those strings that the user actually requests to see are
generated.

We must make one other setting. We must tell the list component that all items have a fixed width and height.
The easiest way to set the cell dimensions is to specify a prototype cell value:

wordList.setPrototypeCellValue("www");

The prototype cell value is used to determine the size for all cells. (We use the string "www" because "w" is the
widest lowercase letter in most fonts.)

Alternatively, you can set a fixed cell size:

wordList.setFixedCellWidth(50);

wordList.setFixedCellHeight(15);

If you don't set a prototype value or a fixed cell size, the list component computes the width and height of each
item. That can take a long time.

As a practical matter, very long lists are rarely useful. It is extremely cumbersome for a user to scroll through a
huge selection. For that reason, we believe that the list control has been completely overengineered. A selection
that a user can comfortably manage on the screen is certainly small enough to be stored directly in the list
component. That arrangement would have saved programmers from the pain of having to deal with the list
model as a separate entity. On the other hand, the JList class is consistent with the JTree and JTable class

where this generality is useful.

Listing 6-2. LongListTest.java

Code View:
 1. import java.awt.*;

 2.

 3. import javax.swing.*;

 4. import javax.swing.event.*;

 5.

 6. /**

 7. * This program demonstrates a list that dynamically computes list entries.

 8. * @version 1.23 2007-08-01

 9. * @author Cay Horstmann

 10. */

 11. public class LongListTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new LongListFrame();

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * This frame contains a long word list and a label that shows a sentence made up from

 29. * the chosen word.

 30. */

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 31. class LongListFrame extends JFrame

 32. {

 33. public LongListFrame()

 34. {

 35. setTitle("LongListTest");

 36. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 37.

 38. wordList = new JList(new WordListModel(3));

 39. wordList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 40. wordList.setPrototypeCellValue("www");

 41. JScrollPane scrollPane = new JScrollPane(wordList);

 42.

 43. JPanel p = new JPanel();

 44. p.add(scrollPane);

 45. wordList.addListSelectionListener(new ListSelectionListener()

 46. {

 47. public void valueChanged(ListSelectionEvent evt)

 48. {

 49. StringBuilder word = (StringBuilder) wordList.getSelectedValue();

 50. setSubject(word.toString());

 51. }

 52.

 53. });

 54.

 55. Container contentPane = getContentPane();

 56. contentPane.add(p, BorderLayout.NORTH);

 57. label = new JLabel(prefix + suffix);

 58. contentPane.add(label, BorderLayout.CENTER);

 59. setSubject("fox");

 60. }

 61.

 62. /**

 63. * Sets the subject in the label.

 64. * @param word the new subject that jumps over the lazy dog

 65. */

 66. public void setSubject(String word)

 67. {

 68. StringBuilder text = new StringBuilder(prefix);

 69. text.append(word);

 70. text.append(suffix);

 71. label.setText(text.toString());

 72. }

 73.

 74. private static final int DEFAULT_WIDTH = 400;

 75. private static final int DEFAULT_HEIGHT = 300;

 76. private JList wordList;

 77. private JLabel label;

 78. private String prefix = "The quick brown ";

 79. private String suffix = " jumps over the lazy dog.";

 80. }

 81.

 82. /**

 83. * A model that dynamically generates n-letter words.

 84. */

 85. class WordListModel extends AbstractListModel

 86. {

 87. /**

 88. * Constructs the model.

 89. * @param n the word length

 90. */

 91. public WordListModel(int n)

 92. {

 93. length = n;

 94. }

 95.

 96. public int getSize()

 97. {

 98. return (int) Math.pow(LAST - FIRST + 1, length);

 99. }

100.

101. public Object getElementAt(int n)

102. {

103. StringBuilder r = new StringBuilder();

104. ;

105. for (int i = 0; i < length; i++)

106. {

107. char c = (char) (FIRST + n % (LAST - FIRST + 1));

108. r.insert(0, c);

109. n = n / (LAST - FIRST + 1);

110. }

111. return r;

112. }

113.

114. private int length;

115. public static final char FIRST = 'a';

116. public static final char LAST = 'z';

117. }

javax.swing.JList 1.2

JList(ListModel dataModel)

constructs a list that displays the elements in the specified model.

Object getPrototypeCellValue()

void setPrototypeCellValue(Object newValue)

gets or sets the prototype cell value that is used to determine the width
and height of each cell in the list. The default is null, which forces the

size of each cell to be measured.

void setFixedCellWidth(int width)

if the width is greater than zero, specifies the width (in pixels) of every

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

cell in the list. The default value is -1, which forces the size of each cell
to be measured.

void setFixedCellHeight(int height)

if the height is greater than zero, specifies the height (in pixels) of every
cell in the list. The default value is -1, which forces the size of each cell
to be measured.

javax.swing.ListModel 1.2

int getSize()

returns the number of elements of the model.

Object getElementAt(int position)

returns an element of the model at the given position.

Inserting and Removing Values

You cannot directly edit the collection of list values. Instead, you must access the model and then add or
remove elements. That, too, is easier said than done. Suppose you want to add more values to a list. You can
obtain a reference to the model:

ListModel model = list.getModel();

But that does you no good—as you saw in the preceding section, the ListModel interface has no methods to

insert or remove elements because, after all, the whole point of having a list model is that it need not store the
elements.

Let's try it the other way around. One of the constructors of JList takes a vector of objects:

Vector<String> values = new Vector<String>();

values.addElement("quick");

values.addElement("brown");

. . .

JList list = new JList(values);

You can now edit the vector and add or remove elements, but the list does not know that this is happening, so it
cannot react to the changes. In particular, the list cannot update its view when you add the values. Therefore,
this constructor is not very useful.

Instead, you should construct a DefaultListModel object, fill it with the initial values, and associate it with the

list. The DefaultListModel class implements the ListModel interface and manages a collection of objects.

DefaultListModel model = new DefaultListModel();

model.addElement("quick");

model.addElement("brown");
. . .

JList list = new JList(model);

Now you can add or remove values from the model object. The model object then notifies the list of the

changes, and the list repaints itself.

model.removeElement("quick");

model.addElement("slow");

For historical reasons, the DefaultListModel class doesn't use the same method names as the collection

classes.

The default list model uses a vector internally to store the values.

Caution

There are JList constructors that construct a list from an array or vector of objects or

strings. You might think that these constructors use a DefaultListModel to store

these values. That is not the case—the constructors build a trivial model that can
access the values without any provisions for notification if the content changes. For
example, here is the code for the constructor that constructs a JList from a Vector:

public JList(final Vector<?> listData)
{

 this (new AbstractListModel()

 {

 public int getSize() { return listData.size(); }

 public Object getElementAt(int i) { return listData.elementAt(i); }

 });

}

That means, if you change the contents of the vector after the list is constructed, then
the list might show a confusing mix of old and new values until it is completely
repainted. (The keyword final in the preceding constructor does not prevent you

from changing the vector elsewhere—it only means that the constructor itself won't
modify the value of the listData reference; the keyword is required because the

listData object is used in the inner class.)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.JList 1.2

ListModel getModel()

gets the model of this list.

javax.swing.DefaultListModel 1.2

void addElement(Object obj)

adds the object to the end of the model.

boolean removeElement(Object obj)

removes the first occurrence of the object from the model. Returns true

if the object was contained in the model, false otherwise.

Rendering Values

So far, all lists that you have seen in this chapter contained strings. It is actually just as easy to show a list of
icons—simply pass an array or vector filled with Icon objects. More interestingly, you can easily represent your

list values with any drawing whatsoever.

Although the JList class can display strings and icons automatically, you need to install a list cell renderer into

the JList object for all custom drawing. A list cell renderer is any class that implements the following interface:

Code View:
interface ListCellRenderer
{

 Component getListCellRendererComponent(JList list, Object value, int index,

 boolean isSelected, boolean cellHasFocus);
}

This method is called for each cell. It returns a component that paints the cell contents. The component is
placed at the appropriate location whenever a cell needs to be rendered.

One way to implement a cell renderer is to create a class that extends JComponent, like this:

Code View:
class MyCellRenderer extends JComponent implements ListCellRenderer

{

 public Component getListCellRendererComponent(JList list, Object value, int index,

 boolean isSelected, boolean cellHasFocus)

 {

 // stash away information that is needed for painting and size measurement

 return this;
 }

 public void paintComponent(Graphics g)

 {

 // paint code goes here

 }

 public Dimension getPreferredSize()

 {

 // size measurement code goes here

 }

 // instance fields

}

In Listing 6-3, we display the font choices graphically by showing the actual appearance of each font (see Figure
6-4). In the paintComponent method, we display each name in its own font. We also need to make sure to

match the usual colors of the look and feel of the JList class. We obtain these colors by calling the
getForeground/getBackground and getSelectionForeground/getSelectionBackground methods of the JList

class. In the getPreferredSize method, we need to measure the size of the string, using the techniques that

you saw in Volume I, Chapter 7.

Figure 6-4. A list box with rendered cells

To install the cell renderer, simply call the setCellRenderer method:

fontList.setCellRenderer(new FontCellRenderer());

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Now all list cells are drawn with the custom renderer.

Actually, a simpler method for writing custom renderers works in many cases. If the rendered image just
contains text, an icon, and possibly a change of color, then you can get by with configuring a JLabel. For

example, to show the font name in its own font, we can use the following renderer:

Code View:
class FontCellRenderer extends JLabel implements ListCellRenderer

{

 public Component getListCellRendererComponent(JList list, Object value, int index,

 boolean isSelected, boolean cellHasFocus)

 {

 JLabel label = new JLabel();

 Font font = (Font) value;

 setText(font.getFamily());

 setFont(font);

 setOpaque(true);

 setBackground(isSelected ? list.getSelectionBackground() : list.getBackground());

 setForeground(isSelected ? list.getSelectionForeground() : list.getForeground());
 return this;

 }

}

Note that here we don't write any paintComponent or getPreferredSize methods; the JLabel class already

implements these methods to our satisfaction. All we do is configure the label appropriately by setting its text,
font, and color.

This code is a convenient shortcut for those cases in which an existing component—in this case,
JLabel—already provides all functionality needed to render a cell value.

We could have used a JLabel in our sample program, but we gave you the more general code so that you can

modify it when you need to do arbitrary drawings in list cells.

Caution

It is not a good idea to construct a new component in each call to
getListCellRendererComponent. If the user scrolls through many list entries, a

new component would be constructed every time. Reconfiguring an existing
component is safe and much more efficient.

Listing 6-3. ListRenderingTest.java

Code View:
 1. import java.util.*;

 2. import java.awt.*;

 3.

 4. import javax.swing.*;

 5. import javax.swing.event.*;

 6.

 7. /**

 8. * This program demonstrates the use of cell renderers in a list box.

 9. * @version 1.23 2007-08-01

 10. * @author Cay Horstmann

 11. */

 12. public class ListRenderingTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new ListRenderingFrame();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. /**

 29. * This frame contains a list with a set of fonts and a text area that is set to the

 30. * selected font.

 31. */

 32. class ListRenderingFrame extends JFrame

 33. {

 34. public ListRenderingFrame()

 35. {

 36. setTitle("ListRenderingTest");

 37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 38.

 39. ArrayList fonts = new ArrayList();

 40. final int SIZE = 24;

 41. fonts.add(new Font("Serif", Font.PLAIN, SIZE));

 42. fonts.add(new Font("SansSerif", Font.PLAIN, SIZE));

 43. fonts.add(new Font("Monospaced", Font.PLAIN, SIZE));

 44. fonts.add(new Font("Dialog", Font.PLAIN, SIZE));

 45. fonts.add(new Font("DialogInput", Font.PLAIN, SIZE));

 46. fontList = new JList(fonts.toArray());

 47. fontList.setVisibleRowCount(4);

 48. fontList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 49. fontList.setCellRenderer(new FontCellRenderer());

 50. JScrollPane scrollPane = new JScrollPane(fontList);

 51.

 52. JPanel p = new JPanel();

 53. p.add(scrollPane);

 54. fontList.addListSelectionListener(new ListSelectionListener()

 55. {

 56. public void valueChanged(ListSelectionEvent evt)

 57. {

 58. Font font = (Font) fontList.getSelectedValue();

 59. text.setFont(font);

 60. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 61.

 62. });

 63.

 64. Container contentPane = getContentPane();

 65. contentPane.add(p, BorderLayout.SOUTH);

 66. text = new JTextArea("The quick brown fox jumps over the lazy dog");

 67. text.setFont((Font) fonts.get(0));

 68. text.setLineWrap(true);

 69. text.setWrapStyleWord(true);

 70. contentPane.add(text, BorderLayout.CENTER);

 71. }

 72.

 73. private JTextArea text;

 74. private JList fontList;

 75. private static final int DEFAULT_WIDTH = 400;

 76. private static final int DEFAULT_HEIGHT = 300;

 77. }

 78.

 79. /**

 80. * A cell renderer for Font objects that renders the font name in its own font.

 81. */

 82. class FontCellRenderer extends JComponent implements ListCellRenderer

 83. {

 84. public Component getListCellRendererComponent(JList list, Object value, int index,

 85. boolean isSelected, boolean cellHasFocus)

 86. {

 87. font = (Font) value;

 88. background = isSelected ? list.getSelectionBackground() : list.getBackground();

 89. foreground = isSelected ? list.getSelectionForeground() : list.getForeground();

 90. return this;

 91. }

 92.

 93. public void paintComponent(Graphics g)

 94. {

 95. String text = font.getFamily();

 96. FontMetrics fm = g.getFontMetrics(font);

 97. g.setColor(background);

 98. g.fillRect(0, 0, getWidth(), getHeight());

 99. g.setColor(foreground);

100. g.setFont(font);

101. g.drawString(text, 0, fm.getAscent());

102. }

103.

104. public Dimension getPreferredSize()

105. {

106. String text = font.getFamily();

107. Graphics g = getGraphics();

108. FontMetrics fm = g.getFontMetrics(font);

109. return new Dimension(fm.stringWidth(text), fm.getHeight());

110. }

111.

112. private Font font;

113. private Color background;

114. private Color foreground;

115. }

javax.swing.JList 1.2

Color getBackground()

returns the background color for unselected cells.

Color getSelectionBackground()

returns the background color for selected cells.

Color getForeground()

returns the foreground color for unselected cells.

Color getSelectionForeground()

returns the foreground color for selected cells.

void setCellRenderer(ListCellRenderer cellRenderer)

sets the renderer that paints the cells in the list.

javax.swing.ListCellRenderer 1.2

Component getListCellRendererComponent(JList list, Object item, int index,

boolean isSelected, boolean hasFocus)

returns a component whose paint method draws the cell contents. If the list cells do not

have fixed size, that component must also implement getPreferredSize.

Parameters: list The list whose cell is being drawn

 item The item to be drawn

 index The index where the item is stored in the model

 isSelected true if the specified cell was selected

 hasFocus true if the specified cell has the focus

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Tables

The JTable component displays a two-dimensional grid of objects. Of course, tables are common in user

interfaces. The Swing team has put a lot of effort into the table control. Tables are inherently complex,
but—perhaps more successfully than with other Swing classes—the JTable component hides much of that

complexity. You can produce fully functional tables with rich behavior by writing a few lines of code. Of course,
you can write more code and customize the display and behavior for your specific applications.

In this section, we explain how to make simple tables, how the user interacts with them, and how to make some
of the most common adjustments. As with the other complex Swing controls, it is impossible to cover all
aspects in complete detail. For more information, look in Graphic Java 2: Mastering the JFC, Volume II: Swing,
3rd ed., by David M. Geary (Prentice Hall PTR 1999) or Core Java Foundation Classes by Kim Topley (Prentice
Hall 1998).

A Simple Table

Similar to the JList component, a JTable does not store its own data but obtains its data from a table model.

The JTable class has a constructor that wraps a two-dimensional array of objects into a default model. That is

the strategy that we use in our first example. Later in this chapter, we turn to table models.

Figure 6-5 shows a typical table, describing properties of the planets of the solar system. (A planet is gaseous if
it consists mostly of hydrogen and helium. You should take the "Color" entries with a grain of salt—that column
was added because it will be useful in later code examples.)

Figure 6-5. A simple table

As you can see from the code in Listing 6-4, the data of the table is stored as a two-dimensional array of Object

values:

Object[][] cells =

{

 { "Mercury", 2440.0, 0, false, Color.YELLOW },

 { "Venus", 6052.0, 0, false, Color.YELLOW },

 . . .

}

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

Here, we take advantage of autoboxing. The entries in the second, third, and fourth
columns are automatically converted into objects of type Double, Integer, and

Boolean.

The table simply invokes the toString method on each object to display it. That's why the colors show up as

java.awt.Color[r=...,g=...,b=...].

You supply the column names in a separate array of strings:

String[] columnNames = { "Planet", "Radius", "Moons", "Gaseous", "Color" };

Then, you construct a table from the cell and column name arrays. Finally, add scroll bars in the usual way, by
wrapping the table in a JScrollPane.

JTable table = new JTable(cells, columnNames);

JScrollPane pane = new JScrollPane(table);

The resulting table already has surprisingly rich behavior. Resize the table vertically until the scroll bar shows
up. Then, scroll the table. Note that the column headers don't scroll out of view!

Next, click on one of the column headers and drag it to the left or right. See how the entire column becomes
detached (see Figure 6-6). You can drop it to a different location. This rearranges the columns in the view only.
The data model is not affected.

Figure 6-6. Moving a column

To resize columns, simply place the cursor between two columns until the cursor shape changes to an arrow.
Then, drag the column boundary to the desired place (see Figure 6-7).

Figure 6-7. Resizing columns

Users can select rows by clicking anywhere in a row. The selected rows are highlighted; you will see later how to
get selection events. Users can also edit the table entries by clicking on a cell and typing into it. However, in
this code example, the edits do not change the underlying data. In your programs, you should either make cells
uneditable or handle cell editing events and update your model. We discuss those topics later in this section.

Finally, click on a column header. The rows are automatically sorted. Click again, and the sort order is reversed.
This behavior is activated by the call

table.setAutoCreateRowSorter(true);

You can print a table with the call

table.print();

A print dialog box appears, and the table is sent to the printer. We discuss custom printing options in Chapter 7.

Note

If you resize the TableTest frame so that its height is taller than the table height,

you will see a gray area below the table. Unlike JList and JTree components, the

table does not fill the scroll pane's viewport. This can be a problem if you want to
support drag and drop. (For more information on drag and drop, see Chapter 7.) In
that case, call

table.setFillsViewportHeight(true);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 6-4. PlanetTable.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import javax.swing.*;

 4.

 5. /**

 6. * This program demonstrates how to show a simple table

 7. * @version 1.11 2007-08-01

 8. * @author Cay Horstmann

 9. */

10. public class PlanetTable

11. {

12. public static void main(String[] args)

13. {

14. EventQueue.invokeLater(new Runnable()

15. {

16. public void run()

17. {

18. JFrame frame = new PlanetTableFrame();

19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

20. frame.setVisible(true);

21. }

22. });

23. }

24. }

25.

26. /**

27. * This frame contains a table of planet data.

28. */

29. class PlanetTableFrame extends JFrame

30. {

31. public PlanetTableFrame()

32. {

33. setTitle("PlanetTable");

34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

35. final JTable table = new JTable(cells, columnNames);

36. table.setAutoCreateRowSorter(true);

37. add(new JScrollPane(table), BorderLayout.CENTER);

38. JButton printButton = new JButton("Print");

39. printButton.addActionListener(new ActionListener()

40. {

41. public void actionPerformed(ActionEvent event)

42. {

43. try

44. {

45. table.print();

46. }

47. catch (java.awt.print.PrinterException e)

48. {

49. e.printStackTrace();

50. }

51. }

52. });

53. JPanel buttonPanel = new JPanel();

54. buttonPanel.add(printButton);

55. add(buttonPanel, BorderLayout.SOUTH);

56. }

57.

58. private Object[][] cells = { { "Mercury", 2440.0, 0, false, Color.yellow },

59. { "Venus", 6052.0, 0, false, Color.yellow }, { "Earth", 6378.0, 1, false, Color.blue },

60. { "Mars", 3397.0, 2, false, Color.red }, { "Jupiter", 71492.0, 16, true, Color.orange },

61. { "Saturn", 60268.0, 18, true, Color.orange },

62. { "Uranus", 25559.0, 17, true, Color.blue }, { "Neptune", 24766.0, 8, true, Color.blue },

63. { "Pluto", 1137.0, 1, false, Color.black } };

64.

65. private String[] columnNames = { "Planet", "Radius", "Moons", "Gaseous", "Color" };

66.

67. private static final int DEFAULT_WIDTH = 400;

68. private static final int DEFAULT_HEIGHT = 200;

69. }

javax.swing.JTable 1.2

JTable(Object[][] entries, Object[] columnNames)

constructs a table with a default table model.

void print() 5.0

displays a print dialog box and prints the table.

boolean getAutoCreateRowSorter() 6

void setAutoCreateRowSorter(boolean newValue) 6

gets or sets the autoCreateRowSorter property. The default is false.

When set, a default row sorter is automatically set whenever the model
changes.

boolean getFillsViewportHeight() 6

void setFillsViewportHeight(boolean newValue) 6

gets or sets the fillsViewportHeight property. The default is false.

When set, the table always fills an enclosing viewport.

Table Models

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

In the preceding example, the table data were stored in a two-dimensional array. However, you should
generally not use that strategy in your own code. If you find yourself dumping data into an array to display it as
a table, you should instead think about implementing your own table model.

Table models are particularly simple to implement because you can take advantage of the AbstractTableModel

class that implements most of the required methods. You only need to supply three methods:

public int getRowCount();

public int getColumnCount();

public Object getValueAt(int row, int column);

There are many ways of implementing the getValueAt method. For example, if you want to display the contents

of a RowSet that contains the result of a database query, you simply provide this method:

 public Object getValueAt(int r, int c)
 {

 try

 {

 rowSet.absolute(r + 1);

 return rowSet.getObject(c + 1);
 }

 catch (SQLException e)

 {

 e.printStackTrace();

 return null;

 }

 }

Our sample program is even simpler. We construct a table that shows some computed values, namely, the
growth of an investment under different interest rate scenarios (see Figure 6-8).

Figure 6-8. Growth of an investment

[View full size image]

The getValueAt method computes the appropriate value and formats it:

public Object getValueAt(int r, int c)
{

 double rate = (c + minRate) / 100.0;

 int nperiods = r;

 double futureBalance = INITIAL_BALANCE * Math.pow(1 + rate, nperiods);

 return String.format("%.2f", futureBalance);

}

The getRowCount and getColumnCount methods simply return the number of rows and columns.

public int getRowCount() { return years; }

public int getColumnCount() { return maxRate - minRate + 1; }

If you don't supply column names, the getColumnName method of the AbstractTableModel names the columns

A, B, C, and so on. To change column names, override the getColumnName method. You will usually want to
override that default behavior. In this example, we simply label each column with the interest rate.

public String getColumnName(int c) { return (c + minRate) + "%"; }

You can find the complete source code in Listing 6-5.

Listing 6-5. InvestmentTable.java

Code View:
 1. import java.awt.*;

 2.

 3. import javax.swing.*;

 4. import javax.swing.table.*;

 5.

 6. /**

 7. * This program shows how to build a table from a table model.

 8. * @version 1.02 2007-08-01

 9. * @author Cay Horstmann

10. */

11. public class InvestmentTable

12. {

13. public static void main(String[] args)

14. {

15. EventQueue.invokeLater(new Runnable()

16. {

17. public void run()

18. {

19. JFrame frame = new InvestmentTableFrame();

20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

21. frame.setVisible(true);

22. }

23. });

24. }

25. }

26.

27. /**

28. * This frame contains the investment table.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

29. */

30. class InvestmentTableFrame extends JFrame

31. {

32. public InvestmentTableFrame()

33. {

34. setTitle("InvestmentTable");

35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

36.

37. TableModel model = new InvestmentTableModel(30, 5, 10);

38. JTable table = new JTable(model);

39. add(new JScrollPane(table));

40. }

41.

42. private static final int DEFAULT_WIDTH = 600;

43. private static final int DEFAULT_HEIGHT = 300;

44. }

45.

46. /**

47. * This table model computes the cell entries each time they are requested. The table contents

48. * shows the growth of an investment for a number of years under different interest rates.

49. */

50. class InvestmentTableModel extends AbstractTableModel

51. {

52. /**

53. * Constructs an investment table model.

54. * @param y the number of years

55. * @param r1 the lowest interest rate to tabulate

56. * @param r2 the highest interest rate to tabulate

57. */

58. public InvestmentTableModel(int y, int r1, int r2)

59. {

60. years = y;

61. minRate = r1;

62. maxRate = r2;

63. }

64.

65. public int getRowCount()

66. {

67. return years;

68. }

69.

70. public int getColumnCount()

71. {

72. return maxRate - minRate + 1;

73. }

74.

75. public Object getValueAt(int r, int c)

76. {

77. double rate = (c + minRate) / 100.0;

78. int nperiods = r;

79. double futureBalance = INITIAL_BALANCE * Math.pow(1 + rate, nperiods);

80. return String.format("%.2f", futureBalance);

81. }

82.

83. public String getColumnName(int c)

84. {

85. return (c + minRate) + "%";

86. }

87.

88. private int years;

89. private int minRate;

90. private int maxRate;

91.

92. private static double INITIAL_BALANCE = 100000.0;

93. }

javax.swing.table.TableModel 1.2

int getRowCount()

int getColumnCount()

gets the number of rows and columns in the table model.

Object getValueAt(int row, int column)

gets the value at the given row and column.

void setValueAt(Object newValue, int row, int column)

sets a new value at the given row and column.

boolean isCellEditable(int row, int column)

returns true if the cell at the given row and column is editable.

String getColumnName(int column)

gets the column title.

Working with Rows and Columns

In this subsection, you will see how to manipulate the rows and columns in a table. As you read through this
material, keep in mind that a Swing table is quite asymmetric—there are different operations that you can carry
out on rows and columns. The table component was optimized to display rows of information with the same
structure, such as the result of a database query, not an arbitrary two-dimensional grid of objects. You will see
this asymmetry throughout this subsection.

Column Classes

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

In the next example, we again display our planet data, but this time, we want to give the table more
information about the column types. This is achieved by defining the method

Class<?> getColumnClass(int columnIndex)

of the table model to return the class that describes the column type.

The JTable class uses this information to pick an appropriate renderer for the class. Table 6-1 shows the default

rendering actions.

Table 6-1. Default Rendering Actions

Type Rendered As

Boolean Checkbox

Icon Image

Object String

You can see the checkboxes and images in Figure 6-9. (Thanks to Jim Evins,
http://www.snaught.com/JimsCoolIcons/Planets, for providing the planet images!)

Figure 6-9. A table with planet data

[View full size image]

http://www.snaught.com/JimsCoolIcons/Planets

To render other types, you can install a custom renderer—see the "Cell Rendering and Editing" section
beginning on page 392.

Accessing Table Columns

The JTable class stores information about table columns in objects of type TableColumn. A TableColumnModel

object manages the columns. (Figure 6-10 shows the relationships among the most important table classes.) If
you don't want to insert or remove columns dynamically, you won't use the column model much. The most
common use for the column model is simply to get a TableColumn object:

int columnIndex = . . .;

TableColumn column = table.getColumnModel().getColumn(columnIndex);

Figure 6-10. Relationship between table classes

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Resizing Columns

The TableColumn class gives you control over the resizing behavior of columns. You can set the preferred,

minimum, and maximum width with the methods

void setPreferredWidth(int width)

void setMinWidth(int width)

void setMaxWidth(int width)

This information is used by the table component to lay out the columns.

Use the method

void setResizable(boolean resizable)

to control whether the user is allowed to resize the column.

You can programmatically resize a column with the method

void setWidth(int width)

When a column is resized, the default is to leave the total size of the table unchanged. Of course, the width
increase or decrease of the resized column must then be distributed over other columns. The default behavior is
to change the size of all columns to the right of the resized column. That's a good default because it allows a
user to adjust all columns to a desired width, moving from left to right.

You can set another behavior from Table 6-2 by using the method

void setAutoResizeMode(int mode)

of the JTable class.

Table 6-2. Resize Modes

Mode Behavior

AUTO_RESIZE_OFF Don't resize other columns; change the table
size.

AUTO_RESIZE_NEXT_COLUMN Resize the next column only.

AUTO_RESIZE_SUBSEQUENT_COLUMNS Resize all subsequent columns equally; this is the
default behavior.

AUTO_RESIZE_LAST_COLUMN Resize the last column only.

AUTO_RESIZE_ALL_COLUMNS Resize all columns in the table; this is not a good
choice because it prevents the user from
adjusting multiple columns to a desired size.

Resizing Rows

Row heights are managed directly by the JTable class. If your cells are taller than the default, you want to set

the row height:

table.setRowHeight(height);

By default, all rows of the table have the same height. You can set the heights of individual rows with the call

table.setRowHeight(row, height);

The actual row height equals the row height that has been set with these methods, reduced by the row margin.
The default row margin is 1 pixel, but you can change it with the call

table.setRowMargin(margin);

Selecting Rows, Columns, and Cells

Depending on the selection mode, the user can select rows, columns, or individual cells in the table. By default,
row selection is enabled. Clicking inside a cell selects the entire row (see Figure 6-9 on page 379). Call

table.setRowSelectionAllowed(false)

to disable row selection.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

When row selection is enabled, you can control whether the user is allowed to select a single row, a contiguous
set of rows, or any set of rows. You need to retrieve the selection model and use its setSelectionMode

method:

table.getSelectionModel().setSelectionMode(mode);

Here, mode is one of the three values:

ListSelectionModel.SINGLE_SELECTION

ListSelectionModel.SINGLE_INTERVAL_SELECTION

ListSelectionModel.MULTIPLE_INTERVAL_SELECTION

Column selection is disabled by default. You turn it on with the call

table.setColumnSelectionAllowed(true)

Enabling both row and column selection is equivalent to enabling cell selection. The user then selects ranges of
cells (see Figure 6-11). You can also enable that setting with the call

table.setCellSelectionEnabled(true)

Figure 6-11. Selecting a range of cells

[View full size image]

Run the program in Listing 6-6 to watch cell selection in action. Enable row, column, or cell selection in the
Selection menu and watch how the selection behavior changes.

You can find out which rows and columns are selected by calling the getSelectedRows and

getSelectedColumns methods. Both return an int[] array of the indexes of the selected items. Note that the

index values are those of the table view, not the underlying table model. Try selecting rows and columns, then
drag columns to different places and sort the rows by clicking on column headers. Use the Print Selection menu
item to see which rows and columns are reported as selected.

If you need to translate table index values to table model index values, use the JTable methods
convertRowIndexToModel and convertColumnIndexToModel.

Sorting Rows

As you have seen in our first table example, it is easy to add row sorting to a JTable, simply by calling the

setAutoCreateRowSorter method. However, to have finer-grained control over the sorting behavior, you install

a TableRowSorter<M> object into a JTable and customize it. The type parameter M denotes the table model; it

needs to be a subtype of the TableModel interface.

TableRowSorter<TableModel> sorter = new TableRowSorter<TableModel>(model);

table.setRowSorter(sorter);

Some columns should not be sorted, such as the image column in our planet data. Turn sorting off by calling

sorter.setSortable(IMAGE_COLUMN, false);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You can install a custom comparator for each column. In our example, we will sort the colors in the Color
column so that we prefer blue and green over red. When you click on the Color column, you will see that the
blue planets go to the bottom of the table. This is achieved with the following call:

sorter.setComparator(COLOR_COLUMN, new Comparator<Color>()

 {

 public int compare(Color c1, Color c2)

 {

 int d = c1.getBlue() - c2.getBlue();

 if (d != 0) return d;

 d = c1.getGreen() - c2.getGreen();

 if (d != 0) return d;
 return c1.getRed() - c2.getRed();

 }

 });

If you do not specify a comparator for a column, the sort order is determined as follows:

If the column class is String, use the default collator returned by Collator.getInstance(). It sorts

strings in a way that is appropriate for the current locale. (See Chapter 5 for more information about
locales and collators.)

1.

If the column class implements Comparable, use its compareTo method.2.

If a TableStringConverter has been set for the comparator, sort the strings returned by the converter's

toString method with the default collator. If you want to use this approach, define a converter as follows:

sorter.setStringConverter(new TableStringConverter()

 {

 public String toString(TableModel model, int row, int column)

 {

 Object value = model.getValueAt(row, column);

 convert value to a string and return it
 }

 });

3.

Otherwise, call the toString method on the cell values and sort them with the default collator.4.

Filtering Rows

In addition to sorting rows, the TableRowSorter can also selectively hide rows, a process called filtering. To

activate filtering, set a RowFilter. For example, to include all rows that contain at least one moon, call

Code View:
sorter.setRowFilter(RowFilter.numberFilter(ComparisonType.NOT_EQUAL, 0, MOONS_COLUMN));

Here, we use a predefined filter, the number filter. To construct a number filter, supply

The comparison type (one of EQUAL, NOT_EQUAL, AFTER, or BEFORE).

An object of a subclass of Number (such as an Integer or Double). Only objects that have the same class

as the given Number object are considered.

Zero or more column index values. If no index values are supplied, all columns are searched.

The static RowFilter.dateFilter method constructs a date filter in the same way. You supply a Date object

instead of the Number object.

Finally, the static RowFilter.regexFilter method constructs a filter that looks for strings matching a regular

expression. For example,

sorter.setRowFilter(RowFilter.regexFilter(".*[^s]$", PLANET_COLUMN));

only displays those planets with a name that doesn't end with an "s". (See Chapter 1 for more information on
regular expressions.)

You can also combine filters with the andFilter, orFilter, and notFilter methods. To filter for planets not

ending in an "s" with at least one moon, you can use this filter combination:

sorter.setRowFilter(RowFilter.andFilter(Arrays.asList(

 RowFilter.regexFilter(".*[^s]$", PLANET_COLUMN),

 RowFilter.numberFilter(ComparisonType.NOT_EQUAL, 0, MOONS_COLUMN)));

Caution

Annoyingly, the andFilter and orFilter methods don't use variable arguments

but a single parameter of type Iterable.

To implement your own filter, you provide a subclass of RowFilter and implement an include method to

indicate which rows should be displayed. This is easy to do, but the glorious generality of the RowFilter class

makes it a bit scary.

The RowFilter<M, I> class has two type parameters: the types for the model and for the row identifier. When

dealing with tables, the model is always a subtype of TableModel and the identifier type is Integer. (At some

point in the future, other components might also support row filtering. For example, to filter rows in a JTree,

one might use a RowFilter<TreeModel, TreePath>.)

A row filter must implement the method

public boolean include(RowFilter.Entry<? extends M, ? extends I> entry)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The RowFilter.Entry class supplies methods to obtain the model, the row identifier, and the value at a given

index. Therefore, you can filter both by row identifier and by the contents of the row.

For example, this filter displays every other row:

Code View:
RowFilter<TableModel, Integer> filter = new RowFilter<TableModel, Integer>()

 {

 public boolean include(Entry<? extends TableModel, ? extends Integer> entry)

 {

 return entry.getIdentifier() % 2 == 0;

 }
 };

If you wanted to include only those planets with an even number of moons, you would instead test for

((Integer) entry.getValue(MOONS_COLUMN)) % 2 == 0

In our sample program, we allow the user to hide arbitrary rows. We store the hidden row indexes in a set. The
row filter includes all rows whose index is not in that set.

The filtering mechanism wasn't designed for filters with criteria that change over time. In our sample program,
we keep calling

sorter.setRowFilter(filter);

whenever the set of hidden rows changes. Setting a filter causes it to be applied immediately.

Hiding and Displaying Columns

As you saw in the preceding section, you can filter table rows by either their contents or their row identifier.
Hiding table columns uses a completely different mechanism.

The removeColumn method of the JTable class removes a column from the table view. The column data are not

actually removed from the model—they are just hidden from view. The removeColumn method takes a

TableColumn argument. If you have the column number (for example, from a call to getSelectedColumns), you

need to ask the table model for the actual table column object:

TableColumnModel columnModel = table.getColumnModel();

TableColumn column = columnModel.getColumn(i);

table.removeColumn(column);

If you remember the column, you can later add it back in:

table.addColumn(column);

This method adds the column to the end. If you want it to appear elsewhere, you call the moveColumn method.

You can also add a new column that corresponds to a column index in the table model, by adding a new
TableColumn object:

table.addColumn(new TableColumn(modelColumnIndex));

You can have multiple table columns that view the same column of the model.

The program in Listing 6-6 demonstrates selection and filtering of rows and columns.

Listing 6-6. TableSelectionTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.util.*;

 4. import javax.swing.*;

 5. import javax.swing.table.*;

 6.

 7. /**

 8. * This program demonstrates selection, addition, and removal of rows and columns.

 9. * @version 1.03 2007-08-01

 10. * @author Cay Horstmann

 11. */

 12. public class TableSelectionTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new TableSelectionFrame();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. /**

 29. * This frame shows a multiplication table and has menus for setting the row/column/cell

 30. * selection modes, and for adding and removing rows and columns.

 31. */

 32. class TableSelectionFrame extends JFrame

 33. {

 34. public TableSelectionFrame()

 35. {

 36. setTitle("TableSelectionTest");

 37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 38.

 39. // set up multiplication table

 40.

 41. model = new DefaultTableModel(10, 10);

 42.

 43. for (int i = 0; i < model.getRowCount(); i++)

 44. for (int j = 0; j < model.getColumnCount(); j++)

 45. model.setValueAt((i + 1) * (j + 1), i, j);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 46.

 47. table = new JTable(model);

 48.

 49. add(new JScrollPane(table), "Center");

 50.

 51. removedColumns = new ArrayList<TableColumn>();

 52.

 53. // create menu

 54.

 55. JMenuBar menuBar = new JMenuBar();

 56. setJMenuBar(menuBar);

 57.

 58. JMenu selectionMenu = new JMenu("Selection");

 59. menuBar.add(selectionMenu);

 60.

 61. final JCheckBoxMenuItem rowsItem = new JCheckBoxMenuItem("Rows");

 62. final JCheckBoxMenuItem columnsItem = new JCheckBoxMenuItem("Columns");

 63. final JCheckBoxMenuItem cellsItem = new JCheckBoxMenuItem("Cells");

 64.

 65. rowsItem.setSelected(table.getRowSelectionAllowed());

 66. columnsItem.setSelected(table.getColumnSelectionAllowed());

 67. cellsItem.setSelected(table.getCellSelectionEnabled());

 68.

 69. rowsItem.addActionListener(new ActionListener()

 70. {

 71. public void actionPerformed(ActionEvent event)

 72. {

 73. table.clearSelection();

 74. table.setRowSelectionAllowed(rowsItem.isSelected());

 75. cellsItem.setSelected(table.getCellSelectionEnabled());

 76. }

 77. });

 78. selectionMenu.add(rowsItem);

 79.

 80. columnsItem.addActionListener(new ActionListener()

 81. {

 82. public void actionPerformed(ActionEvent event)

 83. {

 84. table.clearSelection();

 85. table.setColumnSelectionAllowed(columnsItem.isSelected());

 86. cellsItem.setSelected(table.getCellSelectionEnabled());

 87. }

 88. });

 89. selectionMenu.add(columnsItem);

 90.

 91. cellsItem.addActionListener(new ActionListener()

 92. {

 93. public void actionPerformed(ActionEvent event)

 94. {

 95. table.clearSelection();

 96. table.setCellSelectionEnabled(cellsItem.isSelected());

 97. rowsItem.setSelected(table.getRowSelectionAllowed());

 98. columnsItem.setSelected(table.getColumnSelectionAllowed());

 99. }

100. });

101. selectionMenu.add(cellsItem);

102.

103. JMenu tableMenu = new JMenu("Edit");

104. menuBar.add(tableMenu);

105.

106. JMenuItem hideColumnsItem = new JMenuItem("Hide Columns");

107. hideColumnsItem.addActionListener(new ActionListener()

108. {

109. public void actionPerformed(ActionEvent event)

110. {

111. int[] selected = table.getSelectedColumns();

112. TableColumnModel columnModel = table.getColumnModel();

113.

114. // remove columns from view, starting at the last

115. // index so that column numbers aren't affected

116.

117. for (int i = selected.length - 1; i >= 0; i--)

118. {

119. TableColumn column = columnModel.getColumn(selected[i]);

120. table.removeColumn(column);

121.

122. // store removed columns for "show columns" command

123.

124. removedColumns.add(column);

125. }

126. }

127. });

128. tableMenu.add(hideColumnsItem);

129.

130. JMenuItem showColumnsItem = new JMenuItem("Show Columns");

131. showColumnsItem.addActionListener(new ActionListener()

132. {

133. public void actionPerformed(ActionEvent event)

134. {

135. // restore all removed columns

136. for (TableColumn tc : removedColumns)

137. table.addColumn(tc);

138. removedColumns.clear();

139. }

140. });

141. tableMenu.add(showColumnsItem);

142.

143. JMenuItem addRowItem = new JMenuItem("Add Row");

144. addRowItem.addActionListener(new ActionListener()

145. {

146. public void actionPerformed(ActionEvent event)

147. {

148. // add a new row to the multiplication table in

149. // the model

150.

151. Integer[] newCells = new Integer[model.getColumnCount()];

152. for (int i = 0; i < newCells.length; i++)

153. newCells[i] = (i + 1) * (model.getRowCount() + 1);

154. model.addRow(newCells);

155. }

156. });

157. tableMenu.add(addRowItem);

158.

159. JMenuItem removeRowsItem = new JMenuItem("Remove Rows");

160. removeRowsItem.addActionListener(new ActionListener()

161. {

162. public void actionPerformed(ActionEvent event)

163. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

164. int[] selected = table.getSelectedRows();

165.

166. for (int i = selected.length - 1; i >= 0; i--)

167. model.removeRow(selected[i]);

168. }

169. });

170. tableMenu.add(removeRowsItem);

171.

172. JMenuItem clearCellsItem = new JMenuItem("Clear Cells");

173. clearCellsItem.addActionListener(new ActionListener()

174. {

175. public void actionPerformed(ActionEvent event)

176. {

177. for (int i = 0; i < table.getRowCount(); i++)

178. for (int j = 0; j < table.getColumnCount(); j++)

179. if (table.isCellSelected(i, j)) table.setValueAt(0, i, j);

180. }

181. });

182. tableMenu.add(clearCellsItem);

183. }

184.

185. private DefaultTableModel model;

186. private JTable table;

187. private ArrayList<TableColumn> removedColumns;

188.

189. private static final int DEFAULT_WIDTH = 400;

190. private static final int DEFAULT_HEIGHT = 300;

191. }

javax.swing.table.TableModel 1.2

Class getColumnClass(int columnIndex)

gets the class for the values in this column. This information is used for
sorting and rendering.

javax.swing.JTable 1.2

TableColumnModel getColumnModel()

gets the "column model" that describes the arrangement of the table columns.

void setAutoResizeMode(int mode)

sets the mode for automatic resizing of table columns.

Parameters: mode One of AUTO_RESIZE_OFF, AUTO_RESIZE_NEXT_COLUMN,

 AUTO_RESIZE_SUBSEQUENT_COLUMNS,

AUTO_RESIZE_LAST_COLUMN,

 AUTO_RESIZE_ALL_COLUMNS

int getRowMargin()

void setRowMargin(int margin)

gets or sets the amount of empty space between cells in adjacent rows.

int getRowHeight()

void setRowHeight(int height)

gets or sets the default height of all rows of the table.

int getRowHeight(int row)

void setRowHeight(int row, int height)

gets or sets the height of the given row of the table.

ListSelectionModel getSelectionModel()

returns the list selection model. You need that model to choose between row,
column, and cell selection.

boolean getRowSelectionAllowed()

void setRowSelectionAllowed(boolean b)

gets or sets the rowSelectionAllowed property. If true, then rows are selected
when the user clicks cells.

boolean getColumnSelectionAllowed()

void setColumnSelectionAllowed(boolean b)

gets or sets the columnSelectionAllowed property. If true, then columns are

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

selected when the user clicks on cells.

boolean getCellSelectionEnabled()

returns true if both rowSelectionAllowed and columnSelectionAllowed are true.

void setCellSelectionEnabled(boolean b)

sets both rowSelectionAllowed and columnSelectionAllowed to b.

void addColumn(TableColumn column)

adds a column as the last column of the table view.

void moveColumn(int from, int to)

moves the column whose table index is from so that its index becomes to. Only the

view is affected.

void removeColumn(TableColumn column)

removes the given column from the view.

int convertRowIndexToModel(int index) 6

int convertColumnIndexToModel(int index)

returns the model index of the row or column with the given index. This value is
different from index when rows are sorted or filtered, or when columns are moved

or removed.

void setRowSorter(RowSorter<? extends TableModel> sorter)

sets the row sorter.

javax.swing.table.TableColumnModel 1.2

TableColumn getColumn(int index)

gets the table column object that describes the column with the given
view index.

javax.swing.table.TableColumn 1.2

TableColumn(int modelColumnIndex)

constructs a table column for viewing the model column with the given
index.

void setPreferredWidth(int width)

void setMinWidth(int width)

void setMaxWidth(int width)

sets the preferred, minimum, and maximum width of this table column
to width.

void setWidth(int width)

sets the actual width of this column to width.

void setResizable(boolean b)

If b is true, this column is resizable.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.ListSelectionModel 1.2

void setSelectionMode(int mode)

Parameters: mode One of SINGLE_SELECTION,

SINGLE_INTERVAL_SELECTION, and

 MULTIPLE_INTERVAL_SELECTION

javax.swing.DefaultRowSorter<M, I> 6

void setComparator(int column, Comparator<?> comparator)

sets the comparator to be used with the given column.

void setSortable(int column, boolean enabled)

enables or disables sorting for the given column.

void setRowFilter(RowFilter<? super M,? super I> filter)

sets the row filter.

javax.swing.table.TableRowSorter<M extends TableModel> 6

void setStringConverter(TableStringConverter stringConverter)

sets the string converter that is used for sorting and filtering.

javax.swing.table.TableStringConverter<M extends TableModel>

6

abstract String toString(TableModel model, int row, int

column)

override this method to convert the model value at the given location to
a string.

javax.swing.RowFilter<M, I> 6

boolean include(RowFilter.Entry<? extends M,? extends I>
entry)

override this method to specify the rows that are retained.

static <M,I> RowFilter<M,I>

numberFilter(RowFilter.ComparisonType type, Number number,

int... indices)

static <M,I> RowFilter<M,I>

dateFilter(RowFilter.ComparisonType type, Date date, int...

indices)

returns a filter that includes rows containing values that match the given
comparison to the given number or date. The comparison type is one of
EQUAL, NOT_EQUAL, AFTER, or BEFORE. If any column model indexes are

given, then only those columns are searched. Otherwise, all columns are
searched. For the number filter, the class of the cell value must match
the class of number.

static <M,I> RowFilter<M,I> regexFilter(String regex, int...

indices)

returns a filter that includes rows that have a string value matching the
given regular expression. If any column model indexes are given, then
only those columns are searched. Otherwise, all columns are searched.
Note that the string returned by the getStringValue method of

RowFilter.Entry is matched.

static <M,I> RowFilter<M,I> andFilter(Iterable<? extends

RowFilter<? super M,? super I>> filters)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

static <M,I> RowFilter<M,I> orFilter(Iterable<? extends

RowFilter<? super M,? super I>> filters)

returns a filter that includes the entries that are included by all filters or
at least one of the filters.

static <M,I> RowFilter<M,I> notFilter(RowFilter<M,I> filter)

returns a filter that includes the entries that are not included by the
given filter.

javax.swing.RowFilter.Entry<M, I> 6

I getIdentifier()

returns the identifier of this row entry.

M getModel()

returns the model of this row entry.

Object getValue(int index)

returns the value stored at the given index of this row.

int getValueCount()

returns the number of values stored in this row.

String getStringValue()

returns the value stored at the given index of this row, converted to a
string. The TableRowSorter produces entries whose getStringValue

calls the sorter's string converter.

Cell Rendering and Editing

As you saw in the "Accessing Table Columns" section beginning on page 379, the column type determines how
the cells are rendered. There are default renderers for the types Boolean and Icon that render a checkbox or

icon. For all other types, you need to install a custom renderer.

Table cell renderers are similar to the list cell renderers that you saw earlier. They implement the
TableCellRenderer interface, which has a single method:

Code View:
Component getTableCellRendererComponent(JTable table, Object value, boolean isSelected,

 boolean hasFocus, int row, int column)

That method is called when the table needs to draw a cell. You return a component whose paint method is then

invoked to fill the cell area.

The table in Figure 6-12 contains cells of type Color. The renderer simply returns a panel with a background

color that is the color object stored in the cell. The color is passed as the value parameter.

Code View:
class ColorTableCellRenderer extends JPanel implements TableCellRenderer

{

 public Component getTableCellRendererComponent(JTable table, Object value,

 boolean isSelected,

 boolean hasFocus, int row, int column)

 {

 setBackground((Color) value);

 if (hasFocus)

 setBorder(UIManager.getBorder("Table.focusCellHighlightBorder"));
 else

 setBorder(null);

 }

 return this;

}

Figure 6-12. A table with cell renderers

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

As you can see, the renderer installs a border when the cell has focus. (We ask the UIManager for the correct

border. To find the lookup key, we peeked into the source code of the DefaultTableCellRenderer class.)

Generally, you will also want to set the background color of the cell to indicate whether it is currently selected.
We skip this step because it would interfere with the displayed color. The ListRenderingTest example in

Listing 6-3 shows how to indicate the selection status in a renderer.

Tip

If your renderer simply draws a text string or an icon, you can extend the
DefaultTableCellRenderer class. It takes care of rendering the focus and selection

status for you.

You need to tell the table to use this renderer with all objects of type Color. The setDefaultRenderer method

of the JTable class lets you establish this association. You supply a Class object and the renderer:

table.setDefaultRenderer(Color.class, new ColorTableCellRenderer());

That renderer is now used for all objects of the given type in this table.

If you want to select a renderer based on some other criterion, you need to subclass the JTable class and

override the getCellRenderer method.

Rendering the Header

To display an icon in the header, set the header value:

moonColumn.setHeaderValue(new ImageIcon("Moons.gif"));

However, the table header isn't smart enough to choose an appropriate renderer for the header value. You have
to install the renderer manually. For example, to show an image icon in a column header, call

moonColumn.setHeaderRenderer(table.getDefaultRenderer(ImageIcon.class));

Cell Editing

To enable cell editing, the table model must indicate which cells are editable by defining the isCellEditable
method. Most commonly, you will want to make certain columns editable. In the example program, we allow
editing in four columns.

Code View:
public boolean isCellEditable(int r, int c)

{
 return c == PLANET_COLUMN || c == MOONS_COLUMN || c == GASEOUS_COLUMN || c == COLOR_COLUMN;

}

Note

The AbstractTableModel defines the isCellEditable method to always return

false. The DefaultTableModel overrides the method to always return true.

If you run the program in Listing 6-7, note that you can click the checkboxes in the Gaseous column and turn
the check marks on and off. If you click a cell in the Moons column, a combo box appears (see Figure 6-13). You
will shortly see how to install such a combo box as a cell editor.

Figure 6-13. A cell editor

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Finally, click a cell in the first column. The cell gains focus. You can start typing and the cell contents change.

What you just saw in action are the three variations of the DefaultCellEditor class. A DefaultCellEditor can

be constructed with a JTextField, a JCheckBox, or a JComboBox. The JTable class automatically installs a
checkbox editor for Boolean cells and a text field editor for all editable cells that don't supply their own

renderer. The text fields let the user edit the strings that result from applying toString to the return value of

the getValueAt method of the table model.

When the edit is complete, the edited value is retrieved by calling the getCellEditorValue method of your

editor. That method should return a value of the correct type (that is, the type returned by the getColumnType

method of the model).

To get a combo box editor, you set a cell editor manually—the JTable component has no idea what values

might be appropriate for a particular type. For the Moons column, we wanted to enable the user to pick any
value between 0 and 20. Here is the code for initializing the combo box:

JComboBox moonCombo = new JComboBox();

for (int i = 0; i <= 20; i++)

 moonCombo.addItem(i);

To construct a DefaultCellEditor, supply the combo box in the constructor:

TableCellEditor moonEditor = new DefaultCellEditor(moonCombo);

Next, we need to install the editor. Unlike the color cell renderer, this editor does not depend on the object
type—we don't necessarily want to use it for all objects of type Integer. Instead, we need to install it into a

particular column:

moonColumn.setCellEditor(moonEditor);

Custom Editors

Run the example program again and click a color. A color chooser pops up to let you pick a new color for the
planet. Select a color and click OK. The cell color is updated (see Figure 6-14).

Figure 6-14. Editing the cell color with a color chooser

[View full size image]

The color cell editor is not a standard table cell editor but a custom implementation. To create a custom cell
editor, you implement the TableCellEditor interface. That interface is a bit tedious, and as of Java SE 1.3, an

AbstractCellEditor class is provided to take care of the event handling details.

The getTableCellEditorComponent method of the TableCellEditor interface requests a component to render

the cell. It is exactly the same as the getTableCellRendererComponent method of the TableCellRenderer

interface, except that there is no focus parameter. Because the cell is being edited, it is presumed to have

focus. The editor component temporarily replaces the renderer when the editing is in progress. In our example,
we return a blank panel that is not colored. This is an indication to the user that the cell is currently being
edited.

Next, you want to have your editor pop up when the user clicks on the cell.

The JTable class calls your editor with an event (such as a mouse click) to find out if that event is acceptable to

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

initiate the editing process. The AbstractCellEditor class defines the method to accept all events.

public boolean isCellEditable(EventObject anEvent)
{

 return true;

}

However, if you override this method to false, then the table would not go through the trouble of inserting the

editor component.

Once the editor component is installed, the shouldSelectCell method is called, presumably with the same

event. You should initiate editing in this method, for example, by popping up an external edit dialog box.

public boolean shouldSelectCell(EventObject anEvent)

{

 colorDialog.setVisible(true);

 return true;

}

If the user cancels the edit, the table calls the cancelCellEditing method. If the user has clicked on another

table cell, the table calls the stopCellEditing method. In both cases, you should hide the dialog box. When

your stopCellEditing method is called, the table would like to use the partially edited value. You should return

true if the current value is valid. In the color chooser, any value is valid. But if you edit other data, you can

ensure that only valid data is retrieved from the editor.

Also, you should call the superclass methods that take care of event firing—otherwise, the editing won't be
properly canceled.

public void cancelCellEditing()

{

 colorDialog.setVisible(false);

 super.cancelCellEditing();

}

Finally, you need to supply a method that yields the value that the user supplied in the editing process:

public Object getCellEditorValue()

{

 return colorChooser.getColor();

}

To summarize, your custom editor should do the following:

Extend the AbstractCellEditor class and implement the TableCellEditor interface.1.

Define the getTableCellEditorComponent method to supply a component. This can either be a dummy

component (if you pop up a dialog box) or a component for in-place editing such as a combo box or text
field.

2.

3.

Define the shouldSelectCell, stopCellEditing, and cancelCellEditing methods to handle the start,

completion, and cancellation of the editing process. The stopCellEditing and cancelCellEditing

methods should call the superclass methods to ensure that listeners are notified.

3.

Define the getCellEditorValue method to return the value that is the result of the editing process.4.

Finally, you indicate when the user is finished editing by calling the stopCellEditing and cancelCellEditing

methods. When constructing the color dialog box, we install accept and cancel callbacks that fire these events.

Code View:
colorDialog = JColorChooser.createDialog(null, "Planet Color", false, colorChooser,

 new

 ActionListener() // OK button listener
 {

 public void actionPerformed(ActionEvent event)

 {

 stopCellEditing();

 }

 },
 new

 ActionListener() // Cancel button listener

 {

 public void actionPerformed(ActionEvent event)

 {

 cancelCellEditing();

 }
 });

Also, when the user closes the dialog box, editing should be canceled. This is achieved by installation of a
window listener:

colorDialog.addWindowListener(new

 WindowAdapter()

 {

 public void windowClosing(WindowEvent event)
 {

 cancelCellEditing();

 }

 });

This completes the implementation of the custom editor.

You now know how to make a cell editable and how to install an editor. There is one remaining issue—how to
update the model with the value that the user edited. When editing is complete, the JTable class calls the

following method of the table model:

void setValueAt(Object value, int r, int c)

You need to override the method to store the new value. The value parameter is the object that was returned

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

by the cell editor. If you implemented the cell editor, then you know the type of the object that you return from
the getCellEditorValue method. In the case of the DefaultCellEditor, there are three possibilities for that

value. It is a Boolean if the cell editor is a checkbox, a string if it is a text field. If the value comes from a

combo box, then it is the object that the user selected.

If the value object does not have the appropriate type, you need to convert it. That happens most commonly

when a number is edited in a text field. In our example, we populated the combo box with Integer objects so

that no conversion is necessary.

Listing 6-7. TableCellRenderTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.util.*;

 4. import javax.swing.*;

 5. import javax.swing.table.*;

 6.

 7. /**

 8. * This program demonstrates cell rendering and editing in a table.

 9. * @version 1.02 2007-08-01

 10. * @author Cay Horstmann

 11. */

 12. public class TableCellRenderTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20.

 21. JFrame frame = new TableCellRenderFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame contains a table of planet data.

 31. */

 32. class TableCellRenderFrame extends JFrame

 33. {

 34. public TableCellRenderFrame()

 35. {

 36. setTitle("TableCellRenderTest");

 37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 38.

 39. TableModel model = new PlanetTableModel();

 40. JTable table = new JTable(model);

 41. table.setRowSelectionAllowed(false);

 42.

 43. // set up renderers and editors

 44.

 45. table.setDefaultRenderer(Color.class, new ColorTableCellRenderer());

 46. table.setDefaultEditor(Color.class, new ColorTableCellEditor());

 47.

 48. JComboBox moonCombo = new JComboBox();

 49. for (int i = 0; i <= 20; i++)

 50. moonCombo.addItem(i);

 51.

 52. TableColumnModel columnModel = table.getColumnModel();

 53. TableColumn moonColumn = columnModel.getColumn(PlanetTableModel.MOONS_COLUMN);

 54. moonColumn.setCellEditor(new DefaultCellEditor(moonCombo));

 55. moonColumn.setHeaderRenderer(table.getDefaultRenderer(ImageIcon.class));

 56. moonColumn.setHeaderValue(new ImageIcon("Moons.gif"));

 57.

 58. // show table

 59.

 60. table.setRowHeight(100);

 61. add(new JScrollPane(table), BorderLayout.CENTER);

 62. }

 63.

 64. private static final int DEFAULT_WIDTH = 600;

 65. private static final int DEFAULT_HEIGHT = 400;

 66. }

 67.

 68. /**

 69. * The planet table model specifies the values, rendering and editing properties for the

 70. * planet data.

 71. */

 72. class PlanetTableModel extends AbstractTableModel

 73. {

 74. public String getColumnName(int c)

 75. {

 76. return columnNames[c];

 77. }

 78.

 79. public Class<?> getColumnClass(int c)

 80. {

 81. return cells[0][c].getClass();

 82. }

 83.

 84. public int getColumnCount()

 85. {

 86. return cells[0].length;

 87. }

 88.

 89. public int getRowCount()

 90. {

 91. return cells.length;

 92. }

 93.

 94. public Object getValueAt(int r, int c)

 95. {

 96. return cells[r][c];

 97. }

 98.

 99. public void setValueAt(Object obj, int r, int c)

100. {

101. cells[r][c] = obj;

102. }

103.

104. public boolean isCellEditable(int r, int c)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

105. {

106. return c == PLANET_COLUMN || c == MOONS_COLUMN || c == GASEOUS_COLUMN ||

107. c == COLOR_COLUMN;

108. }

109.

110. public static final int PLANET_COLUMN = 0;

111. public static final int MOONS_COLUMN = 2;

112. public static final int GASEOUS_COLUMN = 3;

113. public static final int COLOR_COLUMN = 4;

114.

115. private Object[][] cells = {

116. { "Mercury", 2440.0, 0, false, Color.YELLOW, new ImageIcon("Mercury.gif") },

117. { "Venus", 6052.0, 0, false, Color.YELLOW, new ImageIcon("Venus.gif") },

118. { "Earth", 6378.0, 1, false, Color.BLUE, new ImageIcon("Earth.gif") },

119. { "Mars", 3397.0, 2, false, Color.RED, new ImageIcon("Mars.gif") },

120. { "Jupiter", 71492.0, 16, true, Color.ORANGE, new ImageIcon("Jupiter.gif") },

121. { "Saturn", 60268.0, 18, true, Color.ORANGE, new ImageIcon("Saturn.gif") },

122. { "Uranus", 25559.0, 17, true, Color.BLUE, new ImageIcon("Uranus.gif") },

123. { "Neptune", 24766.0, 8, true, Color.BLUE, new ImageIcon("Neptune.gif") },

124. { "Pluto", 1137.0, 1, false, Color.BLACK, new ImageIcon("Pluto.gif") } };

125.

126. private String[] columnNames = { "Planet", "Radius", "Moons", "Gaseous", "Color",

127. "Image" };

128. }

129.

130. /**

131. * This renderer renders a color value as a panel with the given color.

132. */

133. class ColorTableCellRenderer extends JPanel implements TableCellRenderer

134. {

135. public Component getTableCellRendererComponent(JTable table, Object value,

136. boolean isSelected, boolean hasFocus, int row, int column)

137. {

138. setBackground((Color) value);

139. if (hasFocus) setBorder(UIManager.getBorder("Table.focusCellHighlightBorder"));

140. else setBorder(null);

141. return this;

142. }

143. }

144.

145. /**

146. * This editor pops up a color dialog to edit a cell value

147. */

148. class ColorTableCellEditor extends AbstractCellEditor implements TableCellEditor

149. {

150. public ColorTableCellEditor()

151. {

152. panel = new JPanel();

153. // prepare color dialog

154.

155. colorChooser = new JColorChooser();

156. colorDialog = JColorChooser.createDialog(null, "Planet Color", false, colorChooser,

157. new ActionListener() // OK button listener

158. {

159. public void actionPerformed(ActionEvent event)

160. {

161. stopCellEditing();

162. }

163. }, new ActionListener() // Cancel button listener

164. {

165. public void actionPerformed(ActionEvent event)

166. {

167. cancelCellEditing();

168. }

169. });

170. colorDialog.addWindowListener(new WindowAdapter()

171. {

172. public void windowClosing(WindowEvent event)

173. {

174. cancelCellEditing();

175. }

176. });

177. }

178.

179. public Component getTableCellEditorComponent(JTable table, Object value,

180. boolean isSelected, int row, int column)

181. {

182. // this is where we get the current Color value. We store it in the dialog in case

183. // the user starts editing

184. colorChooser.setColor((Color) value);

185. return panel;

186. }

187.

188. public boolean shouldSelectCell(EventObject anEvent)

189. {

190. // start editing

191. colorDialog.setVisible(true);

192.

193. // tell caller it is ok to select this cell

194. return true;

195. }

196.

197. public void cancelCellEditing()

198. {

199. // editing is canceled--hide dialog

200. colorDialog.setVisible(false);

201. super.cancelCellEditing();

202. }

203.

204. public boolean stopCellEditing()

205. {

206. // editing is complete--hide dialog

207. colorDialog.setVisible(false);

208. super.stopCellEditing();

209.

210. // tell caller is is ok to use color value

211. return true;

212. }

213.

214. public Object getCellEditorValue()

215. {

216. return colorChooser.getColor();

217. }

218.

219. private JColorChooser colorChooser;

220. private JDialog colorDialog;

221. private JPanel panel;

222. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.JTable 1.2

TableCellRenderer getDefaultRenderer(Class<?> type)

gets the default renderer for the given type.

TableCellEditor getDefaultEditor(Class<?> type)

gets the default editor for the given type.

javax.swing.table.TableCellRenderer 1.2

Component getTableCellRendererComponent(JTable table, Object value, boolean

selected, boolean hasFocus, int row, int column)

returns a component whose paint method is invoked to render a table cell.

Parameters: table The table containing the cell to be rendered

 value The cell to be rendered

 selected true if the cell is currently selected

 hasFocus true if the cell currently has focus

 row, column The row and column of the cell

javax.swing.table.TableColumn 1.2

void setCellEditor(TableCellEditor editor)

void setCellRenderer(TableCellRenderer renderer)

sets the cell editor or renderer for all cells in this column.

void setHeaderRenderer(TableCellRenderer renderer)

sets the cell renderer for the header cell in this column.

void setHeaderValue(Object value)

sets the value to be displayed for the header in this column.

javax.swing.DefaultCellEditor 1.2

DefaultCellEditor(JComboBox comboBox)

constructs a cell editor that presents the combo box for selecting cell
values.

javax.swing.table.TableCellEditor 1.2

Component getTableCellEditorComponent(JTable table, Object value, boolean
selected, int row, int column)

returns a component whose paint method renders a table cell.

Parameters: table The table containing the cell to be rendered

 value The cell to be rendered

 selected true if the cell is currently selected

 row, column The row and column of the cell

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.CellEditor 1.2

boolean isCellEditable(EventObject event)

returns true if the event is suitable for initiating the editing process for

this cell.

boolean shouldSelectCell(EventObject anEvent)

starts the editing process. Returns true if the edited cell should be

selected. Normally, you want to return true, but you can return false if
you don't want the editing process to change the cell selection.

void cancelCellEditing()

cancels the editing process. You can abandon partial edits.

boolean stopCellEditing()

stops the editing process, with the intent of using the result. Returns
true if the edited value is in a proper state for retrieval.

Object getCellEditorValue()

returns the edited result.

void addCellEditorListener(CellEditorListener l)

void removeCellEditorListener(CellEditorListener l)

adds or removes the obligatory cell editor listener.

Trees

Every computer user who uses a hierarchical file system has encountered tree displays. Of course, directories
and files form only one of the many examples of treelike organizations. Many tree structures arise in everyday
life, such as the hierarchy of countries, states, and cities shown in Figure 6-15.

Figure 6-15. A hierarchy of countries, states, and cities

[View full size image]

As programmers, we often have to display these tree structures. Fortunately, the Swing library has a JTree

class for this purpose. The JTree class (together with its helper classes) takes care of laying out the tree and

processing user requests for expanding and collapsing nodes. In this section, you will learn how to put the JTree

class to use.

As with the other complex Swing components, we must focus on the common and useful cases and cannot cover
every nuance. If you want to achieve an unusual effect, we recommend that you consult Graphic Java 2:
Mastering the JFC, Volume II: Swing, 3rd ed., by David M. Geary, Core Java Foundation Classes by Kim Topley,
or Core Swing: Advanced Programming by Kim Topley (Pearson Education 1999).

Before going any further, let's settle on some terminology (see Figure 6-16). A tree is composed of nodes. Every
node is either a leaf or it has child nodes. Every node, with the exception of the root node, has exactly one
parent. A tree has exactly one root node. Sometimes you have a collection of trees, each of which has its own
root node. Such a collection is called a forest.

Figure 6-16. Tree terminology

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Simple Trees

In our first example program, we simply display a tree with a few nodes (see Figure 6-18 on page 408). As with
many other Swing components, you provide a model of the data, and the component displays it for you. To
construct a JTree, you supply the tree model in the constructor:

TreeModel model = . . .;

JTree tree = new JTree(model);

Note

There are also constructors that construct trees out of a collection of elements:

JTree(Object[] nodes)

JTree(Vector<?> nodes)

JTree(Hashtable<?, ?> nodes) // the values become the nodes

These constructors are not very useful. They merely build a forest of trees, each
with a single node. The third constructor seems particularly useless because the
nodes appear in the seemingly random order given by the hash codes of the keys.

How do you obtain a tree model? You can construct your own model by creating a class that implements the

TreeModel interface. You see later in this chapter how to do that. For now, we stick with the DefaultTreeModel

that the Swing library supplies.

To construct a default tree model, you must supply a root node.

TreeNode root = . . .;

DefaultTreeModel model = new DefaultTreeModel(root);

TreeNode is another interface. You populate the default tree model with objects of any class that implements

the interface. For now, we use the concrete node class that Swing supplies, namely, DefaultMutableTreeNode.

This class implements the MutableTreeNode interface, a subinterface of TreeNode (see Figure 6-17).

Figure 6-17. Tree classes

A default mutable tree node holds an object, the user object. The tree renders the user objects for all nodes.
Unless you specify a renderer, the tree simply displays the string that is the result of the toString method.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

In our first example, we use strings as user objects. In practice, you would usually populate a tree with more
expressive user objects. For example, when displaying a directory tree, it makes sense to use File objects for

the nodes.

You can specify the user object in the constructor, or you can set it later with the setUserObject method.

DefaultMutableTreeNode node = new DefaultMutableTreeNode("Texas");

. . .

node.setUserObject("California");

Next, you establish the parent/child relationships between the nodes. Start with the root node, and use the add

method to add the children:

DefaultMutableTreeNode root = new DefaultMutableTreeNode("World");

DefaultMutableTreeNode country = new DefaultMutableTreeNode("USA");

root.add(country);

DefaultMutableTreeNode state = new DefaultMutableTreeNode("California");

country.add(state);

Figure 6-18 illustrates how the tree will look.

Figure 6-18. A simple tree

Link up all nodes in this fashion. Then, construct a DefaultTreeModel with the root node. Finally, construct a

JTree with the tree model.

DefaultTreeModel treeModel = new DefaultTreeModel(root);
JTree tree = new JTree(treeModel);

Or, as a shortcut, you can simply pass the root node to the JTree constructor. Then the tree automatically

constructs a default tree model:

JTree tree = new JTree(root);

Listing 6-8 contains the complete code.

Listing 6-8. SimpleTree.java

Code View:
 1. import java.awt.*;

 2.

 3. import javax.swing.*;

 4. import javax.swing.tree.*;

 5.

 6. /**

 7. * This program shows a simple tree.

 8. * @version 1.02 2007-08-01

 9. * @author Cay Horstmann

10. */

11. public class SimpleTree

12. {

13. public static void main(String[] args)

14. {

15. EventQueue.invokeLater(new Runnable()

16. {

17. public void run()

18. {

19. JFrame frame = new SimpleTreeFrame();

20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

21. frame.setVisible(true);

22. }

23. });

24. }

25. }

26.

27. /**

28. * This frame contains a simple tree that displays a manually constructed tree model.

29. */

30. class SimpleTreeFrame extends JFrame

31. {

32. public SimpleTreeFrame()

33. {

34. setTitle("SimpleTree");

35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

36.

37. // set up tree model data

38.

39. DefaultMutableTreeNode root = new DefaultMutableTreeNode("World");

40. DefaultMutableTreeNode country = new DefaultMutableTreeNode("USA");

41. root.add(country);

42. DefaultMutableTreeNode state = new DefaultMutableTreeNode("California");

43. country.add(state);

44. DefaultMutableTreeNode city = new DefaultMutableTreeNode("San Jose");

45. state.add(city);

46. city = new DefaultMutableTreeNode("Cupertino");

47. state.add(city);

48. state = new DefaultMutableTreeNode("Michigan");

49. country.add(state);

50. city = new DefaultMutableTreeNode("Ann Arbor");

51. state.add(city);

52. country = new DefaultMutableTreeNode("Germany");

53. root.add(country);

54. state = new DefaultMutableTreeNode("Schleswig-Holstein");

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

55. country.add(state);

56. city = new DefaultMutableTreeNode("Kiel");

57. state.add(city);

58.

59. // construct tree and put it in a scroll pane

60.

61. JTree tree = new JTree(root);

62. add(new JScrollPane(tree));

63. }

64.

65. private static final int DEFAULT_WIDTH = 300;

66. private static final int DEFAULT_HEIGHT = 200;

67. }

When you run the program, the tree first looks as in Figure 6-19. Only the root node and its children are visible.
Click on the circle icons (the handles) to open up the subtrees. The line sticking out from the handle icon points
to the right when the subtree is collapsed, and it points down when the subtree is expanded (see Figure 6-20).
We don't know what the designers of the Metal look and feel had in mind, but we think of the icon as a door
handle. You push down on the handle to open the subtree.

Figure 6-19. The initial tree display

Figure 6-20. Collapsed and expanded subtrees

Note

Of course, the display of the tree depends on the selected look and feel. We just
described the Metal look and feel. In the Windows look and feel, the handles have
the more familiar look—a "-" or "+" in a box (see Figure 6-21).

Figure 6-21. A tree with the Windows look and feel

You can use the following magic incantation to turn off the lines joining parents and children (see Figure 6-22):

tree.putClientProperty("JTree.lineStyle", "None");

Figure 6-22. A tree with no connecting lines

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Conversely, to make sure that the lines are shown, use

tree.putClientProperty("JTree.lineStyle", "Angled");

Another line style, "Horizontal", is shown in Figure 6-23. The tree is displayed with horizontal lines separating

only the children of the root. We aren't quite sure what it is good for.

Figure 6-23. A tree with the horizontal line style

By default, there is no handle for collapsing the root of the tree. If you like, you can add one with the call

tree.setShowsRootHandles(true);

Figure 6-24 shows the result. Now you can collapse the entire tree into the root node.

Figure 6-24. A tree with a root handle

Conversely, you can hide the root altogether. You do that to display a forest, a set of trees, each of which has
its own root. You still must join all trees in the forest to a common root. Then, you hide the root with the
instruction

tree.setRootVisible(false);

Look at Figure 6-25. There appear to be two roots, labeled "USA" and "Germany." The actual root that joins the
two is made invisible.

Figure 6-25. A forest

Let's turn from the root to the leaves of the tree. Note that the leaves have a different icon from the other nodes
(see Figure 6-26).

Figure 6-26. Leaf and folder icons

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

When the tree is displayed, each node is drawn with an icon. There are actually three kinds of icons: a leaf icon,
an opened nonleaf icon, and a closed nonleaf icon. For simplicity, we refer to the last two as folder icons.

The node renderer needs to know which icon to use for each node. By default, the decision process works like
this: If the isLeaf method of a node returns true, then the leaf icon is used. Otherwise, a folder icon is used.

The isLeaf method of the DefaultMutableTreeNode class returns true if the node has no children. Thus, nodes

with children get folder icons, and nodes without children get leaf icons.

Sometimes, that behavior is not appropriate. Suppose we added a node "Montana" to our sample tree, but we're
at a loss as to what cities to add. We would not want the state node to get a leaf icon because conceptually only
the cities are leaves.

The JTree class has no idea which nodes should be leaves. It asks the tree model. If a childless node isn't

automatically a conceptual leaf, you can ask the tree model to use a different criterion for leafiness, namely, to
query the "allows children" node property.

For those nodes that should not have children, call

node.setAllowsChildren(false);

Then, tell the tree model to ask the value of the "allows children" property to determine whether a node should
be displayed with a leaf icon. You use the setAsksAllowsChildren method of the DefaultTreeModel class to
set this behavior:

model.setAsksAllowsChildren(true);

With this decision criterion, nodes that allow children get folder icons, and nodes that don't allow children get
leaf icons.

Alternatively, if you construct the tree by supplying the root node, supply the setting for the "asks allows
children" property in the constructor.

Code View:
JTree tree = new JTree(root, true); // nodes that don't allow children get leaf icons

javax.swing.JTree 1.2

JTree(TreeModel model)

constructs a tree from a tree model.

JTree(TreeNode root)

JTree(TreeNode root, boolean asksAllowChildren)

constructs a tree with a default tree model that displays the root and its children.

Parameters: root The root node

 asksAllowsChildren true to use the "allows children" node

property for determining whether a node
is a leaf

void setShowsRootHandles(boolean b)

If b is true, then the root node has a handle for collapsing or expanding its children.

void setRootVisible(boolean b)

If b is true, then the root node is displayed. Otherwise, it is hidden.

javax.swing.tree.TreeNode 1.2

boolean isLeaf()

returns true if this node is conceptually a leaf.

boolean getAllowsChildren()

returns true if this node can have child nodes.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.tree.MutableTreeNode 1.2

void setUserObject(Object userObject)

sets the "user object" that the tree node uses for rendering.

javax.swing.tree.TreeModel 1.2

boolean isLeaf(Object node)

returns true if node should be displayed as a leaf node.

javax.swing.tree.DefaultTreeModel 1.2

void setAsksAllowsChildren(boolean b)

If b is true, then nodes are displayed as leaves when their

getAllowsChildren method returns false. Otherwise, they are

displayed as leaves when their isLeaf method returns true.

javax.swing.tree.DefaultMutableTreeNode 1.2

DefaultMutableTreeNode(Object userObject)

constructs a mutable tree node with the given user object.

void add(MutableTreeNode child)

adds a node as the last child of this node.

void setAllowsChildren(boolean b)

If b is true, then children can be added to this node.

javax.swing.JComponent 1.2

void putClientProperty(Object key, Object value)

adds a key/value pair to a small table that each component manages.
This is an "escape hatch" mechanism that some Swing components use
for storing look-and-feel–specific properties.

Editing Trees and Tree Paths

In the next example program, you see how to edit a tree. Figure 6-27 shows the user interface. If you click the
Add Sibling or Add Child button, the program adds a new node (with title New) to the tree. If you click the
Delete button, the program deletes the currently selected node.

Figure 6-27. Editing a tree

To implement this behavior, you need to find out which tree node is currently selected. The JTree class has a

surprising way of identifying nodes in a tree. It does not deal with tree nodes, but with paths of objects, called
tree paths. A tree path starts at the root and consists of a sequence of child nodes—see Figure 6-28.

Figure 6-28. A tree path

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You might wonder why the JTree class needs the whole path. Couldn't it just get a TreeNode and keep calling

the getParent method? In fact, the JTree class knows nothing about the TreeNode interface. That interface is

never used by the TreeModel interface; it is only used by the DefaultTreeModel implementation. You can have

other tree models in which the nodes do not implement the TreeNode interface at all. If you use a tree model
that manages other types of objects, then those objects might not have getParent and getChild methods.

They would of course need to have some other connection to each other. It is the job of the tree model to link
nodes together. The JTree class itself has no clue about the nature of their linkage. For that reason, the JTree

class always needs to work with complete paths.

The TreePath class manages a sequence of Object (not TreeNode!) references. A number of JTree methods

return TreePath objects. When you have a tree path, you usually just need to know the terminal node, which

you get with the getLastPathComponent method. For example, to find out the currently selected node in a tree,

you use the getSelectionPath method of the JTree class. You get a TreePath object back, from which you can

retrieve the actual node.

TreePath selectionPath = tree.getSelectionPath();

DefaultMutableTreeNode selectedNode

 = (DefaultMutableTreeNode) selectionPath.getLastPathComponent();

Actually, because this particular query is so common, there is a convenience method that gives the selected
node immediately.

DefaultMutableTreeNode selectedNode

 = (DefaultMutableTreeNode) tree.getLastSelectedPathComponent();

This method is not called getSelectedNode because the tree does not know that it contains nodes—its tree

model deals only with paths of objects.

Note

Tree paths are one of two ways in which the JTree class describes nodes. Quite a

few JTree methods take or return an integer index, the row position. A row position

is simply the row number (starting with 0) of the node in the tree display. Only
visible nodes have row numbers, and the row number of a node changes if other
nodes before it are expanded, collapsed, or modified. For that reason, you should
avoid row positions. All JTree methods that use rows have equivalents that use tree

paths instead.

Once you have the selected node, you can edit it. However, do not simply add children to a tree node:

selectedNode.add(newNode); // NO!

If you change the structure of the nodes, you change the model but the associated view is not notified. You
could send out a notification yourself, but if you use the insertNodeInto method of the DefaultTreeModel
class, the model class takes care of that. For example, the following call appends a new node as the last child of
the selected node and notifies the tree view.

model.insertNodeInto(newNode, selectedNode, selectedNode.getChildCount());

The analogous call removeNodeFromParent removes a node and notifies the view:

model.removeNodeFromParent(selectedNode);

If you keep the node structure in place but you changed the user object, you should call the following method:

model.nodeChanged(changedNode);

The automatic notification is a major advantage of using the DefaultTreeModel. If you supply your own tree

model, you have to implement automatic notification by hand. (See Core Java Foundation Classes by Kim Topley
for details.)

Caution

The DefaultTreeModel class has a reload method that reloads the entire model.

However, don't call reload simply to update the tree after making a few changes.

When the tree is regenerated, all nodes beyond the root's children are collapsed
again. It is quite disconcerting to your users if they have to keep expanding the tree
after every change.

When the view is notified of a change in the node structure, it updates the display but it does not automatically
expand a node to show newly added children. In particular, if a user in our sample program adds a new child
node to a node for which children are currently collapsed, then the new node is silently added to the collapsed

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

subtree. This gives the user no feedback that the command was actually carried out. In such a case, you should
make a special effort to expand all parent nodes so that the newly added node becomes visible. You use the
makeVisible method of the JTree class for this purpose. The makeVisible method expects a tree path leading

to the node that should become visible.

Thus, you need to construct a tree path from the root to the newly inserted node. To get a tree path, you first
call the getPathToRoot method of the DefaultTreeModel class. It returns a TreeNode[] array of all nodes from

a node to the root node. You pass that array to a TreePath constructor.

For example, here is how you make the new node visible:

TreeNode[] nodes = model.getPathToRoot(newNode);

TreePath path = new TreePath(nodes);

tree.makeVisible(path);

Note

It is curious that the DefaultTreeModel class feigns almost complete ignorance
about the TreePath class, even though its job is to communicate with a JTree. The

JTree class uses tree paths a lot, and it never uses arrays of node objects.

But now suppose your tree is contained inside a scroll pane. After the tree node expansion, the new node might
still not be visible because it falls outside the viewport. To overcome that problem, call

tree.scrollPathToVisible(path);

instead of calling makeVisible. This call expands all nodes along the path, and it tells the ambient scroll pane to

scroll the node at the end of the path into view (see Figure 6-29).

Figure 6-29. The scroll pane scrolls to display a new node

By default, tree nodes cannot be edited. However, if you call

tree.setEditable(true);

then the user can edit a node simply by double-clicking, editing the string, and pressing the ENTER key. Double-
clicking invokes the default cell editor, which is implemented by the DefaultCellEditor class (see Figure 6-30).

It is possible to install other cell editors, using the same process that you have seen in our discussion of table
cell editors.

Figure 6-30. The default cell editor

Listing 6-9 shows the complete source code of the tree editing program. Run the program, add a few nodes, and
edit them by double-clicking them. Observe how collapsed nodes expand to show added children and how the
scroll pane keeps added nodes in the viewport.

Listing 6-9. TreeEditTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import javax.swing.*;

 4. import javax.swing.tree.*;

 5.

 6. /**

 7. * This program demonstrates tree editing.

 8. * @version 1.03 2007-08-01

 9. * @author Cay Horstmann

 10. */

 11. public class TreeEditTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new TreeEditFrame();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * A frame with a tree and buttons to edit the tree.

 29. */

 30. class TreeEditFrame extends JFrame

 31. {

 32. public TreeEditFrame()

 33. {

 34. setTitle("TreeEditTest");

 35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 36.

 37. // construct tree

 38.

 39. TreeNode root = makeSampleTree();

 40. model = new DefaultTreeModel(root);

 41. tree = new JTree(model);

 42. tree.setEditable(true);

 43.

 44. // add scroll pane with tree

 45.

 46. JScrollPane scrollPane = new JScrollPane(tree);

 47. add(scrollPane, BorderLayout.CENTER);

 48.

 49. makeButtons();

 50. }

 51.

 52. public TreeNode makeSampleTree()

 53. {

 54. DefaultMutableTreeNode root = new DefaultMutableTreeNode("World");

 55. DefaultMutableTreeNode country = new DefaultMutableTreeNode("USA");

 56. root.add(country);

 57. DefaultMutableTreeNode state = new DefaultMutableTreeNode("California");

 58. country.add(state);

 59. DefaultMutableTreeNode city = new DefaultMutableTreeNode("San Jose");

 60. state.add(city);

 61. city = new DefaultMutableTreeNode("San Diego");

 62. state.add(city);

 63. state = new DefaultMutableTreeNode("Michigan");

 64. country.add(state);

 65. city = new DefaultMutableTreeNode("Ann Arbor");

 66. state.add(city);

 67. country = new DefaultMutableTreeNode("Germany");

 68. root.add(country);

 69. state = new DefaultMutableTreeNode("Schleswig-Holstein");

 70. country.add(state);

 71. city = new DefaultMutableTreeNode("Kiel");

 72. state.add(city);

 73. return root;

 74. }

 75.

 76. /**

 77. * Makes the buttons to add a sibling, add a child, and delete a node.

 78. */

 79. public void makeButtons()

 80. {

 81. JPanel panel = new JPanel();

 82. JButton addSiblingButton = new JButton("Add Sibling");

 83. addSiblingButton.addActionListener(new ActionListener()

 84. {

 85. public void actionPerformed(ActionEvent event)

 86. {

 87. DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode) tree

 88. .getLastSelectedPathComponent();

 89.

 90. if (selectedNode == null) return;

 91.

 92. DefaultMutableTreeNode parent = (DefaultMutableTreeNode)

 93. selectedNode.getParent();

 94.

 95. if (parent == null) return;

 96.

 97. DefaultMutableTreeNode newNode = new DefaultMutableTreeNode("New");

 98.

 99. int selectedIndex = parent.getIndex(selectedNode);

100. model.insertNodeInto(newNode, parent, selectedIndex + 1);

101.

102. // now display new node

103.

104. TreeNode[] nodes = model.getPathToRoot(newNode);

105. TreePath path = new TreePath(nodes);

106. tree.scrollPathToVisible(path);

107. }

108. });

109. panel.add(addSiblingButton);

110.

111. JButton addChildButton = new JButton("Add Child");

112. addChildButton.addActionListener(new ActionListener()

113. {

114. public void actionPerformed(ActionEvent event)

115. {

116. DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode) tree

117. .getLastSelectedPathComponent();

118.

119. if (selectedNode == null) return;

120.

121. DefaultMutableTreeNode newNode = new DefaultMutableTreeNode("New");

122. model.insertNodeInto(newNode, selectedNode, selectedNode.getChildCount());

123.

124. // now display new node

125.

126. TreeNode[] nodes = model.getPathToRoot(newNode);

127. TreePath path = new TreePath(nodes);

128. tree.scrollPathToVisible(path);

129. }

130. });

131. panel.add(addChildButton);

132.

133. JButton deleteButton = new JButton("Delete");

134. deleteButton.addActionListener(new ActionListener()

135. {

136. public void actionPerformed(ActionEvent event)

137. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

138. DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode) tree

139. .getLastSelectedPathComponent();

140.

141. if (selectedNode != null && selectedNode.getParent() != null) model

142. .removeNodeFromParent(selectedNode);

143. }

144. });

145. panel.add(deleteButton);

146. add(panel, BorderLayout.SOUTH);

147. }

148.

149. private DefaultTreeModel model;

150. private JTree tree;

151. private static final int DEFAULT_WIDTH = 400;

152. private static final int DEFAULT_HEIGHT = 200;

153. }

javax.swing.JTree 1.2

TreePath getSelectionPath()

gets the path to the currently selected node, or the path to the first
selected node if multiple nodes are selected. Returns null if no node is

selected.

Object getLastSelectedPathComponent()

gets the node object that represents the currently selected node, or the
first node if multiple nodes are selected. Returns null if no node is

selected.

void makeVisible(TreePath path)

expands all nodes along the path.

void scrollPathToVisible(TreePath path)

expands all nodes along the path and, if the tree is contained in a scroll
pane, scrolls to ensure that the last node on the path is visible.

javax.swing.tree.TreePath 1.2

Object getLastPathComponent()

gets the last object on this path, that is, the node object that the path
represents.

javax.swing.tree.TreeNode 1.2

TreeNode getParent()

returns the parent node of this node.

TreeNode getChildAt(int index)

looks up the child node at the given index. The index must be between 0
and getChildCount() - 1.

int getChildCount()

returns the number of children of this node.

Enumeration children()

returns an enumeration object that iterates through all children of this
node.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.tree.DefaultTreeModel 1.2

void insertNodeInto(MutableTreeNode newChild, MutableTreeNode

parent, int index)

inserts newChild as a new child node of parent at the given index and

notifies the tree model listeners.

void removeNodeFromParent(MutableTreeNode node)

removes node from this model and notifies the tree model listeners.

void nodeChanged(TreeNode node)

notifies the tree model listeners that node has changed.

void nodesChanged(TreeNode parent, int[] changedChildIndexes)

notifies the tree model listeners that all child nodes of parent with the

given indexes have changed.

void reload()

reloads all nodes into the model. This is a drastic operation that you
should use only if the nodes have changed completely because of some
outside influence.

Node Enumeration

Sometimes you need to find a node in a tree by starting at the root and visiting all children until you have found
a match. The DefaultMutableTreeNode class has several convenience methods for iterating through nodes.

The breadthFirstEnumeration and depthFirstEnumeration methods return enumeration objects whose
nextElement method visits all children of the current node, using either a breadth-first or depth-first traversal.

Figure 6-31 shows the traversals for a sample tree—the node labels indicate the order in which the nodes are
traversed.

Figure 6-31. Tree traversal orders

Breadth-first enumeration is the easiest to visualize. The tree is traversed in layers. The root is visited first,
followed by all of its children, then followed by the grandchildren, and so on.

To visualize depth-first enumeration, imagine a rat trapped in a tree-shaped maze. It rushes along the first path
until it comes to a leaf. Then, it backtracks and turns around to the next path, and so on.

Computer scientists also call this postorder traversal because the search process visits the children before
visiting the parents. The postOrderTraversal method is a synonym for depthFirstTraversal. For

completeness, there is also a preOrderTraversal, a depth-first search that enumerates parents before the

children.

Here is the typical usage pattern:

Enumeration breadthFirst = node.breadthFirstEnumeration();
while (breadthFirst.hasMoreElements())

 do something with breadthFirst.nextElement();

Finally, a related method, pathFromAncestorEnumeration, finds a path from an ancestor to a given node and

then enumerates the nodes along that path. That's no big deal—it just keeps calling getParent until the

ancestor is found and then presents the path in reverse order.

In our next example program, we put node enumeration to work. The program displays inheritance trees of
classes. Type the name of a class into the text field on the bottom of the frame. The class and all of its
superclasses are added to the tree (see Figure 6-32).

Figure 6-32. An inheritance tree

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

In this example, we take advantage of the fact that the user objects of the tree nodes can be objects of any
type. Because our nodes describe classes, we store Class objects in the nodes.

Of course, we don't want to add the same class object twice, so we need to check whether a class already exists
in the tree. The following method finds the node with a given user object if it exists in the tree.

Code View:
 public DefaultMutableTreeNode findUserObject(Object obj)

 {

 Enumeration e = root.breadthFirstEnumeration();

 while (e.hasMoreElements())
 {

 DefaultMutableTreeNode node = (DefaultMutableTreeNode) e.nextElement();

 if (node.getUserObject().equals(obj))

 return node;

 }

 return null;

 }

Rendering Nodes

In your applications, you will often need to change the way in which a tree component draws the nodes. The
most common change is, of course, to choose different icons for nodes and leaves. Other changes might involve
changing the font of the node labels or drawing images at the nodes. All these changes are made possible by
installing a new tree cell renderer into the tree. By default, the JTree class uses DefaultTreeCellRenderer

objects to draw each node. The DefaultTreeCellRenderer class extends the JLabel class. The label contains

the node icon and the node label.

Note

The cell renderer does not draw the "handles" for expanding and collapsing
subtrees. The handles are part of the look and feel, and it is recommended that you
not change them.

You can customize the display in three ways.

You can change the icons, font, and background color used by a DefaultTreeCellRenderer. These

settings are used for all nodes in the tree.

You can install a renderer that extends the DefaultTreeCellRenderer class and vary the icons, fonts, and

background color for each node.

You can install a renderer that implements the TreeCellRenderer interface, to draw a custom image for

each node.

Let us look at these possibilities one by one. The easiest customization is to construct a
DefaultTreeCellRenderer object, change the icons, and install it into the tree:

Code View:
DefaultTreeCellRenderer renderer = new DefaultTreeCellRenderer();

renderer.setLeafIcon(new ImageIcon("blue-ball.gif")); // used for leaf nodes

renderer.setClosedIcon(new ImageIcon("red-ball.gif")); // used for collapsed nodes

renderer.setOpenIcon(new ImageIcon("yellow-ball.gif")); // used for expanded nodes
tree.setCellRenderer(renderer);

You can see the effect in Figure 6-32. We just use the "ball" icons as placeholders—presumably your user
interface designer would supply you with appropriate icons to use for your applications.

We don't recommend that you change the font or background color for an entire tree—that is really the job of
the look and feel.

However, it can be useful to change the font for individual nodes in a tree to highlight some of them. If you look
carefully at Figure 6-32, you will notice that the abstract classes are set in italics.

To change the appearance of individual nodes, you install a tree cell renderer. Tree cell renderers are very
similar to the list cell renderers we discussed earlier in this chapter. The TreeCellRenderer interface has a

single method:

Code View:
Component getTreeCellRendererComponent(JTree tree, Object value, boolean selected,

 boolean expanded, boolean leaf, int row, boolean hasFocus)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The getTreeCellRendererComponent method of the DefaultTreeCellRenderer class returns this—in other

words, a label. (The DefaultTreeCellRenderer class extends the JLabel class.) To customize the component,

extend the DefaultTreeCellRenderer class. Override the getTreeCellRendererComponent method as follows:
Call the superclass method, so that it can prepare the label data. Customize the label properties, and finally
return this.

Code View:
class MyTreeCellRenderer extends DefaultTreeCellRenderer

{

 public Component getTreeCellRendererComponent(JTree tree, Object value, boolean selected,

 boolean expanded, boolean leaf, int row, boolean hasFocus)

 {

 super.getTreeCellRendererComponent(tree, value, selected, expanded, leaf, row, hasFocus);

 DefaultMutableTreeNode node = (DefaultMutableTreeNode) value;

 look at node.getUserObject();

 Font font = appropriate font;

 setFont(font);

 return this;

 }

};

Caution

The value parameter of the getTreeCellRendererComponent method is the node

object, not the user object! Recall that the user object is a feature of the
DefaultMutableTreeNode, and that a JTree can contain nodes of an arbitrary type.

If your tree uses DefaultMutableTreeNode nodes, then you must retrieve the user

object in a second step, as we did in the preceding code sample.

Caution

The DefaultTreeCellRenderer uses the same label object for all nodes, only

changing the label text for each node. If you change the font for a particular node,
you must set it back to its default value when the method is called again. Otherwise,
all subsequent nodes will be drawn in the changed font! Look at the code in Listing
6-10 to see how to restore the font to the default.

We do not show an example for a tree cell renderer that draws arbitrary graphics. If you need this capability,
you can adapt the list cell renderer in Listing 6-3; the technique is entirely analogous.

The ClassNameTreeCellRenderer in Listing 6-10 sets the class name in either the normal or italic font,

depending on the ABSTRACT modifier of the Class object. We don't want to set a particular font because we

don't want to change whatever font the look and feel normally uses for labels. For that reason, we use the font
from the label and derive an italic font from it. Recall that only a single shared JLabel object is returned by all

calls. We need to hang on to the original font and restore it in the next call to the
getTreeCellRendererComponent method.

Also, note how we change the node icons in the ClassTreeFrame constructor.

javax.swing.tree.DefaultMutableTreeNode 1.2

Enumeration breadthFirstEnumeration()

Enumeration depthFirstEnumeration()

Enumeration preOrderEnumeration()

Enumeration postOrderEnumeration()

returns enumeration objects for visiting all nodes of the tree model in a
particular order. In breadth-first traversal, children that are closer to the
root are visited before those that are farther away. In depth-first
traversal, all children of a node are completely enumerated before its
siblings are visited. The postOrderEnumeration method is a synonym

for depthFirstEnumeration. The preorder traversal is identical to the

postorder traversal except that parents are enumerated before their
children.

javax.swing.tree.TreeCellRenderer 1.2

Component getTreeCellRendererComponent(JTree tree, Object value, boolean

selected, boolean expanded, boolean leaf, int row, boolean hasFocus)

returns a component whose paint method is invoked to render a tree cell.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Parameters: tree The tree containing the node to be rendered

 value The node to be rendered

 selected true if the node is currently selected

 expanded true if the children of the node are visible

 leaf true if the node needs to be displayed as a leaf

 row The display row containing the node

 hasFocus true if the node currently has input focus

javax.swing.tree.DefaultTreeCellRenderer 1.2

void setLeafIcon(Icon icon)

void setOpenIcon(Icon icon)

void setClosedIcon(Icon icon)

sets the icon to show for a leaf node, an expanded node, and a collapsed
node.

Listening to Tree Events

Most commonly, a tree component is paired with some other component. When the user selects tree nodes,
some information shows up in another window. See Figure 6-33 for an example. When the user selects a class,
the instance and static variables of that class are displayed in the text area to the right.

Figure 6-33. A class browser

[View full size image]

To obtain this behavior, you install a tree selection listener. The listener must implement the
TreeSelectionListener interface, an interface with a single method:

void valueChanged(TreeSelectionEvent event)

That method is called whenever the user selects or deselects tree nodes.

You add the listener to the tree in the normal way:

tree.addTreeSelectionListener(listener);

You can specify whether the user is allowed to select a single node, a contiguous range of nodes, or an
arbitrary, potentially discontiguous, set of nodes. The JTree class uses a TreeSelectionModel to manage node

selection. You need to retrieve the model to set the selection state to one of SINGLE_TREE_SELECTION,
CONTIGUOUS_TREE_SELECTION, or DISCONTIGUOUS_TREE_SELECTION. (Discontiguous selection mode is the

default.) For example, in our class browser, we want to allow selection of only a single class:

int mode = TreeSelectionModel.SINGLE_TREE_SELECTION;
tree.getSelectionModel().setSelectionMode(mode);

Apart from setting the selection mode, you need not worry about the tree selection model.

Note

How the user selects multiple items depends on the look and feel. In the Metal look
and feel, hold down the CTRL key while clicking an item to add the item to the
selection, or to remove it if it was currently selected. Hold down the SHIFT key while
clicking an item to select a range of items, extending from the previously selected
item to the new item.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

To find out the current selection, you query the tree with the getSelectionPaths method:

TreePath[] selectedPaths = tree.getSelectionPaths();

If you restricted the user to a single selection, you can use the convenience method getSelectionPath, which

returns the first selected path, or null if no path was selected.

Caution

The TreeSelectionEvent class has a getPaths method that returns an array of

TreePath objects, but that array describes selection changes, not the current

selection.

Listing 6-10 shows the complete source code for the class tree program. The program displays inheritance
hierarchies, and it customizes the display to show abstract classes in italics. You can type the name of any class
into the text field at the bottom of the frame. Press the ENTER key or click the Add button to add the class and its
superclasses to the tree. You must enter the full package name, such as java.util.ArrayList.

This program is a bit tricky because it uses reflection to construct the class tree. This work is contained inside
the addClass method. (The details are not that important. We use the class tree in this example because
inheritance trees yield a nice supply of trees without laborious coding. If you display trees in your own
applications, you will have your own source of hierarchical data.) The method uses the breadth-first search
algorithm to find whether the current class is already in the tree by calling the findUserObject method that we
implemented in the preceding section. If the class is not already in the tree, we add the superclasses to the
tree, then make the new class node a child and make that node visible.

When you select a tree node, the text area to the right is filled with the fields of the selected class. In the frame
constructor, we restrict the user to single item selection and add a tree selection listener. When the
valueChanged method is called, we ignore its event parameter and simply ask the tree for the current selection

path. As always, we need to get the last node of the path and look up its user object. We then call the
getFieldDescription method, which uses reflection to assemble a string with all fields of the selected class.

Listing 6-10. ClassTree.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.lang.reflect.*;

 4. import java.util.*;

 5. import javax.swing.*;

 6. import javax.swing.event.*;

 7. import javax.swing.tree.*;

 8.

 9. /**

 10. * This program demonstrates cell rendering and listening to tree selection events.

 11. * @version 1.03 2007-08-01

 12. * @author Cay Horstmann

 13. */

 14. public class ClassTree

 15. {

 16. public static void main(String[] args)

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. JFrame frame = new ClassTreeFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. /**

 31. * This frame displays the class tree, a text field and add button to add more classes

 32. * into the tree.

 33. */

 34. class ClassTreeFrame extends JFrame

 35. {

 36. public ClassTreeFrame()

 37. {

 38. setTitle("ClassTree");

 39. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 40.

 41. // the root of the class tree is Object

 42. root = new DefaultMutableTreeNode(java.lang.Object.class);

 43. model = new DefaultTreeModel(root);

 44. tree = new JTree(model);

 45.

 46. // add this class to populate the tree with some data

 47. addClass(getClass());

 48.

 49. // set up node icons

 50. ClassNameTreeCellRenderer renderer = new ClassNameTreeCellRenderer();

 51. renderer.setClosedIcon(new ImageIcon("red-ball.gif"));

 52. renderer.setOpenIcon(new ImageIcon("yellow-ball.gif"));

 53. renderer.setLeafIcon(new ImageIcon("blue-ball.gif"));

 54. tree.setCellRenderer(renderer);

 55.

 56. // set up selection mode

 57. tree.addTreeSelectionListener(new TreeSelectionListener()

 58. {

 59. public void valueChanged(TreeSelectionEvent event)

 60. {

 61. // the user selected a different node--update description

 62. TreePath path = tree.getSelectionPath();

 63. if (path == null) return;

 64. DefaultMutableTreeNode selectedNode = (DefaultMutableTreeNode) path

 65. .getLastPathComponent();

 66. Class<?> c = (Class<?>) selectedNode.getUserObject();

 67. String description = getFieldDescription(c);

 68. textArea.setText(description);

 69. }

 70. });

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 71. int mode = TreeSelectionModel.SINGLE_TREE_SELECTION;

 72. tree.getSelectionModel().setSelectionMode(mode);

 73.

 74. // this text area holds the class description

 75. textArea = new JTextArea();

 76.

 77. // add tree and text area

 78. JPanel panel = new JPanel();

 79. panel.setLayout(new GridLayout(1, 2));

 80. panel.add(new JScrollPane(tree));

 81. panel.add(new JScrollPane(textArea));

 82.

 83. add(panel, BorderLayout.CENTER);

 84.

 85. addTextField();

 86. }

 87.

 88. /**

 89. * Add the text field and "Add" button to add a new class.

 90. */

 91. public void addTextField()

 92. {

 93. JPanel panel = new JPanel();

 94.

 95. ActionListener addListener = new ActionListener()

 96. {

 97. public void actionPerformed(ActionEvent event)

 98. {

 99. // add the class whose name is in the text field

100. try

101. {

102. String text = textField.getText();

103. addClass(Class.forName(text)); // clear text field to indicate success

104. textField.setText("");

105. }

106. catch (ClassNotFoundException e)

107. {

108. JOptionPane.showMessageDialog(null, "Class not found");

109. }

110. }

111. };

112.

113. // new class names are typed into this text field

114. textField = new JTextField(20);

115. textField.addActionListener(addListener);

116. panel.add(textField);

117.

118. JButton addButton = new JButton("Add");

119. addButton.addActionListener(addListener);

120. panel.add(addButton);

121.

122. add(panel, BorderLayout.SOUTH);

123. }

124.

125. /**

126. * Finds an object in the tree.

127. * @param obj the object to find

128. * @return the node containing the object or null if the object is not present in the tree

129. */

130. @SuppressWarnings("unchecked")

131. public DefaultMutableTreeNode findUserObject(Object obj)

132. {

133. // find the node containing a user object

134. Enumeration<TreeNode> e = (Enumeration<TreeNode>) root.breadthFirstEnumeration();

135. while (e.hasMoreElements())

136. {

137. DefaultMutableTreeNode node = (DefaultMutableTreeNode) e.nextElement();

138. if (node.getUserObject().equals(obj)) return node;

139. }

140. return null;

141. }

142.

143. /**

144. * Adds a new class and any parent classes that aren't yet part of the tree

145. * @param c the class to add

146. * @return the newly added node.

147. */

148. public DefaultMutableTreeNode addClass(Class<?> c)

149. {

150. // add a new class to the tree

151.

152. // skip non-class types

153. if (c.isInterface() || c.isPrimitive()) return null;

154.

155. // if the class is already in the tree, return its node

156. DefaultMutableTreeNode node = findUserObject(c);

157. if (node != null) return node;

158.

159. // class isn't present--first add class parent recursively

160.

161. Class<?> s = c.getSuperclass();

162.

163. DefaultMutableTreeNode parent;

164. if (s == null) parent = root;

165. else parent = addClass(s);

166.

167. // add the class as a child to the parent

168. DefaultMutableTreeNode newNode = new DefaultMutableTreeNode(c);

169. model.insertNodeInto(newNode, parent, parent.getChildCount());

170.

171. // make node visible

172. TreePath path = new TreePath(model.getPathToRoot(newNode));

173. tree.makeVisible(path);

174.

175. return newNode;

176. }

177.

178. /**

179. * Returns a description of the fields of a class.

180. * @param the class to be described

181. * @return a string containing all field types and names

182. */

183. public static String getFieldDescription(Class<?> c)

184. {

185. // use reflection to find types and names of fields

186. StringBuilder r = new StringBuilder();

187. Field[] fields = c.getDeclaredFields();

188. for (int i = 0; i < fields.length; i++)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

189. {

190. Field f = fields[i];

191. if ((f.getModifiers() & Modifier.STATIC) != 0) r.append("static ");

192. r.append(f.getType().getName());

193. r.append(" ");

194. r.append(f.getName());

195. r.append("\n");

196. }

197. return r.toString();

198. }

199.

200. private DefaultMutableTreeNode root;

201. private DefaultTreeModel model;

202. private JTree tree;

203. private JTextField textField;

204. private JTextArea textArea;

205. private static final int DEFAULT_WIDTH = 400;

206. private static final int DEFAULT_HEIGHT = 300;

207. }

208.

209. /**

210. * This class renders a class name either in plain or italic. Abstract classes are italic.

211. */

212. class ClassNameTreeCellRenderer extends DefaultTreeCellRenderer

213. {

214. public Component getTreeCellRendererComponent(JTree tree, Object value, boolean selected,

215. boolean expanded, boolean leaf, int row, boolean hasFocus)

216. {

217. super.getTreeCellRendererComponent(tree, value, selected, expanded, leaf,

218. row, hasFocus);

219. // get the user object

220. DefaultMutableTreeNode node = (DefaultMutableTreeNode) value;

221. Class<?> c = (Class<?>) node.getUserObject();

222.

223. // the first time, derive italic font from plain font

224. if (plainFont == null)

225. {

226. plainFont = getFont();

227. // the tree cell renderer is sometimes called with a label that has a null font

228. if (plainFont != null) italicFont = plainFont.deriveFont(Font.ITALIC);

229. }

230.

231. // set font to italic if the class is abstract, plain otherwise

232. if ((c.getModifiers() & Modifier.ABSTRACT) == 0) setFont(plainFont);

233. else setFont(italicFont);

234. return this;

235. }

236.

237. private Font plainFont = null;

238. private Font italicFont = null;

239. }

javax.swing.JTree 1.2

TreePath getSelectionPath()

TreePath[] getSelectionPaths()

returns the first selected path, or an array of paths to all selected nodes.
If no paths are selected, both methods return null.

javax.swing.event.TreeSelectionListener 1.2

void valueChanged(TreeSelectionEvent event)

is called whenever nodes are selected or deselected.

javax.swing.event.TreeSelectionEvent 1.2

TreePath getPath()

TreePath[] getPaths()

gets the first path or all paths that have changed in this selection event.
If you want to know the current selection, not the selection change, you
should call JTree.getSelectionPaths instead.

Custom Tree Models

In the final example, we implement a program that inspects the contents of an object, just like a debugger does
(see Figure 6-34).

Figure 6-34. An object inspection tree

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Before going further, compile and run the example program. Each node corresponds to an instance field. If the
field is an object, expand it to see its instance fields. The program inspects the contents of the frame window. If
you poke around a few of the instance fields, you should be able to find some familiar classes. You'll also gain
some respect for how complex the Swing user interface components are under the hood.

What's remarkable about the program is that the tree does not use the DefaultTreeModel. If you already have

data that are hierarchically organized, you might not want to build a duplicate tree and worry about keeping
both trees synchronized. That is the situation in our case—the inspected objects are already linked to each other
through the object references, so there is no need to replicate the linking structure.

The TreeModel interface has only a handful of methods. The first group of methods enables the JTree to find

the tree nodes by first getting the root, then the children. The JTree class calls these methods only when the
user actually expands a node.

Object getRoot()

int getChildCount(Object parent)
Object getChild(Object parent, int index)

This example shows why the TreeModel interface, like the JTree class itself, does not need an explicit notion of

nodes. The root and its children can be any objects. The TreeModel is responsible for telling the JTree how they

are connected.

The next method of the TreeModel interface is the reverse of getChild:

int getIndexOfChild(Object parent, Object child)

Actually, this method can be implemented in terms of the first three—see the code in Listing 6-11.

The tree model tells the JTree which nodes should be displayed as leaves:

boolean isLeaf(Object node)

If your code changes the tree model, then the tree needs to be notified so that it can redraw itself. The tree
adds itself as a TreeModelListener to the model. Thus, the model must support the usual listener management

methods:

void addTreeModelListener(TreeModelListener l)

void removeTreeModelListener(TreeModelListener l)

You can see implementations for these methods in Listing 6-11.

When the model modifies the tree contents, it calls one of the four methods of the TreeModelListener

interface:

void treeNodesChanged(TreeModelEvent e)

void treeNodesInserted(TreeModelEvent e)

void treeNodesRemoved(TreeModelEvent e)

void treeStructureChanged(TreeModelEvent e)

The TreeModelEvent object describes the location of the change. The details of assembling a tree model event

that describes an insertion or removal event are quite technical. You only need to worry about firing these
events if your tree can actually have nodes added and removed. In Listing 6-11, we show you how to fire one
event: replacing the root with a new object.

Tip

To simplify the code for event firing, we use the javax.swing.EventListenerList

convenience class that collects listeners. See Volume I, Chapter 8 for more
information on this class.

Finally, if the user edits a tree node, your model is called with the change:

void valueForPathChanged(TreePath path, Object newValue)

If you don't allow editing, this method is never called.

If you don't need to support editing, then constructing a tree model is easily done. Implement the three
methods

Object getRoot()

int getChildCount(Object parent)

Object getChild(Object parent, int index)

These methods describe the structure of the tree. Supply routine implementations of the other five methods, as
in Listing 6-11. You are then ready to display your tree.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Now let's turn to the implementation of the example program. Our tree will contain objects of type Variable.

Note

Had we used the DefaultTreeModel, our nodes would have been objects of type

DefaultMutableTreeNode with user objects of type Variable.

For example, suppose you inspect the variable

Employee joe;

That variable has a type Employee.class, a name "joe", and a value, the value of the object reference joe.

We define a class Variable that describes a variable in a program:

Variable v = new Variable(Employee.class, "joe", joe);

If the type of the variable is a primitive type, you must use an object wrapper for the value.

new Variable(double.class, "salary", new Double(salary));

If the type of the variable is a class, then the variable has fields. Using reflection, we enumerate all fields and
collect them in an ArrayList. Because the getFields method of the Class class does not return fields of the

superclass, we need to call getFields on all superclasses as well. You can find the code in the Variable

constructor. The getFields method of our Variable class returns the array of fields. Finally, the toString

method of the Variable class formats the node label. The label always contains the variable type and name. If

the variable is not a class, the label also contains the value.

Note

If the type is an array, then we do not display the elements of the array. This would
not be difficult to do; we leave it as the proverbial "exercise for the reader."

Let's move on to the tree model. The first two methods are simple.

public Object getRoot()

{

 return root;

}

public int getChildCount(Object parent)

{

 return ((Variable) parent).getFields().size();
}

The getChild method returns a new Variable object that describes the field with the given index. The getType

and getName method of the Field class yield the field type and name. By using reflection, you can read the field

value as f.get(parentValue). That method can throw an IllegalAccessException. However, we made all

fields accessible in the Variable constructor, so this won't happen in practice.

Here is the complete code of the getChild method:

public Object getChild(Object parent, int index)
{

 ArrayList fields = ((Variable) parent).getFields();

 Field f = (Field) fields.get(index);

 Object parentValue = ((Variable) parent).getValue();

 try

 {

 return new Variable(f.getType(), f.getName(), f.get(parentValue));

 }

 catch (IllegalAccessException e)
 {

 return null;

 }

}

These three methods reveal the structure of the object tree to the JTree component. The remaining methods

are routine—see the source code in Listing 6-11.

There is one remarkable fact about this tree model: It actually describes an infinite tree. You can verify this by
following one of the WeakReference objects. Click on the variable named referent. It leads you right back to

the original object. You get an identical subtree, and you can open its WeakReference object again, ad infinitum.

Of course, you cannot store an infinite set of nodes. The tree model simply generates the nodes on demand as
the user expands the parents.

This example concludes our discussion on trees. We move on to the table component, another complex Swing
component. Superficially, trees and tables don't seem to have much in common, but you will find that they both
use the same concepts for data models and cell rendering.

Listing 6-11. ObjectInspectorTest.java

Code View:
 1. import java.awt.*;

 2. import java.lang.reflect.*;

 3. import java.util.*;

 4. import javax.swing.*;

 5. import javax.swing.event.*;

 6. import javax.swing.tree.*;

 7.

 8. /**

 9. * This program demonstrates how to use a custom tree model. It displays the fields of

 10. * an object.

 11. * @version 1.03 2007-08-01

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 12. * @author Cay Horstmann

 13. */

 14. public class ObjectInspectorTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. JFrame frame = new ObjectInspectorFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. /**

 31. * This frame holds the object tree.

 32. */

 33. class ObjectInspectorFrame extends JFrame

 34. {

 35. public ObjectInspectorFrame()

 36. {

 37. setTitle("ObjectInspectorTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. // we inspect this frame object

 41.

 42. Variable v = new Variable(getClass(), "this", this);

 43. ObjectTreeModel model = new ObjectTreeModel();

 44. model.setRoot(v);

 45.

 46. // construct and show tree

 47.

 48. tree = new JTree(model);

 49. add(new JScrollPane(tree), BorderLayout.CENTER);

 50. }

 51.

 52. private JTree tree;

 53. private static final int DEFAULT_WIDTH = 400;

 54. private static final int DEFAULT_HEIGHT = 300;

 55. }

 56.

 57. /**

 58. * This tree model describes the tree structure of a Java object. Children are the objects

 59. * that are stored in instance variables.

 60. */

 61. class ObjectTreeModel implements TreeModel

 62. {

 63. /**

 64. * Constructs an empty tree.

 65. */

 66. public ObjectTreeModel()

 67. {

 68. root = null;

 69. }

 70.

 71. /**

 72. * Sets the root to a given variable.

 73. * @param v the variable that is being described by this tree

 74. */

 75. public void setRoot(Variable v)

 76. {

 77. Variable oldRoot = v;

 78. root = v;

 79. fireTreeStructureChanged(oldRoot);

 80. }

 81.

 82. public Object getRoot()

 83. {

 84. return root;

 85. }

 86.

 87. public int getChildCount(Object parent)

 88. {

 89. return ((Variable) parent).getFields().size();

 90. }

 91.

 92. public Object getChild(Object parent, int index)

 93. {

 94. ArrayList<Field> fields = ((Variable) parent).getFields();

 95. Field f = (Field) fields.get(index);

 96. Object parentValue = ((Variable) parent).getValue();

 97. try

 98. {

 99. return new Variable(f.getType(), f.getName(), f.get(parentValue));

100. }

101. catch (IllegalAccessException e)

102. {

103. return null;

104. }

105. }

106.

107. public int getIndexOfChild(Object parent, Object child)

108. {

109. int n = getChildCount(parent);

110. for (int i = 0; i < n; i++)

111. if (getChild(parent, i).equals(child)) return i;

112. return -1;

113. }

114.

115. public boolean isLeaf(Object node)

116. {

117. return getChildCount(node) == 0;

118. }

119.

120. public void valueForPathChanged(TreePath path, Object newValue)

121. {

122. }

123.

124. public void addTreeModelListener(TreeModelListener l)

125. {

126. listenerList.add(TreeModelListener.class, l);

127. }

128.

129. public void removeTreeModelListener(TreeModelListener l)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

130. {

131. listenerList.remove(TreeModelListener.class, l);

132. }

133.

134. protected void fireTreeStructureChanged(Object oldRoot)

135. {

136. TreeModelEvent event = new TreeModelEvent(this, new Object[] { oldRoot });

137. EventListener[] listeners = listenerList.getListeners(TreeModelListener.class);

138. for (int i = 0; i < listeners.length; i++)

139. ((TreeModelListener) listeners[i]).treeStructureChanged(event);

140. }

141.

142. private Variable root;

143. private EventListenerList listenerList = new EventListenerList();

144. }

145.

146. /**

147. * A variable with a type, name, and value.

148. */

149. class Variable

150. {

151. /**

152. * Construct a variable

153. * @param aType the type

154. * @param aName the name

155. * @param aValue the value

156. */

157. public Variable(Class<?> aType, String aName, Object aValue)

158. {

159. type = aType;

160. name = aName;

161. value = aValue;

162. fields = new ArrayList<Field>();

163.

164. // find all fields if we have a class type except we don't expand strings and null values

165.

166. if (!type.isPrimitive() && !type.isArray() && !type.equals(String.class) && value != null)

167. {

168. // get fields from the class and all superclasses

169. for (Class<?> c = value.getClass(); c != null; c = c.getSuperclass())

170. {

171. Field[] fs = c.getDeclaredFields();

172. AccessibleObject.setAccessible(fs, true);

173.

174. // get all nonstatic fields

175. for (Field f : fs)

176. if ((f.getModifiers() & Modifier.STATIC) == 0) fields.add(f);

177. }

178. }

179. }

180.

181. /**

182. * Gets the value of this variable.

183. * @return the value

184. */

185. public Object getValue()

186. {

187. return value;

188. }

189.

190. /**

191. * Gets all nonstatic fields of this variable.

192. * @return an array list of variables describing the fields

193. */

194. public ArrayList<Field> getFields()

195. {

196. return fields;

197. }

198.

199. public String toString()

200. {

201. String r = type + " " + name;

202. if (type.isPrimitive()) r += "=" + value;

203. else if (type.equals(String.class)) r += "=" + value;

204. else if (value == null) r += "=null";

205. return r;

206. }

207.

208. private Class<?> type;

209. private String name;

210. private Object value;

211. private ArrayList<Field> fields;

212. }

javax.swing.tree.TreeModel 1.2

Object getRoot()

returns the root node.

int getChildCount(Object parent)

gets the number of children of the parent node.

Object getChild(Object parent, int index)

gets the child node of the parent node at the given index.

int getIndexOfChild(Object parent, Object child)

gets the index of the child node in the parent node, or -1 if child is not a child of parent

in this tree model.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

boolean isLeaf(Object node)

returns true if node is conceptually a leaf of the tree.

void addTreeModelListener(TreeModelListener l)

void removeTreeModelListener(TreeModelListener l)

adds or removes listeners that are notified when the information in the tree model changes.

void valueForPathChanged(TreePath path, Object newValue)

is called when a cell editor has modified the value of a node.

Parameters: path The path to the node that has been edited

 newValue The replacement value returned by the editor

javax.swing.event.TreeModelListener 1.2

void treeNodesChanged(TreeModelEvent e)

void treeNodesInserted(TreeModelEvent e)

void treeNodesRemoved(TreeModelEvent e)

void treeStructureChanged(TreeModelEvent e)

is called by the tree model when the tree has been modified.

javax.swing.event.TreeModelEvent 1.2

TreeModelEvent(Object eventSource, TreePath node)

constructs a tree model event.

Parameters: eventSource The tree model generating this event

 node The path to the node that is being changed

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Text Components

Figure 6-35 shows all text components that are included in the Swing library. You already saw the three most
commonly used components, JTextField, JPasswordField, and JTextArea, in Volume I, Chapter 9. In the

following sections, we introduce the remaining text components. We also discuss the JSpinner component that

contains a formatted text field together with tiny "up" and "down" buttons to change its contents.

Figure 6-35. The hierarchy of text components and documents

[View full size image]

All text components render and edit data that are stored in a model object of a class implementing the Document

interface. The JTextField and JTextArea components use a PlainDocument that simply stores a sequence of

lines of plain text without any formatting.

A JEditorPane can show and edit styled text (with fonts, colors, etc.) in a variety of formats, most notably HTML;

see the "Displaying HTML with the JEditorPane" section beginning on page 472. The StyledDocument interface

describes the additional requirements of styles, fonts, and colors. The HTMLDocument class implements this

interface.

The subclass JTextPane of JEditorPane also holds styled text as well as embedded Swing components. We do not

cover the very complex JTextPane in this book but instead refer you to the very detailed description in Core

Swing: Advanced Programming by Kim Topley. For a typical use of the JTextPane class, have a look at the

StylePad demo that is included in the JDK.

Change Tracking in Text Components

Most of the intricacies of the Document interface are of interest only if you implement your own text editor. There

is, however, one common use of the interface: for tracking changes.

Sometimes, you want to update a part of your user interface whenever a user edits text, without waiting for the
user to click a button. Here is a simple example. We show three text fields for the red, blue, and green component
of a color. Whenever the content of the text fields changes, the color should be updated. Figure 6-36 shows the
running application of Listing 6-12.

Figure 6-36. Tracking changes in a text field

First of all, note that it is not a good idea to monitor keystrokes. Some keystrokes (such as the arrow keys) don't
change the text. More important, the text can be updated by mouse gestures (such as "middle mouse button
pasting" in X11). Instead, you should ask the document (and not the text component) to notify you whenever the
data have changed, by installing a document listener:

textField.getDocument().addDocumentListener(listener);

When the text has changed, one of the following DocumentListener methods is called:

void insertUpdate(DocumentEvent event)

void removeUpdate(DocumentEvent event)

void changedUpdate(DocumentEvent event)

The first two methods are called when characters have been inserted or removed. The third method is not called at
all for text fields. For more complex document types, it would be called when some other change, such as a
change in formatting, has occurred. Unfortunately, there is no single callback to tell you that the text has
changed—usually you don't much care how it has changed. There is no adapter class, either. Thus, your document
listener must implement all three methods. Here is what we do in our sample program:

DocumentListener listener = new DocumentListener()

 {
 public void insertUpdate(DocumentEvent event) { setColor(); }

 public void removeUpdate(DocumentEvent event) { setColor(); }

 public void changedUpdate(DocumentEvent event) {}

 }

The setColor method uses the getText method to obtain the current user input strings from the text fields and

sets the color.

Our program has one limitation. Users can type malformed input, such as "twenty", into the text field or leave a

field blank. For now, we catch the NumberFormatException that the parseInt method throws, and we simply don't

update the color when the text field entry is not a number. In the next section, you see how you can prevent the
user from entering invalid input in the first place.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Instead of listening to document events, you can also add an action event listener to a
text field. The action listener is notified whenever the user presses the ENTER key. We
don't recommend this approach, because users don't always remember to press ENTER

when they are done entering data. If you use an action listener, you should also install
a focus listener so that you can track when the user leaves the text field.

Listing 6-12. ChangeTrackingTest.java

Code View:
 1. import java.awt.*;

 2. import javax.swing.*;

 3. import javax.swing.event.*;

 4.

 5. /**

 6. * @version 1.40 2007-08-05

 7. * @author Cay Horstmann

 8. */

 9. public class ChangeTrackingTest

10. {

11. public static void main(String[] args)

12. {

13. EventQueue.invokeLater(new Runnable()

14. {

15. public void run()

16. {

17. ColorFrame frame = new ColorFrame();

18. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

19. frame.setVisible(true);

20. }

21. });

22. }

23. }

24.

25. /**

26. * A frame with three text fields to set the background color.

27. */

28. class ColorFrame extends JFrame

29. {

30. public ColorFrame()

31. {

32. setTitle("ChangeTrackingTest");

33.

34. DocumentListener listener = new DocumentListener()

35. {

36. public void insertUpdate(DocumentEvent event)

37. {

38. setColor();

39. }

40.

41. public void removeUpdate(DocumentEvent event)

42. {

43. setColor();

44. }

45.

46. public void changedUpdate(DocumentEvent event)

47. {

48. }

49. };

50.

51. panel = new JPanel();

52.

53. panel.add(new JLabel("Red:"));

54. redField = new JTextField("255", 3);

55. panel.add(redField);

56. redField.getDocument().addDocumentListener(listener);

57.

58. panel.add(new JLabel("Green:"));

59. greenField = new JTextField("255", 3);

60. panel.add(greenField);

61. greenField.getDocument().addDocumentListener(listener);

62.

63. panel.add(new JLabel("Blue:"));

64. blueField = new JTextField("255", 3);

65. panel.add(blueField);

66. blueField.getDocument().addDocumentListener(listener);

67.

68. add(panel);

69. pack();

70. }

71.

72. /**

73. * Set the background color to the values stored in the text fields.

74. */

75. public void setColor()

76. {

77. try

78. {

79. int red = Integer.parseInt(redField.getText().trim());

80. int green = Integer.parseInt(greenField.getText().trim());

81. int blue = Integer.parseInt(blueField.getText().trim());

82. panel.setBackground(new Color(red, green, blue));

83. }

84. catch (NumberFormatException e)

85. {

86. // don't set the color if the input can't be parsed

87. }

88. }

89.

90. private JPanel panel;

91. private JTextField redField;

92. private JTextField greenField;

93. private JTextField blueField;

94. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.JComponent 1.2

Dimension getPreferredSize()

void setPreferredSize(Dimension d)

gets or sets the preferred size of this component.

javax.swing.text.Document 1.2

int getLength()

returns the number of characters currently in the document.

String getText(int offset, int length)

returns the text contained within the given portion of the document.

Parameters: offset The start of the text

 length The length of the desired string

void addDocumentListener(DocumentListener listener)

registers the listener to be notified when the document changes.

javax.swing.event.DocumentEvent 1.2

Document getDocument()

gets the document that is the source of the event.

javax.swing.event.DocumentListener 1.2

void changedUpdate(DocumentEvent event)

is called whenever an attribute or set of attributes changes.

void insertUpdate(DocumentEvent event)

is called whenever an insertion into the document occurs.

void removeUpdate(DocumentEvent event)

is called whenever a portion of the document has been removed.

Formatted Input Fields

In the last example program, we wanted the program user to type numbers, not arbitrary strings. That is, the user
is allowed to enter only digits 0 through 9 and a hyphen (-). The hyphen, if present at all, must be the first symbol
of the input string.

On the surface, this input validation task sounds simple. We can install a key listener to the text field and then
consume all key events that aren't digits or a hyphen. Unfortunately, this simple approach, although commonly
recommended as a method for input validation, does not work well in practice. First, not every combination of the
valid input characters is a valid number. For example, --3 and 3-3 aren't valid, even though they are made up

from valid input characters. But, more important, there are other ways of changing the text that don't involve
typing character keys. Depending on the look and feel, certain key combinations can be used to cut, copy, and
paste text. For example, in the Metal look and feel, the CTRL+V key combination pastes the content of the paste
buffer into the text field. That is, we also need to monitor that the user doesn't paste in an invalid character.
Clearly, trying to filter keystrokes to ensure that the content of the text field is always valid begins to look like a
real chore. This is certainly not something that an application programmer should have to worry about.

Perhaps surprisingly, before Java SE 1.4, there were no components for entering numeric values. Starting with the
first edition of Core Java, we supplied an implementation for an IntTextField, a text field for entering a properly

formatted integer. In every new edition, we changed the implementation to take whatever limited advantage we
could from the various half-baked validation schemes that were added to each version of Java. Finally, in Java SE
1.4, the Swing designers faced the issues head-on and supplied a versatile JFormattedTextField class that can
be used not just for numeric input, but also for dates and for even more esoteric formatted values such as IP
addresses.

Integer Input

Let's get started with an easy case: a text field for integer input.

Code View:
JFormattedTextField intField = new JFormattedTextField(NumberFormat.getIntegerInstance());

The NumberFormat.getIntegerInstance returns a formatter object that formats integers, using the current

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

locale. In the U.S. locale, commas are used as decimal separators, allowing users to enter values such as 1,729.
Chapter 5 explains in detail how you can select other locales.

As with any text field, you can set the number of columns:

intField.setColumns(6);

You can set a default value with the setValue method. That method takes an Object parameter, so you'll need to

wrap the default int value in an Integer object:

intField.setValue(new Integer(100));

Typically, users will supply inputs in multiple text fields and then click a button to read all values. When the button
is clicked, you can get the user-supplied value with the getValue method. That method returns an Object result,

and you need to cast it into the appropriate type. The JFormattedTextField returns an object of type Long if the

user edited the value. However, if the user made no changes, the original Integer object is returned. Therefore,

you should cast the return value to the common superclass Number:

Number value = (Number) intField.getValue();

int v = value.intValue();

The formatted text field is not very interesting until you consider what happens when a user provides illegal input.
That is the topic of the next section.

Behavior on Loss of Focus

Consider what happens when a user supplies input to a text field. The user types input and eventually decides to
leave the field, perhaps by clicking on another component with the mouse. Then the text field loses focus. The I-
beam cursor is no longer visible in the text field, and keystrokes are directed toward a different component.

When the formatted text field loses focus, the formatter looks at the text string that the user produced. If the
formatter knows how to convert the text string to an object, the text is valid. Otherwise it is invalid. You can use
the isEditValid method to check whether the current content of the text field is valid.

The default behavior on loss of focus is called "commit or revert." If the text string is valid, it is committed. The
formatter converts it to an object. That object becomes the current value of the field (that is, the return value of
the getValue method that you saw in the preceding section). The value is then converted back to a string, which
becomes the text string that is visible in the field. For example, the integer formatter recognizes the input 1729 as

valid, sets the current value to new Long(1729), and then converts it back into a string with a decimal comma:

1,729.

Conversely, if the text string is invalid, then the current value is not changed and the text field reverts to the
string that represents the old value. For example, if the user enters a bad value, such as x1, then the old value is

restored when the text field loses focus.

Note

The integer formatter regards a text string as valid if it starts with an integer. For
example, 1729x is a valid string. It is converted to the number 1729, which is then
formatted as the string 1,729.

You can set other behaviors with the setFocusLostBehavior method. The "commit" behavior is subtly different

from the default. If the text string is invalid, then both the text string and the field value stay unchanged—they are
now out of sync. The "persist" behavior is even more conservative. Even if the text string is valid, neither the text
field nor the current value are changed. You would need to call commitEdit, setValue, or setText to bring them

back in sync. Finally, there is a "revert" behavior that doesn't ever seem to be useful. Whenever focus is lost, the
user input is disregarded, and the text string reverts to the old value.

Note

Generally, the "commit or revert" default behavior is reasonable. There is just one
potential problem. Suppose a dialog box contains a text field for an integer value. A
user enters a string " 1729", with a leading space and then clicks the OK button. The
leading space makes the number invalid, and the field value reverts to the old value.
The action listener of the OK button retrieves the field value and closes the dialog box.
The user never knows that the new value has been rejected. In this situation, it is
appropriate to select the "commit" behavior and have the OK button listener check
that all field edits are valid before closing the dialog box.

Filters

The basic functionality of formatted text fields is straightforward and sufficient for most uses. However, you can
add a couple of refinements. Perhaps you want to prevent the user from entering nondigits altogether. You
achieve that behavior with a document filter. Recall that in the model-view-controller architecture, the controller
translates input events into commands that modify the underlying document of the text field; that is, the text
string that is stored in a PlainDocument object. For example, whenever the controller processes a command that

causes text to be inserted into the document, it calls the "insert string" command. The string to be inserted can be
either a single character or the content of the paste buffer. A document filter can intercept this command and
modify the string or cancel the insertion altogether. Here is the code for the insertString method of a filter that

analyzes the string to be inserted and inserts only the characters that are digits or a - sign. (The code handles
supplementary Unicode characters, as explained in Chapter 3. See Chapter 12 for the StringBuilder class.)

Code View:
public void insertString(FilterBypass fb, int offset, String string, AttributeSet attr)
 throws BadLocationException

{

 StringBuilder builder = new StringBuilder(string);

 for (int i = builder.length() - 1; i >= 0; i--)

 {

 int cp = builder.codePointAt(i);

 if (!Character.isDigit(cp) && cp != '-')

 {

 builder.deleteCharAt(i);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 if (Character.isSupplementaryCodePoint(cp))

 {

 i--;
 builder.deleteCharAt(i);

 }

 }

 }

 super.insertString(fb, offset, builder.toString(), attr);

}

You should also override the replace method of the DocumentFilter class—it is called when text is selected and
then replaced. The implementation of the replace method is straightforward—see Listing 6-13.

Now you need to install the document filter. Unfortunately, there is no straightforward method to do that. You
need to override the getDocumentFilter method of a formatter class, and pass an object of that formatter class

to the JFormattedTextField. The integer text field uses an InternationalFormatter that is initialized with

NumberFormat.getIntegerInstance(). Here is how you install a formatter to yield the desired filter:

JFormattedTextField intField = new JFormattedTextField(new

 InternationalFormatter(NumberFormat.getIntegerInstance())

 {

 protected DocumentFilter getDocumentFilter()

 {

 return filter;

 }
 private DocumentFilter filter = new IntFilter();

 });

Note

The Java SE documentation states that the DocumentFilter class was invented to

avoid subclassing. Until Java SE 1.3, filtering in a text field was achieved by extending
the PlainDocument class and overriding the insertString and replace methods.

Now the PlainDocument class has a pluggable filter instead. That is a splendid

improvement. It would have been even more splendid if the filter had also been made
pluggable in the formatter class. Alas, it was not, and we must subclass the formatter.

Try out the FormatTest example program at the end of this section. The third text field has a filter installed. You

can insert only digits or the minus (-) character. Note that you can still enter invalid strings such as "1-2-3". In

general, it is impossible to avoid all invalid strings through filtering. For example, the string "-" is invalid, but a

filter can't reject it because it is a prefix of a legal string "-1". Even though filters can't give perfect protection, it

makes sense to use them to reject inputs that are obviously invalid.

Tip

Another use for filtering is to turn all characters of a string to upper case. Such a filter
is easy to write. In the insertString and replace methods of the filter, convert the

string to be inserted to upper case and then invoke the superclass method.

Verifiers

There is another potentially useful mechanism to alert users to invalid inputs. You can attach a verifier to any
JComponent. If the component loses focus, then the verifier is queried. If the verifier reports the content of the

component to be invalid, the component immediately regains focus. The user is thus forced to fix the content
before supplying other inputs.

A verifier must extend the abstract InputVerifier class and define a verify method. It is particularly easy to

define a verifier that checks formatted text fields. The isEditValid method of the JFormattedTextField class

calls the formatter and returns true if the formatter can turn the text string into an object. Here is the verifier:

class FormattedTextFieldVerifier extends InputVerifier
{

 public boolean verify(JComponent component)

 {

 JFormattedTextField field = (JFormattedTextField) component;

 return field.isEditValid();

 }

}

You can attach it to any JFormattedTextField:

intField.setInputVerifier(new FormattedTextFieldVerifier());

However, a verifier is not entirely foolproof. If you click on a button, then the button notifies its action listeners
before an invalid component regains focus. The action listeners can then get an invalid result from the component
that failed verification. There is a reason for this behavior: Users might want to click a Cancel button without first
having to fix an invalid input.

The fourth text field in the example program has a verifier attached. Try entering an invalid number (such as
x1729) and press the TAB key or click with the mouse on another text field. Note that the field immediately regains

focus. However, if you click the OK button, the action listener calls getValue, which reports the last good value.

Other Standard Formatters

Besides the integer formatter, the JFormattedTextField supports several other formatters. The NumberFormat
class has static methods

getNumberInstance

getCurrencyInstance

getPercentInstance

that yield formatters of floating-point numbers, currency values, and percentages. For example, you can obtain a
text field for the input of currency values by calling

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
JFormattedTextField currencyField = new JFormattedTextField(NumberFormat.getCurrencyInstance());

To edit dates and times, call one of the static methods of the DateFormat class:

getDateInstance

getTimeInstance

getDateTimeInstance

For example,

Code View:
JFormattedTextField dateField = new JFormattedTextField(DateFormat.getDateInstance());

This field edits a date in the default or "medium" format such as

Aug 5, 2007

You can instead choose a "short" format such as

8/5/07

by calling

DateFormat.getDateInstance(DateFormat.SHORT)

Note

By default, the date format is "lenient." That is, an invalid date such as February 31,
2002, is rolled over to the next valid date, March 3, 2002. That behavior might be
surprising to your users. In that case, call setLenient(false) on the DateFormat

object.

The DefaultFormatter can format objects of any class that has a constructor with a string parameter and a

matching toString method. For example, the URL class has a URL(String) constructor that can be used to

construct a URL from a string, such as

URL url = new URL("http://java.sun.com");

Therefore, you can use the DefaultFormatter to format URL objects. The formatter calls toString on the field

value to initialize the field text. When the field loses focus, the formatter constructs a new object of the same class
as the current value, using the constructor with a String parameter. If that constructor throws an exception, then

the edit is not valid. You can try that out in the example program by entering a URL that does not start with a
prefix such as "http:".

Note

By default, the DefaultFormatter is in overwrite mode. That is different from the

other formatters and not very useful. Call setOverwriteMode(false) to turn off

overwrite mode.

Finally, the MaskFormatter is useful for fixed-size patterns that contain some constant and some variable

characters. For example, Social Security numbers (such as 078-05-1120) can be formatted with a

new MaskFormatter("###-##-####")

The # symbol denotes a single digit. Table 6-3 shows the symbols that you can use in a mask formatter.

Table 6-3. MaskFormatter Symbols

Symbol Explanation

A digit

? A letter

U A letter, converted to upper case

L A letter, converted to lower case

A A letter or digit

H A hexadecimal digit [0-9A-Fa-f]

* Any character

' Escape character to include a symbol in the pattern

You can restrict the characters that can be typed into the field by calling one of the methods of the MaskFormatter

class:

setValidCharacters

setInvalidCharacters

For example, to read in a letter grade (such as A+ or F), you could use

MaskFormatter formatter = new MaskFormatter("U*");

formatter.setValidCharacters("ABCDF+- ");

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

However, there is no way of specifying that the second character cannot be a letter.

Note that the string that is formatted by the mask formatter has exactly the same length as the mask. If the user
erases characters during editing, then they are replaced with the placeholder character. The default placeholder
character is a space, but you can change it with the setPlaceholderCharacter method, for example,

formatter.setPlaceholderCharacter('0');

By default, a mask formatter is in overtype mode, which is quite intuitive—try it out in the example program. Also
note that the caret position jumps over the fixed characters in the mask.

The mask formatter is very effective for rigid patterns such as Social Security numbers or American telephone
numbers. However, note that no variation at all is permitted in the mask pattern. For example, you cannot use a
mask formatter for international telephone numbers that have a variable number of digits.

Custom Formatters

If none of the standard formatters is appropriate, it is fairly easy to define your own formatter. Consider 4-byte IP
addresses such as

130.65.86.66

You can't use a MaskFormatter because each byte might be represented by one, two, or three digits. Also, we

want to check in the formatter that each byte's value is at most 255.

To define your own formatter, extend the DefaultFormatter class and override the methods

String valueToString(Object value)

Object stringToValue(String text)

The first method turns the field value into the string that is displayed in the text field. The second method parses
the text that the user typed and turns it back into an object. If either method detects an error, it should throw a
ParseException.

In our example program, we store an IP address in a byte[] array of length 4. The valueToString method forms

a string that separates the bytes with periods. Note that byte values are signed quantities between -128 and 127.

(For example, in an IP address 130.65.86.66, the first octet is actually the byte with value -126.) To turn negative
byte values into unsigned integer values, you add 256.

public String valueToString(Object value) throws ParseException

{

 if (!(value instanceof byte[]))

 throw new ParseException("Not a byte[]", 0);

 byte[] a = (byte[]) value;

 if (a.length != 4)

 throw new ParseException("Length != 4", 0);

 StringBuilder builder = new StringBuilder();

 for (int i = 0; i < 4; i++)

 {

 int b = a[i];

 if (b < 0) b += 256;

 builder.append(String.valueOf(b));

 if (i < 3) builder.append('.');

 }
 return builder.toString();

}

Conversely, the stringToValue method parses the string and produces a byte[] object if the string is valid. If

not, it throws a ParseException.

public Object stringToValue(String text) throws ParseException

{

 StringTokenizer tokenizer = new StringTokenizer(text, ".");

 byte[] a = new byte[4];
 for (int i = 0; i < 4; i++)

 {

 int b = 0;

 try

 {

 b = Integer.parseInt(tokenizer.nextToken());

 }

 catch (NumberFormatException e)

 {
 throw new ParseException("Not an integer", 0);

 }

 if (b < 0 || b >= 256)

 throw new ParseException("Byte out of range", 0);

 a[i] = (byte) b;

 }

 return a;

}

Try out the IP address field in the sample program. If you enter an invalid address, the field reverts to the last
valid address.

The program in Listing 6-13 shows various formatted text fields in action (see Figure 6-37). Click the Ok button to
retrieve the current values from the fields.

Figure 6-37. The FormatTest program

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

The "Swing Connection" online newsletter has a short article describing a formatter
that matches any regular expression. See
http://java.sun.com/products/jfc/tsc/articles/reftf/.

Listing 6-13. FormatTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.net.*;

 4. import java.text.*;

 5. import java.util.*;

 6. import javax.swing.*;

 7. import javax.swing.text.*;

 8.

 9. /**

 10. * A program to test formatted text fields

 11. * @version 1.02 2007-06-12

 12. * @author Cay Horstmann

 13. */

 14. public class FormatTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. FormatTestFrame frame = new FormatTestFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

http://java.sun.com/products/jfc/tsc/articles/reftf/

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. /**

 31. * A frame with a collection of formatted text fields and a button that displays the

 32. * field values.

 33. */

 34. class FormatTestFrame extends JFrame

 35. {

 36. public FormatTestFrame()

 37. {

 38. setTitle("FormatTest");

 39. setSize(WIDTH, HEIGHT);

 40.

 41. JPanel buttonPanel = new JPanel();

 42. okButton = new JButton("Ok");

 43. buttonPanel.add(okButton);

 44. add(buttonPanel, BorderLayout.SOUTH);

 45.

 46. mainPanel = new JPanel();

 47. mainPanel.setLayout(new GridLayout(0, 3));

 48. add(mainPanel, BorderLayout.CENTER);

 49.

 50. JFormattedTextField intField =

 51. new JFormattedTextField(NumberFormat.getIntegerInstance());

 52. intField.setValue(new Integer(100));

 53. addRow("Number:", intField);

 54.

 55. JFormattedTextField intField2 =

 56. new JFormattedTextField(NumberFormat.getIntegerInstance());

 57. intField2.setValue(new Integer(100));

 58. intField2.setFocusLostBehavior(JFormattedTextField.COMMIT);

 59. addRow("Number (Commit behavior):", intField2);

 60.

 61. JFormattedTextField intField3 = new JFormattedTextField(new InternationalFormatter(

 62. NumberFormat.getIntegerInstance())

 63. {

 64. protected DocumentFilter getDocumentFilter()

 65. {

 66. return filter;

 67. }

 68.

 69. private DocumentFilter filter = new IntFilter();

 70. });

 71. intField3.setValue(new Integer(100));

 72. addRow("Filtered Number", intField3);

 73.

 74. JFormattedTextField intField4 =

 75. new JFormattedTextField(NumberFormat.getIntegerInstance());

 76. intField4.setValue(new Integer(100));

 77. intField4.setInputVerifier(new FormattedTextFieldVerifier());

 78. addRow("Verified Number:", intField4);

 79.

 80. JFormattedTextField currencyField = new JFormattedTextField(NumberFormat

 81. .getCurrencyInstance());

 82. currencyField.setValue(new Double(10));

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 83. addRow("Currency:", currencyField);

 84.

 85. JFormattedTextField dateField = new JFormattedTextField(DateFormat.getDateInstance());

 86. dateField.setValue(new Date());

 87. addRow("Date (default):", dateField);

 88.

 89. DateFormat format = DateFormat.getDateInstance(DateFormat.SHORT);

 90. format.setLenient(false);

 91. JFormattedTextField dateField2 = new JFormattedTextField(format);

 92. dateField2.setValue(new Date());

 93. addRow("Date (short, not lenient):", dateField2);

 94.

 95. try

 96. {

 97. DefaultFormatter formatter = new DefaultFormatter();

 98. formatter.setOverwriteMode(false);

 99. JFormattedTextField urlField = new JFormattedTextField(formatter);

100. urlField.setValue(new URL("http://java.sun.com"));

101. addRow("URL:", urlField);

102. }

103. catch (MalformedURLException e)

104. {

105. e.printStackTrace();

106. }

107.

108. try

109. {

110. MaskFormatter formatter = new MaskFormatter("###-##-####");

111. formatter.setPlaceholderCharacter('0');

112. JFormattedTextField ssnField = new JFormattedTextField(formatter);

113. ssnField.setValue("078-05-1120");

114. addRow("SSN Mask:", ssnField);

115. }

116. catch (ParseException exception)

117. {

118. exception.printStackTrace();

119. }

120.

121. JFormattedTextField ipField = new JFormattedTextField(new IPAddressFormatter());

122. ipField.setValue(new byte[] { (byte) 130, 65, 86, 66 });

123. addRow("IP Address:", ipField);

124. }

125.

126. /**

127. * Adds a row to the main panel.

128. * @param labelText the label of the field

129. * @param field the sample field

130. */

131. public void addRow(String labelText, final JFormattedTextField field)

132. {

133. mainPanel.add(new JLabel(labelText));

134. mainPanel.add(field);

135. final JLabel valueLabel = new JLabel();

136. mainPanel.add(valueLabel);

137. okButton.addActionListener(new ActionListener()

138. {

139. public void actionPerformed(ActionEvent event)

140. {

141. Object value = field.getValue();

142. Class<?> cl = value.getClass();

143. String text = null;

144. if (cl.isArray())

145. {

146. if (cl.getComponentType().isPrimitive())

147. {

148. try

149. {

150. text = Arrays.class.getMethod("toString", cl).invoke(null, value)

151. .toString();

152. }

153. catch (Exception ex)

154. {

155. // ignore reflection exceptions

156. }

157. }

158. else text = Arrays.toString((Object[]) value);

159. }

160. else text = value.toString();

161. valueLabel.setText(text);

162. }

163. });

164. }

165.

166. public static final int WIDTH = 500;

167. public static final int HEIGHT = 250;

168.

169. private JButton okButton;

170. private JPanel mainPanel;

171. }

172.

173. /**

174. * A filter that restricts input to digits and a '-' sign.

175. */

176. class IntFilter extends DocumentFilter

177. {

178. public void insertString(FilterBypass fb, int offset, String string, AttributeSet attr)

179. throws BadLocationException

180. {

181. StringBuilder builder = new StringBuilder(string);

182. for (int i = builder.length() - 1; i >= 0; i--)

183. {

184. int cp = builder.codePointAt(i);

185. if (!Character.isDigit(cp) && cp != '-')

186. {

187. builder.deleteCharAt(i);

188. if (Character.isSupplementaryCodePoint(cp))

189. {

190. i--;

191. builder.deleteCharAt(i);

192. }

193. }

194. }

195. super.insertString(fb, offset, builder.toString(), attr);

196. }

197.

198. public void replace(FilterBypass fb, int offset, int length, String string,

199. AttributeSet attr)

200. throws BadLocationException

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

201. {

202. if (string != null)

203. {

204. StringBuilder builder = new StringBuilder(string);

205. for (int i = builder.length() - 1; i >= 0; i--)

206. {

207. int cp = builder.codePointAt(i);

208. if (!Character.isDigit(cp) && cp != '-')

209. {

210. builder.deleteCharAt(i);

211. if (Character.isSupplementaryCodePoint(cp))

212. {

213. i--;

214. builder.deleteCharAt(i);

215. }

216. }

217. }

218. string = builder.toString();

219. }

220. super.replace(fb, offset, length, string, attr);

221. }

222. }

223.

224. /**

225. * A verifier that checks whether the content of a formatted text field is valid.

226. */

227. class FormattedTextFieldVerifier extends InputVerifier

228. {

229. public boolean verify(JComponent component)

230. {

231. JFormattedTextField field = (JFormattedTextField) component;

232. return field.isEditValid();

233. }

234. }

235.

236. /**

237. * A formatter for 4-byte IP addresses of the form a.b.c.d

238. */

239. class IPAddressFormatter extends DefaultFormatter

240. {

241. public String valueToString(Object value) throws ParseException

242. {

243. if (!(value instanceof byte[])) throw new ParseException("Not a byte[]", 0);

244. byte[] a = (byte[]) value;

245. if (a.length != 4) throw new ParseException("Length != 4", 0);

246. StringBuilder builder = new StringBuilder();

247. for (int i = 0; i < 4; i++)

248. {

249. int b = a[i];

250. if (b < 0) b += 256;

251. builder.append(String.valueOf(b));

252. if (i < 3) builder.append('.');

253. }

254. return builder.toString();

255. }

256.

257. public Object stringToValue(String text) throws ParseException

258. {

259. StringTokenizer tokenizer = new StringTokenizer(text, ".");

260. byte[] a = new byte[4];

261. for (int i = 0; i < 4; i++)

262. {

263. int b = 0;

264. if (!tokenizer.hasMoreTokens()) throw new ParseException("Too few bytes", 0);

265. try

266. {

267. b = Integer.parseInt(tokenizer.nextToken());

268. }

269. catch (NumberFormatException e)

270. {

271. throw new ParseException("Not an integer", 0);

272. }

273. if (b < 0 || b >= 256) throw new ParseException("Byte out of range", 0);

274. a[i] = (byte) b;

275. }

276. if (tokenizer.hasMoreTokens()) throw new ParseException("Too many bytes", 0);

277. return a;

278. }

279. }

javax.swing.JFormattedTextField 1.4

JFormattedTextField(Format fmt)

constructs a text field that uses the specified format.

JFormattedTextField(JFormattedTextField.AbstractFormatter

formatter)

constructs a text field that uses the specified formatter. Note that
DefaultFormatter and InternationalFormatter are subclasses of

JFormattedTextField.AbstractFormatter.

Object getValue()

returns the current valid value of the field. Note that this might not
correspond to the string that is being edited.

void setValue(Object value)

attempts to set the value of the given object. The attempt fails if the
formatter cannot convert the object to a string.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void commitEdit()

attempts to set the valid value of the field from the edited string. The
attempt might fail if the formatter cannot convert the string.

boolean isEditValid()

checks whether the edited string represents a valid value.

int getFocusLostBehavior()

void setFocusLostBehavior(int behavior)

gets or sets the "focus lost" behavior. Legal values for behavior are the

constants COMMIT_OR_REVERT, REVERT, COMMIT, and PERSIST of the

JFormattedTextField class.

javax.swing.JFormattedTextField.AbstractFormatter 1.4

abstract String valueToString(Object value)

converts a value to an editable string. Throws a ParseException if value

is not appropriate for this formatter.

abstract Object stringToValue(String s)

converts a string to a value. Throws a ParseException if s is not in the

appropriate format.

DocumentFilter getDocumentFilter()

override this method to provide a document filter that restricts inputs into
the text field. A return value of null indicates that no filtering is needed.

javax.swing.text.DefaultFormatter 1.3

boolean getOverwriteMode()

void setOverwriteMode(boolean mode)

gets or sets the overwrite mode. If mode is true, then new characters

overwrite existing characters when editing text.

javax.swing.text.DocumentFilter 1.4

void insertString(DocumentFilter.FilterBypass bypass, int offset, String text,
AttributeSet attrib)

is invoked before a string is inserted into a document. You can override the method and
modify the string. You can disable insertion by not calling super.insertString or by calling

bypass methods to modify the document without filtering.

Parameters: bypass An object that allows you to execute edit commands that
bypass the filter

 offset The offset at which to insert the text

 text The characters to insert

 attrib The formatting attributes of the inserted text

void replace(DocumentFilter.FilterBypass bypass, int offset, int length,

String text, AttributeSet attrib)

is invoked before a part of a document is replaced with a new string. You can override the
method and modify the string. You can disable replacement by not calling super.replace or

by calling bypass methods to modify the document without filtering.

Parameters: bypass An object that allows you to execute edit commands that
bypass the filter

 offset The offset at which to insert the text

 length The length of the part to be replaced

 text The characters to insert

 attrib The formatting attributes of the inserted text

void remove(DocumentFilter.FilterBypass bypass, int offset, int length)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

is invoked before a part of a document is removed. Get the document by calling
bypass.getDocument() if you need to analyze the effect of the removal.

Parameters: bypass An object that allows you to execute edit commands that
bypass the filter

 offset The offset of the part to be removed

 length The length of the part to be removed

javax.swing.text.MaskFormatter 1.4

MaskFormatter(String mask)

constructs a mask formatter with the given mask. See Table 6-3 on page
453 for the symbols in a mask.

String getValidCharacters()

void setValidCharacters(String characters)

gets or sets the valid editing characters. Only the characters in the given
string are accepted for the variable parts of the mask.

String getInvalidCharacters()

void setInvalidCharacters(String characters)

gets or sets the invalid editing characters. None of the characters in the
given string are accepted as input.

char getPlaceholderCharacter()

void setPlaceholderCharacter(char ch)

gets or sets the placeholder character that is used for variable characters
in the mask that the user has not yet supplied. The default placeholder
character is a space.

String getPlaceholder()

void setPlaceholder(String s)

gets or sets the placeholder string. Its tail end is used if the user has not
supplied all variable characters in the mask. If it is null or shorter than

the mask, then the placeholder character fills remaining inputs.

boolean getValueContainsLiteralCharacters()

void setValueContainsLiteralCharacters(boolean b)

gets or sets the "value contains literal characters" flag. If this flag is true,

then the field value contains the literal (nonvariable) parts of the mask. If
it is false, then the literal characters are removed. The default is true.

The JSpinner Component

A JSpinner is a component that contains a text field and two small buttons on the side. When the buttons are
clicked, the text field value is incremented or decremented (see Figure 6-38).

Figure 6-38. Several variations of the JSpinner component

The values in the spinner can be numbers, dates, values from a list, or, in the most general case, any sequence of
values for which predecessors and successors can be determined. The JSpinner class defines standard data
models for the first three cases. You can define your own data model to describe arbitrary sequences.

By default, a spinner manages an integer, and the buttons increment or decrement it by 1. You can get the current
value by calling the getValue method. That method returns an Object. Cast it to an Integer and retrieve the

wrapped value.

JSpinner defaultSpinner = new JSpinner();

. . .

int value = (Integer) defaultSpinner.getValue();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You can change the increment to a value other than 1, and you can also supply lower and upper bounds. Here is a
spinner with starting value 5, bounded between 0 and 10, and an increment of 0.5:

Code View:
JSpinner boundedSpinner = new JSpinner(new SpinnerNumberModel(5, 0, 10, 0.5));

There are two SpinnerNumberModel constructors, one with only int parameters and one with double parameters.

If any of the parameters is a floating-point number, then the second constructor is used. It sets the spinner value
to a Double object.

Spinners aren't restricted to numeric values. You can have a spinner iterate through any collection of values.
Simply pass a SpinnerListModel to the JSpinner constructor. You can construct a SpinnerListModel from an

array or a class implementing the List interface (such as an ArrayList). In our sample program, we display a

spinner control with all available font names.

Code View:
String[] fonts = GraphicsEnvironment.getLocalGraphicsEnvironment().getAvailableFontFamilyNames();

JSpinner listSpinner = new JSpinner(new SpinnerListModel(fonts));

However, we found that the direction of the iteration was mildly confusing because it is opposite from the user
experience with a combo box. In a combo box, higher values are below lower values, so you would expect the
downward arrow to navigate toward higher values. But the spinner increments the array index so that the upward
arrow yields higher values. There is no provision for reversing the traversal order in the SpinnerListModel, but an

impromptu anonymous subclass yields the desired result:

JSpinner reverseListSpinner = new JSpinner(

 new SpinnerListModel(fonts)

 {

 public Object getNextValue()

 {

 return super.getPreviousValue();

 }

 public Object getPreviousValue()

 {
 return super.getNextValue();

 }

 });

Try both versions and see which you find more intuitive.

Another good use for a spinner is for a date that the user can increment or decrement. You get such a spinner,
initialized with today's date, with the call

JSpinner dateSpinner = new JSpinner(new SpinnerDateModel());

However, if you look carefully at Figure 6-38, you will see that the spinner text shows both date and time, such as

8/05/07 7:23 PM

The time doesn't make any sense for a date picker. It turns out to be somewhat difficult to make the spinner show
just the date. Here is the magic incantation:

Code View:
JSpinner betterDateSpinner = new JSpinner(new SpinnerDateModel());

String pattern = ((SimpleDateFormat) DateFormat.getDateInstance()).toPattern();

betterDateSpinner.setEditor(new JSpinner.DateEditor(betterDateSpinner, pattern));

Using the same approach, you can also make a time picker.

Code View:
JSpinner timeSpinner = new JSpinner(new SpinnerDateModel());

pattern = ((SimpleDateFormat) DateFormat.getTimeInstance(DateFormat.SHORT)).toPattern();
timeSpinner.setEditor(new JSpinner.DateEditor(timeSpinner, pattern));

You can display arbitrary sequences in a spinner by defining your own spinner model. In our sample program, we
have a spinner that iterates through all permutations of the string "meat". You can get to "mate", "meta", "team",
and another 20 permutations by clicking the spinner buttons.

When you define your own model, you should extend the AbstractSpinnerModel class and define the following

four methods:

Object getValue()

void setValue(Object value)
Object getNextValue()

Object getPreviousValue()

The getValue method returns the value stored by the model. The setValue method sets a new value. It should

throw an IllegalArgumentException if the new value is not appropriate.

Caution

The setValue method must call the fireStateChanged method after setting the new

value. Otherwise, the spinner field won't be updated.

The getNextValue and getPreviousValue methods return the values that should come after or before the current

value, or null if the end of the traversal has been reached.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Caution

The getNextValue and getPreviousValue methods should not change the current

value. When a user clicks on the upward arrow of the spinner, the getNextValue

method is called. If the return value is not null, it is set by a call to setValue.

In the sample program, we use a standard algorithm to determine the next and previous permutations. The details
of the algorithm are not important.

Listing 6-14 shows how to generate the various spinner types. Click the Ok button to see the spinner values.

Listing 6-14. SpinnerTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.text.*;

 4. import java.util.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. A program to test spinners.

 9. */

 10. public class SpinnerTest

 11. {

 12. public static void main(String[] args)

 13. {

 14. SpinnerFrame frame = new SpinnerFrame();

 15. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 16. frame.setVisible(true);

 17. }

 18. }

 19.

 20. /**

 21. A frame with a panel that contains several spinners and

 22. a button that displays the spinner values.

 23. */

 24. class SpinnerFrame extends JFrame

 25. {

 26. public SpinnerFrame()

 27. {

 28. setTitle("SpinnerTest");

 29. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 30. JPanel buttonPanel = new JPanel();

 31. okButton = new JButton("Ok");

 32. buttonPanel.add(okButton);

 33. add(buttonPanel, BorderLayout.SOUTH);

 34.

 35. mainPanel = new JPanel();

 36. mainPanel.setLayout(new GridLayout(0, 3));

 37. add(mainPanel, BorderLayout.CENTER);

 38.

 39. JSpinner defaultSpinner = new JSpinner();

 40. addRow("Default", defaultSpinner);

 41.

 42. JSpinner boundedSpinner = new JSpinner(new SpinnerNumberModel(5, 0, 10, 0.5));

 43. addRow("Bounded", boundedSpinner);

 44.

 45. String[] fonts = GraphicsEnvironment

 46. .getLocalGraphicsEnvironment()

 47. .getAvailableFontFamilyNames();

 48.

 49. JSpinner listSpinner = new JSpinner(new SpinnerListModel(fonts));

 50. addRow("List", listSpinner);

 51.

 52. JSpinner reverseListSpinner = new JSpinner(

 53. new

 54. SpinnerListModel(fonts)

 55. {

 56. public Object getNextValue()

 57. {

 58. return super.getPreviousValue();

 59. }

 60. public Object getPreviousValue()

 61. {

 62. return super.getNextValue();

 63. }

 64. });

 65. addRow("Reverse List", reverseListSpinner);

 66.

 67. JSpinner dateSpinner = new JSpinner(new SpinnerDateModel());

 68. addRow("Date", dateSpinner);

 69.

 70. JSpinner betterDateSpinner = new JSpinner(new SpinnerDateModel());

 71. String pattern = ((SimpleDateFormat) DateFormat.getDateInstance()).toPattern();

 72. betterDateSpinner.setEditor(new JSpinner.DateEditor(betterDateSpinner, pattern));

 73. addRow("Better Date", betterDateSpinner);

 74.

 75. JSpinner timeSpinner = new JSpinner(

 76. new SpinnerDateModel(

 77. new GregorianCalendar(2000, Calendar.JANUARY, 1, 12, 0, 0).getTime(),

 78. null, null, Calendar.HOUR));

 79. addRow("Time", timeSpinner);

 80.

 81. JSpinner permSpinner = new JSpinner(new PermutationSpinnerModel("meat"));

 82. addRow("Word permutations", permSpinner);

 83. }

 84.

 85. /**

 86. Adds a row to the main panel.

 87. @param labelText the label of the spinner

 88. @param spinner the sample spinner

 89. */

 90. public void addRow(String labelText, final JSpinner spinner)

 91. {

 92. mainPanel.add(new JLabel(labelText));

 93. mainPanel.add(spinner);

 94. final JLabel valueLabel = new JLabel();

 95. mainPanel.add(valueLabel);

 96. okButton.addActionListener(new

 97. ActionListener()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 98. {

 99. public void actionPerformed(ActionEvent event)

100. {

101. Object value = spinner.getValue();

102. valueLabel.setText(value.toString());

103. }

104. });

105. }

106.

107. public static final int DEFAULT_WIDTH = 400;

108. public static final int DEFAULT_HEIGHT = 250;

109.

110. private JPanel mainPanel;

111. private JButton okButton;

112. }

113.

114. /**

115. A model that dynamically generates word permutations

116. */

117. class PermutationSpinnerModel extends AbstractSpinnerModel

118. {

119. /**

120. Constructs the model.

121. @param w the word to permute

122. */

123. public PermutationSpinnerModel(String w)

124. {

125. word = w;

126. }

127.

128. public Object getValue()

129. {

130. return word;

131. }

132.

133. public void setValue(Object value)

134. {

135. if (!(value instanceof String))

136. throw new IllegalArgumentException();

137. word = (String) value;

138. fireStateChanged();

139. }

140.

141. public Object getNextValue()

142. {

143. int[] codePoints = toCodePointArray(word);

144. for (int i = codePoints.length - 1; i > 0; i--)

145. {

146. if (codePoints[i - 1] < codePoints[i])

147. {

148. int j = codePoints.length - 1;

149. while (codePoints[i - 1] > codePoints[j]) j--;

150. swap(codePoints, i - 1, j);

151. reverse(codePoints, i, codePoints.length - 1);

152. return new String(codePoints, 0, codePoints.length);

153. }

154. }

155. reverse(codePoints, 0, codePoints.length - 1);

156. return new String(codePoints, 0, codePoints.length);

157. }

158.

159. public Object getPreviousValue()

160. {

161. int[] codePoints = toCodePointArray(word);

162. for (int i = codePoints.length - 1; i > 0; i--)

163. {

164. if (codePoints[i - 1] > codePoints[i])

165. {

166. int j = codePoints.length - 1;

167. while (codePoints[i - 1] < codePoints[j]) j--;

168. swap(codePoints, i - 1, j);

169. reverse(codePoints, i, codePoints.length - 1);

170. return new String(codePoints, 0, codePoints.length);

171. }

172. }

173. reverse(codePoints, 0, codePoints.length - 1);

174. return new String(codePoints, 0, codePoints.length);

175. }

176.

177. private static int[] toCodePointArray(String str)

178. {

179. int[] codePoints = new int[str.codePointCount(0, str.length())];

180. for (int i = 0, j = 0; i < str.length(); i++, j++)

181. {

182. int cp = str.codePointAt(i);

183. if (Character.isSupplementaryCodePoint(cp)) i++;

184. codePoints[j] = cp;

185. }

186. return codePoints;

187. }

188.

189. private static void swap(int[] a, int i, int j)

190. {

191. int temp = a[i];

192. a[i] = a[j];

193. a[j] = temp;

194. }

195.

196. private static void reverse(int[] a, int i, int j)

197. {

198. while (i < j) { swap(a, i, j); i++; j--; }

199. }

200.

201. private String word;

202. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.JSpinner 1.4

JSpinner()

constructs a spinner that edits an integer with starting value 0, increment
1, and no bounds.

JSpinner(SpinnerModel model)

constructs a spinner that uses the given data model.

Object getValue()

gets the current value of the spinner.

void setValue(Object value)

attempts to set the value of the spinner. Throws an
IllegalArgumentException if the model does not accept the value.

void setEditor(JComponent editor)

sets the component that is used for editing the spinner value.

javax.swing.SpinnerNumberModel 1.4

SpinnerNumberModel(int initval, int minimum, int maximum, int stepSize)

SpinnerNumberModel(double initval, double minimum, double maximum, double

stepSize)

these constructors yield number models that manage an Integer or Double value. Use the

MIN_VALUE and MAX_VALUE constants of the Integer and Double classes for unbounded

values.

Parameters: initval The initial value

 minimum The minimum valid value

 maximum The maximum valid value

 stepSize The increment or decrement of each spin

javax.swing.SpinnerListModel 1.4

SpinnerListModel(Object[] values)

SpinnerListModel(List values)

these constructors yield models that select a value from among the given
values.

javax.swing.SpinnerDateModel 1.4

SpinnerDateModel()

constructs a date model with today's date as the initial value, no lower or upper bounds, and
an increment of Calendar.DAY_OF_MONTH.

SpinnerDateModel(Date initval, Comparable minimum, Comparable maximum, int
step)

Parameters: initval The initial value

 minimum The minimum valid value, or null if no lower bound is

desired

 maximum The maximum valid value, or null if no upper bound is

desired

 step The date field to increment or decrement of each spin.
One of the constants ERA, YEAR, MONTH, WEEK_OF_YEAR,
WEEK_OF_MONTH, DAY_OF_MONTH, DAY_OF_YEAR,

DAY_OF_WEEK, DAY_OF_WEEK_IN_MONTH, AM_PM, HOUR,

HOUR_OF_DAY, MINUTE, SECOND, or MILLISECOND of the

Calendar class

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.text.SimpleDateFormat 1.1

String toPattern() 1.2

gets the editing pattern for this date formatter. A typical pattern is "yyyy-

MM-dd". See the Java SE documentation for more details about the

pattern.

javax.swing.JSpinner.DateEditor 1.4

DateEditor(JSpinner spinner, String pattern)

constructs a date editor for a spinner.

Parameters: spinner The spinner to which this editor belongs

 pattern The format pattern for the associated SimpleDateFormat

javax.swing.AbstractSpinnerModel 1.4

Object getValue()

gets the current value of the model.

void setValue(Object value)

attempts to set a new value for the model. Throws an
IllegalArgumentException if the value is not acceptable. When

overriding this method, you should call fireStateChanged after setting

the new value.

Object getNextValue()

Object getPreviousValue()

computes (but does not set) the next or previous value in the sequence
that this model defines.

Displaying HTML with the JEditorPane

Unlike the text components that we discussed up to this point, the JEditorPane can display and edit styled text,

in particular HTML and RTF. (RTF is the "rich text format" that is used by a number of Microsoft applications for
document interchange. It is a poorly documented format that doesn't work well even between Microsoft's own
applications. We do not cover RTF capabilities in this book.)

Frankly, the JEditorPane is not as functional as one would like it to be. The HTML renderer can display simple

files, but it chokes at many complex pages that you typically find on the Web. The HTML editor is limited and
unstable.

A plausible application for the JEditorPane is to display program help in HTML format. Because you have control

over the help files that you provide, you can stay away from features that the JEditorPane does not display well.

Note

For more information on an industrial-strength help system, check out JavaHelp at
http://java.sun.com/products/javahelp/index.html.

The program in Listing 6-15 contains an editor pane that shows the contents of an HTML page. Type a URL into the
text field. The URL must start with http: or file:. Then, click the Load button. The selected HTML page is

displayed in the editor pane (see Figure 6-39).

Figure 6-39. The editor pane displaying an HTML page

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/products/javahelp/index.html

The hyperlinks are active: If you click a link, the application loads it. The Back button returns to the previous page.

This program is in fact a very simple browser. Of course, it does not have any of the comfort features, such as
page caching or bookmark lists, that you expect from a commercial browser. The editor pane does not even
display applets!

If you click the Editable checkbox, then the editor pane becomes editable. You can type in text and use the
BACKSPACE key to delete text. The component also understands the CTRL+X, CTRL+C, and CTRL+V shortcuts for cut, copy,

and paste. However, you would have to do quite a bit of programming to add support for fonts and formatting.

When the component is editable, hyperlinks are not active. Also, with some web pages you can see JavaScript
commands, comments, and other tags when edit mode is turned on (see Figure 6-40). The example program lets
you investigate the editing feature, but we recommend that you omit that feature in your programs.

Figure 6-40. The editor pane in edit mode

[View full size image]

Tip

By default, the JEditorPane is in edit mode. You should call

editorPane.setEditable(false) to turn it off.

The features of the editor pane that you saw in the example program are easy to use. You use the setPage

method to load a new document. For example,

JEditorPane editorPane = new JEditorPane();

editorPane.setPage(url);

The parameter is either a string or a URL object. The JEditorPane class extends the JTextComponent class.

Therefore, you can call the setText method as well—it simply displays plain text.

Tip

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The API documentation is unclear about whether setPage loads the new document in

a separate thread (which is generally what you want—the JEditorPane is no speed

demon). However, you can force loading in a separate thread with the following
incantation:

AbstractDocument doc = (AbstractDocument) editorPane.getDocument();

doc.setAsynchronousLoadPriority(0);

To listen to hyperlink clicks, you add a HyperlinkListener. The HyperlinkListener interface has a single

method, hyperlinkUpdate, that is called when the user moves over or clicks on a link. The method has a

parameter of type HyperlinkEvent.

You need to call the getEventType method to find out what kind of event occurred. There are three possible return

values:

HyperlinkEvent.EventType.ACTIVATED

HyperlinkEvent.EventType.ENTERED

HyperlinkEvent.EventType.EXITED

The first value indicates that the user clicked on the hyperlink. In that case, you typically want to open the new
link. You can use the second and third values to give some visual feedback, such as a tooltip, when the mouse
hovers over the link.

Note

It is a complete mystery why there aren't three separate methods to handle
activation, entry, and exit in the HyperlinkListener interface.

The getURL method of the HyperlinkEvent class returns the URL of the hyperlink. For example, here is how you

can install a hyperlink listener that follows the links that a user activates:

editorPane.addHyperlinkListener(new

 HyperlinkListener()

 {

 public void hyperlinkUpdate(HyperlinkEvent event)

 {

 if (event.getEventType() == HyperlinkEvent.EventType.ACTIVATED)

 {

 try

 {
 editorPane.setPage(event.getURL());

 }

 catch (IOException e)

 {

 editorPane.setText("Exception: " + e);

 }

 }
 }

 });

The event handler simply gets the URL and updates the editor pane. The setPage method can throw an

IOException. In that case, we display an error message as plain text.

The program in Listing 6-15 shows all the features that you need to put together an HTML help system. Under the
hood, the JEditorPane is even more complex than the tree and table components. However, if you don't need to

write a text editor or a renderer of a custom text format, that complexity is hidden from you.

Listing 6-15. EditorPaneTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import java.util.*;

 5. import javax.swing.*;

 6. import javax.swing.event.*;

 7.

 8. /**

 9. * This program demonstrates how to display HTML documents in an editor pane.

 10. * @version 1.03 2007-08-01

 11. * @author Cay Horstmann

 12. */

 13. public class EditorPaneTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. JFrame frame = new EditorPaneFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame contains an editor pane, a text field and button to enter a URL and load

 31. * a document, and a Back button to return to a previously loaded document.

 32. */

 33. class EditorPaneFrame extends JFrame

 34. {

 35. public EditorPaneFrame()

 36. {

 37. setTitle("EditorPaneTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. final Stack<String> urlStack = new Stack<String>();

 41. final JEditorPane editorPane = new JEditorPane();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 42. final JTextField url = new JTextField(30);

 43.

 44. // set up hyperlink listener

 45.

 46. editorPane.setEditable(false);

 47. editorPane.addHyperlinkListener(new HyperlinkListener()

 48. {

 49. public void hyperlinkUpdate(HyperlinkEvent event)

 50. {

 51. if (event.getEventType() == HyperlinkEvent.EventType.ACTIVATED)

 52. {

 53. try

 54. {

 55. // remember URL for back button

 56. urlStack.push(event.getURL().toString());

 57. // show URL in text field

 58. url.setText(event.getURL().toString());

 59. editorPane.setPage(event.getURL());

 60. }

 61. catch (IOException e)

 62. {

 63. editorPane.setText("Exception: " + e);

 64. }

 65. }

 66. }

 67. });

 68. // set up checkbox for toggling edit mode

 69.

 70. final JCheckBox editable = new JCheckBox();

 71. editable.addActionListener(new ActionListener()

 72. {

 73. public void actionPerformed(ActionEvent event)

 74. {

 75. editorPane.setEditable(editable.isSelected());

 76. }

 77. });

 78.

 79. // set up load button for loading URL

 80.

 81. ActionListener listener = new ActionListener()

 82. {

 83. public void actionPerformed(ActionEvent event)

 84. {

 85. try

 86. {

 87. // remember URL for back button

 88. urlStack.push(url.getText());

 89. editorPane.setPage(url.getText());

 90. }

 91. catch (IOException e)

 92. {

 93. editorPane.setText("Exception: " + e);

 94. }

 95. }

 96. };

 97.

 98. JButton loadButton = new JButton("Load");

 99. loadButton.addActionListener(listener);

100. url.addActionListener(listener);

101.

102. // set up back button and button action

103.

104. JButton backButton = new JButton("Back");

105. backButton.addActionListener(new ActionListener()

106. {

107. public void actionPerformed(ActionEvent event)

108. {

109. if (urlStack.size() <= 1) return;

110. try

111. {

112. // get URL from back button

113. urlStack.pop();

114. // show URL in text field

115. String urlString = urlStack.peek();

116. url.setText(urlString);

117. editorPane.setPage(urlString);

118. }

119. catch (IOException e)

120. {

121. editorPane.setText("Exception: " + e);

122. }

123. }

124. });

125.

126. add(new JScrollPane(editorPane), BorderLayout.CENTER);

127.

128. // put all control components in a panel

129.

130. JPanel panel = new JPanel();

131. panel.add(new JLabel("URL"));

132. panel.add(url);

133. panel.add(loadButton);

134. panel.add(backButton);

135. panel.add(new JLabel("Editable"));

136. panel.add(editable);

137.

138. add(panel, BorderLayout.SOUTH);

139. }

140.

141. private static final int DEFAULT_WIDTH = 600;

142. private static final int DEFAULT_HEIGHT = 400;

143. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.JEditorPane 1.2

void setPage(URL url)

loads the page from url into the editor pane.

void addHyperlinkListener(HyperLinkListener listener)

adds a hyperlink listener to this editor pane.

javax.swing.event.HyperlinkListener 1.2

void hyperlinkUpdate(HyperlinkEvent event)

is called whenever a hyperlink was selected.

javax.swing.HyperlinkEvent 1.2

URL getURL()

returns the URL of the selected hyperlink.

Progress Indicators

In the following sections, we discuss three classes for indicating the progress of a slow activity. A JProgressBar

is a Swing component that indicates progress. A ProgressMonitor is a dialog box that contains a progress bar.

A ProgressMonitorInputStream displays a progress monitor dialog box while the stream is read.

Progress Bars

A progress bar is a simple component—just a rectangle that is partially filled with color to indicate the progress
of an operation. By default, progress is indicated by a string "n%". You can see a progress bar in the bottom
right of Figure 6-41.

Figure 6-41. A progress bar

You construct a progress bar much as you construct a slider, by supplying the minimum and maximum value
and an optional orientation:

progressBar = new JProgressBar(0, 1000);

progressBar = new JProgressBar(SwingConstants.VERTICAL, 0, 1000);

You can also set the minimum and maximum with the setMinimum and setMaximum methods.

Unlike a slider, the progress bar cannot be adjusted by the user. Your program needs to call setValue to update

it.

If you call

progressBar.setStringPainted(true);

the progress bar computes the completion percentage and displays a string "n%". If you want to show a
different string, you can supply it with the setString method:

if (progressBar.getValue() > 900)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 progressBar.setString("Almost Done");

The program in Listing 6-16 shows a progress bar that monitors a simulated time-consuming activity.

The SimulatedActivity class increments a value current ten times per second. When it reaches a target

value, the activity finishes. We use the SwingWorker class to implement the activity and update the progress

bar in the process method. The SwingWorker invokes the method from the event dispatch thread, so that it is

safe to update the progress bar. (See Volume I, Chapter 14 for more information about thread safety in Swing.)

Java SE 1.4 added support for an indeterminate progress bar that shows an animation indicating some kind of
progress, without giving an indication of the percentage of completion. That is the kind of progress bar that you
see in your browser—it indicates that the browser is waiting for the server and has no idea how long the wait
might be. To display the "indeterminate wait" animation, call the setIndeterminate method.

Listing 6-16 shows the full program code.

Listing 6-16. ProgressBarTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.util.List;

 4.

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program demonstrates the use of a progress bar to monitor the progress of a thread.

 9. * @version 1.04 2007-08-01

 10. * @author Cay Horstmann

 11. */

 12. public class ProgressBarTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new ProgressBarFrame();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. /**

 29. * A frame that contains a button to launch a simulated activity, a progress bar, and a

 30. * text area for the activity output.

 31. */

 32. class ProgressBarFrame extends JFrame

 33. {

 34. public ProgressBarFrame()

 35. {

 36. setTitle("ProgressBarTest");

 37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 38.

 39. // this text area holds the activity output

 40. textArea = new JTextArea();

 41.

 42. // set up panel with button and progress bar

 43.

 44. final int MAX = 1000;

 45. JPanel panel = new JPanel();

 46. startButton = new JButton("Start");

 47. progressBar = new JProgressBar(0, MAX);

 48. progressBar.setStringPainted(true);

 49. panel.add(startButton);

 50. panel.add(progressBar);

 51.

 52. checkBox = new JCheckBox("indeterminate");

 53. checkBox.addActionListener(new ActionListener()

 54. {

 55. public void actionPerformed(ActionEvent event)

 56. {

 57. progressBar.setIndeterminate(checkBox.isSelected());

 58. progressBar.setStringPainted(!progressBar.isIndeterminate());

 59. }

 60. });

 61. panel.add(checkBox);

 62. add(new JScrollPane(textArea), BorderLayout.CENTER);

 63. add(panel, BorderLayout.SOUTH);

 64.

 65. // set up the button action

 66.

 67. startButton.addActionListener(new ActionListener()

 68. {

 69. public void actionPerformed(ActionEvent event)

 70. {

 71. startButton.setEnabled(false);

 72. activity = new SimulatedActivity(MAX);

 73. activity.execute();

 74. }

 75. });

 76. }

 77.

 78. private JButton startButton;

 79. private JProgressBar progressBar;

 80. private JCheckBox checkBox;

 81. private JTextArea textArea;

 82. private SimulatedActivity activity;

 83.

 84. public static final int DEFAULT_WIDTH = 400;

 85. public static final int DEFAULT_HEIGHT = 200;

 86.

 87. class SimulatedActivity extends SwingWorker<Void, Integer>

 88. {

 89. /**

 90. * Constructs the simulated activity that increments a counter from 0 to a

 91. * given target.

 92. * @param t the target value of the counter.

 93. */

 94. public SimulatedActivity(int t)

 95. {

 96. current = 0;

 97. target = t;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 98. }

 99.

100. protected Void doInBackground() throws Exception

101. {

102. try

103. {

104. while (current < target)

105. {

106. Thread.sleep(100);

107. current++;

108. publish(current);

109. }

110. }

111. catch (InterruptedException e)

112. {

113. }

114. return null;

115. }

116.

117. protected void process(List<Integer> chunks)

118. {

119. for (Integer chunk : chunks)

120. {

121. textArea.append(chunk + "\n");

122. progressBar.setValue(chunk);

123. }

124. }

125.

126. protected void done()

127. {

128. startButton.setEnabled(true);

129. }

130.

131. private int current;

132. private int target;

133. }

134. }

Progress Monitors

A progress bar is a simple component that can be placed inside a window. In contrast, a ProgressMonitor is a

complete dialog box that contains a progress bar (see Figure 6-42). The dialog box contains a Cancel button. If
you click it, the monitor dialog box is closed. In addition, your program can query whether the user has
canceled the dialog box and terminate the monitored action. (Note that the class name does not start with a
"J".)

Figure 6-42. A progress monitor dialog box

You construct a progress monitor by supplying the following:

The parent component over which the dialog box should pop up.

An object (which should be a string, icon, or component) that is displayed on the dialog box.

An optional note to display below the object.

The minimum and maximum values.

However, the progress monitor cannot measure progress or cancel an activity by itself. You still need to
periodically set the progress value by calling the setProgress method. (This is the equivalent of the setValue

method of the JProgressBar class.) When the monitored activity has concluded, call the close method to

dismiss the dialog box. You can reuse the same dialog box by calling start again.

The biggest problem with using a progress monitor dialog box is the handling of cancellation requests. You
cannot attach an event handler to the Cancel button. Instead, you need to periodically call the isCanceled

method to see if the program user has clicked the Cancel button.

If your worker thread can block indefinitely (for example, when reading input from a network connection), then
it cannot monitor the Cancel button. In our sample program, we show you how to use a timer for that purpose.
We also make the timer responsible for updating the progress measurement.

If you run the program in Listing 6-17, you can observe an interesting feature of the progress monitor dialog
box. The dialog box doesn't come up immediately. Instead, it waits for a short interval to see if the activity has
already been completed or is likely to complete in less time than it would take for the dialog box to appear.

You control the timing as follows. Use the setMillisToDecideToPopup method to set the number of

milliseconds to wait between the construction of the dialog object and the decision whether to show the pop-up
at all. The default value is 500 milliseconds. The setMillisToPopup is your estimation of the time the dialog

box needs to pop up. The Swing designers set this value to a default of 2 seconds. Clearly they were mindful of
the fact that Swing dialogs don't always come up as snappily as we all would like. You should probably not touch
this value.

Listing 6-17. ProgressMonitorTest.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3.

 4. import javax.swing.*;

 5.

 6. /**

 7. * A program to test a progress monitor dialog.

 8. * @version 1.04 2007-08-01

 9. * @author Cay Horstmann

 10. */

 11. public class ProgressMonitorTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new ProgressMonitorFrame();

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * A frame that contains a button to launch a simulated activity and a text area for the

 29. * activity output.

 30. */

 31. class ProgressMonitorFrame extends JFrame

 32. {

 33. public ProgressMonitorFrame()

 34. {

 35. setTitle("ProgressMonitorTest");

 36. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 37.

 38. // this text area holds the activity output

 39. textArea = new JTextArea();

 40.

 41. // set up a button panel

 42. JPanel panel = new JPanel();

 43. startButton = new JButton("Start");

 44. panel.add(startButton);

 45.

 46. add(new JScrollPane(textArea), BorderLayout.CENTER);

 47. add(panel, BorderLayout.SOUTH);

 48.

 49. // set up the button action

 50.

 51. startButton.addActionListener(new ActionListener()

 52. {

 53. public void actionPerformed(ActionEvent event)

 54. {

 55. startButton.setEnabled(false);

 56. final int MAX = 1000;

 57.

 58. // start activity

 59. activity = new SimulatedActivity(MAX);

 60. activity.execute();

 61.

 62. // launch progress dialog

 63. progressDialog = new ProgressMonitor(ProgressMonitorFrame.this,

 64. "Waiting for Simulated Activity", null, 0, MAX);

 65. cancelMonitor.start();

 66. }

 67. });

 68.

 69. // set up the timer action

 70.

 71. cancelMonitor = new Timer(500, new ActionListener()

 72. {

 73. public void actionPerformed(ActionEvent event)

 74. {

 75. if (progressDialog.isCanceled())

 76. {

 77. activity.cancel(true);

 78. startButton.setEnabled(true);

 79. }

 80. else if (activity.isDone())

 81. {

 82. progressDialog.close();

 83. startButton.setEnabled(true);

 84. }

 85. else

 86. {

 87. progressDialog.setProgress(activity.getProgress());

 88. }

 89. }

 90. });

 91. }

 92.

 93. private Timer cancelMonitor;

 94. private JButton startButton;

 95. private ProgressMonitor progressDialog;

 96. private JTextArea textArea;

 97. private SimulatedActivity activity;

 98.

 99. public static final int DEFAULT_WIDTH = 300;

100. public static final int DEFAULT_HEIGHT = 200;

101.

102. class SimulatedActivity extends SwingWorker<Void, Integer>

103. {

104. /**

105. * Constructs the simulated activity that increments a counter from 0 to a

106. * given target.

107. * @param t the target value of the counter.

108. */

109. public SimulatedActivity(int t)

110. {

111. current = 0;

112. target = t;

113. }

114.

115. protected Void doInBackground() throws Exception

116. {

117. try

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

118. {

119. while (current < target)

120. {

121. Thread.sleep(100);

122. current++;

123. textArea.append(current + "\n");

124. setProgress(current);

125. }

126. }

127. catch (InterruptedException e)

128. {

129. }

130. return null;

131. }

132.

133. private int current;

134. private int target;

135. }

136. }

Monitoring the Progress of Input Streams

The Swing package contains a useful stream filter, ProgressMonitorInputStream, that automatically pops up a

dialog box that monitors how much of the stream has been read.

This filter is extremely easy to use. You sandwich in a ProgressMonitorInputStream between your usual

sequence of filtered streams. (See Volume I, Chapter 12 for more information on streams.)

For example, suppose you read text from a file. You start out with a FileInputStream:

FileInputStream in = new FileInputStream(f);

Normally, you would convert in to an InputStreamReader:

InputStreamReader reader = new InputStreamReader(in);

However, to monitor the stream, first turn the file input stream into a stream with a progress monitor:

Code View:
ProgressMonitorInputStream progressIn = new ProgressMonitorInputStream(parent, caption, in);

You supply the parent component, a caption, and, of course, the stream to monitor. The read method of the
progress monitor stream simply passes along the bytes and updates the progress dialog box.

You now go on building your filter sequence:

InputStreamReader reader = new InputStreamReader(progressIn);

That's all there is to it. When the file is read, the progress monitor automatically pops up (see Figure 6-43). This
is a very nice application of stream filtering.

Figure 6-43. A progress monitor for an input stream

Caution

The progress monitor stream uses the available method of the InputStream class

to determine the total number of bytes in the stream. However, the available

method only reports the number of bytes in the stream that are available without
blocking. Progress monitors work well for files and HTTP URLs because their length
is known in advance, but they don't work with all streams.

The program in Listing 6-18 counts the lines in a file. If you read in a large file (such as "The Count of Monte
Cristo" in the gutenberg directory of the companion code), then the progress dialog box pops up.

If the user clicks the Cancel button, the input stream closes. Because the code that processes the input already
knows how to deal with the end of input, no change to the programming logic is required to handle cancellation.

Note that the program doesn't use a very efficient way of filling up the text area. It would be faster to first read
the file into a StringBuilder and then set the text of the text area to the string builder contents. However, in

this example program, we actually like this slow approach—it gives you more time to admire the progress dialog
box.

To avoid flicker, we do not display the text area while it is filling up.

Listing 6-18. ProgressMonitorInputStreamTest.java

Code View:
 1. import java.awt.*;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import java.util.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * A program to test a progress monitor input stream.

 9. * @version 1.04 2007-08-01

 10. * @author Cay Horstmann

 11. */

 12. public class ProgressMonitorInputStreamTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new TextFrame();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. /**

 29. * A frame with a menu to load a text file and a text area to display its contents. The text

 30. * area is constructed when the file is loaded and set as the content pane of the frame when

 31. * the loading is complete. That avoids flicker during loading.

 32. */

 33. class TextFrame extends JFrame

 34. {

 35. public TextFrame()

 36. {

 37. setTitle("ProgressMonitorInputStreamTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. textArea = new JTextArea();

 41. add(new JScrollPane(textArea));

 42.

 43. chooser = new JFileChooser();

 44. chooser.setCurrentDirectory(new File("."));

 45.

 46. JMenuBar menuBar = new JMenuBar();

 47. setJMenuBar(menuBar);

 48. JMenu fileMenu = new JMenu("File");

 49. menuBar.add(fileMenu);

 50. openItem = new JMenuItem("Open");

 51. openItem.addActionListener(new ActionListener()

 52. {

 53. public void actionPerformed(ActionEvent event)

 54. {

 55. try

 56. {

 57. openFile();

 58. }

 59. catch (IOException exception)

 60. {

 61. exception.printStackTrace();

 62. }

 63. }

 64. });

 65.

 66. fileMenu.add(openItem);

 67. exitItem = new JMenuItem("Exit");

 68. exitItem.addActionListener(new ActionListener()

 69. {

 70. public void actionPerformed(ActionEvent event)

 71. {

 72. System.exit(0);

 73. }

 74. });

 75. fileMenu.add(exitItem);

 76. }

 77.

 78. /**

 79. * Prompts the user to select a file, loads the file into a text area, and sets it as

 80. * the content pane of the frame.

 81. */

 82. public void openFile() throws IOException

 83. {

 84. int r = chooser.showOpenDialog(this);

 85. if (r != JFileChooser.APPROVE_OPTION) return;

 86. final File f = chooser.getSelectedFile();

 87.

 88. // set up stream and reader filter sequence

 89.

 90. FileInputStream fileIn = new FileInputStream(f);

 91. ProgressMonitorInputStream progressIn = new ProgressMonitorInputStream(this,

 92. "Reading " + f.getName(), fileIn);

 93. final Scanner in = new Scanner(progressIn);

 94.

 95. textArea.setText("");

 96.

 97. SwingWorker<Void, Void> worker = new SwingWorker<Void, Void>()

 98. {

 99. protected Void doInBackground() throws Exception

100. {

101. while (in.hasNextLine())

102. {

103. String line = in.nextLine();

104. textArea.append(line);

105. textArea.append("\n");

106. }

107. in.close();

108. return null;

109. }

110. };

111. worker.execute();

112. }

113.

114. private JMenuItem openItem;

115. private JMenuItem exitItem;

116. private JTextArea textArea;

117. private JFileChooser chooser;

118.

119. public static final int DEFAULT_WIDTH = 300;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

120. public static final int DEFAULT_HEIGHT = 200;

121. }

javax.swing.JProgressBar 1.2

JProgressBar()

JProgressBar(int direction)

JProgressBar(int min, int max)

JProgressBar(int direction, int min, int max)

constructs a slider with the given direction, minimum, and maximum.

Parameters: direction One of SwingConstants.HORIZONTAL or
SwingConstants.VERTICAL. The default is horizontal

 min, max The minimum and maximum for the progress bar values.
Defaults are 0 and 100

int getMinimum()

int getMaximum()

void setMinimum(int value)

void setMaximum(int value)

gets or sets the minimum and maximum values.

int getValue()

void setValue(int value)

gets or sets the current value.

String getString()

void setString(String s)

gets or sets the string to be displayed in the progress bar. If the string is null, then a

default string "n%" is displayed.

boolean isStringPainted()

void setStringPainted(boolean b)

gets or sets the "string painted" property. If this property is true, then a string is painted on

top of the progress bar. The default is false; no string is painted.

boolean isIndeterminate() 1.4

void setIndeterminate(boolean b) 1.4

gets or sets the "indeterminate" property. If this property is true, then the progress bar

becomes a block that moves backward and forward, indicating a wait of unknown duration.
The default is false.

javax.swing.ProgressMonitor 1.2

ProgressMonitor(Component parent, Object message, String note, int min, int

max)

constructs a progress monitor dialog box.

Parameters: parent The parent component over which this dialog box
pops up

 message The message object to display in the dialog box

 note The optional string to display under the message. If
this value is null, then no space is set aside for the

note, and a later call to setNote has no effect

 min, max The minimum and maximum values of the progress
bar

void setNote(String note)

changes the note text.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setProgress(int value)

sets the progress bar value to the given value.

void close()

closes this dialog box.

boolean isCanceled()

returns true if the user canceled this dialog box.

javax.swing.ProgressMonitorInputStream 1.2

ProgressMonitorInputStream(Component parent, Object message, InputStream in)

constructs an input stream filter with an associated progress monitor dialog box.

Parameters: parent The parent component over which this dialog box
pops up

 message The message object to display in the dialog box

 in The input stream that is being monitored

Component Organizers

We conclude the discussion of advanced Swing features with a presentation of components that help organize
other components. These include the split pane, a mechanism for splitting an area into multiple parts with
boundaries that can be adjusted, the tabbed pane, which uses tab dividers to allow a user to flip through
multiple panels, and the desktop pane, which can be used to implement applications that display multiple
internal frames.

Split Panes

Split panes split a component into two parts, with an adjustable boundary in between. Figure 6-44 shows a
frame with two split panes. The components in the outer split pane are arranged vertically, with a text area on
the bottom and another split pane on the top. That split pane's components are arranged horizontally, with a list
on the left and a label containing an image on the right.

Figure 6-44. A frame with two nested split panes

You construct a split pane by specifying the orientation, one of JSplitPane.HORIZONTAL_SPLIT or

JSplitPane.VERTICAL_SPLIT, followed by the two components. For example,

Code View:
JSplitPane innerPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT, planetList, planetImage);

That's all you have to do. If you like, you can add "one-touch expand" icons to the splitter bar. You see those
icons in the top pane in Figure 6-44. In the Metal look and feel, they are small triangles. If you click one of

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

them, the splitter moves all the way in the direction to which the triangle is pointing, expanding one of the
panes completely.

To add this capability, call

innerPane.setOneTouchExpandable(true);

The "continuous layout" feature continuously repaints the contents of both components as the user adjusts the
splitter. That looks classier, but it can be slow. You turn on that feature with the call

innerPane.setContinuousLayout(true);

In the example program, we left the bottom splitter at the default (no continuous layout). When you drag it,
you only move a black outline. When you release the mouse, the components are repainted.

The straightforward program in Listing 6-19 populates a list box with planets. When the user makes a selection,
the planet image is displayed to the right and a description is placed in the text area on the bottom. When you
run the program, adjust the splitters and try out the one-touch expansion and continuous layout features.

Listing 6-19. SplitPaneTest.java

Code View:
 1. import java.awt.*;

 2.

 3. import javax.swing.*;

 4. import javax.swing.event.*;

 5.

 6. /**

 7. * This program demonstrates the split pane component organizer.

 8. * @version 1.03 2007-08-01

 9. * @author Cay Horstmann

 10. */

 11. public class SplitPaneTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new SplitPaneFrame();

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * This frame consists of two nested split panes to demonstrate planet images and data.

 29. */

 30. class SplitPaneFrame extends JFrame

 31. {

 32. public SplitPaneFrame()

 33. {

 34. setTitle("SplitPaneTest");

 35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 36.

 37. // set up components for planet names, images, descriptions

 38.

 39. final JList planetList = new JList(planets);

 40. final JLabel planetImage = new JLabel();

 41. final JTextArea planetDescription = new JTextArea();

 42.

 43. planetList.addListSelectionListener(new ListSelectionListener()

 44. {

 45. public void valueChanged(ListSelectionEvent event)

 46. {

 47. Planet value = (Planet) planetList.getSelectedValue();

 48.

 49. // update image and description

 50.

 51. planetImage.setIcon(value.getImage());

 52. planetDescription.setText(value.getDescription());

 53. }

 54. });

 55.

 56. // set up split panes

 57.

 58. JSplitPane innerPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT, planetList,

 59. planetImage);

 60.

 61. innerPane.setContinuousLayout(true);

 62. innerPane.setOneTouchExpandable(true);

 63.

 64. JSplitPane outerPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT, innerPane,

 65. planetDescription);

 66.

 67. add(outerPane, BorderLayout.CENTER);

 68. }

 69.

 70. private Planet[] planets = { new Planet("Mercury", 2440, 0), new Planet("Venus", 6052, 0),

 71. new Planet("Earth", 6378, 1), new Planet("Mars", 3397, 2),

 72. new Planet("Jupiter", 71492, 16), new Planet("Saturn", 60268, 18),

 73. new Planet("Uranus", 25559, 17), new Planet("Neptune", 24766, 8),

 74. new Planet("Pluto", 1137, 1), };

 75. private static final int DEFAULT_WIDTH = 300;

 76. private static final int DEFAULT_HEIGHT = 300;

 77. }

 78.

 79. /**

 80. * Describes a planet.

 81. */

 82. class Planet

 83. {

 84. /**

 85. * Constructs a planet.

 86. * @param n the planet name

 87. * @param r the planet radius

 88. * @param m the number of moons

 89. */

 90. public Planet(String n, double r, int m)

 91. {

 92. name = n;

 93. radius = r;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 94. moons = m;

 95. image = new ImageIcon(name + ".gif");

 96. }

 97.

 98. public String toString()

 99. {

100. return name;

101. }

102.

103. /**

104. * Gets a description of the planet.

105. * @return the description

106. */

107. public String getDescription()

108. {

109. return "Radius: " + radius + "\nMoons: " + moons + "\n";

110. }

111.

112. /**

113. * Gets an image of the planet.

114. * @return the image

115. */

116. public ImageIcon getImage()

117. {

118. return image;

119. }

120.

121. private String name;

122. private double radius;

123. private int moons;

124. private ImageIcon image;

125. }

javax.swing.JSplitPane 1.2

JSplitPane()

JSplitPane(int direction)

JSplitPane(int direction, boolean continuousLayout)

JSplitPane(int direction, Component first, Component second)

JSplitPane(int direction, boolean continuousLayout, Component first, Component

second)

constructs a new split pane.

Parameters: direction One of HORIZONTAL_SPLIT or VERTICAL_SPLIT

 continousLayout true if the components are continuously updated

when the splitter is moved

 first, second The components to add

boolean isOneTouchExpandable()

void setOneTouchExpandable(boolean b)

gets or sets the "one-touch expandable" property. When this property is set, the splitter has
two icons to completely expand one or the other component.

boolean isContinuousLayout()

void setContinuousLayout(boolean b)

gets or sets the "continuous layout" property. When this property is set, then the
components are continuously updated when the splitter is moved.

void setLeftComponent(Component c)

void setTopComponent(Component c)

These operations have the same effect, to set c as the first component in the split pane.

void setRightComponent(Component c)

void setBottomComponent(Component c)

These operations have the same effect, to set c as the second component in the split pane.

Tabbed Panes

Tabbed panes are a familiar user interface device to break up a complex dialog box into subsets of related
options. You can also use tabs to let a user flip through a set of documents or images (see Figure 6-45). That is
what we do in our sample program.

Figure 6-45. A tabbed pane

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

To create a tabbed pane, you first construct a JTabbedPane object, then you add tabs to it.

JTabbedPane tabbedPane = new JTabbedPane();

tabbedPane.addTab(title, icon, component);

The last parameter of the addTab method has type Component. To add multiple components into the same tab,

you first pack them up in a container, such as a JPanel.

The icon is optional; for example, the addTab method does not require an icon:

tabbedPane.addTab(title, component);

You can also add a tab in the middle of the tab collection with the insertTab method:

tabbedPane.insertTab(title, icon, component, tooltip, index);

To remove a tab from the tab collection, use

tabPane.removeTabAt(index);

When you add a new tab to the tab collection, it is not automatically displayed. You must select it with the
setSelectedIndex method. For example, here is how you show a tab that you just added to the end:

tabbedPane.setSelectedIndex(tabbedPane.getTabCount() - 1);

If you have a lot of tabs, then they can take up quite a bit of space. Starting with Java SE 1.4, you can display
the tabs in scrolling mode, in which only one row of tabs is displayed, together with a set of arrow buttons that
allow the user to scroll through the tab set (see Figure 6-46).

Figure 6-46. A tabbed pane with scrolling tabs

You set the tab layout to wrapped or scrolling mode by calling

tabbedPane.setTabLayoutPolicy(JTabbedPane.WRAP_TAB_LAYOUT);

or

tabbedPane.setTabLayoutPolicy(JTabbedPane.SCROLL_TAB_LAYOUT);

The tab labels can have mnemonics, just like menu items. For example,

int marsIndex = tabbedPane.indexOfTab("Mars");

tabbedPane.setMnemonicAt(marsIndex, KeyEvent.VK_M);

Then the M is underlined, and program users can select the tab by pressing ALT+M.

As of Java SE 6, you can add arbitrary components into the tab titles. First add the tab, then call

tabbedPane.setTabComponentAt(index, component);

In our sample program, we add a "close box" to the Pluto tab (because, after all, some astronomers do not
consider Pluto a real planet). This is achieved by setting the tab component to a panel containing two
components: a label with the icon and tab text, and a checkbox with an action listener that removes the tab.

The example program shows a useful technique with tabbed panes. Sometimes, you want to update a
component just before it is displayed. In our example program, we load the planet image only when the user
actually clicks a tab.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

To be notified whenever the user clicks on a new tab, you install a ChangeListener with the tabbed pane. Note

that you must install the listener with the tabbed pane itself, not with any of the components.

tabbedPane.addChangeListener(listener);

When the user selects a tab, the stateChanged method of the change listener is called. You retrieve the tabbed

pane as the source of the event. Call the getSelectedIndex method to find out which pane is about to be

displayed.

public void stateChanged(ChangeEvent event)

{

 int n = tabbedPane.getSelectedIndex();

 loadTab(n);

}

In Listing 6-20, we first set all tab components to null. When a new tab is selected, we test whether its

component is still null. If so, we replace it with the image. (This happens instantaneously when you click on the

tab. You will not see an empty pane.) Just for fun, we also change the icon from a yellow ball to a red ball to
indicate which panes have been visited.

Listing 6-20. TabbedPaneTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3.

 4. import javax.swing.*;

 5. import javax.swing.event.*;

 6.

 7. /**

 8. * This program demonstrates the tabbed pane component organizer.

 9. * @version 1.03 2007-08-01

 10. * @author Cay Horstmann

 11. */

 12. public class TabbedPaneTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20.

 21. JFrame frame = new TabbedPaneFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame shows a tabbed pane and radio buttons to switch between wrapped and scrolling

 31. * tab layout.

 32. */

 33. class TabbedPaneFrame extends JFrame

 34. {

 35. public TabbedPaneFrame()

 36. {

 37. setTitle("TabbedPaneTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. tabbedPane = new JTabbedPane();

 41. // we set the components to null and delay their loading until the tab is shown

 42. // for the first time

 43.

 44. ImageIcon icon = new ImageIcon("yellow-ball.gif");

 45.

 46. tabbedPane.addTab("Mercury", icon, null);

 47. tabbedPane.addTab("Venus", icon, null);

 48. tabbedPane.addTab("Earth", icon, null);

 49. tabbedPane.addTab("Mars", icon, null);

 50. tabbedPane.addTab("Jupiter", icon, null);

 51. tabbedPane.addTab("Saturn", icon, null);

 52. tabbedPane.addTab("Uranus", icon, null);

 53. tabbedPane.addTab("Neptune", icon, null);

 54. tabbedPane.addTab("Pluto", null, null);

 55.

 56. final int plutoIndex = tabbedPane.indexOfTab("Pluto");

 57. JPanel plutoPanel = new JPanel();

 58. plutoPanel.add(new JLabel("Pluto", icon, SwingConstants.LEADING));

 59. JToggleButton plutoCheckBox = new JCheckBox();

 60. plutoCheckBox.addActionListener(new ActionListener()

 61. {

 62. public void actionPerformed(ActionEvent e)

 63. {

 64. tabbedPane.remove(plutoIndex);

 65. }

 66. });

 67. plutoPanel.add(plutoCheckBox);

 68. tabbedPane.setTabComponentAt(plutoIndex, plutoPanel);

 69.

 70. add(tabbedPane, "Center");

 71.

 72. tabbedPane.addChangeListener(new ChangeListener()

 73. {

 74. public void stateChanged(ChangeEvent event)

 75. {

 76.

 77. // check if this tab still has a null component

 78.

 79. if (tabbedPane.getSelectedComponent() == null)

 80. {

 81. // set the component to the image icon

 82.

 83. int n = tabbedPane.getSelectedIndex();

 84. loadTab(n);

 85. }

 86. }

 87. });

 88.

 89. loadTab(0);

 90.

 91. JPanel buttonPanel = new JPanel();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 92. ButtonGroup buttonGroup = new ButtonGroup();

 93. JRadioButton wrapButton = new JRadioButton("Wrap tabs");

 94. wrapButton.addActionListener(new ActionListener()

 95. {

 96. public void actionPerformed(ActionEvent event)

 97. {

 98. tabbedPane.setTabLayoutPolicy(JTabbedPane.WRAP_TAB_LAYOUT);

 99. }

100. });

101. buttonPanel.add(wrapButton);

102. buttonGroup.add(wrapButton);

103. wrapButton.setSelected(true);

104. JRadioButton scrollButton = new JRadioButton("Scroll tabs");

105. scrollButton.addActionListener(new ActionListener()

106. {

107. public void actionPerformed(ActionEvent event)

108. {

109. tabbedPane.setTabLayoutPolicy(JTabbedPane.SCROLL_TAB_LAYOUT);

110. }

111. });

112. buttonPanel.add(scrollButton);

113. buttonGroup.add(scrollButton);

114. add(buttonPanel, BorderLayout.SOUTH);

115. }

116.

117. /**

118. * Loads the tab with the given index.

119. * @param n the index of the tab to load

120. */

121. private void loadTab(int n)

122. {

123. String title = tabbedPane.getTitleAt(n);

124. ImageIcon planetIcon = new ImageIcon(title + ".gif");

125. tabbedPane.setComponentAt(n, new JLabel(planetIcon));

126.

127. // indicate that this tab has been visited--just for fun

128.

129. tabbedPane.setIconAt(n, new ImageIcon("red-ball.gif"));

130. }

131.

132. private JTabbedPane tabbedPane;

133.

134. private static final int DEFAULT_WIDTH = 400;

135. private static final int DEFAULT_HEIGHT = 300;

136. }

javax.swing.JTabbedPane 1.2

JTabbedPane()

JTabbedPane(int placement)

constructs a tabbed pane.

Parameters: placement One of SwingConstants.TOP, SwingConstants.LEFT,
SwingConstants.RIGHT, or SwingConstants.BOTTOM

void addTab(String title, Component c)

void addTab(String title, Icon icon, Component c)

void addTab(String title, Icon icon, Component c, String tooltip)

adds a tab to the end of the tabbed pane.

void insertTab(String title, Icon icon, Component c, String tooltip, int

index)

inserts a tab to the tabbed pane at the given index.

void removeTabAt(int index)

removes the tab at the given index.

void setSelectedIndex(int index)

selects the tab at the given index.

int getSelectedIndex()

returns the index of the selected tab.

Component getSelectedComponent()

returns the component of the selected tab.

String getTitleAt(int index)

void setTitleAt(int index, String title)

Icon getIconAt(int index)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setIconAt(int index, Icon icon)

Component getComponentAt(int index)

void setComponentAt(int index, Component c)

gets or sets the title, icon, or component at the given index.

int indexOfTab(String title)

int indexOfTab(Icon icon)

int indexOfComponent(Component c)

returns the index of the tab with the given title, icon, or component.

int getTabCount()

returns the total number of tabs in this tabbed pane.

int getTabLayoutPolicy()

void setTabLayoutPolicy(int policy) 1.4

gets or sets the tab layout policy. policy is one of JTabbedPane.WRAP_TAB_LAYOUT or

JTabbedPane.SCROLL_TAB_LAYOUT.

int getMnemonicAt(int index) 1.4

void setMnemonicAt(int index, int mnemonic)

gets or sets the mnemonic character at a given tab index. The character is specified as a
VK_X constant from the KeyEvent class. -1 means that there is no mnemonic.

Component getTabComponentAt(int index) 6

void setTabComponentAt(int index, Component c) 6

gets or sets the component that renders the title of the tab with the given index. If this
component is null, the tab icon and title are rendered. Otherwise, only the given component
is rendered in the tab.

int indexOfTabComponent(Component c) 6

returns the index of the tab with the given title component.

void addChangeListener(ChangeListener listener)

adds a change listener that is notified when the user selects a different tab.

Desktop Panes and Internal Frames

Many applications present information in multiple windows that are all contained inside a large frame. If you
minimize the application frame, then all of its windows are hidden at the same time. In the Windows
environment, this user interface is sometimes called the multiple document interface (MDI). Figure 6-47 shows
a typical application that uses this interface.

Figure 6-47. A multiple document interface application

[View full size image]

For some time, this user interface style was popular, but it has become less prevalent in recent years.
Nowadays, many applications simply display a separate top-level frame for each document. Which is better?
MDI reduces window clutter, but having separate top-level windows means that you can use the buttons and
hotkeys of the host windowing system to flip through your windows.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

In the world of Java, where you can't rely on a rich host windowing system, it makes a lot of sense to have your
application manage its frames.

Figure 6-48 shows a Java application with three internal frames. Two of them have decorations on the border to
maximize and iconify them. The third is in its iconified state.

Figure 6-48. A Java application with three internal frames

[View full size image]

In the Metal look and feel, the internal frames have distinctive "grabber" areas that you use to move the frames
around. You can resize the windows by dragging the resize corners.

To achieve this capability, follow these steps:

1. Use a regular JFrame window for the application.

2. Add the JDesktopPane to the JFrame.

desktop = new JDesktopPane();
add(desktop, BorderLayout.CENTER);

3. Construct JInternalFrame windows. You can specify whether you want the icons for resizing or closing

the frame. Normally, you want all icons.

JInternalFrame iframe = new JInternalFrame(title,
 true, // resizable
 true, // closable
 true, // maximizable

 true); // iconifiable

4. Add components to the frame.

iframe.add(c, BorderLayout.CENTER);

5. Set a frame icon. The icon is shown in the top-left corner of the frame.

iframe.setFrameIcon(icon);

Note

In the current version of the Metal look and feel, the frame icon is not
displayed in iconized frames.

6. Set the size of the internal frame. As with regular frames, internal frames initially have a size of 0 by 0
pixels. Because you don't want internal frames to be displayed on top of each other, use a variable
position for the next frame. Use the reshape method to set both the position and size of the frame:

iframe.reshape(nextFrameX, nextFrameY, width, height);

7. As with JFrames, you need to make the frame visible.

iframe.setVisible(true);

Note

In earlier versions of Swing, internal frames were automatically visible and
this call was not necessary.

8. Add the frame to the JDesktopPane.

desktop.add(iframe);

9. You probably want to make the new frame the selected frame. Of the internal frames on the desktop, only
the selected frame receives keyboard focus. In the Metal look and feel, the selected frame has a blue title
bar, whereas the other frames have a gray title bar. You use the setSelected method to select a frame.

However, the "selected" property can be vetoed—the currently selected frame can refuse to give up focus.
In that case, the setSelected method throws a PropertyVetoException that you need to handle.

try
{
 iframe.setSelected(true);
}

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

catch (PropertyVetoException e)
{
 // attempt was vetoed
}

10. You probably want to move the position for the next internal frame down so that it won't overlay the
existing frame. A good distance between frames is the height of the title bar, which you can obtain as

Code View:
int frameDistance = iframe.getHeight() - iframe.getContentPane().getHeight()

11. Use that distance to determine the next internal frame position.

nextFrameX += frameDistance;
nextFrameY += frameDistance;
if (nextFrameX + width > desktop.getWidth())
 nextFrameX = 0;
if (nextFrameY + height > desktop.getHeight())
 nextFrameY = 0;

Cascading and Tiling

In Windows, there are standard commands for cascading and tiling windows (see Figures 6-49 and 6-50). The
Java JDesktopPane and JInternalFrame classes have no built-in support for these operations. In Listing 6-21,
we show you how to implement these operations yourself.

Figure 6-49. Cascaded internal frames

Figure 6-50. Tiled internal frames

[View full size image]

To cascade all windows, you reshape windows to the same size and stagger their positions. The getAllFrames
method of the JDesktopPane class returns an array of all internal frames.

JInternalFrame[] frames = desktop.getAllFrames();

However, you need to pay attention to the frame state. An internal frame can be in one of three states:

Icon

Resizable

Maximum

You use the isIcon method to find out which internal frames are currently icons and should be skipped.

However, if a frame is in the maximum state, you first set it to be resizable by calling setMaximum(false). This
is another property that can be vetoed, so you must catch the PropertyVetoException.

The following loop cascades all internal frames on the desktop:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

for (JInternalFrame frame : desktop.getAllFrames())

{

 if (!frame.isIcon())
 {

 try

 {

 // try to make maximized frames resizable; this might be vetoed

 frame.setMaximum(false);

 frame.reshape(x, y, width, height);

 x += frameDistance;

 y += frameDistance;

 // wrap around at the desktop edge

 if (x + width > desktop.getWidth()) x = 0;

 if (y + height > desktop.getHeight()) y = 0;

 }
 catch (PropertyVetoException e)

 {}

 }

}

Tiling frames is trickier, particularly if the number of frames is not a perfect square. First, count the number of
frames that are not icons. Then, compute the number of rows as

int rows = (int) Math.sqrt(frameCount);

Then the number of columns is

int cols = frameCount / rows;

except that the last

int extra = frameCount % rows

columns have rows + 1 rows.

Here is the loop for tiling all frames on the desktop:

Code View:
int width = desktop.getWidth() / cols;

int height = desktop.getHeight() / rows;

int r = 0;

int c = 0;

for (JInternalFrame frame : desktop.getAllFrames())

{

 if (!frame.isIcon())

 {

 try

 {

 frame.setMaximum(false);

 frame.reshape(c * width, r * height, width, height);

 r++;

 if (r == rows)

 {

 r = 0;

 c++;
 if (c == cols - extra)

 {

 // start adding an extra row

 rows++;

 height = desktop.getHeight() / rows;

 }

 }

 }

 catch (PropertyVetoException e)

 {}

 }

}

The example program shows another common frame operation: moving the selection from the current frame to
the next frame that isn't an icon. Traverse all frames and call isSelected until you find the currently selected
frame. Then, look for the next frame in the sequence that isn't an icon, and try to select it by calling

frames[next].setSelected(true);

As before, that method can throw a PropertyVetoException, in which case you keep looking. If you come back

to the original frame, then no other frame was selectable, and you give up. Here is the complete loop:

Code View:
JInternalFrame[] frames = desktop.getAllFrames();
for (int i = 0; i < frames.length; i++)

{

 if (frames[i].isSelected())

 {

 // find next frame that isn't an icon and can be selected

 int next = (i + 1) % frames.length;

 while (next != i)
 {

 if (!frames[next].isIcon())

 {

 try
 {

 // all other frames are icons or veto selection

 frames[next].setSelected(true);

 frames[next].toFront();

 frames[i].toBack();

 return;

 }

 catch (PropertyVetoException e)

 {}

 }

 next = (next + 1) % frames.length;

 }

 }

}

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Vetoing Property Settings

Now that you have seen all these veto exceptions, you might wonder how your frames can issue a veto. The
JInternalFrame class uses a general JavaBeans mechanism for monitoring the setting of properties. We discuss

this mechanism in full detail in Chapter 8. For now, we just want to show you how your frames can veto
requests for property changes.

Frames don't usually want to use a veto to protest iconization or loss of focus, but it is very common for frames
to check whether it is okay to close them. You close a frame with the setClosed method of the JInternalFrame

class. Because the method is vetoable, it calls all registered vetoable change listeners before proceeding to
make the change. That gives each of the listeners the opportunity to throw a PropertyVetoException and

thereby terminate the call to setClosed before it changed any settings.

In our example program, we put up a dialog box to ask the user whether it is okay to close the window (see
Figure 6-51). If the user doesn't agree, the window stays open.

Figure 6-51. The user can veto the close property

Here is how you achieve such a notification.

Add a listener object to each frame. The object must belong to some class that implements the
VetoableChangeListener interface. It is best to add the listener right after constructing the frame. In our

example, we use the frame class that constructs the internal frames. Another option would be to use an
anonymous inner class.

1.

2.

iframe.addVetoableChangeListener(listener);

Implement the vetoableChange method, the only method required by the VetoableChangeListener

interface. The method receives a PropertyChangeEvent object. Use the getName method to find the name

of the property that is about to be changed (such as "closed" if the method call to veto is

setClosed(true)). As you see in Chapter 8, you obtain the property name by removing the "set" prefix

from the method name and changing the next letter to lower case.

Use the getNewValue method to get the proposed new value.

String name = event.getPropertyName();

Object value = event.getNewValue();

if (name.equals("closed") && value.equals(true))

{

 ask user for confirmation

}

2.

Simply throw a PropertyVetoException to block the property change. Return normally if you don't want

to veto the change.

class DesktopFrame extends JFrame

 implements VetoableChangeListener

{

 . . .

 public void vetoableChange(PropertyChangeEvent event)

 throws PropertyVetoException

 {

 . . .

 if (not ok)

 throw new PropertyVetoException(reason, event);

 // return normally if ok

 }
}

3.

Dialogs in Internal Frames

If you use internal frames, you should not use the JDialog class for dialog boxes. Those dialog boxes have two
disadvantages:

They are heavyweight because they create a new frame in the windowing system.

The windowing system does not know how to position them relative to the internal frame that spawned
them.

Instead, for simple dialog boxes, use the showInternalXxxDialog methods of the JOptionPane class. They

work exactly like the showXxxDialog methods, except they position a lightweight window over an internal

frame.

As for more complex dialog boxes, construct them with a JInternalFrame. Unfortunately, you then have no

built-in support for modal dialog boxes.

In our sample program, we use an internal dialog box to ask the user whether it is okay to close a frame.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

int result = JOptionPane.showInternalConfirmDialog(

 iframe, "OK to close?", "Select an Option", JOptionPane.YES_NO_OPTION);;

Note

If you simply want to be notified when a frame is closed, then you should not use
the veto mechanism. Instead, install an InternalFrameListener. An internal frame

listener works just like a WindowListener. When the internal frame is closing, the

internalFrameClosing method is called instead of the familiar windowClosing

method. The other six internal frame notifications (opened/closed,
iconified/deiconified, activated/deactivated) also correspond to the window listener
methods.

Outline Dragging

One criticism that developers have leveled against internal frames is that performance has not been great. By
far the slowest operation is to drag a frame with complex content across the desktop. The desktop manager
keeps asking the frame to repaint itself as it is being dragged, which is quite slow.

Actually, if you use Windows or X Windows with a poorly written video driver, you'll experience the same
problem. Window dragging appears to be fast on most systems because the video hardware supports the
dragging operation by mapping the image inside the frame to a different screen location during the dragging
process.

To improve performance without greatly degrading the user experience, you can set "outline dragging" on.
When the user drags the frame, only the outline of the frame is continuously updated. The inside is repainted
only when the user drops the frame to its final resting place.

To turn on outline dragging, call

desktop.setDragMode(JDesktopPane.OUTLINE_DRAG_MODE);

This setting is the equivalent of "continuous layout" in the JSplitPane class.

Note

In early versions of Swing, you had to use the magic incantation

desktop.putClientProperty("JDesktopPane.dragMode", "outline");

to turn on outline dragging.

In the sample program, you can use the Window -> Drag Outline checkbox menu selection to toggle outline
dragging on or off.

Note

The internal frames on the desktop are managed by a DesktopManager class. You

don't need to know about this class for normal programming. It is possible to
implement different desktop behavior by installing a new desktop manager, but we
don't cover that.

Listing 6-21 populates a desktop with internal frames that show HTML pages. The File -> Open menu option
pops up a file dialog box for reading a local HTML file into a new internal frame. If you click on any link, the
linked document is displayed in another internal frame. Try out the Window -> Cascade and Window -> Tile
commands.

Listing 6-21. InternalFrameTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.beans.*;

 4. import javax.swing.*;

 5.

 6. /**

 7. * This program demonstrates the use of internal frames.

 8. * @version 1.11 2007-08-01

 9. * @author Cay Horstmann

 10. */

 11. public class InternalFrameTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new DesktopFrame();

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * This desktop frame contains editor panes that show HTML documents.

 29. */

 30. class DesktopFrame extends JFrame

 31. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 32. public DesktopFrame()

 33. {

 34. setTitle("InternalFrameTest");

 35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 36.

 37. desktop = new JDesktopPane();

 38. add(desktop, BorderLayout.CENTER);

 39.

 40. // set up menus

 41.

 42. JMenuBar menuBar = new JMenuBar();

 43. setJMenuBar(menuBar);

 44. JMenu fileMenu = new JMenu("File");

 45. menuBar.add(fileMenu);

 46. JMenuItem openItem = new JMenuItem("New");

 47. openItem.addActionListener(new ActionListener()

 48. {

 49. public void actionPerformed(ActionEvent event)

 50. {

 51. createInternalFrame(new JLabel(new ImageIcon(planets[counter] + ".gif")),

 52. planets[counter]);

 53. counter = (counter + 1) % planets.length;

 54. }

 55. });

 56. fileMenu.add(openItem);

 57. JMenuItem exitItem = new JMenuItem("Exit");

 58. exitItem.addActionListener(new ActionListener()

 59. {

 60. public void actionPerformed(ActionEvent event)

 61. {

 62. System.exit(0);

 63. }

 64. });

 65. fileMenu.add(exitItem);

 66. JMenu windowMenu = new JMenu("Window");

 67. menuBar.add(windowMenu);

 68. JMenuItem nextItem = new JMenuItem("Next");

 69. nextItem.addActionListener(new ActionListener()

 70. {

 71. public void actionPerformed(ActionEvent event)

 72. {

 73. selectNextWindow();

 74. }

 75. });

 76. windowMenu.add(nextItem);

 77. JMenuItem cascadeItem = new JMenuItem("Cascade");

 78. cascadeItem.addActionListener(new ActionListener()

 79. {

 80. public void actionPerformed(ActionEvent event)

 81. {

 82. cascadeWindows();

 83. }

 84. });

 85. windowMenu.add(cascadeItem);

 86. JMenuItem tileItem = new JMenuItem("Tile");

 87. tileItem.addActionListener(new ActionListener()

 88. {

 89. public void actionPerformed(ActionEvent event)

 90. {

 91. tileWindows();

 92. }

 93. });

 94. windowMenu.add(tileItem);

 95. final JCheckBoxMenuItem dragOutlineItem = new JCheckBoxMenuItem("Drag Outline");

 96. dragOutlineItem.addActionListener(new ActionListener()

 97. {

 98. public void actionPerformed(ActionEvent event)

 99. {

100. desktop.setDragMode(dragOutlineItem.isSelected() ?

101. JDesktopPane.OUTLINE_DRAG_MODE : JDesktopPane.LIVE_DRAG_MODE);

102. }

103. });

104. windowMenu.add(dragOutlineItem);

105. }

106.

107. /**

108. * Creates an internal frame on the desktop.

109. * @param c the component to display in the internal frame

110. * @param t the title of the internal frame.

111. */

112. public void createInternalFrame(Component c, String t)

113. {

114. final JInternalFrame iframe = new JInternalFrame(t, true, // resizable

115. true, // closable

116. true, // maximizable

117. true); // iconifiable

118.

119. iframe.add(c, BorderLayout.CENTER);

120. desktop.add(iframe);

121.

122. iframe.setFrameIcon(new ImageIcon("document.gif"));

123.

124. // add listener to confirm frame closing

125. iframe.addVetoableChangeListener(new VetoableChangeListener()

126. {

127. public void vetoableChange(PropertyChangeEvent event) throws PropertyVetoException

128. {

129. String name = event.getPropertyName();

130. Object value = event.getNewValue();

131.

132. // we only want to check attempts to close a frame

133. if (name.equals("closed") && value.equals(true))

134. {

135. // ask user if it is ok to close

136. int result = JOptionPane.showInternalConfirmDialog(iframe, "OK to close?",

137. "Select an Option", JOptionPane.YES_NO_OPTION);

138.

139. // if the user doesn't agree, veto the close

140. if (result != JOptionPane.YES_OPTION) throw new PropertyVetoException(

141. "User canceled close", event);

142. }

143. }

144. });

145.

146. // position frame

147. int width = desktop.getWidth() / 2;

148. int height = desktop.getHeight() / 2;

149. iframe.reshape(nextFrameX, nextFrameY, width, height);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

150.

151. iframe.show();

152.

153. // select the frame--might be vetoed

154. try

155. {

156. iframe.setSelected(true);

157. }

158. catch (PropertyVetoException e)

159. {

160. }

161.

162. frameDistance = iframe.getHeight() - iframe.getContentPane().getHeight();

163.

164. // compute placement for next frame

165.

166. nextFrameX += frameDistance;

167. nextFrameY += frameDistance;

168. if (nextFrameX + width > desktop.getWidth()) nextFrameX = 0;

169. if (nextFrameY + height > desktop.getHeight()) nextFrameY = 0;

170. }

171.

172. /**

173. * Cascades the non-iconified internal frames of the desktop.

174. */

175. public void cascadeWindows()

176. {

177. int x = 0;

178. int y = 0;

179. int width = desktop.getWidth() / 2;

180. int height = desktop.getHeight() / 2;

181.

182. for (JInternalFrame frame : desktop.getAllFrames())

183. {

184. if (!frame.isIcon())

185. {

186. try

187. {

188. // try to make maximized frames resizable; this might be vetoed

189. frame.setMaximum(false);

190. frame.reshape(x, y, width, height);

191.

192. x += frameDistance;

193. y += frameDistance;

194. // wrap around at the desktop edge

195. if (x + width > desktop.getWidth()) x = 0;

196. if (y + height > desktop.getHeight()) y = 0;

197. }

198. catch (PropertyVetoException e)

199. {

200. }

201. }

202. }

203. }

204.

205. /**

206. * Tiles the non-iconified internal frames of the desktop.

207. */

208. public void tileWindows()

209. {

210. // count frames that aren't iconized

211. int frameCount = 0;

212. for (JInternalFrame frame : desktop.getAllFrames())

213. if (!frame.isIcon()) frameCount++;

214. if (frameCount == 0) return;

215.

216. int rows = (int) Math.sqrt(frameCount);

217. int cols = frameCount / rows;

218. int extra = frameCount % rows;

219. // number of columns with an extra row

220.

221. int width = desktop.getWidth() / cols;

222. int height = desktop.getHeight() / rows;

223. int r = 0;

224. int c = 0;

225. for (JInternalFrame frame : desktop.getAllFrames())

226. {

227. if (!frame.isIcon())

228. {

229. try

230. {

231. frame.setMaximum(false);

232. frame.reshape(c * width, r * height, width, height);

233. r++;

234. if (r == rows)

235. {

236. r = 0;

237. c++;

238. if (c == cols - extra)

239. {

240. // start adding an extra row

241. rows++;

242. height = desktop.getHeight() / rows;

243. }

244. }

245. }

246. catch (PropertyVetoException e)

247. {

248. }

249. }

250. }

251. }

252.

253. /**

254. * Brings the next non-iconified internal frame to the front.

255. */

256. public void selectNextWindow()

257. {

258. JInternalFrame[] frames = desktop.getAllFrames();

259. for (int i = 0; i < frames.length; i++)

260. {

261. if (frames[i].isSelected())

262. {

263. // find next frame that isn't an icon and can be selected

264. int next = (i + 1) % frames.length;

265. while (next != i)

266. {

267. if (!frames[next].isIcon())

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

268. {

269. try

270. {

271. // all other frames are icons or veto selection

272. frames[next].setSelected(true);

273. frames[next].toFront();

274. frames[i].toBack();

275. return;

276. }

277. catch (PropertyVetoException e)

278. {

279. }

280. }

281. next = (next + 1) % frames.length;

282. }

283. }

284. }

285. }

286.

287. private JDesktopPane desktop;

288. private int nextFrameX;

289. private int nextFrameY;

290. private int frameDistance;

291. private int counter;

292. private static final String[] planets = { "Mercury", "Venus", "Earth", "Mars", "Jupiter",

293. "Saturn", "Uranus", "Neptune", "Pluto", };

294.

295. private static final int DEFAULT_WIDTH = 600;

296. private static final int DEFAULT_HEIGHT = 400;

297. }

javax.swing.JDesktopPane 1.2

JInternalFrame[] getAllFrames()

gets all internal frames in this desktop pane.

void setDragMode(int mode)

sets the drag mode to live or outline drag mode.

Parameters: mode One of JDesktopPane.LIVE_DRAG_MODE or

JDesktopPane.OUTLINE_DRAG_MODE

javax.swing.JInternalFrame 1.2

JInternalFrame()

JInternalFrame(String title)

JInternalFrame(String title, boolean resizable)

JInternalFrame(String title, boolean resizable, boolean closable)

JInternalFrame(String title, boolean resizable, boolean closable, boolean

maximizable)

JInternalFrame(String title, boolean resizable, boolean closable, boolean
maximizable, boolean iconifiable)

constructs a new internal frame.

Parameters: title The string to display in the title bar

 resizable true if the frame can be resized

 closable true if the frame can be closed

 maximizable true if the frame can be maximized

 iconifiable true if the frame can be iconified

boolean isResizable()

void setResizable(boolean b)

boolean isClosable()

void setClosable(boolean b)

boolean isMaximizable()

void setMaximizable(boolean b)

boolean isIconifiable()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void setIconifiable(boolean b)

gets or sets the resizable, closable, maximizable, and iconifiable properties. When the
property is true, an icon appears in the frame title to resize, close, maximize, or iconify the

internal frame.

boolean isIcon()

void setIcon(boolean b)

boolean isMaximum()

void setMaximum(boolean b)

boolean isClosed()

void setClosed(boolean b)

gets or sets the icon, maximum, or closed property. When this property is true, the internal

frame is iconified, maximized, or closed.

boolean isSelected()

void setSelected(boolean b)

gets or sets the selected property. When this property is true, the current internal frame

becomes the selected frame on the desktop.

void moveToFront()

void moveToBack()

moves this internal frame to the front or the back of the desktop.

void reshape(int x, int y, int width, int height)

moves and resizes this internal frame.

Parameters: x, y The top-left corner of the frame

 width, height The width and height of the frame

Container getContentPane()

void setContentPane(Container c)

gets or sets the content pane of this internal frame.

JDesktopPane getDesktopPane()

gets the desktop pane of this internal frame.

Icon getFrameIcon()

void setFrameIcon(Icon anIcon)

gets or sets the frame icon that is displayed in the title bar.

boolean isVisible()

void setVisible(boolean b)

gets or sets the "visible" property.

void show()

makes this internal frame visible and brings it to the front.

javax.swing.JComponent 1.2

void addVetoableChangeListener(VetoableChangeListener

listener)

adds a vetoable change listener that is notified when an attempt is made
to change a constrained property.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.beans.VetoableChangeListener 1.1

void vetoableChange(PropertyChangeEvent event)

is called when the set method of a constrained property notifies the

vetoable change listeners.

java.beans.PropertyChangeEvent 1.1

String getPropertyName()

returns the name of the property that is about to be changed.

Object getNewValue()

returns the proposed new value for the property.

java.beans.PropertyVetoException 1.1

PropertyVetoException(String reason, PropertyChangeEvent event)

constructs a property veto exception.

Parameters: reason The reason for the veto

 event The vetoed event

You have now seen how to use the complex components that the Swing framework offers. In the next chapter,
we turn to advanced AWT issues: complex drawing operations, image manipulation, printing, and interfacing
with the native windowing system.

Chapter 7. Advanced AWT

THE RENDERING PIPELINE

SHAPES

AREAS

STROKES

PAINT

COORDINATE TRANSFORMATIONS

CLIPPING

TRANSPARENCY AND COMPOSITION

RENDERING HINTS

READERS AND WRITERS FOR IMAGES

IMAGE MANIPULATION

PRINTING

THE CLIPBOARD

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

DRAG AND DROP

PLATFORM INTEGRATION

You can use the methods of the Graphics class to create simple drawings. Those methods are sufficient for

simple applets and applications, but they fall short when you create complex shapes or when you require
complete control over the appearance of the graphics. The Java 2D API is a more sophisticated class library that
you can use to produce high-quality drawings. In this chapter, we give you an overview of that API.

We then turn to the topic of printing and show how you can implement printing capabilities into your programs.

Finally, we cover two techniques for transferring data between programs: the system clipboard and the drag-
and-drop mechanism. You can use these techniques to transfer data between two Java applications or between
a Java application and a native program.

The Rendering Pipeline

The original JDK 1.0 had a very simple mechanism for drawing shapes. You selected color and paint mode, and
called methods of the Graphics class such as drawRect or fillOval. The Java 2D API supports many more
options.

You can easily produce a wide variety of shapes.

You have control over the stroke, the pen that traces shape boundaries.

You can fill shapes with solid colors, varying hues, and repeating patterns.

You can use transformations to move, scale, rotate, or stretch shapes.

You can clip shapes to restrict them to arbitrary areas.

You can select composition rules to describe how to combine the pixels of a new shape with existing
pixels.

You can give rendering hints to make trade-offs between speed and drawing quality.

To draw a shape, you go through the following steps:

1. Obtain an object of the Graphics2D class. This class is a subclass of the Graphics class. Ever since Java

SE 1.2, methods such as paint and paintComponent automatically receive an object of the Graphics2D

class. Simply use a cast, as follows:

public void paintComponent(Graphics g)

{
 Graphics2D g2 = (Graphics2D) g;
 . . .
}

2. Use the setRenderingHints method to set rendering hints: trade-offs between speed and drawing

quality.

RenderingHints hints = . . .;
g2.setRenderingHints(hints);

3. Use the setStroke method to set the stroke. The stroke draws the outline of the shape. You can select

the thickness and choose among solid and dotted lines.

Stroke stroke = . . .;
g2.setStroke(stroke);

4. Use the setPaint method to set the paint. The paint fills areas such as the stroke path or the interior of a
shape. You can create solid color paint, paint with changing hues, or tiled fill patterns.

Paint paint = . . .;
g2.setPaint(paint);

5. Use the clip method to set the clipping region.

Shape clip = . . .;
g2.clip(clip);

6. Use the transform method to set a transformation from user space to device space. You use

transformations if it is easier for you to define your shapes in a custom coordinate system than by using
pixel coordinates.

AffineTransform transform = . . .;
g2.transform(transform);

7. Use the setComposite method to set a composition rule that describes how to combine the new pixels

with the existing pixels.

Composite composite = . . .;
g2.setComposite(composite);

8. Create a shape. The Java 2D API supplies many shape objects and methods to combine shapes.

Shape shape = . . .;

9. Draw or fill the shape. If you draw the shape, its outline is stroked. If you fill the shape, the interior is
painted.

g2.draw(shape);
g2.fill(shape);

Of course, in many practical circumstances, you don't need all these steps. There are reasonable defaults for the

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

settings of the 2D graphics context. You would change the settings only if you want to change the defaults.

In the following sections, you will see how to describe shapes, strokes, paints, transformations, and composition
rules.

The various set methods simply set the state of the 2D graphics context. They don't cause any drawing.

Similarly, when you construct Shape objects, no drawing takes place. A shape is only rendered when you call

draw or fill. At that time, the new shape is computed in a rendering pipeline (see Figure 7-1).

Figure 7-1. The rendering pipeline

[View full size image]

In the rendering pipeline, the following steps take place to render a shape:

1. The path of the shape is stroked.

2. The shape is transformed.

3. The shape is clipped. If there is no intersection between the shape and the clipping area, then the process
stops.

4. The remainder of the shape after clipping is filled.

5. The pixels of the filled shape are composed with the existing pixels. (In Figure 7-1, the circle is part of the
existing pixels, and the cup shape is superimposed over it.)

In the next section, you will see how to define shapes. Then, we turn to the 2D graphics context settings.

java.awt.Graphics2D 1.2

void draw(Shape s)

draws the outline of the given shape with the current stroke.

void fill(Shape s)

fills the interior of the given shape with the current paint.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 7. Advanced AWT

THE RENDERING PIPELINE

SHAPES

AREAS

STROKES

PAINT

COORDINATE TRANSFORMATIONS

CLIPPING

TRANSPARENCY AND COMPOSITION

RENDERING HINTS

READERS AND WRITERS FOR IMAGES

IMAGE MANIPULATION

PRINTING

THE CLIPBOARD

DRAG AND DROP

PLATFORM INTEGRATION

You can use the methods of the Graphics class to create simple drawings. Those methods are sufficient for

simple applets and applications, but they fall short when you create complex shapes or when you require
complete control over the appearance of the graphics. The Java 2D API is a more sophisticated class library that
you can use to produce high-quality drawings. In this chapter, we give you an overview of that API.

We then turn to the topic of printing and show how you can implement printing capabilities into your programs.

Finally, we cover two techniques for transferring data between programs: the system clipboard and the drag-
and-drop mechanism. You can use these techniques to transfer data between two Java applications or between
a Java application and a native program.

The Rendering Pipeline

The original JDK 1.0 had a very simple mechanism for drawing shapes. You selected color and paint mode, and
called methods of the Graphics class such as drawRect or fillOval. The Java 2D API supports many more
options.

You can easily produce a wide variety of shapes.

You have control over the stroke, the pen that traces shape boundaries.

You can fill shapes with solid colors, varying hues, and repeating patterns.

You can use transformations to move, scale, rotate, or stretch shapes.

You can clip shapes to restrict them to arbitrary areas.

You can select composition rules to describe how to combine the pixels of a new shape with existing
pixels.

You can give rendering hints to make trade-offs between speed and drawing quality.

To draw a shape, you go through the following steps:

1. Obtain an object of the Graphics2D class. This class is a subclass of the Graphics class. Ever since Java

SE 1.2, methods such as paint and paintComponent automatically receive an object of the Graphics2D

class. Simply use a cast, as follows:

public void paintComponent(Graphics g)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

{
 Graphics2D g2 = (Graphics2D) g;
 . . .
}

2. Use the setRenderingHints method to set rendering hints: trade-offs between speed and drawing

quality.

RenderingHints hints = . . .;
g2.setRenderingHints(hints);

3. Use the setStroke method to set the stroke. The stroke draws the outline of the shape. You can select

the thickness and choose among solid and dotted lines.

Stroke stroke = . . .;
g2.setStroke(stroke);

4. Use the setPaint method to set the paint. The paint fills areas such as the stroke path or the interior of a
shape. You can create solid color paint, paint with changing hues, or tiled fill patterns.

Paint paint = . . .;
g2.setPaint(paint);

5. Use the clip method to set the clipping region.

Shape clip = . . .;
g2.clip(clip);

6. Use the transform method to set a transformation from user space to device space. You use

transformations if it is easier for you to define your shapes in a custom coordinate system than by using
pixel coordinates.

AffineTransform transform = . . .;
g2.transform(transform);

7. Use the setComposite method to set a composition rule that describes how to combine the new pixels

with the existing pixels.

Composite composite = . . .;
g2.setComposite(composite);

8. Create a shape. The Java 2D API supplies many shape objects and methods to combine shapes.

Shape shape = . . .;

9. Draw or fill the shape. If you draw the shape, its outline is stroked. If you fill the shape, the interior is
painted.

g2.draw(shape);
g2.fill(shape);

Of course, in many practical circumstances, you don't need all these steps. There are reasonable defaults for the

settings of the 2D graphics context. You would change the settings only if you want to change the defaults.

In the following sections, you will see how to describe shapes, strokes, paints, transformations, and composition
rules.

The various set methods simply set the state of the 2D graphics context. They don't cause any drawing.

Similarly, when you construct Shape objects, no drawing takes place. A shape is only rendered when you call

draw or fill. At that time, the new shape is computed in a rendering pipeline (see Figure 7-1).

Figure 7-1. The rendering pipeline

[View full size image]

In the rendering pipeline, the following steps take place to render a shape:

1. The path of the shape is stroked.

2. The shape is transformed.

3. The shape is clipped. If there is no intersection between the shape and the clipping area, then the process
stops.

4. The remainder of the shape after clipping is filled.

5. The pixels of the filled shape are composed with the existing pixels. (In Figure 7-1, the circle is part of the
existing pixels, and the cup shape is superimposed over it.)

In the next section, you will see how to define shapes. Then, we turn to the 2D graphics context settings.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.Graphics2D 1.2

void draw(Shape s)

draws the outline of the given shape with the current stroke.

void fill(Shape s)

fills the interior of the given shape with the current paint.

Shapes

Here are some of the methods in the Graphics class to draw shapes:

drawLine

drawRectangle

drawRoundRect

draw3DRect

drawPolygon

drawPolyline

drawOval
drawArc

There are also corresponding fill methods. These methods have been in the Graphics class ever since JDK

1.0. The Java 2D API uses a completely different, object-oriented approach. Instead of methods, there are
classes:

Line2D

Rectangle2D

RoundRectangle2D

Ellipse2D

Arc2D

QuadCurve2D

CubicCurve2D

GeneralPath

These classes all implement the Shape interface.

Finally, the Point2D class describes a point with an x- and a y- coordinate. Points are useful to define shapes,

but they aren't themselves shapes.

To draw a shape, you first create an object of a class that implements the Shape interface and then call the

draw method of the Graphics2D class.

The Line2D, Rectangle2D, RoundRectangle2D, Ellipse2D, and Arc2D classes correspond to the drawLine,

drawRectangle, drawRoundRect, drawOval, and drawArc methods. (The concept of a "3D rectangle" has died

the death that it so richly deserved—there is no analog to the draw3DRect method.) The Java 2D API supplies

two additional classes: quadratic and cubic curves. We discuss these shapes later in this section. There is no
Polygon2D class. Instead, the GeneralPath class describes paths that are made up from lines, quadratic and

cubic curves. You can use a GeneralPath to describe a polygon; we show you how later in this section.

The classes

Rectangle2D

RoundRectangle2D

Ellipse2D

Arc2D

all inherit from a common superclass RectangularShape. Admittedly, ellipses and arcs are not rectangular, but

they have a bounding rectangle (see Figure 7-2).

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Figure 7-2. The bounding rectangle of an ellipse and an arc

Each of the classes with a name ending in "2D" has two subclasses for specifying coordinates as float or

double quantities. In Volume I, you already encountered Rectangle2D.Float and Rectangle2D.Double.

The same scheme is used for the other classes, such as Arc2D.Float and Arc2D.Double.

Internally, all graphics classes use float coordinates because float numbers use less storage space and they

have sufficient precision for geometric computations. However, the Java programming language makes it a bit
more tedious to manipulate float numbers. For that reason, most methods of the graphics classes use double

parameters and return values. Only when constructing a 2D object must you choose between a constructor with
float or double coordinates. For example,

Rectangle2D floatRect = new Rectangle2D.Float(5F, 10F, 7.5F, 15F);

Rectangle2D doubleRect = new Rectangle2D.Double(5, 10, 7.5, 15);

The Xxx2D.Float and Xxx2D.Double classes are subclasses of the Xxx2D classes. After object construction,
essentially no benefit accrues from remembering the subclass, and you can just store the constructed object in
a superclass variable, just as in the code example.

As you can see from the curious names, the Xxx2D.Float and Xxx2D.Double classes are also inner classes of

the Xxx2D classes. That is just a minor syntactical convenience, to avoid an inflation of outer class names.

Figure 7-3 shows the relationships between the shape classes. However, the Double and Float subclasses are

omitted. Legacy classes from the pre-2D library are marked with a gray fill.

Figure 7-3. Relationships between the shape classes

[View full size image]

Using the Shape Classes

You already saw how to use the Rectangle2D, Ellipse2D, and Line2D classes in Volume I, Chapter 7. In this

section, you will learn how to work with the remaining 2D shapes.

For the RoundRectangle2D shape, you specify the top-left corner, width and height, and the x- and y-dimension
of the corner area that should be rounded (see Figure 7-4). For example, the call

Code View:
RoundRectangle2D r = new RoundRectangle2D.Double(150, 200, 100, 50, 20, 20);

produces a rounded rectangle with circles of radius 20 at each of the corners.

Figure 7-4. Constructing a RoundRectangle2D

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

[View full size image]

To construct an arc, you specify the bounding box, the start angle, the angle swept out by the arc (see Figure 7-
5), and the closure type, one of Arc2D.OPEN, Arc2D.PIE, or Arc2D.CHORD.

Code View:
Arc2D a = new Arc2D(x, y, width, height, startAngle, arcAngle, closureType);

Figure 7-5. Constructing an elliptical arc

Figure 7-6 illustrates the arc types.

Figure 7-6. Arc types

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Caution

If the arc is elliptical, the computation of the arc angles is not at all straightforward.
The API documentation states: "The angles are specified relative to the non-square
framing rectangle such that 45 degrees always falls on the line from the center of
the ellipse to the upper right corner of the framing rectangle. As a result, if the
framing rectangle is noticeably longer along one axis than the other, the angles to
the start and end of the arc segment will be skewed farther along the longer axis of
the frame." Unfortunately, the documentation is silent on how to compute this
"skew." Here are the details:

Suppose the center of the arc is the origin and the point (x, y) lies on the arc. You
get a skewed angle with the following formula:

skewedAngle = Math.toDegrees(Math.atan2(x * width, y * height));

The result is a value between -180 and 180. Compute the skewed start and end
angles in this way. Then, compute the difference between the two skewed angles. If
the start angle or the angle difference is negative, add 360. Then, supply the start
angle and the angle difference to the arc constructor.

If you run the example program at the end of this section, then you can visually
check that this calculation yields the correct values for the arc constructor (see
Figure 7-9 on page 531).

The Java 2D API supports quadratic and cubic curves. In this chapter, we do not get into the mathematics of
these curves. We suggest you get a feel for how the curves look by running the program in Listing 7-1. As you
can see in Figures 7-7 and 7-8, quadratic and cubic curves are specified by two end points and one or two
control points. Moving the control points changes the shape of the curves.

Figure 7-7. A quadratic curve

Figure 7-8. A cubic curve

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

To construct quadratic and cubic curves, you give the coordinates of the end points and the control points. For
example,

Code View:
QuadCurve2D q = new QuadCurve2D.Double(startX, startY, controlX, controlY, endX, endY);
CubicCurve2D c = new CubicCurve2D.Double(startX, startY, control1X, control1Y,

 control2X, control2Y, endX, endY);

Quadratic curves are not very flexible, and they are not commonly used in practice. Cubic curves (such as the
Bezier curves drawn by the CubicCurve2D class) are, however, very common. By combining many cubic curves
so that the slopes at the connection points match, you can create complex, smooth-looking curved shapes. For
more information, we refer you to Computer Graphics: Principles and Practice, Second Edition in C by James D.
Foley, Andries van Dam, Steven K. Feiner, et al. (Addison-Wesley 1995).

You can build arbitrary sequences of line segments, quadratic curves, and cubic curves, and store them in a
GeneralPath object. You specify the first coordinate of the path with the moveTo method. For example,

GeneralPath path = new GeneralPath();

path.moveTo(10, 20);

You then extend the path by calling one of the methods lineTo, quadTo, or curveTo. These methods extend the

path by a line, a quadratic curve, or a cubic curve. To call lineTo, supply the end point. For the two curve

methods, supply the control points, then the end point. For example,

path.lineTo(20, 30);
path.curveTo(control1X, control1Y, control2X, control2Y, endX, endY);

You close the path by calling the closePath method. It draws a line back to the starting point of the path.

To make a polygon, simply call moveTo to go to the first corner point, followed by repeated calls to lineTo to

visit the other corner points. Finally, call closePath to close the polygon. The program in Listing 7-1 shows this

in more detail.

A general path does not have to be connected. You can call moveTo at any time to start a new path segment.

Finally, you can use the append method to add arbitrary Shape objects to a general path. The outline of the
shape is added to the end to the path. The second parameter of the append method is true if the new shape

should be connected to the last point on the path, false if it should not be connected. For example, the call

Rectangle2D r = . . .;

path.append(r, false);

appends the outline of a rectangle to the path without connecting it to the existing path. But

path.append(r, true);

adds a straight line from the end point of the path to the starting point of the rectangle, and then adds the
rectangle outline to the path.

The program in Listing 7-1 lets you create sample paths. Figures 7-7 and 7-8 show sample runs of the program.
You pick a shape maker from the combo box. The program contains shape makers for

Straight lines.

Rectangles, round rectangles, and ellipses.

Arcs (showing lines for the bounding rectangle and the start and end angles, in addition to the arc itself).

Polygons (using a GeneralPath).

Quadratic and cubic curves.

Use the mouse to adjust the control points. As you move them, the shape continuously repaints itself.

The program is a bit complex because it handles a multiplicity of shapes and supports dragging of the control
points.

An abstract superclass ShapeMaker encapsulates the commonality of the shape maker classes. Each shape has a

fixed number of control points that the user can move around. The getPointCount method returns that value.

The abstract method

Shape makeShape(Point2D[] points)

computes the actual shape, given the current positions of the control points. The toString method returns the

class name so that the ShapeMaker objects can simply be dumped into a JComboBox.

To enable dragging of the control points, the ShapePanel class handles both mouse and mouse motion events.

If the mouse is pressed on top of a rectangle, subsequent mouse drags move the rectangle.

The majority of the shape maker classes are simple—their makeShape methods just construct and return the

requested shape. However, the ArcMaker class needs to compute the distorted start and end angles.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Furthermore, to demonstrate that the computation is indeed correct, the returned shape is a GeneralPath

containing the arc itself, the bounding rectangle, and the lines from the center of the arc to the angle control
points (see Figure 7-9).

Figure 7-9. The ShapeTest program

Listing 7-1. ShapeTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.geom.*;

 4. import java.util.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program demonstrates the various 2D shapes.

 9. * @version 1.02 2007-08-16

 10. * @author Cay Horstmann

 11. */

 12. public class ShapeTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new ShapeTestFrame();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. /**

 29. * This frame contains a combo box to select a shape and a component to draw it.

 30. */

 31. class ShapeTestFrame extends JFrame

 32. {

 33. public ShapeTestFrame()

 34. {

 35. setTitle("ShapeTest");

 36. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 37.

 38. final ShapeComponent comp = new ShapeComponent();

 39. add(comp, BorderLayout.CENTER);

 40. final JComboBox comboBox = new JComboBox();

 41. comboBox.addItem(new LineMaker());

 42. comboBox.addItem(new RectangleMaker());

 43. comboBox.addItem(new RoundRectangleMaker());

 44. comboBox.addItem(new EllipseMaker());

 45. comboBox.addItem(new ArcMaker());

 46. comboBox.addItem(new PolygonMaker());

 47. comboBox.addItem(new QuadCurveMaker());

 48. comboBox.addItem(new CubicCurveMaker());

 49. comboBox.addActionListener(new ActionListener()

 50. {

 51. public void actionPerformed(ActionEvent event)

 52. {

 53. ShapeMaker shapeMaker = (ShapeMaker) comboBox.getSelectedItem();

 54. comp.setShapeMaker(shapeMaker);

 55. }

 56. });

 57. add(comboBox, BorderLayout.NORTH);

 58. comp.setShapeMaker((ShapeMaker) comboBox.getItemAt(0));

 59. }

 60.

 61. private static final int DEFAULT_WIDTH = 300;

 62. private static final int DEFAULT_HEIGHT = 300;

 63. }

 64.

 65. /**

 66. * This component draws a shape and allows the user to move the points that define it.

 67. */

 68. class ShapeComponent extends JComponent

 69. {

 70. public ShapeComponent()

 71. {

 72. addMouseListener(new MouseAdapter()

 73. {

 74. public void mousePressed(MouseEvent event)

 75. {

 76. Point p = event.getPoint();

 77. for (int i = 0; i < points.length; i++)

 78. {

 79. double x = points[i].getX() - SIZE / 2;

 80. double y = points[i].getY() - SIZE / 2;

 81. Rectangle2D r = new Rectangle2D.Double(x, y, SIZE, SIZE);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 82. if (r.contains(p))

 83. {

 84. current = i;

 85. return;

 86. }

 87. }

 88. }

 89.

 90. public void mouseReleased(MouseEvent event)

 91. {

 92. current = -1;

 93. }

 94. });

 95. addMouseMotionListener(new MouseMotionAdapter()

 96. {

 97. public void mouseDragged(MouseEvent event)

 98. {

 99. if (current == -1) return;

100. points[current] = event.getPoint();

101. repaint();

102. }

103. });

104. current = -1;

105. }

106.

107. /**

108. * Set a shape maker and initialize it with a random point set.

109. * @param aShapeMaker a shape maker that defines a shape from a point set

110. */

111. public void setShapeMaker(ShapeMaker aShapeMaker)

112. {

113. shapeMaker = aShapeMaker;

114. int n = shapeMaker.getPointCount();

115. points = new Point2D[n];

116. for (int i = 0; i < n; i++)

117. {

118. double x = generator.nextDouble() * getWidth();

119. double y = generator.nextDouble() * getHeight();

120. points[i] = new Point2D.Double(x, y);

121. }

122. repaint();

123. }

124.

125. public void paintComponent(Graphics g)

126. {

127. if (points == null) return;

128. Graphics2D g2 = (Graphics2D) g;

129. for (int i = 0; i < points.length; i++)

130. {

131. double x = points[i].getX() - SIZE / 2;

132. double y = points[i].getY() - SIZE / 2;

133. g2.fill(new Rectangle2D.Double(x, y, SIZE, SIZE));

134. }

135.

136. g2.draw(shapeMaker.makeShape(points));

137. }

138.

139. private Point2D[] points;

140. private static Random generator = new Random();

141. private static int SIZE = 10;

142. private int current;

143. private ShapeMaker shapeMaker;

144. }

145.

146. /**

147. * A shape maker can make a shape from a point set. Concrete subclasses must return a shape

148. * in the makeShape method.

149. */

150. abstract class ShapeMaker

151. {

152. /**

153. * Constructs a shape maker.

154. * @param aPointCount the number of points needed to define this shape.

155. */

156. public ShapeMaker(int aPointCount)

157. {

158. pointCount = aPointCount;

159. }

160.

161. /**

162. * Gets the number of points needed to define this shape.

163. * @return the point count

164. */

165. public int getPointCount()

166. {

167. return pointCount;

168. }

169.

170. /**

171. * Makes a shape out of the given point set.

172. * @param p the points that define the shape

173. * @return the shape defined by the points

174. */

175. public abstract Shape makeShape(Point2D[] p);

176.

177. public String toString()

178. {

179. return getClass().getName();

180. }

181.

182. private int pointCount;

183. }

184.

185. /**

186. * Makes a line that joins two given points.

187. */

188. class LineMaker extends ShapeMaker

189. {

190. public LineMaker()

191. {

192. super(2);

193. }

194.

195. public Shape makeShape(Point2D[] p)

196. {

197. return new Line2D.Double(p[0], p[1]);

198. }

199. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

200.

201. /**

202. * Makes a rectangle that joins two given corner points.

203. */

204. class RectangleMaker extends ShapeMaker

205. {

206. public RectangleMaker()

207. {

208. super(2);

209. }

210.

211. public Shape makeShape(Point2D[] p)

212. {

213. Rectangle2D s = new Rectangle2D.Double();

214. s.setFrameFromDiagonal(p[0], p[1]);

215. return s;

216. }

217. }

218.

219. /**

220. * Makes a round rectangle that joins two given corner points.

221. */

222. class RoundRectangleMaker extends ShapeMaker

223. {

224. public RoundRectangleMaker()

225. {

226. super(2);

227. }

228.

229. public Shape makeShape(Point2D[] p)

230. {

231. RoundRectangle2D s = new RoundRectangle2D.Double(0, 0, 0, 0, 20, 20);

232. s.setFrameFromDiagonal(p[0], p[1]);

233. return s;

234. }

235. }

236.

237. /**

238. * Makes an ellipse contained in a bounding box with two given corner points.

239. */

240. class EllipseMaker extends ShapeMaker

241. {

242. public EllipseMaker()

243. {

244. super(2);

245. }

246.

247. public Shape makeShape(Point2D[] p)

248. {

249. Ellipse2D s = new Ellipse2D.Double();

250. s.setFrameFromDiagonal(p[0], p[1]);

251. return s;

252. }

253. }

254.

255. /**

256. * Makes an arc contained in a bounding box with two given corner points, and with starting

257. * and ending angles given by lines emanating from the center of the bounding box and ending

258. * in two given points. To show the correctness of the angle computation, the returned shape

259. * contains the arc, the bounding box, and the lines.

260. */

261. class ArcMaker extends ShapeMaker

262. {

263. public ArcMaker()

264. {

265. super(4);

266. }

267.

268. public Shape makeShape(Point2D[] p)

269. {

270. double centerX = (p[0].getX() + p[1].getX()) / 2;

271. double centerY = (p[0].getY() + p[1].getY()) / 2;

272. double width = Math.abs(p[1].getX() - p[0].getX());

273. double height = Math.abs(p[1].getY() - p[0].getY());

274.

275. double skewedStartAngle = Math.toDegrees(Math.atan2(-(p[2].getY() - centerY)

276. * width, (p[2].getX() - centerX)

277. * height));

278. double skewedEndAngle = Math.toDegrees(Math.atan2(-(p[3].getY() - centerY)

279. * width, (p[3].getX() - centerX)

280. * height));

281. double skewedAngleDifference = skewedEndAngle - skewedStartAngle;

282. if (skewedStartAngle < 0) skewedStartAngle += 360;

283. if (skewedAngleDifference < 0) skewedAngleDifference += 360;

284.

285. Arc2D s = new Arc2D.Double(0, 0, 0, 0, skewedStartAngle, skewedAngleDifference,

286. Arc2D.OPEN);

287. s.setFrameFromDiagonal(p[0], p[1]);

288.

289. GeneralPath g = new GeneralPath();

290. g.append(s, false);

291. Rectangle2D r = new Rectangle2D.Double();

292. r.setFrameFromDiagonal(p[0], p[1]);

293. g.append(r, false);

294. Point2D center = new Point2D.Double(centerX, centerY);

295. g.append(new Line2D.Double(center, p[2]), false);

296. g.append(new Line2D.Double(center, p[3]), false);

297. return g;

298. }

299. }

300.

301. /**

302. * Makes a polygon defined by six corner points.

303. */

304. class PolygonMaker extends ShapeMaker

305. {

306. public PolygonMaker()

307. {

308. super(6);

309. }

310.

311. public Shape makeShape(Point2D[] p)

312. {

313. GeneralPath s = new GeneralPath();

314. s.moveTo((float) p[0].getX(), (float) p[0].getY());

315. for (int i = 1; i < p.length; i++)

316. s.lineTo((float) p[i].getX(), (float) p[i].getY());

317. s.closePath();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

318. return s;

319. }

320. }

321.

322. /**

323. * Makes a quad curve defined by two end points and a control point.

324. */

325. class QuadCurveMaker extends ShapeMaker

326. {

327. public QuadCurveMaker()

328. {

329. super(3);

330. }

331.

332. public Shape makeShape(Point2D[] p)

333. {

334. return new QuadCurve2D.Double(p[0].getX(), p[0].getY(), p[1].getX(), p[1].getY(), p[2]

335. .getX(), p[2].getY());

336. }

337. }

338.

339. /**

340. * Makes a cubic curve defined by two end points and two control points.

341. */

342. class CubicCurveMaker extends ShapeMaker

343. {

344. public CubicCurveMaker()

345. {

346. super(4);

347. }

348.

349. public Shape makeShape(Point2D[] p)

350. {

351. return new CubicCurve2D.Double(p[0].getX(), p[0].getY(), p[1].getX(), p[1].getY(), p[2]

352. .getX(), p[2].getY(), p[3].getX(), p[3].getY());

353. }

354. }

java.awt.geom.RoundRectangle2D.Double 1.2

RoundRectangle2D.Double(double x, double y, double width,

double height, double arcWidth, double arcHeight)

constructs a round rectangle with the given bounding rectangle and arc
dimensions. See Figure 7-4 for an explanation of the arcWidth and
arcHeight parameters.

java.awt.geom.Arc2D.Double 1.2

Arc2D.Double(double x, double y, double w, double h, double

startAngle, double arcAngle, int type)

constructs an arc with the given bounding rectangle, start, and arc angle
and arc type. The startAngle and arcAngle are explained on page 528.

The type is one of Arc2D.OPEN, Arc2D.PIE, and Arc2D.CHORD.

java.awt.geom.QuadCurve2D.Double 1.2

QuadCurve2D.Double(double x1, double y1, double ctrlx, double

ctrly, double x2, double y2)

constructs a quadratic curve from a start point, a control point, and an
end point.

java.awt.geom.CubicCurve2D.Double 1.2

CubicCurve2D.Double(double x1, double y1, double ctrlx1,

double ctrly1, double ctrlx2, double ctrly2, double x2,

double y2)

constructs a cubic curve from a start point, two control points, and an
end point.

java.awt.geom.GeneralPath 1.2

GeneralPath()

constructs an empty general path.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.geom.Path2D.Float 6

void moveTo(float x, float y)

makes (x, y) the current point, that is, the starting point of the next

segment.

void lineTo(float x, float y)

void quadTo(float ctrlx, float ctrly, float x, float y)

void curveTo(float ctrl1x, float ctrl1y, float ctrl2x, float

ctrl2y, float x, float y)

draws a line, quadratic curve, or cubic curve from the current point to
the end point (x, y), and makes that end point the current point.

java.awt.geom.Path2D 6

void append(Shape s, boolean connect)

adds the outline of the given shape to the general path. If connect is

true, the current point of the general path is connected to the starting
point of the added shape by a straight line.

void closePath()

closes the path by drawing a straight line from the current point to the
first point in the path.

Areas

In the preceding section, you saw how you can specify complex shapes by constructing general paths that are
composed of lines and curves. By using a sufficient number of lines and curves, you can draw essentially any
shape. For example, the shapes of characters in the fonts that you see on the screen and on your printouts are
all made up of lines and cubic curves.

Occasionally, it is easier to describe a shape by composing it from areas, such as rectangles, polygons, or
ellipses. The Java 2D API supports four constructive area geometry operations that combine two areas into a
new area:

add— The combined area contains all points that are in the first or the second area.

subtract— The combined area contains all points that are in the first but not the second area.

intersect— The combined area contains all points that are in the first and the second area.

exclusiveOr— The combined area contains all points that are in either the first or the second area, but

not in both.

Figure 7-10 shows these operations.

Figure 7-10. Constructive area geometry operations

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

To construct a complex area, you start with a default area object.

Area a = new Area();

Then, you combine the area with any shape.

a.add(new Rectangle2D.Double(. . .));

a.subtract(path);
. . .

The Area class implements the Shape interface. You can stroke the boundary of the area with the draw method

or paint the interior with the fill method of the Graphics2D class.

java.awt.geom.Area

void add(Area other)

void subtract(Area other)

void intersect(Area other)

void exclusiveOr(Area other)

carries out the constructive area geometry operation with this area and
the other area and sets this area to the result.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Strokes

The draw operation of the Graphics2D class draws the boundary of a shape by using the currently selected

stroke. By default, the stroke is a solid line that is 1 pixel wide. You can select a different stroke by calling the
setStroke method. You supply an object of a class that implements the Stroke interface. The Java 2D API

defines only one such class, called BasicStroke. In this section, we look at the capabilities of the BasicStroke

class.

You can construct strokes of arbitrary thickness. For example, here is how you draw lines that are 10 pixels
wide.

g2.setStroke(new BasicStroke(10.0F));

g2.draw(new Line2D.Double(. . .));

When a stroke is more than a pixel thick, then the end of the stroke can have different styles. Figure 7-11 shows
these so-called end cap styles. You have three choices:

A butt cap simply ends the stroke at its end point.

A round cap adds a half-circle to the end of the stroke.

A square cap adds a half-square to the end of the stroke.

Figure 7-11. End cap styles

When two thick strokes meet, there are three choices for the join style (see Figure 7-12).

A bevel join joins the strokes with a straight line that is perpendicular to the bisector of the angle between
the two strokes.

A round join extends each stroke to have a round cap.

A miter join extends both strokes by adding a "spike."

Figure 7-12. Join styles

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The miter join is not suitable for lines that meet at small angles. If two lines join with an angle that is less than
the miter limit, then a bevel join is used instead. That usage prevents extremely long spikes. By default, the
miter limit is 10 degrees.

You specify these choices in the BasicStroke constructor, for example:

Code View:
g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND));

g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_BUTT, BasicStroke.JOIN_MITER,

 15.0F /* miter limit */));

Finally, you can specify dashed lines by setting a dash pattern. In the program in Listing 7-2, you can select a
dash pattern that spells out SOS in Morse code. The dash pattern is a float[] array of numbers that contains

the lengths of the "on" and "off" strokes (see Figure 7-13).

Figure 7-13. A dash pattern

You specify the dash pattern and a dash phase when constructing the BasicStroke. The dash phase indicates
where in the dash pattern each line should start. Normally, you set this value to 0.

Code View:
float[] dashPattern = { 10, 10, 10, 10, 10, 10, 30, 10, 30, ... };

g2.setStroke(new BasicStroke(10.0F, BasicStroke.CAP_BUTT, BasicStroke.JOIN_MITER,
 10.0F /* miter limit */, dashPattern, 0 /* dash phase */));

Note

End cap styles are applied to the ends of each dash in a dash pattern.

The program in Listing 7-2 lets you specify end cap styles, join styles, and dashed lines (see Figure 7-14). You
can move the ends of the line segments to test the miter limit: Select the miter join, then move the line
segment to form a very acute angle. You will see the miter join turn into a bevel join.

Figure 7-14. The StrokeTest program

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The program is similar to the program in Listing 7-1. The mouse listener remembers if you click on the end
point of a line segment, and the mouse motion listener monitors the dragging of the end point. A set of radio
buttons signal the user choices for the end cap style, join style, and solid or dashed line. The paintComponent

method of the StrokePanel class constructs a GeneralPath consisting of the two line segments that join the

three points that the user can move with the mouse. It then constructs a BasicStroke, according to the

selections that the user made, and finally draws the path.

Listing 7-2. StrokeTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.geom.*;

 4. import javax.swing.*;

 5.

 6. /**

 7. * This program demonstrates different stroke types.

 8. * @version 1.03 2007-08-16

 9. * @author Cay Horstmann

 10. */

 11. public class StrokeTest

 12. {

 13. public static void main(String[] args)

 14. {

 15. EventQueue.invokeLater(new Runnable()

 16. {

 17. public void run()

 18. {

 19. JFrame frame = new StrokeTestFrame();

 20. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 21. frame.setVisible(true);

 22. }

 23. });

 24. }

 25. }

 26.

 27. /**

 28. * This frame lets the user choose the cap, join, and line style, and shows the resulting

 29. * stroke.

 30. */

 31. class StrokeTestFrame extends JFrame

 32. {

 33. public StrokeTestFrame()

 34. {

 35. setTitle("StrokeTest");

 36. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 37.

 38. canvas = new StrokeComponent();

 39. add(canvas, BorderLayout.CENTER);

 40.

 41. buttonPanel = new JPanel();

 42. buttonPanel.setLayout(new GridLayout(3, 3));

 43. add(buttonPanel, BorderLayout.NORTH);

 44.

 45. ButtonGroup group1 = new ButtonGroup();

 46. makeCapButton("Butt Cap", BasicStroke.CAP_BUTT, group1);

 47. makeCapButton("Round Cap", BasicStroke.CAP_ROUND, group1);

 48. makeCapButton("Square Cap", BasicStroke.CAP_SQUARE, group1);

 49.

 50. ButtonGroup group2 = new ButtonGroup();

 51. makeJoinButton("Miter Join", BasicStroke.JOIN_MITER, group2);

 52. makeJoinButton("Bevel Join", BasicStroke.JOIN_BEVEL, group2);

 53. makeJoinButton("Round Join", BasicStroke.JOIN_ROUND, group2);

 54.

 55. ButtonGroup group3 = new ButtonGroup();

 56. makeDashButton("Solid Line", false, group3);

 57. makeDashButton("Dashed Line", true, group3);

 58. }

 59.

 60. /**

 61. * Makes a radio button to change the cap style.

 62. * @param label the button label

 63. * @param style the cap style

 64. * @param group the radio button group

 65. */

 66. private void makeCapButton(String label, final int style, ButtonGroup group)

 67. {

 68. // select first button in group

 69. boolean selected = group.getButtonCount() == 0;

 70. JRadioButton button = new JRadioButton(label, selected);

 71. buttonPanel.add(button);

 72. group.add(button);

 73. button.addActionListener(new ActionListener()

 74. {

 75. public void actionPerformed(ActionEvent event)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 76. {

 77. canvas.setCap(style);

 78. }

 79. });

 80. }

 81.

 82. /**

 83. * Makes a radio button to change the join style.

 84. * @param label the button label

 85. * @param style the join style

 86. * @param group the radio button group

 87. */

 88. private void makeJoinButton(String label, final int style, ButtonGroup group)

 89. {

 90. // select first button in group

 91. boolean selected = group.getButtonCount() == 0;

 92. JRadioButton button = new JRadioButton(label, selected);

 93. buttonPanel.add(button);

 94. group.add(button);

 95. button.addActionListener(new ActionListener()

 96. {

 97. public void actionPerformed(ActionEvent event)

 98. {

 99. canvas.setJoin(style);

100. }

101. });

102. }

103.

104. /**

105. * Makes a radio button to set solid or dashed lines

106. * @param label the button label

107. * @param style false for solid, true for dashed lines

108. * @param group the radio button group

109. */

110. private void makeDashButton(String label, final boolean style, ButtonGroup group)

111. {

112. // select first button in group

113. boolean selected = group.getButtonCount() == 0;

114. JRadioButton button = new JRadioButton(label, selected);

115. buttonPanel.add(button);

116. group.add(button);

117. button.addActionListener(new ActionListener()

118. {

119. public void actionPerformed(ActionEvent event)

120. {

121. canvas.setDash(style);

122. }

123. });

124. }

125.

126. private StrokeComponent canvas;

127. private JPanel buttonPanel;

128.

129. private static final int DEFAULT_WIDTH = 400;

130. private static final int DEFAULT_HEIGHT = 400;

131. }

132.

133. /**

134. * This component draws two joined lines, using different stroke objects, and allows the

135. * user to drag the three points defining the lines.

136. */

137. class StrokeComponent extends JComponent

138. {

139. public StrokeComponent()

140. {

141. addMouseListener(new MouseAdapter()

142. {

143. public void mousePressed(MouseEvent event)

144. {

145. Point p = event.getPoint();

146. for (int i = 0; i < points.length; i++)

147. {

148. double x = points[i].getX() - SIZE / 2;

149. double y = points[i].getY() - SIZE / 2;

150. Rectangle2D r = new Rectangle2D.Double(x, y, SIZE, SIZE);

151. if (r.contains(p))

152. {

153. current = i;

154. return;

155. }

156. }

157. }

158.

159. public void mouseReleased(MouseEvent event)

160. {

161. current = -1;

162. }

163. });

164.

165. addMouseMotionListener(new MouseMotionAdapter()

166. {

167. public void mouseDragged(MouseEvent event)

168. {

169. if (current == -1) return;

170. points[current] = event.getPoint();

171. repaint();

172. }

173. });

174.

175. points = new Point2D[3];

176. points[0] = new Point2D.Double(200, 100);

177. points[1] = new Point2D.Double(100, 200);

178. points[2] = new Point2D.Double(200, 200);

179. current = -1;

180. width = 8.0F;

181. }

182.

183. public void paintComponent(Graphics g)

184. {

185. Graphics2D g2 = (Graphics2D) g;

186. GeneralPath path = new GeneralPath();

187. path.moveTo((float) points[0].getX(), (float) points[0].getY());

188. for (int i = 1; i < points.length; i++)

189. path.lineTo((float) points[i].getX(), (float) points[i].getY());

190. BasicStroke stroke;

191. if (dash)

192. {

193. float miterLimit = 10.0F;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

194. float[] dashPattern = { 10F, 10F, 10F, 10F, 10F, 10F, 30F, 10F, 30F, 10F, 30F, 10F,

195. 10F, 10F, 10F, 10F, 10F, 30F };

196. float dashPhase = 0;

197. stroke = new BasicStroke(width, cap, join, miterLimit, dashPattern, dashPhase);

198. }

199. else stroke = new BasicStroke(width, cap, join);

200. g2.setStroke(stroke);

201. g2.draw(path);

202. }

203.

204. /**

205. * Sets the join style.

206. * @param j the join style

207. */

208. public void setJoin(int j)

209. {

210. join = j;

211. repaint();

212. }

213.

214. /**

215. * Sets the cap style.

216. * @param c the cap style

217. */

218. public void setCap(int c)

219. {

220. cap = c;

221. repaint();

222. }

223.

224. /**

225. * Sets solid or dashed lines

226. * @param d false for solid, true for dashed lines

227. */

228. public void setDash(boolean d)

229. {

230. dash = d;

231. repaint();

232. }

233.

234. private Point2D[] points;

235. private static int SIZE = 10;

236. private int current;

237. private float width;

238. private int cap;

239. private int join;

240. private boolean dash;

241. }

java.awt.Graphics2D 1.2

void setStroke(Stroke s)

sets the stroke of this graphics context to the given object that
implements the Stroke interface.

java.awt.BasicStroke 1.2

BasicStroke(float width)

BasicStroke(float width, int cap, int join)

BasicStroke(float width, int cap, int join, float miterlimit)

BasicStroke(float width, int cap, int join, float miterlimit,

float[] dash, float dashPhase)

constructs a stroke object with the given attributes.

Parameters: width The width of the pen

 cap The end cap style, one of CAP_BUTT, CAP_ROUND, and

CAP_SQUARE

 join The join style, one of JOIN_BEVEL, JOIN_MITER, and

JOIN_ROUND

 miterlimit The angle, in degrees, below which a miter join is
rendered as a bevel join

 dash An array of the lengths of the alternating filled and blank
portions of a dashed stroke

 dashPhase The "phase" of the dash pattern; a segment of this
length, preceding the starting point of the stroke, is
assumed to have the dash pattern already applied

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Paint

When you fill a shape, its inside is covered with paint. You use the setPaint method to set the paint style to an

object with a class that implements the Paint interface. The Java 2D API provides three such classes:

The Color class implements the Paint interface. To fill shapes with a solid color, simply call setPaint

with a Color object, such as

g2.setPaint(Color.red);

The GradientPaint class varies colors by interpolating between two given color values (see Figure 7-15).

Figure 7-15. Gradient paint

The TexturePaint class fills an area with repetitions of an image (see Figure 7-16).

Figure 7-16. Texture paint

You construct a GradientPaint object by specifying two points and the colors that you want at these two

points.

g2.setPaint(new GradientPaint(p1, Color.RED, p2, Color.YELLOW));

Colors are interpolated along the line joining the two points. Colors are constant along lines that are
perpendicular to that joining line. Points beyond an end point of the line are given the color at the end point.

Alternatively, if you call the GradientPaint constructor with true for the cyclic parameter,

g2.setPaint(new GradientPaint(p1, Color.RED, p2, Color.YELLOW, true));

then the color variation cycles and keeps varying beyond the end points.

To construct a TexturePaint object, you specify a BufferedImage and an anchor rectangle.

g2.setPaint(new TexturePaint(bufferedImage, anchorRectangle));

We introduce the BufferedImage class later in this chapter when we discuss images in detail. The simplest way

of obtaining a buffered image is to read an image file:

bufferedImage = ImageIO.read(new File("blue-ball.gif"));

The anchor rectangle is extended indefinitely in x- and y-directions to tile the entire coordinate plane. The
image is scaled to fit into the anchor and then replicated into each tile.

java.awt.Graphics2D 1.2

void setPaint(Paint s)

sets the paint of this graphics context to the given object that
implements the Paint interface.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.GradientPaint 1.2

GradientPaint(float x1, float y1, Color color1, float x2,

float y2, Color color2)

GradientPaint(float x1, float y1, Color color1, float x2,

float y2, Color color2, boolean cyclic)

GradientPaint(Point2D p1, Color color1, Point2D p2, Color

color2)

GradientPaint(Point2D p1, Color color1, Point2D p2, Color

color2, boolean cyclic)

constructs a gradient paint object that fills shapes with color such that
the start point is colored with color1, the end point is colored with

color2, and the colors in between are linearly interpolated. Colors are

constant along lines that are perpendicular to the line joining the start
and the end point. By default, the gradient paint is not cyclic; that is,
points beyond the start and end points are colored with the same color
as the start and end point. If the gradient paint is cyclic, then colors
continue to be interpolated, first returning to the starting point color and
then repeating indefinitely in both directions.

java.awt.TexturePaint 1.2

TexturePaint(BufferedImage texture, Rectangle2D anchor)

creates a texture paint object. The anchor rectangle defines the tiling of
the space to be painted; it is repeated indefinitely in x- and y-directions,
and the texture image is scaled to fill each tile.

Coordinate Transformations

Suppose you need to draw an object such as an automobile. You know, from the manufacturer's specifications,
the height, wheelbase, and total length. You could, of course, figure out all pixel positions, assuming some
number of pixels per meter. However, there is an easier way: You can ask the graphics context to carry out the
conversion for you.

Code View:
g2.scale(pixelsPerMeter, pixelsPerMeter);

g2.draw(new Line2D.Double(coordinates in meters)); // converts to pixels and draws scaled line

The scale method of the Graphics2D class sets the coordinate transformation of the graphics context to a

scaling transformation. That transformation changes user coordinates (user-specified units) to device
coordinates (pixels). Figure 7-17 shows how the transformation works.

Figure 7-17. User and device coordinates

[View full size image]

Coordinate transformations are very useful in practice. They allow you to work with convenient coordinate
values. The graphics context takes care of the dirty work of transforming them to pixels.

There are four fundamental transformations.

Scaling: blowing up, or shrinking, all distances from a fixed point.

Rotation: rotating all points around a fixed center.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Translation: moving all points by a fixed amount.

Shear: leaving one line fixed and "sliding" the lines parallel to it by an amount that is proportional to the
distance from the fixed line.

Figure 7-18 shows how these four fundamental transformations act on a unit square.

Figure 7-18. The fundamental transformations

[View full size image]

The scale, rotate, translate, and shear methods of the Graphics2D class set the coordinate transformation

of the graphics context to one of these fundamental transformations.

You can compose the transformations. For example, you might want to rotate shapes and double their size.
Then, you supply both a rotation and a scaling transformation.

g2.rotate(angle);

g2.scale(2, 2);

g2.draw(. . .);

In this case, it does not matter in which order you supply the transformations. However, with most
transformations, order does matter. For example, if you want to rotate and shear, then it makes a difference
which of the transformations you supply first. You need to figure out what your intention is. The graphics
context will apply the transformations in the opposite order in which you supplied them. That is, the last
transformation that you supply is applied first.

You can supply as many transformations as you like. For example, consider the following sequence of
transformations:

g2.translate(x, y);

g2.rotate(a);
g2.translate(-x, -y);

The last transformation (which is applied first) moves the point (x, y) to the origin. The second transformation

rotates with an angle a around the origin. The final transformation moves the origin back to (x, y). The overall

effect is a rotation with center point (x, y)—see Figure 7-19. Because rotating about a point other than the

origin is such a common operation, there is a shortcut:

g2.rotate(a, x, y);

Figure 7-19. Composing transformations

If you know some matrix theory, you are probably aware that all rotations, translations, scalings, shears, and
their compositions can be expressed by matrix transformations of the form:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Such a transformation is called an affine transformation. In the Java 2D API, the AffineTransform class

describes such a transformation. If you know the components of a particular transformation matrix, you can
construct it directly as

AffineTransform t = new AffineTransform(a, b, c, d, e, f);

Additionally, the factory methods getRotateInstance, getScaleInstance, getTranslateInstance, and

getShearInstance construct the matrices that represent these transformation types. For example, the call

t = AffineTransform.getScaleInstance(2.0F, 0.5F);

returns a transformation that corresponds to the matrix

Finally, the instance methods setToRotation, setToScale, setToTranslation, and setToShear set a
transformation object to a new type. Here is an example:

t.setToRotation(angle); // sets t to a rotation

You can set the coordinate transformation of the graphics context to an AffineTransform object.

g2.setTransform(t); // replaces current transformation

However, in practice, you shouldn't call the setTransform operation, as it replaces any existing transformation

that the graphics context may have. For example, a graphics context for printing in landscape mode already
contains a 90-degree rotation transformation. If you call setTransform, you obliterate that rotation. Instead,

call the transform method.

g2.transform(t); // composes current transformation with t

It composes the existing transformation with the new AffineTransform object.

If you just want to apply a transformation temporarily, then you first get the old transformation, compose with
your new transformation, and finally restore the old transformation when you are done.

AffineTransform oldTransform = g2.getTransform(); // save old transform
g2.transform(t); // apply temporary transform // now draw on g2

g2.setTransform(oldTransform); // restore old transform

java.awt.geom.AffineTransform 1.2

AffineTransform(double a, double b, double c, double d,

double e, double f)

AffineTransform(float a, float b, float c, float d, float e,

float f)

constructs the affine transform with matrix

AffineTransform(double[] m)

AffineTransform(float[] m)

constructs the affine transform with matrix

static AffineTransform getRotateInstance(double a)

creates a rotation around the origin by the angle a (in radians). The

transformation matrix is

If a is between 0 and π / 2, the rotation moves the positive x-axis

toward the positive y-axis.

static AffineTransform getRotateInstance(double a, double x,

double y)

creates a rotation around the point (x,y) by the angle a (in radians).

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

static AffineTransform getScaleInstance(double sx, double sy)

creates a scaling transformation that scales the x-axis by sx and the y-

axis by sy. The transformation matrix is

static AffineTransform getShearInstance(double shx, double

shy)

creates a shear transformation that shears the x-axis by shx and the y-

axis by shy. The transformation matrix is

static AffineTransform getTranslateInstance(double tx, double

ty)

creates a translation that moves the x-axis by tx and the y-axis by ty.
The transformation matrix is

void setToRotation(double a)

void setToRotation(double a, double x, double y)

void setToScale(double sx, double sy)

void setToShear(double sx, double sy)

void setToTranslation(double tx, double ty)

sets this affine transformation to a basic transformation with the given

parameters. See the getXxxInstance method for an explanation of the

basic transformations and their parameters.

java.awt.Graphics2D 1.2

void setTransform(AffineTransform t)

replaces the existing coordinate transformation of this graphics context
with t.

void transform(AffineTransform t)

composes the existing coordinate transformation of this graphics context
with t.

void rotate(double a)

void rotate(double a, double x, double y)

void scale(double sx, double sy)

void shear(double sx, double sy)

void translate(double tx, double ty)

composes the existing coordinate transformation of this graphics context
with a basic transformation with the given parameters. See the
AffineTransform.getXxxInstance method for an explanation of the

basic transformations and their parameters.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Clipping

By setting a clipping shape in the graphics context, you constrain all drawing operations to the interior of that
clipping shape.

g2.setClip(clipShape); // but see below

g2.draw(shape); // draws only the part that falls inside the clipping shape

However, in practice, you don't want to call the setClip operation, because it replaces any existing clipping

shape that the graphics context might have. For example, as you will see later in this chapter, a graphics
context for printing comes with a clip rectangle that ensures that you don't draw on the margins. Instead, call
the clip method.

g2.clip(clipShape); // better

The clip method intersects the existing clipping shape with the new one that you supply.

If you just want to apply a clipping area temporarily, then you should first get the old clip, then add your new
clip, and finally restore the old clip when you are done:

Shape oldClip = g2.getClip(); // save old clip

g2.clip(clipShape); // apply temporary clip

draw on g2

g2.setClip(oldClip); // restore old clip

In Figure 7-20, we show off the clipping capability with a rather dramatic drawing of a line pattern that is
clipped by a complex shape, namely, the outline of a set of letters.

Figure 7-20. Using letter shapes to clip a line pattern

To obtain character outlines, you need a font render context. Use the getFontRenderContext method of the

Graphics2D class.

FontRenderContext context = g2.getFontRenderContext();

Next, using a string, a font, and the font render context, create a TextLayout object:

TextLayout layout = new TextLayout("Hello", font, context);

This text layout object describes the layout of a sequence of characters, as rendered by a particular font render
context. The layout depends on the font render context—the same characters will look different on a screen or a
printer.

More important for our application, the getOutline method returns a Shape object that describes the shape of

the outline of the characters in the text layout. The outline shape starts at the origin (0, 0), which might not be
what you want. In that case, supply an affine transform to the getOutline operation that specifies where you

would like the outline to appear.

AffineTransform transform = AffineTransform.getTranslateInstance(0, 100);

Shape outline = layout.getOutline(transform);

Then, append the outline to the clipping shape.

GeneralPath clipShape = new GeneralPath();

clipShape.append(outline, false);

Finally, set the clipping shape and draw a set of lines. The lines appear only inside the character boundaries.

g2.setClip(clipShape);
Point2D p = new Point2D.Double(0, 0);

for (int i = 0; i < NLINES; i++)

{

 double x = . . .;

 double y = . . .;

 Point2D q = new Point2D.Double(x, y);

 g2.draw(new Line2D.Double(p, q)); // lines are clipped
}

You can see the complete code in Listing 7-8 on page 607.

java.awt.Graphics 1.0

void setClip(Shape s) 1.2

sets the current clipping shape to the shape s.

Shape getClip() 1.2

returns the current clipping shape.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.Graphics2D 1.2

void clip(Shape s)

intersects the current clipping shape with the shape s.

FontRenderContext getFontRenderContext()

returns a font render context that is necessary for constructing
TextLayout objects.

java.awt.font.TextLayout 1.2

TextLayout(String s, Font f, FontRenderContext context)

constructs a text layout object from a given string and font, using the
font render context to obtain font properties for a particular device.

float getAdvance()

returns the width of this text layout.

float getAscent()

float getDescent()

returns the height of this text layout above and below the baseline.

float getLeading()

returns the distance between successive lines in the font used by this
text layout.

Transparency and Composition

In the standard RGB color model, every color is described by its red, green, and blue components. However, it
is also convenient to describe areas of an image that are transparent or partially transparent. When you
superimpose an image onto an existing drawing, the transparent pixels do not obscure the pixels under them at
all, whereas partially transparent pixels are mixed with the pixels under them. Figure 7-21 shows the effect of
overlaying a partially transparent rectangle on an image. You can still see the details of the image shine through
from under the rectangle.

Figure 7-21. Overlaying a partially transparent rectangle on an image

In the Java 2D API, transparency is described by an alpha channel. Each pixel has, in addition to its red, green,
and blue color components, an alpha value between 0 (fully transparent) and 1 (fully opaque). For example, the
rectangle in Figure 7-21 was filled with a pale yellow color with 50% transparency:

new Color(0.7F, 0.7F, 0.0F, 0.5F);

Now let us look at what happens if you superimpose two shapes. You need to blend or compose the colors and
alpha values of the source and destination pixels. Porter and Duff, two researchers in the field of computer
graphics, have formulated 12 possible composition rules for this blending process. The Java 2D API implements
all of these rules. Before we go any further, we want to point out that only two of these rules have practical
significance. If you find the rules arcane or confusing, just use the SRC_OVER rule. It is the default rule for a

Graphics2D object, and it gives the most intuitive results.

Here is the theory behind the rules. Suppose you have a source pixel with alpha value aS. In the image, there is
already a destination pixel with alpha value aD. You want to compose the two. The diagram in Figure 7-22
shows how to design a composition rule.

Figure 7-22. Designing a composition rule

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Porter and Duff consider the alpha value as the probability that the pixel color should be used. From the
perspective of the source, there is a probability aS that it wants to use the source color and a probability of 1 -
aS that it doesn't care. The same holds for the destination. When composing the colors, let us assume that the
probabilities are independent. Then there are four cases, as shown in Figure 7-22. If the source wants to use
the source color and the destination doesn't care, then it seems reasonable to let the source have its way.
That's why the upper-right corner of the diagram is labeled "S." The probability for that event is aS·(1 - aD).
Similarly, the lower-left corner is labeled "D." What should one do if both destination and source would like to
select their color? That's where the Porter–Duff rules come in. If we decide that the source is more important,
then we label the lower-right corner with an "S" as well. That rule is called SRC_OVER. In that rule, you combine

the source colors with a weight of aS and the destination colors with a weight of (1 - aS)·aD.

The visual effect is a blending of the source and destination, with preference given to the source. In particular, if
aS is 1, then the destination color is not taken into account at all. If aS is 0, then the source pixel is completely
transparent and the destination color is unchanged.

The other rules depend on what letters you put in the boxes of the probability diagram. Table 7-1 and Figure 7-
23 show all rules that are supported by the Java 2D API. The images in the figure show the results of the rules
when a rectangular source region with an alpha of 0.75 is combined with an elliptical destination region with an
alpha of 1.0.

Table 7-1. The Porter–Duff Composition Rules

Rule Explanation

CLEAR Source clears destination.

SRC Source overwrites destination and empty pixels.

DST Source does not affect destination.

SRC_OVER Source blends with destination and overwrites empty pixels.

DST_OVER Source does not affect destination and overwrites empty pixels.

Rule Explanation

SRC_IN Source overwrites destination.

SRC_OUT Source clears destination and overwrites empty pixels.

DST_IN Source alpha modifies destination.

DST_OUT Source alpha complement modifies destination.

SRC_ATOP Source blends with destination.

DST_ATOP Source alpha modifies destination. Source overwrites empty pixels.

XOR Source alpha complement modifies destination. Source overwrites empty
pixels.

Figure 7-23. Porter–Duff composition rules

As you can see, most of the rules aren't very useful. Consider, as an extreme case, the DST_IN rule. It doesn't

take the source color into account at all, but it uses the alpha of the source to affect the destination. The SRC

rule is potentially useful—it forces the source color to be used, turning off blending with the destination.

For more information on the Porter–Duff rules, see, for example, Computer Graphics: Principles and Practice,
Second Edition in C by James D. Foley, Andries van Dam, Steven K. Feiner, et al.

You use the setComposite method of the Graphics2D class to install an object of a class that implements the

Composite interface. The Java 2D API supplies one such class, AlphaComposite, that implements all the

SRC_IN Source overwrites destination.

SRC_OUT Source clears destination and overwrites empty pixels.

DST_IN Source alpha modifies destination.

DST_OUT Source alpha complement modifies destination.

SRC_ATOP Source blends with destination.

DST_ATOP Source alpha modifies destination. Source overwrites empty pixels.

XOR Source alpha complement modifies destination. Source overwrites empty
pixels.

Figure 7-23. Porter–Duff composition rules

As you can see, most of the rules aren't very useful. Consider, as an extreme case, the DST_IN rule. It doesn't

take the source color into account at all, but it uses the alpha of the source to affect the destination. The SRC

rule is potentially useful—it forces the source color to be used, turning off blending with the destination.

For more information on the Porter–Duff rules, see, for example, Computer Graphics: Principles and Practice,
Second Edition in C by James D. Foley, Andries van Dam, Steven K. Feiner, et al.

You use the setComposite method of the Graphics2D class to install an object of a class that implements the

Composite interface. The Java 2D API supplies one such class, AlphaComposite, that implements all the

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Porter–Duff rules in Figure 7-23.

The factory method getInstance of the AlphaComposite class yields an AlphaComposite object. You supply the

rule and the alpha value to be used for source pixels. For example, consider the following code:

int rule = AlphaComposite.SRC_OVER;

float alpha = 0.5f;

g2.setComposite(AlphaComposite.getInstance(rule, alpha));

g2.setPaint(Color.blue);

g2.fill(rectangle);

The rectangle is then painted with blue color and an alpha value of 0.5. Because the composition rule is
SRC_OVER, it is transparently overlaid on the existing image.

The program in Listing 7-3 lets you explore these composition rules. Pick a rule from the combo box and use the
slider to set the alpha value of the AlphaComposite object.

Furthermore, the program displays a verbal description of each rule. Note that the descriptions are computed
from the composition rule diagrams. For example, a "DS" in the second row stands for "blends with destination."

The program has one important twist. There is no guarantee that the graphics context that corresponds to the
screen has an alpha channel. (In fact, it generally does not.) When pixels are deposited to a destination without
an alpha channel, then the pixel colors are multiplied with the alpha value and the alpha value is discarded.
Because several of the Porter–Duff rules use the alpha values of the destination, a destination alpha channel is
important. For that reason, we use a buffered image with the ARGB color model to compose the shapes. After
the images have been composed, we draw the resulting image to the screen.

Code View:
BufferedImage image = new BufferedImage(getWidth(), getHeight(), BufferedImage.TYPE_INT_ARGB);

Graphics2D gImage = image.createGraphics();
// now draw to gImage

g2.drawImage(image, null, 0, 0);

The complete code for the program is shown in Listing 7-3. Figure 7-24 shows the screen display. As you run
the program, move the alpha slider from left to right to see the effect on the composed shapes. In particular,
note that the only difference between the DST_IN and DST_OUT rules is how the destination (!) color changes

when you change the source alpha.

Figure 7-24. The CompositeTest program

Listing 7-3. CompositeTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.image.*;

 4. import java.awt.geom.*;

 5. import javax.swing.*;

 6. import javax.swing.event.*;

 7.

 8. /**

 9. * This program demonstrates the Porter-Duff composition rules.

 10. * @version 1.03 2007-08-16

 11. * @author Cay Horstmann

 12. */

 13. public class CompositeTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. JFrame frame = new CompositeTestFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame contains a combo box to choose a composition rule, a slider to change the

 31. * source alpha channel, and a component that shows the composition.

 32. */

 33. class CompositeTestFrame extends JFrame

 34. {

 35. public CompositeTestFrame()

 36. {

 37. setTitle("CompositeTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. canvas = new CompositeComponent();

 41. add(canvas, BorderLayout.CENTER);

 42.

 43. ruleCombo = new JComboBox(new Object[] { new Rule("CLEAR", " ", " "),

 44. new Rule("SRC", " S", " S"), new Rule("DST", " ", "DD"),

 45. new Rule("SRC_OVER", " S", "DS"), new Rule("DST_OVER", " S", "DD"),

 46. new Rule("SRC_IN", " ", " S"), new Rule("SRC_OUT", " S", " "),

 47. new Rule("DST_IN", " ", " D"), new Rule("DST_OUT", " ", "D "),

 48. new Rule("SRC_ATOP", " ", "DS"), new Rule("DST_ATOP", " S", " D"),

 49. new Rule("XOR", " S", "D "), });

 50. ruleCombo.addActionListener(new ActionListener()

 51. {

 52. public void actionPerformed(ActionEvent event)

 53. {

 54. Rule r = (Rule) ruleCombo.getSelectedItem();

 55. canvas.setRule(r.getValue());

 56. explanation.setText(r.getExplanation());

 57. }

 58. });

 59.

 60. alphaSlider = new JSlider(0, 100, 75);

 61. alphaSlider.addChangeListener(new ChangeListener()

 62. {

 63. public void stateChanged(ChangeEvent event)

 64. {

 65. canvas.setAlpha(alphaSlider.getValue());

 66. }

 67. });

 68. JPanel panel = new JPanel();

 69. panel.add(ruleCombo);

 70. panel.add(new JLabel("Alpha"));

 71. panel.add(alphaSlider);

 72. add(panel, BorderLayout.NORTH);

 73.

 74. explanation = new JTextField();

 75. add(explanation, BorderLayout.SOUTH);

 76.

 77. canvas.setAlpha(alphaSlider.getValue());

 78. Rule r = (Rule) ruleCombo.getSelectedItem();

 79. canvas.setRule(r.getValue());

 80. explanation.setText(r.getExplanation());

 81. }

 82.

 83. private CompositeComponent canvas;

 84. private JComboBox ruleCombo;

 85. private JSlider alphaSlider;

 86. private JTextField explanation;

 87. private static final int DEFAULT_WIDTH = 400;

 88. private static final int DEFAULT_HEIGHT = 400;

 89. }

 90.

 91. /**

 92. * This class describes a Porter-Duff rule.

 93. */

 94. class Rule

 95. {

 96. /**

 97. * Constructs a Porter-Duff rule

 98. * @param n the rule name

 99. * @param pd1 the first row of the Porter-Duff square

100. * @param pd2 the second row of the Porter-Duff square

101. */

102. public Rule(String n, String pd1, String pd2)

103. {

104. name = n;

105. porterDuff1 = pd1;

106. porterDuff2 = pd2;

107. }

108.

109. /**

110. * Gets an explanation of the behavior of this rule.

111. * @return the explanation

112. */

113. public String getExplanation()

114. {

115. StringBuilder r = new StringBuilder("Source ");

116. if (porterDuff2.equals(" ")) r.append("clears");

117. if (porterDuff2.equals(" S")) r.append("overwrites");

118. if (porterDuff2.equals("DS")) r.append("blends with");

119. if (porterDuff2.equals(" D")) r.append("alpha modifies");

120. if (porterDuff2.equals("D ")) r.append("alpha complement modifies");

121. if (porterDuff2.equals("DD")) r.append("does not affect");

122. r.append(" destination");

123. if (porterDuff1.equals(" S")) r.append(" and overwrites empty pixels");

124. r.append(".");

125. return r.toString();

126. }

127.

128. public String toString()

129. {

130. return name;

131. }

132.

133. /**

134. * Gets the value of this rule in the AlphaComposite class

135. * @return the AlphaComposite constant value, or -1 if there is no matching constant.

136. */

137. public int getValue()

138. {

139. try

140. {

141. return (Integer) AlphaComposite.class.getField(name).get(null);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

142. }

143. catch (Exception e)

144. {

145. return -1;

146. }

147. }

148.

149. private String name;

150. private String porterDuff1;

151. private String porterDuff2;

152. }

153.

154. /**

155. * This component draws two shapes, composed with a composition rule.

156. */

157. class CompositeComponent extends JComponent

158. {

159. public CompositeComponent()

160. {

161. shape1 = new Ellipse2D.Double(100, 100, 150, 100);

162. shape2 = new Rectangle2D.Double(150, 150, 150, 100);

163. }

164.

165. public void paintComponent(Graphics g)

166. {

167. Graphics2D g2 = (Graphics2D) g;

168.

169. BufferedImage image = new BufferedImage(getWidth(), getHeight(),

170. BufferedImage.TYPE_INT_ARGB);

171. Graphics2D gImage = image.createGraphics();

172. gImage.setPaint(Color.red);

173. gImage.fill(shape1);

174. AlphaComposite composite = AlphaComposite.getInstance(rule, alpha);

175. gImage.setComposite(composite);

176. gImage.setPaint(Color.blue);

177. gImage.fill(shape2);

178. g2.drawImage(image, null, 0, 0);

179. }

180.

181. /**

182. * Sets the composition rule.

183. * @param r the rule (as an AlphaComposite constant)

184. */

185. public void setRule(int r)

186. {

187. rule = r;

188. repaint();

189. }

190.

191. /**

192. * Sets the alpha of the source

193. * @param a the alpha value between 0 and 100

194. */

195. public void setAlpha(int a)

196. {

197. alpha = (float) a / 100.0F;

198. repaint();

199. }

200.

201. private int rule;

202. private Shape shape1;

203. private Shape shape2;

204. private float alpha;

205. }

java.awt.Graphics2D 1.2

void setComposite(Composite s)

sets the composite of this graphics context to the given object that
implements the Composite interface.

java.awt.AlphaComposite 1.2

static AlphaComposite getInstance(int rule)

static AlphaComposite getInstance(int rule, float

sourceAlpha)

constructs an alpha composite object. The rule is one of CLEAR, SRC,
SRC_OVER, DST_OVER, SRC_IN, SRC_OUT, DST_IN, DST_OUT,

DST,DST_ATOP,SRC_ATOP,XOR.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Rendering Hints

In the preceding sections you have seen that the rendering process is quite complex. Although the Java 2D API is surprisingly fast
in most cases, there are cases when you would like to have control over trade-offs between speed and quality. You achieve this by
setting rendering hints. The setRenderingHint method of the Graphics2D class lets you set a single hint. The hint keys and

values are declared in the RenderingHints class. Table 7-2 summarizes the choices. The values that end in _DEFAULT denote

defaults that are chosen by a particular implementation as a good trade-off between performance and quality.

Table 7-2. Rendering Hints

Key Value Explanation

KEY_ANTIALIASING VALUE_ANTIALIAS_ON

VALUE_ANTIALIAS_OFF
VALUE_ANTIALIAS_DEFAULT

Turn antialiasing for shapes on or off.

KEY_TEXT_ANTIALIASING VALUE_TEXT_ANTIALIAS_ON

VALUE_TEXT_ANTIALIAS_OFF

VALUE_TEXT_ANTIALIAS_DEFAULT

VALUE_TEXT_ANTIALIAS_GASP 6

VALUE_TEXT_ANTIALIAS_LCD_HRGB 6

VALUE_TEXT_ANTIALIAS_LCD_HBGR 6

VALUE_TEXT_ANTIALIAS_LCD_VRGB 6

VALUE_TEXT_ANTIALIAS_LCD_VBGR 6

Turn antialiasing for fonts on or off. When using the value
VALUE_TEXT_ANTIALIAS_GASP , the "gasp table" of the

font is consulted to decide whether a particular size of a
font should be antialiased. The LCD values force subpixel
rendering for a particular display type.

KEY_FRACTIONALMETRICS VALUE_FRACTIONALMETRICS_ON

VALUE_FRACTIONALMETRICS_OFF

VALUE_FRACTIONALMETRICS_DEFAULT

Turn the computation of fractional character dimensions
on or off. Fractional character dimensions lead to better
placement of characters.

KEY_RENDERING VALUE_RENDER_QUALITY

VALUE_RENDER_SPEED

VALUE_RENDER_DEFAULT

When available, select rendering algorithms for greater
quality or speed.

KEY_STROKE_CONTROL 1.3 VALUE_STROKE_NORMALIZE

VALUE_STROKE_PURE
VALUE_STROKE_DEFAULT

Select whether the placement of strokes is controlled by
the graphics accelerator (which may move it by up to half
a pixel) or is computed by the "pure" rule that mandates
that strokes run through the centers of pixels.

KEY_DITHERING VALUE_DITHER_ENABLE

VALUE_DITHER_DISABLE

VALUE_DITHER_DEFAULT

Turn dithering for colors on or off. Dithering
approximates color values by drawing groups of pixels of
similar colors. (Note that antialiasing can interfere with
dithering.)

KEY_ALPHA_INTERPOLATION VALUE_ALPHA_INTERPOLATION_QUALITY

VALUE_ALPHA_INTERPOLATION_SPEED

VALUE_ALPHA_INTERPOLATION_DEFAULT

Turn precise computation of alpha composites on or off.

KEY_COLOR_RENDERING VALUE_COLOR_RENDER_QUALITY

VALUE_COLOR_RENDER_SPEED

VALUE_COLOR_RENDER_DEFAULT

Select quality or speed for color rendering. This is only an
issue when you use different color spaces.

Key Value Explanation

KEY_INTERPOLATION VALUE_INTERPOLATION_NEAREST_NEIGHBOR
VALUE_INTERPOLATION_BILINEAR

VALUE_INTERPOLATION_BICUBIC

Select a rule for interpolating pixels when scaling or
rotating images.

The most useful of these settings involves antialiasing. This technique removes the "jaggies" from slanted lines and curves. As you
can see in Figure 7-25 , a slanted line must be drawn as a "staircase" of pixels. Especially on low-resolution screens, this line can
look ugly. But if, rather than drawing each pixel completely on or off, you color in the pixels that are partially covered, with the
color value proportional to the area of the pixel that the line covers, then the result looks much smoother. This technique is called
antialiasing. Of course, antialiasing takes a bit longer because it takes time to compute all those color values.

Figure 7-25. Antialiasing

For example, here is how you can request the use of antialiasing:

Code View:
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);

It also makes sense to use antialiasing for fonts.

g2.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING, Rendering-

Hints.VALUE_TEXT_ANTIALIAS_ON);

The other rendering hints are not as commonly used.

KEY_INTERPOLATION VALUE_INTERPOLATION_NEAREST_NEIGHBOR
VALUE_INTERPOLATION_BILINEAR

VALUE_INTERPOLATION_BICUBIC

Select a rule for interpolating pixels when scaling or
rotating images.

The most useful of these settings involves antialiasing. This technique removes the "jaggies" from slanted lines and curves. As you
can see in Figure 7-25 , a slanted line must be drawn as a "staircase" of pixels. Especially on low-resolution screens, this line can
look ugly. But if, rather than drawing each pixel completely on or off, you color in the pixels that are partially covered, with the
color value proportional to the area of the pixel that the line covers, then the result looks much smoother. This technique is called
antialiasing. Of course, antialiasing takes a bit longer because it takes time to compute all those color values.

Figure 7-25. Antialiasing

For example, here is how you can request the use of antialiasing:

Code View:
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);

It also makes sense to use antialiasing for fonts.

g2.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING, Rendering-

Hints.VALUE_TEXT_ANTIALIAS_ON);

The other rendering hints are not as commonly used.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You can also put a bunch of key/value hint pairs into a map and set them all at once by calling the setRenderingHints method.

Any collection class implementing the map interface will do, but you might as well use the RenderingHints class itself. It

implements the Map interface and supplies a default map implementation if you pass null to the constructor. For example,

Code View:
RenderingHints hints = new RenderingHints(null);
hints.put(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);

hints.put(RenderingHints.KEY_TEXT_ANTIALIASING, RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

g2.setRenderingHints(hints);

That is the technique we use in Listing 7-4 . The program shows several rendering hints that we found beneficial. Note the
following:

Antialiasing smooths the ellipse.

Text antialiasing smooths the text.

On some platforms, fractional text metrics move the letters a bit closer together.

Selecting VALUE_RENDER_QUALITY smooths the scaled image. (You would get the same effect by setting KEY_INTERPOLATION

to VALUE_INTERPOLATION_BICUBIC).

When antialiasing is turned off, selecting VALUE_STROKE_NORMALIZE changes the appearance of the ellipse and the placement
of the diagonal line in the square.

Figure 7-26 shows a screen capture of the program.

Figure 7-26. Testing the effect of rendering hints

[View full size image]

Listing 7-4. RenderQualityTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.geom.*;

 4. import java.io.*;

 5. import javax.imageio.*;

 6. import javax.swing.*;

 7.

 8. /**

 9. * This program demonstrates the effect of the various rendering hints.

 10. * @version 1.10 2007-08-16

 11. * @author Cay Horstmann

 12. */

 13. public class RenderQualityTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. JFrame frame = new RenderQualityTestFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame contains buttons to set rendering hints and an image that is drawn with

 31. * the selected hints.

 32. */

 33. class RenderQualityTestFrame extends JFrame

 34. {

 35. public RenderQualityTestFrame()

 36. {

 37. setTitle("RenderQualityTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. buttonBox = new JPanel();

 41. buttonBox.setLayout(new GridBagLayout());

 42. hints = new RenderingHints(null);

 43.

 44. makeButtons("KEY_ANTIALIASING", "VALUE_ANTIALIAS_OFF", "VALUE_ANTIALIAS_ON");

 45. makeButtons("KEY_TEXT_ANTIALIASING", "VALUE_TEXT_ANTIALIAS_OFF",

 46. "VALUE_TEXT_ANTIALIAS_ON");

 47. makeButtons("KEY_FRACTIONALMETRICS", "VALUE_FRACTIONALMETRICS_OFF",

 48. "VALUE_FRACTIONALMETRICS_ON");

 49. makeButtons("KEY_RENDERING", "VALUE_RENDER_SPEED", "VALUE_RENDER_QUALITY");

 50. makeButtons("KEY_STROKE_CONTROL", "VALUE_STROKE_PURE", "VALUE_STROKE_NORMALIZE");

 51. canvas = new RenderQualityComponent();

 52. canvas.setRenderingHints(hints);

 53.

 54. add(canvas, BorderLayout.CENTER);

 55. add(buttonBox, BorderLayout.NORTH);

 56. }

 57.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 58. /**

 59. * Makes a set of buttons for a rendering hint key and values

 60. * @param key the key name

 61. * @param value1 the name of the first value for the key

 62. * @param value2 the name of the second value for the key

 63. */

 64. void makeButtons(String key, String value1, String value2)

 65. {

 66. try

 67. {

 68. final RenderingHints.Key k =

 69. (RenderingHints.Key) RenderingHints.class.getField(key).get(null);

 70. final Object v1 = RenderingHints.class.getField(value1).get(null);

 71. final Object v2 = RenderingHints.class.getField(value2).get(null);

 72. JLabel label = new JLabel(key);

 73.

 74. buttonBox.add(label, new GBC(0, r).setAnchor(GBC.WEST));

 75. ButtonGroup group = new ButtonGroup();

 76. JRadioButton b1 = new JRadioButton(value1, true);

 77.

 78. buttonBox.add(b1, new GBC(1, r).setAnchor(GBC.WEST));

 79. group.add(b1);

 80. b1.addActionListener(new ActionListener()

 81. {

 82. public void actionPerformed(ActionEvent event)

 83. {

 84. hints.put(k, v1);

 85. canvas.setRenderingHints(hints);

 86. }

 87. });

 88. JRadioButton b2 = new JRadioButton(value2, false);

 89.

 90. buttonBox.add(b2, new GBC(2, r).setAnchor(GBC.WEST));

 91. group.add(b2);

 92. b2.addActionListener(new ActionListener()

 93. {

 94. public void actionPerformed(ActionEvent event)

 95. {

 96. hints.put(k, v2);

 97. canvas.setRenderingHints(hints);

 98. }

 99. });

100. hints.put(k, v1);

101. r++;

102. }

103. catch (Exception e)

104. {

105. e.printStackTrace();

106. }

107. }

108.

109. private RenderQualityComponent canvas;

110. private JPanel buttonBox;

111. private RenderingHints hints;

112. private int r;

113. private static final int DEFAULT_WIDTH = 750;

114. private static final int DEFAULT_HEIGHT = 300;

115. }

116.

117. /**

118. * This component produces a drawing that shows the effect of rendering hints.

119. */

120. class RenderQualityComponent extends JComponent

121. {

122. public RenderQualityComponent()

123. {

124. try

125. {

126. image = ImageIO.read(new File("face.gif"));

127. }

128. catch (IOException e)

129. {

130. e.printStackTrace();

131. }

132. }

133.

134. public void paintComponent(Graphics g)

135. {

136. Graphics2D g2 = (Graphics2D) g;

137. g2.setRenderingHints(hints);

138.

139. g2.draw(new Ellipse2D.Double(10, 10, 60, 50));

140. g2.setFont(new Font("Serif", Font.ITALIC, 40));

141. g2.drawString("Hello", 75, 50);

142.

143. g2.draw(new Rectangle2D.Double(200, 10, 40, 40));

144. g2.draw(new Line2D.Double(201, 11, 239, 49));

145.

146. g2.drawImage(image, 250, 10, 100, 100, null);

147. }

148.

149. /**

150. * Sets the hints and repaints.

151. * @param h the rendering hints

152. */

153. public void setRenderingHints(RenderingHints h)

154. {

155. hints = h;

156. repaint();

157. }

158.

159. private RenderingHints hints = new RenderingHints(null);

160. private Image image;

161. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.Graphics2D 1.2

void setRenderingHint(RenderingHints.Key key, Object value)

sets a rendering hint for this graphics context.

void setRenderingHints(Map m)

sets all rendering hints whose key/value pairs are stored in the map.

java.awt.RenderingHints 1.2

RenderingHints(Map<RenderingHints.Key, ?> m)

constructs a rendering hints map for storing rendering hints. If m is null , then a

default map implementation is provided.

Readers and Writers for Images

Prior to version 1.4, Java SE had very limited capabilities for reading and writing image files. It was possible to
read GIF and JPEG images, but there was no official support for writing images at all.

This situation is now much improved. Java SE 1.4 introduced the javax.imageio package that contains "out of

the box" support for reading and writing several common file formats, as well as a framework that enables third
parties to add readers and writers for other formats. As of Java SE 6, the GIF, JPEG, PNG, BMP (Windows
bitmap), and WBMP (wireless bitmap) file formats are supported. In earlier versions, writing of GIF files was not
supported because of patent issues.

The basics of the library are extremely straightforward. To load an image, use the static read method of the
ImageIO class:

File f = . . .;

BufferedImage image = ImageIO.read(f);

The ImageIO class picks an appropriate reader, based on the file type. It may consult the file extension and the

"magic number" at the beginning of the file for that purpose. If no suitable reader can be found or the reader
can't decode the file contents, then the read method returns null.

Writing an image to a file is just as simple:

File f = . . .;

String format = . . .;
ImageIO.write(image, format, f);

Here the format string is a string identifying the image format, such as "JPEG" or "PNG". The ImageIO class

picks an appropriate writer and saves the file.

Obtaining Readers and Writers for Image File Types

For more advanced image reading and writing operations that go beyond the static read and write methods of

the ImageIO class, you first need to get the appropriate ImageReader and ImageWriter objects. The ImageIO

class enumerates readers and writers that match one of the following:

An image format (such as "JPEG")

A file suffix (such as "jpg")

A MIME type (such as "image/jpeg")

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

MIME is the Multipurpose Internet Mail Extensions standard. The MIME standard
defines common data formats such as "image/jpeg" and "application/pdf". For an
HTML version of the Request for Comments (RFC) that defines the MIME format, see
http://www.oac.uci.edu/indiv/ehood/MIME.

For example, you can obtain a reader that reads JPEG files as follows:

ImageReader reader = null;

Iterator<ImageReader> iter = ImageIO.getImageReadersByFormatName("JPEG");

if (iter.hasNext()) reader = iter.next();

The getImageReadersBySuffix and getImageReadersByMIMEType method enumerate readers that match a file

extension or MIME type.

It is possible that the ImageIO class can locate multiple readers that can all read a particular image type. In that

case, you have to pick one of them, but it isn't clear how you can decide which one is the best. To find out more
information about a reader, obtain its service provider interface:

ImageReaderSpi spi = reader.getOriginatingProvider();

Then you can get the vendor name and version number:

String vendor = spi.getVendor();

String version = spi.getVersion();

Perhaps that information can help you decide among the choices, or you might just present a list of readers to
your program users and let them choose. However, for now, we assume that the first enumerated reader is
adequate.

In the sample program in Listing 7-5, we want to find all file suffixes of all available readers so that we can use
them in a file filter. As of Java SE 6, we can use the static ImageIO.getReaderFileSuffixes method for this

purpose:

Code View:
String[] extensions = ImageIO.getWriterFileSuffixes();
chooser.setFileFilter(new FileNameExtensionFilter("Image files", extensions));

For saving files, we have to work harder. We'd like to present the user with a menu of all supported image
types. Unfortunately, the getWriterFormatNames of the IOImage class returns a rather curious list with

redundant names, such as

jpg, BMP, bmp, JPG, jpeg, wbmp, png, JPEG, PNG, WBMP, GIF, gif

That's not something one would want to present in a menu. What is needed is a list of "preferred" format
names. We supply a helper method getWriterFormats for this purpose (see Listing 7-5). We look up the first

writer associated with each format name. Then we ask it what its format names are, in the hope that it will list

http://www.oac.uci.edu/indiv/ehood/MIME

the most popular one first. Indeed, for the JPEG writer, this works fine: It lists "JPEG" before the other options.

(The PNG writer, on the other hand, lists "png" in lower case before "PNG". We hope this behavior will be

addressed at some time in the future. In the meantime, we force all-lowercase names to upper case.) Once we
pick a preferred name, we remove all alternate names from the original set. We keep going until all format
names are handled.

Reading and Writing Files with Multiple Images

Some files, in particular, animated GIF files, contain multiple images. The read method of the ImageIO class

reads a single image. To read multiple images, turn the input source (for example, an input stream or file) into
an ImageInputStream.

InputStream in = . . .;

ImageInputStream imageIn = ImageIO.createImageInputStream(in);

Then attach the image input stream to the reader:

reader.setInput(imageIn, true);

The second parameter indicates that the input is in "seek forward only" mode. Otherwise, random access is
used, either by buffering stream input as it is read or by using random file access. Random access is required
for certain operations. For example, to find out the number of images in a GIF file, you need to read the entire
file. If you then want to fetch an image, the input must be read again.

This consideration is only important if you read from a stream, if the input contains multiple images, and if the
image format doesn't have the information that you request (such as the image count) in the header. If you
read from a file, simply use

File f = . . .;
ImageInputStream imageIn = ImageIO.createImageInputStream(f);

reader.setInput(imageIn);

Once you have a reader, you can read the images in the input by calling

BufferedImage image = reader.read(index);

where index is the image index, starting with 0.

If the input is in "seek forward only" mode, you keep reading images until the read method throws an

IndexOutOfBoundsException. Otherwise, you can call the getNumImages method:

int n = reader.getNumImages(true);

Here, the parameter indicates that you allow a search of the input to determine the number of images. That
method throws an IllegalStateException if the input is in "seek forward only" mode. Alternatively, you can

set the "allow search" parameter to false. Then the getNumImages method returns -1 if it can't determine the

number of images without a search. In that case, you'll have to switch to Plan B and keep reading images until
you get an IndexOutOfBoundsException.

Some files contain thumbnails, smaller versions of an image for preview purposes. You can get the number of
thumbnails of an image with the call

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

int count = reader.getNumThumbnails(index);

Then you get a particular index as

BufferedImage thumbnail = reader.getThumbnail(index, thumbnailIndex);

Another consideration is that you sometimes want to get the image size before actually getting the image, in
particular, if the image is huge or comes from a slow network connection. Use the calls

int width = reader.getWidth(index);

int height = reader.getHeight(index);

to get the dimensions of an image with a given index.

To write a file with multiple images, you first need an ImageWriter. The ImageIO class can enumerate the

writers that are capable of writing a particular image format:

Code View:
String format = . . .;

ImageWriter writer = null;

Iterator<ImageWriter> iter = ImageIO.getImageWritersByFormatName(format);

if (iter.hasNext()) writer = iter.next();

Next, turn an output stream or file into an ImageOutputStream and attach it to the writer. For example,

File f = . . .;

ImageOutputStream imageOut = ImageIO.createImageOutputStream(f);

writer.setOutput(imageOut);

You must wrap each image into an IIOImage object. You can optionally supply a list of thumbnails and image

metadata (such as compression algorithms and color information). In this example, we just use null for both;

see the API documentation for additional information.

IIOImage iioImage = new IIOImage(images[i], null, null);

Write out the first image, using the write method:

writer.write(new IIOImage(images[0], null, null));

For subsequent images, use

if (writer.canInsertImage(i))

 writer.writeInsert(i, iioImage, null);

The third parameter can contain an ImageWriteParam object to set image writing details such as tiling and

compression; use null for default values.

Not all file formats can handle multiple images. In that case, the canInsertImage method returns false for i >

0, and only a single image is saved.

The program in Listing 7-5 lets you load and save files in the formats for which the Java library supplies readers
and writers. The program displays multiple images (see Figure 7-27), but not thumbnails.

Figure 7-27. An animated GIF image

Listing 7-5. ImageIOTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.image.*;

 4. import java.io.*;

 5. import java.util.*;

 6. import javax.imageio.*;

 7. import javax.imageio.stream.*;

 8. import javax.swing.*;

 9. import javax.swing.filechooser.*;

 10.

 11. /**

 12. * This program lets you read and write image files in the formats that the JDK supports.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 13. * Multi-file images are supported.

 14. * @version 1.02 2007-08-16

 15. * @author Cay Horstmann

 16. */

 17. public class ImageIOTest

 18. {

 19. public static void main(String[] args)

 20. {

 21. EventQueue.invokeLater(new Runnable()

 22. {

 23. public void run()

 24. {

 25. JFrame frame = new ImageIOFrame();

 26. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 27. frame.setVisible(true);

 28. }

 29. });

 30. }

 31. }

 32.

 33. /**

 34. * This frame displays the loaded images. The menu has items for loading and saving files.

 35. */

 36. class ImageIOFrame extends JFrame

 37. {

 38. public ImageIOFrame()

 39. {

 40. setTitle("ImageIOTest");

 41. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 42.

 43. JMenu fileMenu = new JMenu("File");

 44. JMenuItem openItem = new JMenuItem("Open");

 45. openItem.addActionListener(new ActionListener()

 46. {

 47. public void actionPerformed(ActionEvent event)

 48. {

 49. openFile();

 50. }

 51. });

 52. fileMenu.add(openItem);

 53.

 54. JMenu saveMenu = new JMenu("Save");

 55. fileMenu.add(saveMenu);

 56. Iterator<String> iter = writerFormats.iterator();

 57. while (iter.hasNext())

 58. {

 59. final String formatName = iter.next();

 60. JMenuItem formatItem = new JMenuItem(formatName);

 61. saveMenu.add(formatItem);

 62. formatItem.addActionListener(new ActionListener()

 63. {

 64. public void actionPerformed(ActionEvent event)

 65. {

 66. saveFile(formatName);

 67. }

 68. });

 69. }

 70.

 71. JMenuItem exitItem = new JMenuItem("Exit");

 72. exitItem.addActionListener(new ActionListener()

 73. {

 74. public void actionPerformed(ActionEvent event)

 75. {

 76. System.exit(0);

 77. }

 78. });

 79. fileMenu.add(exitItem);

 80.

 81. JMenuBar menuBar = new JMenuBar();

 82. menuBar.add(fileMenu);

 83. setJMenuBar(menuBar);

 84. }

 85.

 86. /**

 87. * Open a file and load the images.

 88. */

 89. public void openFile()

 90. {

 91. JFileChooser chooser = new JFileChooser();

 92. chooser.setCurrentDirectory(new File("."));

 93. String[] extensions = ImageIO.getReaderFileSuffixes();

 94. chooser.setFileFilter(new FileNameExtensionFilter("Image files", extensions));

 95. int r = chooser.showOpenDialog(this);

 96. if (r != JFileChooser.APPROVE_OPTION) return;

 97. File f = chooser.getSelectedFile();

 98. Box box = Box.createVerticalBox();

 99. try

100. {

101. String name = f.getName();

102. String suffix = name.substring(name.lastIndexOf('.') + 1);

103. Iterator<ImageReader> iter = ImageIO.getImageReadersBySuffix(suffix);

104. ImageReader reader = iter.next();

105. ImageInputStream imageIn = ImageIO.createImageInputStream(f);

106. reader.setInput(imageIn);

107. int count = reader.getNumImages(true);

108. images = new BufferedImage[count];

109. for (int i = 0; i < count; i++)

110. {

111. images[i] = reader.read(i);

112. box.add(new JLabel(new ImageIcon(images[i])));

113. }

114. }

115. catch (IOException e)

116. {

117. JOptionPane.showMessageDialog(this, e);

118. }

119. setContentPane(new JScrollPane(box));

120. validate();

121. }

122.

123. /**

124. * Save the current image in a file

125. * @param formatName the file format

126. */

127. public void saveFile(final String formatName)

128. {

129. if (images == null) return;

130. Iterator<ImageWriter> iter = ImageIO.getImageWritersByFormatName(formatName);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

131. ImageWriter writer = iter.next();

132. JFileChooser chooser = new JFileChooser();

133. chooser.setCurrentDirectory(new File("."));

134. String[] extensions = writer.getOriginatingProvider().getFileSuffixes();

135. chooser.setFileFilter(new FileNameExtensionFilter("Image files", extensions));

136.

137. int r = chooser.showSaveDialog(this);

138. if (r != JFileChooser.APPROVE_OPTION) return;

139. File f = chooser.getSelectedFile();

140. try

141. {

142. ImageOutputStream imageOut = ImageIO.createImageOutputStream(f);

143. writer.setOutput(imageOut);

144.

145. writer.write(new IIOImage(images[0], null, null));

146. for (int i = 1; i < images.length; i++)

147. {

148. IIOImage iioImage = new IIOImage(images[i], null, null);

149. if (writer.canInsertImage(i)) writer.writeInsert(i, iioImage, null);

150. }

151. }

152. catch (IOException e)

153. {

154. JOptionPane.showMessageDialog(this, e);

155. }

156. }

157.

158. /**

159. * Gets a set of "preferred" format names of all image writers. The preferred format name

160. * is the first format name that a writer specifies.

161. * @return the format name set

162. */

163. public static Set<String> getWriterFormats()

164. {

165. TreeSet<String> writerFormats = new TreeSet<String>();

166. TreeSet<String> formatNames = new TreeSet<String>(Arrays.asList(ImageIO

167. .getWriterFormatNames()));

168. while (formatNames.size() > 0)

169. {

170. String name = formatNames.iterator().next();

171. Iterator<ImageWriter> iter = ImageIO.getImageWritersByFormatName(name);

172. ImageWriter writer = iter.next();

173. String[] names = writer.getOriginatingProvider().getFormatNames();

174. String format = names[0];

175. if (format.equals(format.toLowerCase())) format = format.toUpperCase();

176. writerFormats.add(format);

177. formatNames.removeAll(Arrays.asList(names));

178. }

179. return writerFormats;

180. }

181.

182. private BufferedImage[] images;

183. private static Set<String> writerFormats = getWriterFormats();

184. private static final int DEFAULT_WIDTH = 400;

185. private static final int DEFAULT_HEIGHT = 400;

186. }

javax.imageio.ImageIO 1.4

static BufferedImage read(File input)

static BufferedImage read(InputStream input)

static BufferedImage read(URL input)

reads an image from input.

static boolean write(RenderedImage image, String formatName,

File output)

static boolean write(RenderedImage image, String formatName,

OutputStream output)

writes an image in the given format to output. Returns false if no

appropriate writer was found.

static Iterator<ImageReader>

getImageReadersByFormatName(String formatName)

static Iterator<ImageReader> getImageReadersBySuffix(String

fileSuffix)

static Iterator<ImageReader> getImageReadersByMIMEType(String

mimeType)

static Iterator<ImageWriter>

getImageWritersByFormatName(String formatName)

static Iterator<ImageWriter> getImageWritersBySuffix(String

fileSuffix)

static Iterator<ImageWriter> getImageWritersByMIMEType(String

mimeType)

gets all readers and writers that are able to handle the given format
(e.g., "JPEG"), file suffix (e.g., "jpg"), or MIME type (e.g., "image/jpeg").

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

static String[] getReaderFormatNames()

static String[] getReaderMIMETypes()

static String[] getWriterFormatNames()

static String[] getWriterMIMETypes()

static String[] getReaderFileSuffixes() 6

static String[] getWriterFileSuffixes() 6

gets all format names, MIME type names, and file suffixes supported by
readers and writers.

ImageInputStream createImageInputStream(Object input)

ImageOutputStream createImageOutputStream(Object output)

creates an image input or image output stream from the given object.
The object can be a file, a stream, a RandomAccessFile, or another

object for which a service provider exists. Returns null if no registered
service provider can handle the object.

javax.imageio.ImageReader 1.4

void setInput(Object input)

void setInput(Object input, boolean seekForwardOnly)

sets the input source of the reader.

Parameters: input An ImageInputStream object or another object

that this reader can accept.

 seekForwardOnly true if the reader should read forward only. By

default, the reader uses random access and, if
necessary, buffers image data.

BufferedImage read(int index)

reads the image with the given image index (starting at 0). Throws an
IndexOutOfBoundsException if no such image is available.

int getNumImages(boolean allowSearch)

gets the number of images in this reader. If allowSearch is false and the number of images

cannot be determined without reading forward, then -1 is returned. If allowSearch is true

and the reader is in "seek forward only" mode, then an IllegalStateException is thrown.

int getNumThumbnails(int index)

gets the number of thumbnails of the image with the given index.

BufferedImage readThumbnail(int index, int thumbnailIndex)

gets the thumbnail with index thumbnailIndex of the image with the given index.

int getWidth(int index)

int getHeight(int index)

gets the image width and height. Throw an IndexOutOfBoundsException if no such image is

available.

ImageReaderSpi getOriginatingProvider()

gets the service provider that constructed this reader.

javax.imageio.spi.IIOServiceProvider 1.4

String getVendorName()

String getVersion()

gets the vendor name and version of this service provider.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.imageio.spi.ImageReaderWriterSpi 1.4

String[] getFormatNames()

String[] getFileSuffixes()

String[] getMIMETypes()

gets the format names, file suffixes, and MIME types supported by the
readers or writers that this service provider creates.

javax.imageio.ImageWriter 1.4

void setOutput(Object output)

sets the output target of this writer.

Parameters: output An ImageOutputStream object or another object that this
writer can accept

void write(IIOImage image)

void write(RenderedImage image)

writes a single image to the output.

void writeInsert(int index, IIOImage image, ImageWriteParam param)

writes an image into a multi-image file.

boolean canInsertImage(int index)

returns true if it is possible to insert an image at the given index.

ImageWriterSpi getOriginatingProvider()

gets the service provider that constructed this writer.

javax.imageio.IIOImage 1.4

IIOImage(RenderedImage image, List thumbnails, IIOMetadata

metadata)

constructs an IIOImage from an image, optional thumbnails, and

optional metadata.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Image Manipulation

Suppose you have an image and you would like to improve its appearance. You then need to access the
individual pixels of the image and replace them with other pixels. Or perhaps you want to compute the pixels of
an image from scratch, for example, to show the result of physical measurements or a mathematical
computation. The BufferedImage class gives you control over the pixels in an image, and classes that

implement the BufferedImageOp interface let you transform images.

Note

JDK 1.0 had a completely different, and far more complex, imaging framework that
was optimized for incremental rendering of images that are downloaded from the
Web, a scan line at a time. However, it was difficult to manipulate those images. We
do not discuss that framework in this book.

Constructing Raster Images

Most of the images that you manipulate are simply read in from an image file—they were either produced by a
device such as a digital camera or scanner, or constructed by a drawing program. In this section, we show you a
different technique for constructing an image, namely, to build up an image a pixel at a time.

To create an image, construct a BufferedImage object in the usual way.

image = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);

Now, call the getRaster method to obtain an object of type WritableRaster. You use this object to access and

modify the pixels of the image.

WritableRaster raster = image.getRaster();

The setPixel method lets you set an individual pixel. The complexity here is that you can't simply set the pixel
to a Color value. You must know how the buffered image specifies color values. That depends on the type of

the image. If your image has a type of TYPE_INT_ARGB, then each pixel is described by four values, for red,

green, blue, and alpha, each of which is between 0 and 255. You supply them in an array of four integers.

int[] black = { 0, 0, 0, 255 };
raster.setPixel(i, j, black);

In the lingo of the Java 2D API, these values are called the sample values of the pixel.

Caution

There are also setPixel methods that take array parameters of types float[] and

double[]. However, the values that you need to place into these arrays are not

normalized color values between 0.0 and 1.0.

float[] red = { 1.0F, 0.0F, 0.0F, 1.0F };

raster.setPixel(i, j, red); // ERROR

You need to supply values between 0 and 255, no matter what the type of the array
is.

You can supply batches of pixels with the setPixels method. Specify the starting pixel position and the width

and height of the rectangle that you want to set. Then, supply an array that contains the sample values for all
pixels. For example, if your buffered image has a type of TYPE_INT_ARGB, then you supply the red, green, blue,

and alpha value of the first pixel, then the red, green, blue, and alpha value for the second pixel, and so on.

int[] pixels = new int[4 * width * height];
pixels[0] = . . . // red value for first pixel

pixels[1] = . . . // green value for first pixel

pixels[2] = . . . // blue value for first pixel

pixels[3] = . . . // alpha value for first pixel

. . .

raster.setPixels(x, y, width, height, pixels);

Conversely, to read a pixel, you use the getPixel method. Supply an array of four integers to hold the sample

values.

int[] sample = new int[4];

raster.getPixel(x, y, sample);

Color c = new Color(sample[0], sample[1], sample[2], sample[3]);

You can read multiple pixels with the getPixels method.

raster.getPixels(x, y, width, height, samples);

If you use an image type other than TYPE_INT_ARGB and you know how that type represents pixel values, then

you can still use the getPixel/setPixel methods. However, you have to know the encoding of the sample

values in the particular image type.

If you need to manipulate an image with an arbitrary, unknown image type, then you have to work a bit harder.
Every image type has a color model that can translate between sample value arrays and the standard RGB color
model.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The RGB color model isn't as standard as you might think. The exact look of a color
value depends on the characteristics of the imaging device. Digital cameras,
scanners, monitors, and LCD displays all have their own idiosyncrasies. As a result,
the same RGB value can look quite different on different devices. The International
Color Consortium (http://www.color.org) recommends that all color data be
accompanied by an ICC profile that specifies how the colors map to a standard form
such as the 1931 CIE XYZ color specification. That specification was designed by the
Commission Internationale de l'Eclairage or CIE (http://www.cie.co.at/cie), the
international organization in charge of providing technical guidance in all matters of
illumination and color. The specification is a standard method for representing all
colors that the human eye can perceive as a triplet of coordinates called X, Y, Z.
(See, for example, Computer Graphics: Principles and Practice, Second Edition in C
by James D. Foley, Andries van Dam, Steven K. Feiner, et al., Chapter 13, for more
information on the 1931 CIE XYZ specification.)

ICC profiles are complex, however. A simpler proposed standard, called sRGB
(http://www.w3.org/Graphics/Color/sRGB.html), specifies an exact mapping
between RGB values and the 1931 CIE XYZ values that was designed to work well
with typical color monitors. The Java 2D API uses that mapping when converting
between RGB and other color spaces.

The getColorModel method returns the color model:

ColorModel model = image.getColorModel();

To find the color value of a pixel, you call the getDataElements method of the Raster class. That call returns an
Object that contains a color-model-specific description of the color value.

Object data = raster.getDataElements(x, y, null);

Note

The object that is returned by the getDataElements method is actually an array of

sample values. You don't need to know this to process the object, but it explains
why the method is called getDataElements.

The color model can translate the object to standard ARGB values. The getRGB method returns an int value

that has the alpha, red, green, and blue values packed in four blocks of 8 bits each. You can construct a Color

value out of that integer with the Color(int argb, boolean hasAlpha) constructor.

int argb = model.getRGB(data);

Color color = new Color(argb, true);

To set a pixel to a particular color, you reverse these steps. The getRGB method of the Color class yields an int

http://www.color.org
http://www.cie.co.at/cie
http://www.w3.org/Graphics/Color/sRGB.html

value with the alpha, red, green, and blue values. Supply that value to the getDataElements method of the

ColorModel class. The return value is an Object that contains the color-model-specific description of the color

value. Pass the object to the setDataElements method of the WritableRaster class.

int argb = color.getRGB();

Object data = model.getDataElements(argb, null);

raster.setDataElements(x, y, data);

To illustrate how to use these methods to build an image from individual pixels, we bow to tradition and draw a
Mandelbrot set, as shown in Figure 7-28.

Figure 7-28. A Mandelbrot set

The idea of the Mandelbrot set is that you associate with each point in the plane a sequence of numbers. If that
sequence stays bounded, you color the point. If it "escapes to infinity," you leave it transparent.

Here is how you can construct the simplest Mandelbrot set. For each point (a, b), you look at sequences that
start with (x, y) = (0, 0) and iterate:

xnew = x2 - y2 + a

ynew = 2 · x · y + b

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

It turns out that if x or y ever gets larger than 2, then the sequence escapes to infinity. Only the pixels that
correspond to points (a, b) leading to a bounded sequence are colored. (The formulas for the number sequences
come ultimately from the mathematics of complex numbers. We just take them for granted. For more on the
mathematics of fractals, see, for example, http://classes.yale.edu/fractals/.)

Listing 7-6 shows the code. In this program, we demonstrate how to use the ColorModel class for translating

Color values into pixel data. That process is independent of the image type. Just for fun, change the color type

of the buffered image to TYPE_BYTE_GRAY. You don't need to change any other code—the color model of the

image automatically takes care of the conversion from colors to sample values.

Listing 7-6. RasterImageTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.image.*;

 3. import javax.swing.*;

 4.

 5. /**

 6. * This program demonstrates how to build up an image from individual pixels.

 7. * @version 1.13 2007-08-16

 8. * @author Cay Horstmann

 9. */

10. public class RasterImageTest

11. {

12. public static void main(String[] args)

13. {

14. EventQueue.invokeLater(new Runnable()

15. {

16. public void run()

17. {

18. JFrame frame = new RasterImageFrame();

19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

20. frame.setVisible(true);

21. }

22. });

23. }

24. }

25.

26. /**

27. * This frame shows an image with a Mandelbrot set.

28. */

29. class RasterImageFrame extends JFrame

30. {

31. public RasterImageFrame()

32. {

33. setTitle("RasterImageTest");

34. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

35. BufferedImage image = makeMandelbrot(DEFAULT_WIDTH, DEFAULT_HEIGHT);

36. add(new JLabel(new ImageIcon(image)));

37. }

38.

39. /**

40. * Makes the Mandelbrot image.

41. * @param width the width

42. * @parah height the height

43. * @return the image

http://classes.yale.edu/fractals/

44. */

45. public BufferedImage makeMandelbrot(int width, int height)

46. {

47. BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);

48. WritableRaster raster = image.getRaster();

49. ColorModel model = image.getColorModel();

50.

51. Color fractalColor = Color.red;

52. int argb = fractalColor.getRGB();

53. Object colorData = model.getDataElements(argb, null);

54.

55. for (int i = 0; i < width; i++)

56. for (int j = 0; j < height; j++)

57. {

58. double a = XMIN + i * (XMAX - XMIN) / width;

59. double b = YMIN + j * (YMAX - YMIN) / height;

60. if (!escapesToInfinity(a, b)) raster.setDataElements(i, j, colorData);

61. }

62. return image;

63. }

64.

65. private boolean escapesToInfinity(double a, double b)

66. {

67. double x = 0.0;

68. double y = 0.0;

69. int iterations = 0;

70. while (x <= 2 && y <= 2 && iterations < MAX_ITERATIONS)

71. {

72. double xnew = x * x - y * y + a;

73. double ynew = 2 * x * y + b;

74. x = xnew;

75. y = ynew;

76. iterations++;

77. }

78. return x > 2 || y > 2;

79. }

80.

81. private static final double XMIN = -2;

82. private static final double XMAX = 2;

83. private static final double YMIN = -2;

84. private static final double YMAX = 2;

85. private static final int MAX_ITERATIONS = 16;

86. private static final int DEFAULT_WIDTH = 400;

87. private static final int DEFAULT_HEIGHT = 400;

88. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.image.BufferedImage 1.2

BufferedImage(int width, int height, int imageType)

constructs a buffered image object.

Parameters: width, height The image dimensions

 imageType The image type. The most common types are
TYPE_INT_RGB, TYPE_INT_ARGB,

TYPE_BYTE_GRAY, and TYPE_BYTE_INDEXED

ColorModel getColorModel()

returns the color model of this buffered image.

WritableRaster getRaster()

gets the raster for accessing and modifying pixels of this buffered image.

java.awt.image.Raster 1.2

Object getDataElements(int x, int y, Object data)

returns the sample data for a raster point, in an array whose element
type and length depend on the color model. If data is not null, it is

assumed to be an array that is appropriate for holding sample data and
it is filled. If data is null, a new array is allocated. Its element type and
length depend on the color model.

int[] getPixel(int x, int y, int[] sampleValues)

float[] getPixel(int x, int y, float[] sampleValues)

double[] getPixel(int x, int y, double[] sampleValues)

int[] getPixels(int x, int y, int width, int height, int[]

sampleValues)

float[] getPixels(int x, int y, int width, int height,

float[] sampleValues)

double[] getPixels(int x, int y, int width, int height,

double[] sampleValues)

returns the sample values for a raster point, or a rectangle of raster
points, in an array whose length depends on the color model. If
sampleValues is not null, it is assumed to be sufficiently long for

holding the sample values and it is filled. If sampleValues is null, a new

array is allocated. These methods are only useful if you know the
meaning of the sample values for a color model.

java.awt.image.WritableRaster 1.2

void setDataElements(int x, int y, Object data)

sets the sample data for a raster point. data is an array filled with the
sample data for a pixel. Its element type and length depend on the color
model.

void setPixel(int x, int y, int[] sampleValues)

void setPixel(int x, int y, float[] sampleValues)

void setPixel(int x, int y, double[] sampleValues)

void setPixels(int x, int y, int width, int height, int[]

sampleValues)

void setPixels(int x, int y, int width, int height, float[]

sampleValues)

void setPixels(int x, int y, int width, int height, double[]

sampleValues)

sets the sample values for a raster point or a rectangle of raster points.
These methods are only useful if you know the encoding of the sample
values for a color model.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.image.ColorModel 1.2

int getRGB(Object data)

returns the ARGB value that corresponds to the sample data passed in
the data array. Its element type and length depend on the color model.

Object getDataElements(int argb, Object data);

returns the sample data for a color value. If data is not null, it is

assumed to be an array that is appropriate for holding sample data and
it is filled. If data is null, a new array is allocated. data is an array
filled with the sample data for a pixel. Its element type and length
depend on the color model.

java.awt.Color 1.0

Color(int argb, boolean hasAlpha) 1.2

creates a color with the specified combined ARGB value if hasAlpha is

true, or the specified RGB value if hasAlpha is false.

int getRGB()

returns the ARGB color value corresponding to this color.

Filtering Images

In the preceding section, you saw how to build up an image from scratch. However, often you want to access
image data for a different reason: You already have an image and you want to improve it in some way.

Of course, you can use the getPixel/getDataElements methods that you saw in the preceding section to read

the image data, manipulate them, and then write them back. But fortunately, the Java 2D API already supplies
a number of filters that carry out common image processing operations for you.

The image manipulations all implement the BufferedImageOp interface. After you construct the operation, you

simply call the filter method to transform an image into another.

Code View:
BufferedImageOp op = . . .;

BufferedImage filteredImage

 = new BufferedImage(image.getWidth(), image.getHeight(), image.getType());

op.filter(image, filteredImage);

Some operations can transform an image in place (op.filter(image, image)), but most can't.

Five classes implement the BufferedImageOp interface:

AffineTransformOp

RescaleOp

LookupOp

ColorConvertOp

ConvolveOp

The AffineTransformOp carries out an affine transformation on the pixels. For example, here is how you can

rotate an image about its center:

Code View:
AffineTransform transform = AffineTransform.getRotateInstance(Math.toRadians(angle),

 image.getWidth() / 2, image.getHeight() / 2);

AffineTransformOp op = new AffineTransformOp(transform, interpolation);
op.filter(image, filteredImage);

The AffineTransformOp constructor requires an affine transform and an interpolation strategy. Interpolation is

necessary to determine pixels in the target image if the source pixels are transformed somewhere between
target pixels. For example, if you rotate source pixels, then they will generally not fall exactly onto target pixels.
There are two interpolation strategies: AffineTransformOp.TYPE_BILINEAR and

AffineTransformOp.TYPE_NEAREST_NEIGHBOR. Bilinear interpolation takes a bit longer but looks better.

The program in Listing 7-7 lets you rotate an image by 5 degrees (see Figure 7-29).

Figure 7-29. A rotated image

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The RescaleOp carries out a rescaling operation

xnew = a · x + b

for each of the color components in the image. (Alpha components are not affected.) The effect of rescaling with
a > 1 is to brighten the image. You construct the RescaleOp by specifying the scaling parameters and optional

rendering hints. In Listing 7-7, we use:

float a = 1.1f;

float 20.0f;
RescaleOp op = new RescaleOp(a, b, null);

You can also supply separate scaling values for each color component—see the API notes.

The LookupOp operation lets you specify an arbitrary mapping of sample values. You supply a table that

specifies how each value should be mapped. In the example program, we compute the negative of all colors,
changing the color c to 255 - c.

The LookupOp constructor requires an object of type LookupTable and a map of optional hints. The

LookupTable class is abstract, with two concrete subclasses: ByteLookupTable and ShortLookupTable.

Because RGB color values are bytes, a ByteLookupTable should suffice. However, because of the bug described
in http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6183251, we will use a ShortLookupTable instead.

Here is how we construct the LookupOp for the example program:

short negative[] = new short[256];

for (int i = 0; i < 256; i++) negative[i] = (short) (255 - i);

ShortLookupTable table = new ShortLookupTable(0, negative);

LookupOp op = new LookupOp(table, null);

The lookup is applied to each color component separately, but not to the alpha component. You can also supply
different lookup tables for each color component—see the API notes.

Note

You cannot apply a LookupOp to an image with an indexed color model. (In those

images, each sample value is an offset into a color palette.)

The ColorConvertOp is useful for color space conversions. We do not discuss it here.

The most powerful of the transformations is the ConvolveOp, which carries out a mathematical convolution. We

do not want to get too deeply into the mathematical details of convolution, but the basic idea is simple.
Consider, for example, the blur filter (see Figure 7-30).

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6183251

Figure 7-30. Blurring an image

The blurring is achieved by replacement of each pixel with the average value from the pixel and its eight
neighbors. Intuitively, it makes sense why this operation would blur out the picture. Mathematically, the
averaging can be expressed as a convolution operation with the following kernel:

The kernel of a convolution is a matrix that tells what weights should be applied to the neighboring values. The
kernel above leads to a blurred image. A different kernel carries out edge detection, locating areas of color
changes:

Edge detection is an important technique for analyzing photographic images (see Figure 7-31).

Figure 7-31. Edge detection and inversion

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

To construct a convolution operation, you first set up an array of the values for the kernel and construct a
Kernel object. Then, construct a ConvolveOp object from the kernel and use it for filtering.

float[] elements =
 {

 0.0f, -1.0f, 0.0f,

 -1.0f, 4.f, -1.0f,

 0.0f, -1.0f, 0.0f

 };

Kernel kernel = new Kernel(3, 3, elements);

ConvolveOp op = new ConvolveOp(kernel);
op.filter(image, filteredImage);

The program in Listing 7-7 allows a user to load in a GIF or JPEG image and carry out the image manipulations
that we discussed. Thanks to the power of the image operations that the Java 2D API provides, the program is
very simple.

Listing 7-7. ImageProcessingTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.geom.*;

 4. import java.awt.image.*;

 5. import java.io.*;

 6. import javax.imageio.*;

 7. import javax.swing.*;

 8. import javax.swing.filechooser.*;

 9.

 10. /**

 11. * This program demonstrates various image processing operations.

 12. * @version 1.03 2007-08-16

 13. * @author Cay Horstmann

 14. */

 15. public class ImageProcessingTest

 16. {

 17. public static void main(String[] args)

 18. {

 19. EventQueue.invokeLater(new Runnable()

 20. {

 21. public void run()

 22. {

 23. JFrame frame = new ImageProcessingFrame();

 24. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 25. frame.setVisible(true);

 26. }

 27. });

 28. }

 29. }

 30.

 31. /**

 32. * This frame has a menu to load an image and to specify various transformations, and

 33. * a component to show the resulting image.

 34. */

 35. class ImageProcessingFrame extends JFrame

 36. {

 37. public ImageProcessingFrame()

 38. {

 39. setTitle("ImageProcessingTest");

 40. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 41.

 42. add(new JComponent()

 43. {

 44. public void paintComponent(Graphics g)

 45. {

 46. if (image != null) g.drawImage(image, 0, 0, null);

 47. }

 48. });

 49.

 50. JMenu fileMenu = new JMenu("File");

 51. JMenuItem openItem = new JMenuItem("Open");

 52. openItem.addActionListener(new ActionListener()

 53. {

 54. public void actionPerformed(ActionEvent event)

 55. {

 56. openFile();

 57. }

 58. });

 59. fileMenu.add(openItem);

 60.

 61. JMenuItem exitItem = new JMenuItem("Exit");

 62. exitItem.addActionListener(new ActionListener()

 63. {

 64. public void actionPerformed(ActionEvent event)

 65. {

 66. System.exit(0);

 67. }

 68. });

 69. fileMenu.add(exitItem);

 70.

 71. JMenu editMenu = new JMenu("Edit");

 72. JMenuItem blurItem = new JMenuItem("Blur");

 73. blurItem.addActionListener(new ActionListener()

 74. {

 75. public void actionPerformed(ActionEvent event)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 76. {

 77. float weight = 1.0f / 9.0f;

 78. float[] elements = new float[9];

 79. for (int i = 0; i < 9; i++)

 80. elements[i] = weight;

 81. convolve(elements);

 82. }

 83. });

 84. editMenu.add(blurItem);

 85.

 86. JMenuItem sharpenItem = new JMenuItem("Sharpen");

 87. sharpenItem.addActionListener(new ActionListener()

 88. {

 89. public void actionPerformed(ActionEvent event)

 90. {

 91. float[] elements = { 0.0f, -1.0f, 0.0f, -1.0f, 5.f, -1.0f, 0.0f, -1.0f, 0.0f };

 92. convolve(elements);

 93. }

 94. });

 95. editMenu.add(sharpenItem);

 96.

 97. JMenuItem brightenItem = new JMenuItem("Brighten");

 98. brightenItem.addActionListener(new ActionListener()

 99. {

100. public void actionPerformed(ActionEvent event)

101. {

102. float a = 1.1f;

103. // float b = 20.0f;

104. float b = 0;

105. RescaleOp op = new RescaleOp(a, b, null);

106. filter(op);

107. }

108. });

109. editMenu.add(brightenItem);

110.

111. JMenuItem edgeDetectItem = new JMenuItem("Edge detect");

112. edgeDetectItem.addActionListener(new ActionListener()

113. {

114. public void actionPerformed(ActionEvent event)

115. {

116. float[] elements = { 0.0f, -1.0f, 0.0f, -1.0f, 4.f, -1.0f, 0.0f, -1.0f, 0.0f };

117. convolve(elements);

118. }

119. });

120. editMenu.add(edgeDetectItem);

121.

122. JMenuItem negativeItem = new JMenuItem("Negative");

123. negativeItem.addActionListener(new ActionListener()

124. {

125. public void actionPerformed(ActionEvent event)

126. {

127. short[] negative = new short[256 * 1];

128. for (int i = 0; i < 256; i++)

129. negative[i] = (short) (255 - i);

130. ShortLookupTable table = new ShortLookupTable(0, negative);

131. LookupOp op = new LookupOp(table, null);

132. filter(op);

133. }

134. });

135. editMenu.add(negativeItem);

136.

137. JMenuItem rotateItem = new JMenuItem("Rotate");

138. rotateItem.addActionListener(new ActionListener()

139. {

140. public void actionPerformed(ActionEvent event)

141. {

142. if (image == null) return;

143. AffineTransform transform = AffineTransform.getRotateInstance(

144. Math.toRadians(5), image.getWidth() / 2, image.getHeight() / 2);

145. AffineTransformOp op = new AffineTransformOp(transform,

146. AffineTransformOp.TYPE_BICUBIC);

147. filter(op);

148. }

149. });

150. editMenu.add(rotateItem);

151.

152. JMenuBar menuBar = new JMenuBar();

153. menuBar.add(fileMenu);

154. menuBar.add(editMenu);

155. setJMenuBar(menuBar);

156. }

157.

158. /**

159. * Open a file and load the image.

160. */

161. public void openFile()

162. {

163. JFileChooser chooser = new JFileChooser();

164. chooser.setCurrentDirectory(new File("."));

165. String[] extensions = ImageIO.getReaderFileSuffixes();

166. chooser.setFileFilter(new FileNameExtensionFilter("Image files", extensions));

167. int r = chooser.showOpenDialog(this);

168. if (r != JFileChooser.APPROVE_OPTION) return;

169.

170. try

171. {

172. Image img = ImageIO.read(chooser.getSelectedFile());

173. image = new BufferedImage(img.getWidth(null), img.getHeight(null),

174. BufferedImage.TYPE_INT_RGB);

175. image.getGraphics().drawImage(img, 0, 0, null);

176. }

177. catch (IOException e)

178. {

179. JOptionPane.showMessageDialog(this, e);

180. }

181. repaint();

182. }

183.

184. /**

185. * Apply a filter and repaint.

186. * @param op the image operation to apply

187. */

188. private void filter(BufferedImageOp op)

189. {

190. if (image == null) return;

191. image = op.filter(image, null);

192. repaint();

193. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

194.

195. /**

196. * Apply a convolution and repaint.

197. * @param elements the convolution kernel (an array of 9 matrix elements)

198. */

199. private void convolve(float[] elements)

200. {

201. Kernel kernel = new Kernel(3, 3, elements);

202. ConvolveOp op = new ConvolveOp(kernel);

203. filter(op);

204. }

205.

206. private BufferedImage image;

207. private static final int DEFAULT_WIDTH = 400;

208. private static final int DEFAULT_HEIGHT = 400;

209. }

java.awt.image.BufferedImageOp 1.2

BufferedImage filter(BufferedImage source, BufferedImage
dest)

applies the image operation to the source image and stores the result in
the destination image. If dest is null, a new destination image is

created. The destination image is returned.

java.awt.image.AffineTransformOp 1.2

AffineTransformOp(AffineTransform t, int interpolationType)

constructs an affine transform operator. The interpolation type is one of
TYPE_BILINEAR, TYPE_BICUBIC, or TYPE_NEAREST_NEIGHBOR

java.awt.image.RescaleOp 1.2

RescaleOp(float a, float b, RenderingHints hints)

RescaleOp(float[] as, float[] bs, RenderingHints hints)

constructs a rescale operator that carries out the scaling operation xnew

= a · x + b. When using the first constructor, all color components (but
not the alpha component) are scaled with the same coefficients. When
using the second constructor, you supply values for each color
component, in which case the alpha component is unaffected, or values
for both alpha and color components.

java.awt.image.LookupOp 1.2

LookupOp(LookupTable table, RenderingHints hints)

constructs a lookup operator for the given lookup table.

java.awt.image.ByteLookupTable 1.2

ByteLookupTable(int offset, byte[] data)

ByteLookupTable(int offset, byte[][] data)

constructs a lookup table for converting byte values. The offset is

subtracted from the input before the lookup. The values in the first
constructor are applied to all color components but not the alpha
component. When using the second constructor, you supply values for
each color component, in which case the alpha component is unaffected,
or values for both alpha and color components.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.image.ShortLookupTable 1.2

ShortLookupTable(int offset, short[] data)

ShortLookupTable(int offset, short[][] data)

constructs a lookup table for converting short values. The offset is

subtracted from the input before the lookup. The values in the first
constructor are applied to all color components but not the alpha
component. When using the second constructor, you supply values for
each color component, in which case the alpha component is unaffected,
or values for both alpha and color components.

java.awt.image.ConvolveOp 1.2

ConvolveOp(Kernel kernel)

ConvolveOp(Kernel kernel, int edgeCondition, RenderingHints

hints)

constructs a convolution operator. The edge condition specified is one of
EDGE_NO_OP and EDGE_ZERO_FILL. Edge values need to be treated

specially because they don't have sufficient neighboring values to
compute the convolution. The default is EDGE_ZERO_FILL.

java.awt.image.Kernel 1.2

Kernel(int width, int height, float[] matrixElements)

constructs a kernel for the given matrix.

Printing

The original JDK had no support for printing at all. It was not possible to print from applets, and you had to get a third-party library if
you wanted to print in an application. JDK 1.1 introduced very lightweight printing support, just enough to produce simple printouts,
as long as you were not too particular about the print quality. The 1.1 printing model was designed to allow browser vendors to print
the surface of an applet as it appears on a web page (which, however, the browser vendors have not embraced).

Java SE 1.2 introduced the beginnings of a robust printing model that is fully integrated with 2D graphics. Java SE 1.4 added
important enhancements, such as discovery of printer features and streaming print jobs for server-side print management.

In this section, we show you how you can easily print a drawing on a single sheet of paper, how you can manage a multipage
printout, and how you can benefit from the elegance of the Java 2D imaging model and easily generate a print preview dialog box.

Note

The Java platform also supports the printing of user interface components. We do not cover this topic
because it is mostly of interest to implementors of browsers, screen grabbers, and so on. For more
information on printing components, see
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html .

Graphics Printing

In this section, we tackle what is probably the most common printing situation: printing a 2D graphic. Of course, the graphic can
contain text in various fonts or even consist entirely of text.

To generate a printout, you take care of these two tasks:

Supply an object that implements the Printable interface.

Start a print job.

The Printable interface has a single method:

int print(Graphics g, PageFormat format, int page)

That method is called whenever the print engine needs to have a page formatted for printing. Your code draws the text and image
that are to be printed onto the graphics context. The page format tells you the paper size and the print margins. The page number
tells you which page to render.

To start a print job, you use the PrinterJob class. First, you call the static getPrinterJob method to get a print job object. Then set

the Printable object that you want to print.

Printable canvas = . . .;

PrinterJob job = PrinterJob.getPrinterJob();

job.setPrintable(canvas);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html

Caution

The class PrintJob handles JDK 1.1-style printing. That class is now obsolete. Do not confuse it with

the PrinterJob class.

Before starting the print job, you should call the printDialog method to display a print dialog box (see Figure 7-32). That dialog

box gives the user a chance to select the printer to be used (in case multiple printers are available), the page range that should be
printed, and various printer settings.

Figure 7-32. A cross-platform print dialog box

You collect printer settings in an object of a class that implements the PrintRequestAttributeSet interface, such as the

HashPrintRequestAttributeSet class.

Code View:
HashPrintRequestAttributeSet attributes = new HashPrintRequestAttributeSet();

Add attribute settings and pass the attributes object to the printDialog method.

The printDialog method returns true if the user clicked OK and false if the user canceled the dialog box. If the user accepted, call

the print method of the PrinterJob class to start the printing process. The print method might throw a PrinterException . Here

is the outline of the printing code:

if (job.printDialog(attributes))

{

 try

 {

 job.print(attributes);

 }

 catch (PrinterException exception)
 {

 . . .

 }

}

Note

Prior to JDK 1.4, the printing system used the native print and page setup dialog boxes of the host
platform. To show a native print dialog box, call the printDialog method with no parameters. (There

is no way to collect user settings in an attribute set.)

During printing, the print method of the PrinterJob class makes repeated calls to the print method of the Printable object

associated with the job.

Because the job does not know how many pages you want to print, it simply keeps calling the print method. As long as the print

method returns the value Printable.PAGE_EXISTS , the print job keeps producing pages. When the print method returns

Printable.NO_SUCH_PAGE , the print job stops.

Caution

The page numbers that the print job passes to the print method start with page 0.

Therefore, the print job doesn't have an accurate page count until after the printout is complete. For that reason, the print dialog box
can't display the correct page range and instead displays a page range of "Pages 1 to 1." You will see in the next section how to
avoid this blemish by supplying a Book object to the print job.

During the printing process, the print job repeatedly calls the print method of the Printable object. The print job is allowed to

make multiple calls for the same page. You should therefore not count pages inside the print method but always rely on the page

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

number parameter. There is a good reason why the print job might call the print method repeatedly for the same page. Some

printers, in particular dot-matrix and inkjet printers, use banding. They print one band at a time, advance the paper, and then print
the next band. The print job might use banding even for laser printers that print a full page at a time—it gives the print job a way of
managing the size of the spool file.

If the print job needs the Printable object to print a band, then it sets the clip area of the graphics context to the requested band

and calls the print method. Its drawing operations are clipped against the band rectangle, and only those drawing elements that

show up in the band are rendered. Your print method need not be aware of that process, with one caveat: It should not interfere

with the clip area.

Caution

The Graphics object that your print method gets is also clipped against the page margins. If you
replace the clip area, you can draw outside the margins. Especially in a printer graphics context, the
clipping area must be respected. Call clip , not setClip , to further restrict the clipping area. If you

must remove a clip area, then make sure to call getClip at the beginning of your print method and

restore that clip area.

The PageFormat parameter of the print method contains information about the printed page. The methods getWidth and getHeight

return the paper size, measured in points. One point is 1/72 of an inch. (An inch equals 25.4 millimeters.) For example, A4 paper is
approximately 595 x 842 points, and U.S. letter-size paper is 612 x 792 points.

Points are a common measurement in the printing trade in the United States. Much to the chagrin of the rest of the world, the
printing package uses point units for two purposes. Paper sizes and paper margins are measured in points. And the default unit for all
print graphics contexts is one point. You can verify that in the example program at the end of this section. The program prints two
lines of text that are 72 units apart. Run the example program and measure the distance between the baselines. They are exactly 1
inch or 25.4 millimeters apart.

The getWidth and getHeight methods of the PageFormat class give you the complete paper size. Not all of the paper area is

printable. Users typically select margins, and even if they don't, printers need to somehow grip the sheets of paper on which they
print and therefore have a small unprintable area around the edges.

The methods getImageableWidth and getImageableHeight tell you the dimensions of the area that you can actually fill. However,
the margins need not be symmetrical, so you must also know the top-left corner of the imageable area (see Figure 7-33), which you
obtain by the methods getImageableX and getImageableY .

Figure 7-33. Page format measurements

Tip

The graphics context that you receive in the print method is clipped to exclude the margins, but the

origin of the coordinate system is nevertheless the top-left corner of the paper. It makes sense to
translate the coordinate system to start at the top-left corner of the imageable area. Simply start your
print method with

g.translate(pageFormat.getImageableX(), pageFormat.getImageableY());

If you want your users to choose the settings for the page margins or to switch between portrait and landscape orientation without
setting other printing attributes, you can call the pageDialog method of the PrinterJob class:

PageFormat format = job.pageDialog(attributes);

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

One of the tabs of the print dialog box contains the page setup dialog box (see Figure 7-34). You
might still want to give users an option to set the page format before printing, especially if your
program presents a "what you see is what you get" display of the pages to be printed. The pageDialog

method returns a PageFormat object with the user settings.

Figure 7-34. A cross-platform page setup dialog box

Listing 7-8 shows how to render the same set of shapes on the screen and on the printed page. A subclass of JPanel implements the

Printable interface. Both the paintComponent and the print methods call the same method to carry out the actual drawing.

Code View:
class PrintPanel extends JPanel implements Printable

{
 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;

 drawPage(g2);

 }

 public int print(Graphics g, PageFormat pf, int page)

 throws PrinterException

 {

 if (page >= 1) return Printable.NO_SUCH_PAGE;

 Graphics2D g2 = (Graphics2D) g;
 g2.translate(pf.getImageableX(), pf.getImageableY());

 drawPage(g2);

 return Printable.PAGE_EXISTS;

 }

 public void drawPage(Graphics2D g2)

 {

 // shared drawing code goes here

 . . .

 }

 . . .
}

This example displays and prints the image shown in Figure 7-20 on page 558 , namely, the outline of the message "Hello, World"
that is used as a clipping area for a pattern of lines.

Click the Print button to start printing, or click the Page setup button to open the page setup dialog box. Listing 7-8 shows the code.

Note

To show a native page setup dialog box, you pass a default PageFormat object to the pageDialog

method. The method clones that object, modifies it according to the user selections in the dialog box,
and returns the cloned object.

PageFormat defaultFormat = printJob.defaultPage();

PageFormat selectedFormat = printJob.pageDialog(defaultFormat);

Listing 7-8. PrintTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.font.*;

 4. import java.awt.geom.*;

 5. import java.awt.print.*;

 6. import javax.print.attribute.*;

 7. import javax.swing.*;

 8.

 9. /**

 10. * This program demonstrates how to print 2D graphics

 11. * @version 1.12 2007-08-16

 12. * @author Cay Horstmann

 13. */

 14. public class PrintTest

 15. {

 16. public static void main(String[] args)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. JFrame frame = new PrintTestFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. /**

 31. * This frame shows a panel with 2D graphics and buttons to print the graphics and to

 32. * set up the page format.

 33. */

 34. class PrintTestFrame extends JFrame

 35. {

 36. public PrintTestFrame()

 37. {

 38. setTitle("PrintTest");

 39. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 40.

 41. canvas = new PrintComponent();

 42. add(canvas, BorderLayout.CENTER);

 43.

 44. attributes = new HashPrintRequestAttributeSet();

 45.

 46. JPanel buttonPanel = new JPanel();

 47. JButton printButton = new JButton("Print");

 48. buttonPanel.add(printButton);

 49. printButton.addActionListener(new ActionListener()

 50. {

 51. public void actionPerformed(ActionEvent event)

 52. {

 53. try

 54. {

 55. PrinterJob job = PrinterJob.getPrinterJob();

 56. job.setPrintable(canvas);

 57. if (job.printDialog(attributes)) job.print(attributes);

 58. }

 59. catch (PrinterException e)

 60. {

 61. JOptionPane.showMessageDialog(PrintTestFrame.this, e);

 62. }

 63. }

 64. });

 65.

 66. JButton pageSetupButton = new JButton("Page setup");

 67. buttonPanel.add(pageSetupButton);

 68. pageSetupButton.addActionListener(new ActionListener()

 69. {

 70. public void actionPerformed(ActionEvent event)

 71. {

 72. PrinterJob job = PrinterJob.getPrinterJob();

 73. job.pageDialog(attributes);

 74. }

 75. });

 76.

 77. add(buttonPanel, BorderLayout.NORTH);

 78. }

 79.

 80. private PrintComponent canvas;

 81. private PrintRequestAttributeSet attributes;

 82.

 83. private static final int DEFAULT_WIDTH = 300;

 84. private static final int DEFAULT_HEIGHT = 300;

 85. }

 86.

 87. /**

 88. * This component generates a 2D graphics image for screen display and printing.

 89. */

 90. class PrintComponent extends JComponent implements Printable

 91. {

 92. public void paintComponent(Graphics g)

 93. {

 94. Graphics2D g2 = (Graphics2D) g;

 95. drawPage(g2);

 96. }

 97.

 98. public int print(Graphics g, PageFormat pf, int page) throws PrinterException

 99. {

100. if (page >= 1) return Printable.NO_SUCH_PAGE;

101. Graphics2D g2 = (Graphics2D) g;

102. g2.translate(pf.getImageableX(), pf.getImageableY());

103. g2.draw(new Rectangle2D.Double(0, 0, pf.getImageableWidth(), pf.getImageableHeight()));

104.

105. drawPage(g2);

106. return Printable.PAGE_EXISTS;

107. }

108.

109. /**

110. * This method draws the page both on the screen and the printer graphics context.

111. * @param g2 the graphics context

112. */

113. public void drawPage(Graphics2D g2)

114. {

115. FontRenderContext context = g2.getFontRenderContext();

116. Font f = new Font("Serif", Font.PLAIN, 72);

117. GeneralPath clipShape = new GeneralPath();

118.

119. TextLayout layout = new TextLayout("Hello", f, context);

120. AffineTransform transform = AffineTransform.getTranslateInstance(0, 72);

121. Shape outline = layout.getOutline(transform);

122. clipShape.append(outline, false);

123.

124. layout = new TextLayout("World", f, context);

125. transform = AffineTransform.getTranslateInstance(0, 144);

126. outline = layout.getOutline(transform);

127. clipShape.append(outline, false);

128.

129. g2.draw(clipShape);

130. g2.clip(clipShape);

131.

132. final int NLINES = 50;

133. Point2D p = new Point2D.Double(0, 0);

134. for (int i = 0; i < NLINES; i++)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

135. {

136. double x = (2 * getWidth() * i) / NLINES;

137. double y = (2 * getHeight() * (NLINES - 1 - i)) / NLINES;

138. Point2D q = new Point2D.Double(x, y);

139. g2.draw(new Line2D.Double(p, q));

140. }

141. }

142. }

java.awt.print.Printable 1.2

int print(Graphics g, PageFormat format, int pageNumber)

renders a page and returns PAGE_EXISTS , or returns NO_SUCH_PAGE .

Parameters: g The graphics context onto which the page is
rendered

 format The format of the page to draw on

 pageNumber The number of the requested page

java.awt.print.PrinterJob 1.2

static PrinterJob getPrinterJob()

returns a printer job object.

PageFormat defaultPage()

returns the default page format for this printer.

boolean printDialog(PrintRequestAttributeSet attributes)

boolean printDialog()

opens a print dialog box to allow a user to select the pages to be printed and to change
print settings. The first method displays a cross-platform dialog box, the second a native
dialog box. The first method modifies the attributes object to reflect the user settings.

Both methods return true if the user accepts the dialog box.

PageFormat pageDialog(PrintRequestAttributeSet attributes)

PageFormat pageDialog(PageFormat defaults)

displays a page setup dialog box. The first method displays a cross-platform dialog box,
the second a native dialog box. Both methods return a PageFormat object with the format

that the user requested in the dialog box. The first method modifies the attributes

object to reflect the user settings. The second method does not modify the defaults

object.

void setPrintable(Printable p)

void setPrintable(Printable p, PageFormat format)

sets the Printable of this print job and an optional page format.

void print()

void print(PrintRequestAttributeSet attributes)

prints the current Printable by repeatedly calling its print method and sending the
rendered pages to the printer, until no more pages are available.

java.awt.print.PageFormat 1.2

double getWidth()

double getHeight()

returns the width and height of the page.

double getImageableWidth()

double getImageableHeight()

returns the width and height of the imageable area of the page.

double getImageableX()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

double getImageableY()

returns the position of the top-left corner of the imageable area.

int getOrientation()

returns one of PORTRAIT , LANDSCAPE , or REVERSE_LANDSCAPE . Page orientation is

transparent to programmers because the page format and graphics context settings
automatically reflect the page orientation.

Multiple-Page Printing

In practice, you usually shouldn't pass a raw Printable object to a print job. Instead, you should obtain an object of a class that

implements the Pageable interface. The Java platform supplies one such class, called Book . A book is made up of sections, each of

which is a Printable object. You make a book by adding Printable objects and their page counts.

Book book = new Book();

Printable coverPage = . . .;

Printable bodyPages = . . .;

book.append(coverPage, pageFormat); // append 1 page
book.append(bodyPages, pageFormat, pageCount);

Then, you use the setPageable method to pass the Book object to the print job.

printJob.setPageable(book);

Now the print job knows exactly how many pages to print. Then, the print dialog box displays an accurate page range, and the user
can select the entire range or subranges.

Caution

When the print job calls the print methods of the Printable sections, it passes the current page
number of the book , and not of each section , as the current page number. That is a huge pain—each
section must know the page counts of the preceding sections to make sense of the page number
parameter.

From your perspective as a programmer, the biggest challenge about using the Book class is that you must know how many pages

each section will have when you print it. Your Printable class needs a layout algorithm that computes the layout of the material on

the printed pages. Before printing starts, invoke that algorithm to compute the page breaks and the page count. You can retain the
layout information so you have it handy during the printing process.

You must guard against the possibility that the user has changed the page format. If that happens, you must recompute the layout,
even if the information that you want to print has not changed.

Listing 7-9 shows how to produce a multipage printout. This program prints a message in very large characters on a number of pages

(see Figure 7-35). You can then trim the margins and tape the pages together to form a banner.

Figure 7-35. A banner

The layoutPages method of the Banner class computes the layout. We first lay out the message string in a 72-point font. We then
compute the height of the resulting string and compare it with the imageable height of the page. We derive a scale factor from these
two measurements. When printing the string, we magnify it by that scale factor.

Caution

To lay out your information precisely, you usually need access to the printer graphics context.
Unfortunately, there is no way to obtain that graphics context until printing actually starts. In our
example program, we make do with the screen graphics context and hope that the font metrics of the
screen and printer match.

The getPageCount method of the Banner class first calls the layout method. Then it scales up the width of the string and divides it by

the imageable width of each page. The quotient, rounded up to the next integer, is the page count.

It sounds like it might be difficult to print the banner because characters can be broken across multiple pages. However, thanks to
the power of the Java 2D API, this turns out not to be a problem at all. When a particular page is requested, we simply use the
translate method of the Graphics2D class to shift the top-left corner of the string to the left. Then, we set a clip rectangle that

equals the current page (see Figure 7-36). Finally, we scale the graphics context with the scale factor that the layout method
computed.

Figure 7-36. Printing a page of a banner

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

This example shows the power of transformations. The drawing code is kept simple, and the transformation does all the work of
placing the drawing at the appropriate place. Finally, the clip cuts away the part of the image that falls outside the page. In the next
section, you will see another compelling use of transformations, to display a print preview.

Print Preview

Most professional programs have a print preview mechanism that lets you look at your pages on the screen so that you won't waste
paper on a printout that you don't like. The printing classes of the Java platform do not supply a standard "print preview" dialog box,
but it is easy to design your own (see Figure 7-37). In this section, we show you how. The PrintPreviewDialog class in Listing 7-9

is completely generic—you can reuse it to preview any kind of printout.

Figure 7-37. The print preview dialog, showing a banner page

To construct a PrintPreviewDialog , you supply either a Printable or a Book , together with a PageFormat object. The surface of

the dialog box contains a PrintPreviewCanvas . As you use the Next and Previous buttons to flip through the pages, the

paintComponent method calls the print method of the Printable object for the requested page.

Normally, the print method draws the page context on a printer graphics context. However, we supply the screen graphics context,

suitably scaled so that the entire printed page fits inside a small screen rectangle.

float xoff = . . .; // left of page

float yoff = . . .; // top of page

float scale = . . .; // to fit printed page onto screen

g2.translate(xoff, yoff);

g2.scale(scale, scale);

Printable printable = book.getPrintable(currentPage);
printable.print(g2, pageFormat, currentPage);

The print method never knows that it doesn't actually produce printed pages. It simply draws onto the graphics context, thereby

producing a microscopic print preview on the screen. This is a compelling demonstration of the power of the Java 2D imaging model.

Listing 7-9 contains the code for the banner printing program and the print preview dialog box. Type "Hello, World!" into the text
field and look at the print preview, then print the banner.

Listing 7-9. BookTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.font.*;

 4. import java.awt.geom.*;

 5. import java.awt.print.*;

 6. import javax.print.attribute.*;

 7. import javax.swing.*;

 8.

 9. /**

 10. * This program demonstrates the printing of a multipage book. It prints a "banner", by

 11. * blowing up a text string to fill the entire page vertically. The program also contains a

 12. * generic print preview dialog.

 13. * @version 1.12 2007-08-16

 14. * @author Cay Horstmann

 15. */

 16. public class BookTest

 17. {

 18. public static void main(String[] args)

 19. {

 20. EventQueue.invokeLater(new Runnable()

 21. {

 22. public void run()

 23. {

 24. JFrame frame = new BookTestFrame();

 25. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 26. frame.setVisible(true);

 27. }

 28. });

 29. }

 30. }

 31.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 32. /**

 33. * This frame has a text field for the banner text and buttons for printing, page setup,

 34. * and print preview.

 35. */

 36. class BookTestFrame extends JFrame

 37. {

 38. public BookTestFrame()

 39. {

 40. setTitle("BookTest");

 41.

 42. text = new JTextField();

 43. add(text, BorderLayout.NORTH);

 44.

 45. attributes = new HashPrintRequestAttributeSet();

 46.

 47. JPanel buttonPanel = new JPanel();

 48.

 49. JButton printButton = new JButton("Print");

 50. buttonPanel.add(printButton);

 51. printButton.addActionListener(new ActionListener()

 52. {

 53. public void actionPerformed(ActionEvent event)

 54. {

 55. try

 56. {

 57. PrinterJob job = PrinterJob.getPrinterJob();

 58. job.setPageable(makeBook());

 59. if (job.printDialog(attributes))

 60. {

 61. job.print(attributes);

 62. }

 63. }

 64. catch (PrinterException e)

 65. {

 66. JOptionPane.showMessageDialog(BookTestFrame.this, e);

 67. }

 68. }

 69. });

 70.

 71. JButton pageSetupButton = new JButton("Page setup");

 72. buttonPanel.add(pageSetupButton);

 73. pageSetupButton.addActionListener(new ActionListener()

 74. {

 75. public void actionPerformed(ActionEvent event)

 76. {

 77. PrinterJob job = PrinterJob.getPrinterJob();

 78. pageFormat = job.pageDialog(attributes);

 79. }

 80. });

 81.

 82. JButton printPreviewButton = new JButton("Print preview");

 83. buttonPanel.add(printPreviewButton);

 84. printPreviewButton.addActionListener(new ActionListener()

 85. {

 86. public void actionPerformed(ActionEvent event)

 87. {

 88. PrintPreviewDialog dialog = new PrintPreviewDialog(makeBook());

 89. dialog.setVisible(true);

 90. }

 91. });

 92.

 93. add(buttonPanel, BorderLayout.SOUTH);

 94. pack();

 95. }

 96.

 97. /**

 98. * Makes a book that contains a cover page and the pages for the banner.

 99. */

100. public Book makeBook()

101. {

102. if (pageFormat == null)

103. {

104. PrinterJob job = PrinterJob.getPrinterJob();

105. pageFormat = job.defaultPage();

106. }

107. Book book = new Book();

108. String message = text.getText();

109. Banner banner = new Banner(message);

110. int pageCount = banner.getPageCount((Graphics2D) getGraphics(), pageFormat);

111. book.append(new CoverPage(message + " (" + pageCount + " pages)"), pageFormat);

112. book.append(banner, pageFormat, pageCount);

113. return book;

114. }

115.

116. private JTextField text;

117. private PageFormat pageFormat;

118. private PrintRequestAttributeSet attributes;

119. }

120.

121. /**

122. * A banner that prints a text string on multiple pages.

123. */

124. class Banner implements Printable

125. {

126. /**

127. * Constructs a banner

128. * @param m the message string

129. */

130. public Banner(String m)

131. {

132. message = m;

133. }

134.

135. /**

136. * Gets the page count of this section.

137. * @param g2 the graphics context

138. * @param pf the page format

139. * @return the number of pages needed

140. */

141. public int getPageCount(Graphics2D g2, PageFormat pf)

142. {

143. if (message.equals("")) return 0;

144. FontRenderContext context = g2.getFontRenderContext();

145. Font f = new Font("Serif", Font.PLAIN, 72);

146. Rectangle2D bounds = f.getStringBounds(message, context);

147. scale = pf.getImageableHeight() / bounds.getHeight();

148. double width = scale * bounds.getWidth();

149. int pages = (int) Math.ceil(width / pf.getImageableWidth());

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

150. return pages;

151. }

152.

153. public int print(Graphics g, PageFormat pf, int page) throws PrinterException

154. {

155. Graphics2D g2 = (Graphics2D) g;

156. if (page > getPageCount(g2, pf)) return Printable.NO_SUCH_PAGE;

157. g2.translate(pf.getImageableX(), pf.getImageableY());

158.

159. drawPage(g2, pf, page);

160. return Printable.PAGE_EXISTS;

161. }

162.

163. public void drawPage(Graphics2D g2, PageFormat pf, int page)

164. {

165. if (message.equals("")) return;

166. page--; // account for cover page

167.

168. drawCropMarks(g2, pf);

169. g2.clip(new Rectangle2D.Double(0, 0, pf.getImageableWidth(), pf.getImageableHeight()));

170. g2.translate(-page * pf.getImageableWidth(), 0);

171. g2.scale(scale, scale);

172. FontRenderContext context = g2.getFontRenderContext();

173. Font f = new Font("Serif", Font.PLAIN, 72);

174. TextLayout layout = new TextLayout(message, f, context);

175. AffineTransform transform = AffineTransform.getTranslateInstance(0, layout.getAscent());

176. Shape outline = layout.getOutline(transform);

177. g2.draw(outline);

178. }

179.

180. /**

181. * Draws 1/2" crop marks in the corners of the page.

182. * @param g2 the graphics context

183. * @param pf the page format

184. */

185. public void drawCropMarks(Graphics2D g2, PageFormat pf)

186. {

187. final double C = 36; // crop mark length = 1/2 inch

188. double w = pf.getImageableWidth();

189. double h = pf.getImageableHeight();

190. g2.draw(new Line2D.Double(0, 0, 0, C));

191. g2.draw(new Line2D.Double(0, 0, C, 0));

192. g2.draw(new Line2D.Double(w, 0, w, C));

193. g2.draw(new Line2D.Double(w, 0, w - C, 0));

194. g2.draw(new Line2D.Double(0, h, 0, h - C));

195. g2.draw(new Line2D.Double(0, h, C, h));

196. g2.draw(new Line2D.Double(w, h, w, h - C));

197. g2.draw(new Line2D.Double(w, h, w - C, h));

198. }

199.

200. private String message;

201. private double scale;

202. }

203.

204. /**

205. * This class prints a cover page with a title.

206. */

207. class CoverPage implements Printable

208. {

209. /**

210. * Constructs a cover page.

211. * @param t the title

212. */

213. public CoverPage(String t)

214. {

215. title = t;

216. }

217.

218. public int print(Graphics g, PageFormat pf, int page) throws PrinterException

219. {

220. if (page >= 1) return Printable.NO_SUCH_PAGE;

221. Graphics2D g2 = (Graphics2D) g;

222. g2.setPaint(Color.black);

223. g2.translate(pf.getImageableX(), pf.getImageableY());

224. FontRenderContext context = g2.getFontRenderContext();

225. Font f = g2.getFont();

226. TextLayout layout = new TextLayout(title, f, context);

227. float ascent = layout.getAscent();

228. g2.drawString(title, 0, ascent);

229. return Printable.PAGE_EXISTS;

230. }

231.

232. private String title;

233. }

234.

235. /**

236. * This class implements a generic print preview dialog.

237. */

238. class PrintPreviewDialog extends JDialog

239. {

240. /**

241. * Constructs a print preview dialog.

242. * @param p a Printable

243. * @param pf the page format

244. * @param pages the number of pages in p

245. */

246. public PrintPreviewDialog(Printable p, PageFormat pf, int pages)

247. {

248. Book book = new Book();

249. book.append(p, pf, pages);

250. layoutUI(book);

251. }

252.

253. /**

254. * Constructs a print preview dialog.

255. * @param b a Book

256. */

257. public PrintPreviewDialog(Book b)

258. {

259. layoutUI(b);

260. }

261.

262. /**

263. * Lays out the UI of the dialog.

264. * @param book the book to be previewed

265. */

266. public void layoutUI(Book book)

267. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

268. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

269.

270. canvas = new PrintPreviewCanvas(book);

271. add(canvas, BorderLayout.CENTER);

272.

273. JPanel buttonPanel = new JPanel();

274.

275. JButton nextButton = new JButton("Next");

276. buttonPanel.add(nextButton);

277. nextButton.addActionListener(new ActionListener()

278. {

279. public void actionPerformed(ActionEvent event)

280. {

281. canvas.flipPage(1);

282. }

283. });

284.

285. JButton previousButton = new JButton("Previous");

286. buttonPanel.add(previousButton);

287. previousButton.addActionListener(new ActionListener()

288. {

289. public void actionPerformed(ActionEvent event)

290. {

291. canvas.flipPage(-1);

292. }

293. });

294.

295. JButton closeButton = new JButton("Close");

296. buttonPanel.add(closeButton);

297. closeButton.addActionListener(new ActionListener()

298. {

299. public void actionPerformed(ActionEvent event)

300. {

301. setVisible(false);

302. }

303. });

304.

305. add(buttonPanel, BorderLayout.SOUTH);

306. }

307.

308. private PrintPreviewCanvas canvas;

309.

310. private static final int DEFAULT_WIDTH = 300;

311. private static final int DEFAULT_HEIGHT = 300;

312. }

313.

314. /**

315. * The canvas for displaying the print preview.

316. */

317. class PrintPreviewCanvas extends JComponent

318. {

319. /**

320. * Constructs a print preview canvas.

321. * @param b the book to be previewed

322. */

323. public PrintPreviewCanvas(Book b)

324. {

325. book = b;

326. currentPage = 0;

327. }

328.

329. public void paintComponent(Graphics g)

330. {

331. Graphics2D g2 = (Graphics2D) g;

332. PageFormat pageFormat = book.getPageFormat(currentPage);

333.

334. double xoff; // x offset of page start in window

335. double yoff; // y offset of page start in window

336. double scale; // scale factor to fit page in window

337. double px = pageFormat.getWidth();

338. double py = pageFormat.getHeight();

339. double sx = getWidth() - 1;

340. double sy = getHeight() - 1;

341. if (px / py < sx / sy) // center horizontally

342. {

343. scale = sy / py;

344. xoff = 0.5 * (sx - scale * px);

345. yoff = 0;

346. }

347. else

348. // center vertically

349. {

350. scale = sx / px;

351. xoff = 0;

352. yoff = 0.5 * (sy - scale * py);

353. }

354. g2.translate((float) xoff, (float) yoff);

355. g2.scale((float) scale, (float) scale);

356.

357. // draw page outline (ignoring margins)

358. Rectangle2D page = new Rectangle2D.Double(0, 0, px, py);

359. g2.setPaint(Color.white);

360. g2.fill(page);

361. g2.setPaint(Color.black);

362. g2.draw(page);

363.

364. Printable printable = book.getPrintable(currentPage);

365. try

366. {

367. printable.print(g2, pageFormat, currentPage);

368. }

369. catch (PrinterException e)

370. {

371. g2.draw(new Line2D.Double(0, 0, px, py));

372. g2.draw(new Line2D.Double(px, 0, 0, py));

373. }

374. }

375.

376. /**

377. * Flip the book by the given number of pages.

378. * @param by the number of pages to flip by. Negative values flip backwards.

379. */

380. public void flipPage(int by)

381. {

382. int newPage = currentPage + by;

383. if (0 <= newPage && newPage < book.getNumberOfPages())

384. {

385. currentPage = newPage;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

386. repaint();

387. }

388. }

389.

390. private Book book;

391. private int currentPage;

392. }

java.awt.print.PrinterJob 1.2

void setPageable(Pageable p)

sets a Pageable (such as a Book) to be printed.

java.awt.print.Book 1.2

void append(Printable p, PageFormat format)

void append(Printable p, PageFormat format, int pageCount)

appends a section to this book. If the page count is not specified, the first page is added.

Printable getPrintable(int page)

gets the printable for the specified page.

Print Services

So far, you have seen how to print 2D graphics. However, the printing API introduced in Java SE 1.4 affords far greater flexibility.
The API defines a number of data types and lets you find print services that are able to print them. Among the data types:

Images in GIF, JPEG, or PNG format.

Documents in text, HTML, PostScript, or PDF format.

Raw printer code data.

Objects of a class that implements Printable , Pageable , or RenderableImage .

The data themselves can be stored in a source of bytes or characters such as an input stream, a URL, or an array. A document flavor
describes the combination of a data source and a data type. The DocFlavor class defines a number of inner classes for the various

data sources. Each of the inner classes defines constants to specify the flavors. For example, the constant

DocFlavor.INPUT_STREAM.GIF

describes a GIF image that is read from an input stream. Table 7-3 lists the combinations.

Table 7-3. Document Flavors for Print Services

Data Source Data Type MIME Type

INPUT_STREAM GIF image/gif

URL JPEG image/jpeg

BYTE_ARRAY PNG image/png

 POSTSCRIPT application/postscript

 PDF application/pdf

 TEXT_HTML_HOST text/html (using host encoding)

 TEXT_HTML_US_ASCII text/html; charset=us-ascii

 TEXT_HTML_UTF_8 text/html; charset=utf-8

 TEXT_HTML_UTF_16 text/html; charset=utf-16

 TEXT_HTML_UTF_16LE text/html; charset=utf-16le (little-

endian)

 TEXT_HTML_UTF_16BE text/html; charset=utf-16be (big-

endian)

 TEXT_PLAIN_HOST text/plain (using host encoding)

 TEXT_PLAIN_US_ASCII text/plain; charset=us-ascii

 TEXT_PLAIN_UTF_8 text/plain; charset=utf-8

 TEXT_PLAIN_UTF_16 text/plain; charset=utf-16

 TEXT_PLAIN_UTF_16LE text/plain; charset=utf-16le (little-

endian)

 TEXT_PLAIN_UTF_16BE text/plain; charset=utf-16be (big-

endian)

 PCL application/vnd.hp-PCL (Hewlett

Packard Printer Control Language)

 AUTOSENSE application/octet-stream (raw printer

data)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Data Source Data Type MIME Type

READER TEXT_HTML text/html; charset=utf-16

STRING TEXT_PLAIN text/plain; charset=utf-16

CHAR_ARRAY

SERVICE_FORMATTED PRINTABLE N/A

 PAGEABLE N/A

 RENDERABLE_IMAGE N/A

Suppose you want to print a GIF image that is located in a file. First find out whether there is a print service that is capable of
handling the task. The static lookupPrintServices method of the PrintServiceLookup class returns an array of PrintService

objects that can handle the given document flavor.

DocFlavor flavor = DocFlavor.INPUT_STREAM.GIF;
PrintService[] services

 = PrintServiceLookup.lookupPrintServices(flavor, null);

The second parameter of the lookupPrintServices method is null to indicate that we don't want to constrain the search by

specifying printer attributes. We cover attributes in the next section.

Note

Java SE 6 supplies print services for basic document flavors such as images and 2D graphics, but if you
try to print text or HTML documents, the lookup will return an empty array.

If the lookup yields an array with more than one element, you select from the listed print services. You can call the getName method

of the PrintService class to get the printer names, and then let the user choose.

Next, get a document print job from the service:

DocPrintJob job = services[i].createPrintJob();

For printing, you need an object that implements the Doc interface. The Java library supplies a class SimpleDoc for that purpose. The

SimpleDoc constructor requires the data source object, the document flavor, and an optional attribute set. For example,

InputStream in = new FileInputStream(fileName);

Doc doc = new SimpleDoc(in, flavor, null);

Finally, you are ready to print:

job.print(doc, null);

READER TEXT_HTML text/html; charset=utf-16

STRING TEXT_PLAIN text/plain; charset=utf-16

CHAR_ARRAY

SERVICE_FORMATTED PRINTABLE N/A

 PAGEABLE N/A

 RENDERABLE_IMAGE N/A

Suppose you want to print a GIF image that is located in a file. First find out whether there is a print service that is capable of
handling the task. The static lookupPrintServices method of the PrintServiceLookup class returns an array of PrintService

objects that can handle the given document flavor.

DocFlavor flavor = DocFlavor.INPUT_STREAM.GIF;
PrintService[] services

 = PrintServiceLookup.lookupPrintServices(flavor, null);

The second parameter of the lookupPrintServices method is null to indicate that we don't want to constrain the search by

specifying printer attributes. We cover attributes in the next section.

Note

Java SE 6 supplies print services for basic document flavors such as images and 2D graphics, but if you
try to print text or HTML documents, the lookup will return an empty array.

If the lookup yields an array with more than one element, you select from the listed print services. You can call the getName method

of the PrintService class to get the printer names, and then let the user choose.

Next, get a document print job from the service:

DocPrintJob job = services[i].createPrintJob();

For printing, you need an object that implements the Doc interface. The Java library supplies a class SimpleDoc for that purpose. The

SimpleDoc constructor requires the data source object, the document flavor, and an optional attribute set. For example,

InputStream in = new FileInputStream(fileName);

Doc doc = new SimpleDoc(in, flavor, null);

Finally, you are ready to print:

job.print(doc, null);

As before, the null parameter can be replaced by an attribute set.

Note that this printing process is quite different from that of the preceding section. There is no user interaction through print dialog
boxes. For example, you can implement a server-side printing mechanism in which users submit print jobs through a web form.

The program in Listing 7-10 demonstrates how to use a print service to print an image file.

Listing 7-10. PrintServiceTest.java

Code View:
 1. import java.io.*;

 2. import javax.print.*;

 3.

 4. /**

 5. * This program demonstrates the use of print services. The program lets you print a GIF

 6. * image to any of the print services that support the GIF document flavor.

 7. * @version 1.10 2007-08-16

 8. * @author Cay Horstmann

 9. */

10. public class PrintServiceTest

11. {

12. public static void main(String[] args)

13. {

14. DocFlavor flavor = DocFlavor.URL.GIF;

15. PrintService[] services = PrintServiceLookup.lookupPrintServices(flavor, null);

16. if (args.length == 0)

17. {

18. if (services.length == 0) System.out.println("No printer for flavor " + flavor);

19. else

20. {

21. System.out.println("Specify a file of flavor " + flavor

22. + "\nand optionally the number of the desired printer.");

23. for (int i = 0; i < services.length; i++)

24. System.out.println((i + 1) + ": " + services[i].getName());

25. }

26. System.exit(0);

27. }

28. String fileName = args[0];

29. int p = 1;

30. if (args.length > 1) p = Integer.parseInt(args[1]);

31. try

32. {

33. if (fileName == null) return;

34. FileInputStream in = new FileInputStream(fileName);

35. Doc doc = new SimpleDoc(in, flavor, null);

36. DocPrintJob job = services[p - 1].createPrintJob();

37. job.print(doc, null);

38. }

39. catch (FileNotFoundException e)

40. {

41. e.printStackTrace();

42. }

43. catch (PrintException e)

44. {

45. e.printStackTrace();

46. }

47. }

48. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.print.PrintServiceLookup 1.4

PrintService[] lookupPrintServices(DocFlavor flavor, AttributeSet

attributes)

looks up the print services that can handle the given document flavor and attributes.

Parameters: flavor The document flavor

 attributes The required printing attributes, or null

if attributes should not be considered

javax.print.PrintService 1.4

DocPrintJob createPrintJob()

creates a print job for printing an object of a class that implements the Doc interface,

such as a SimpleDoc .

javax.print.DocPrintJob 1.4

void print(Doc doc, PrintRequestAttributeSet attributes)

prints the given document with the given attributes.

Parameters: doc The Doc to be printed

 attributes The required printing attributes, or null if no

printing attributes are required

javax.print.SimpleDoc 1.4

SimpleDoc(Object data, DocFlavor flavor, DocAttributeSet attributes)

constructs a SimpleDoc object that can be printed with a DocPrintJob .

Parameters: data The object with the print data, such as an input
stream or a Printable

 flavor The document flavor of the print data

 attributes Document attributes, or null if attributes are not

required

Stream Print Services

A print service sends print data to a printer. A stream print service generates the same print data but instead sends them to a
stream, perhaps for delayed printing or because the print data format can be interpreted by other programs. In particular, if the print
data format is PostScript, then it is useful to save the print data to a file because many programs can process PostScript files. The
Java platform includes a stream print service that can produce PostScript output from images and 2D graphics. You can use that
service on all systems, even if there are no local printers.

Enumerating stream print services is a bit more tedious than locating regular print services. You need both the DocFlavor of the

object to be printed and the MIME type of the stream output. You then get a StreamPrintServiceFactory array of factories.

Code View:
DocFlavor flavor = DocFlavor.SERVICE_FORMATTED.PRINTABLE;

String mimeType = "application/postscript";

StreamPrintServiceFactory[] factories

 = StreamPrintServiceFactory.lookupStreamPrintServiceFactories(flavor, mimeType);

The StreamPrintServiceFactory class has no methods that would help us distinguish any one factory from another, so we just take

factories[0] . We call the getPrintService method with an output stream parameter to get a StreamPrintService object.

OutputStream out = new FileOutputStream(fileName);
StreamPrintService service = factories[0].getPrintService(out);

The StreamPrintService class is a subclass of PrintService . To produce a printout, simply follow the steps of the preceding

section.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.print.StreamPrintServiceFactory 1.4

StreamPrintServiceFactory[] lookupStreamPrintServiceFactories(DocFlavor

flavor, String mimeType)

looks up the stream print service factories that can print the given document flavor and
produces an output stream of the given MIME type.

StreamPrintService getPrintService(OutputStream out)

gets a print service that sends the printing output to the given output stream.

Printing Attributes

The print service API contains a complex set of interfaces and classes to specify various kinds of attributes. There are four important
groups of attributes. The first two specify requests to the printer.

Print request attributes request particular features for all doc objects in a print job, such as two-sided printing or the paper

size.

Doc attributes are request attributes that apply only to a single doc object.

The other two attributes contain information about the printer and job status.

Print service attributes give information about the print service, such as the printer make and model or whether the printer is
currently accepting jobs.

Print job attributes give information about the status of a particular print job, such as whether the job is already completed.

To describe the various attributes there is an interface Attribute with subinterfaces:

PrintRequestAttribute

DocAttribute

PrintServiceAttribute

PrintJobAttribute
SupportedValuesAttribute

Individual attribute classes implement one or more of these interfaces. For example, objects of the Copies class describe the number

of copies of a printout. That class implements both the PrintRequestAttribute and the PrintJobAttribute interfaces. Clearly, a

print request can contain a request for multiple copies. Conversely, an attribute of the print job might be how many of these copies
were actually printed. That number might be lower, perhaps because of printer limitations or because the printer ran out of paper.

The SupportedValuesAttribute interface indicates that an attribute value does not reflect actual request or status data but rather

the capability of a service. For example, the CopiesSupported class implements the SupportedValuesAttribute interface. An object

of that class might describe that a printer supports 1 through 99 copies of a printout.

Figure 7-38 shows a class diagram of the attribute hierarchy.

Figure 7-38. The attribute hierarchy

[View full size image]

In addition to the interfaces and classes for individual attributes, the print service API defines interfaces and classes for attribute
sets. A superinterface, AttributeSet , has four subinterfaces:

PrintRequestAttributeSet

DocAttributeSet

PrintServiceAttributeSet

PrintJobAttributeSet

Each of these interfaces has an implementing class, yielding the five classes:

HashAttributeSet
HashPrintRequestAttributeSet

HashDocAttributeSet

HashPrintServiceAttributeSet

HashPrintJobAttributeSet

Figure 7-39 shows a class diagram of the attribute set hierarchy.

Figure 7-39. The attribute set hierarchy

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

For example, you construct a print request attribute set like this:

PrintRequestAttributeSet attributes = new HashPrintRequestAttributeSet();

After constructing the set, you are freed from worry about the Hash prefix.

Why have all these interfaces? They make it possible to check for correct attribute usage. For example, a DocAttributeSet accepts

only objects that implement the DocAttribute interface. Any attempt to add another attribute results in a runtime error.

An attribute set is a specialized kind of map, where the keys are of type Class and the values belong to a class that implements the

Attribute interface. For example, if you insert an object

new Copies(10)

into an attribute set, then its key is the Class object Copies.class . That key is called the category of the attribute. The Attribute

interface declares a method

Class getCategory()

that returns the category of an attribute. The Copies class defines the method to return the object Copies.class , but it isn't a

requirement that the category be the same as the class of the attribute.

When an attribute is added to an attribute set, the category is extracted automatically. You just add the attribute value:

attributes.add(new Copies(10));

If you subsequently add another attribute with the same category, it overwrites the first one.

To retrieve an attribute, you need to use the category as the key, for example,

AttributeSet attributes = job.getAttributes();

Copies copies = (Copies) attribute.get(Copies.class);

Finally, attributes are organized by the values they can have. The Copies attribute can have any integer value. The Copies class

extends the IntegerSyntax class that takes care of all integer-valued attributes. The getValue method returns the integer value of

the attribute, for example,

int n = copies.getValue();

The classes

TextSyntax

DateTimeSyntax

URISyntax

encapsulate a string, date and time, or URI.

Finally, many attributes can take a finite number of values. For example, the PrintQuality attribute has three settings: draft,

normal, and high. They are represented by three constants:

PrintQuality.DRAFT

PrintQuality.NORMAL

PrintQuality.HIGH

Attribute classes with a finite number of values extend the EnumSyntax class, which provides a number of convenience methods to

set up these enumerations in a typesafe manner. You need not worry about the mechanism when using such an attribute. Simply add
the named values to attribute sets:

attributes.add(PrintQuality.HIGH);

Here is how you check the value of an attribute:

if (attributes.get(PrintQuality.class) == PrintQuality.HIGH)

 . . .

Table 7-4 lists the printing attributes. The second column lists the superclass of the attribute class (for example, IntegerSyntax for
the Copies attribute) or the set of enumeration values for the attributes with a finite set of values. The last four columns indicate

whether the attribute class implements the DocAttribute (DA), PrintJobAttribute (PJA), PrintRequestAttribute (PRA), and

PrintServiceAttribute (PSA) interfaces.

Table 7-4. Printing Attributes

Attribute Superclass or Enumeration Constants DA PJA PRA PSA

Chromaticity MONOCHROME, COLOR

ColorSupported SUPPORTED, NOT_SUPPORTED

Compression COMPRESS, DEFLATE, GZIP, NONE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Attribute Superclass or Enumeration Constants DA PJA PRA PSA

Copies IntegerSyntax

DateTimeAtCompleted DateTimeSyntax

DateTimeAtCreation DateTimeSyntax

DateTimeAtProcessing DateTimeSyntax

Destination URISyntax

DocumentName TextSyntax

Fidelity FIDELITY_TRUE, FIDELITY_FALSE

Finishings NONE, STAPLE, EDGE_STITCH, BIND,

SADDLE_STITCH, COVER, . . .

JobHoldUntil DateTimeSyntax

JobImpressions IntegerSyntax

JobImpressionsCompleted IntegerSyntax

JobKOctets IntegerSyntax

JobKOctetsProcessed IntegerSyntax

JobMediaSheets IntegerSyntax

JobMediaSheetsCompleted IntegerSyntax

JobMessageFromOperator TextSyntax

JobName TextSyntax

JobOriginatingUserName TextSyntax

JobPriority IntegerSyntax

JobSheets STANDARD, NONE

JobState ABORTED, CANCELED, COMPLETED,

PENDING, PENDING_HELD, PROCESSING,

PROCESSING_STOPPED

JobStateReason ABORTED_BY_SYSTEM,

DOCUMENT_FORMAT_ERROR, many others

JobStateReasons HashSet

MediaName ISO_A4_WHITE, ISO_A4_TRANSPARENT,

NA_LETTER_WHITE,

NA_LETTER_TRANSPARENT

MediaSize ISO.A0 - ISO.A10, ISO.B0 - ISO.B10,

ISO.C0 - ISO.C10, NA.LETTER,

NA.LEGAL, various other paper and

envelope sizes

Copies IntegerSyntax

DateTimeAtCompleted DateTimeSyntax

DateTimeAtCreation DateTimeSyntax

DateTimeAtProcessing DateTimeSyntax

Destination URISyntax

DocumentName TextSyntax

Fidelity FIDELITY_TRUE, FIDELITY_FALSE

Finishings NONE, STAPLE, EDGE_STITCH, BIND,

SADDLE_STITCH, COVER, . . .

JobHoldUntil DateTimeSyntax

JobImpressions IntegerSyntax

JobImpressionsCompleted IntegerSyntax

JobKOctets IntegerSyntax

JobKOctetsProcessed IntegerSyntax

JobMediaSheets IntegerSyntax

JobMediaSheetsCompleted IntegerSyntax

JobMessageFromOperator TextSyntax

JobName TextSyntax

JobOriginatingUserName TextSyntax

JobPriority IntegerSyntax

JobSheets STANDARD, NONE

JobState ABORTED, CANCELED, COMPLETED,

PENDING, PENDING_HELD, PROCESSING,

PROCESSING_STOPPED

JobStateReason ABORTED_BY_SYSTEM,

DOCUMENT_FORMAT_ERROR, many others

JobStateReasons HashSet

MediaName ISO_A4_WHITE, ISO_A4_TRANSPARENT,

NA_LETTER_WHITE,

NA_LETTER_TRANSPARENT

MediaSize ISO.A0 - ISO.A10, ISO.B0 - ISO.B10,

ISO.C0 - ISO.C10, NA.LETTER,

NA.LEGAL, various other paper and

envelope sizes

Attribute Superclass or Enumeration Constants DA PJA PRA PSA

MediaSizeName ISO_A0 - ISO_A10, ISO_B0 - ISO_B10,
ISO_C0 - ISO_C10, NA_LETTER,

NA_LEGAL, various other paper and

envelope size names

MediaTray TOP, MIDDLE, BOTTOM, SIDE, ENVELOPE,

LARGE_CAPACITY, MAIN, MANUAL

MultipleDocumentHandling SINGLE_DOCUMENT,

SINGLE_DOCUMENT_NEW_SHEET,

SEPARATE_DOCUMENTS_COLLATED_COPIES,

SEPARATE_DOCUMENTS_UNCOLLATED_COPIES

NumberOfDocuments IntegerSyntax

NumberOfInterveningJobs IntegerSyntax

NumberUp IntegerSyntax

OrientationRequested PORTRAIT, LANDSCAPE,

REVERSE_PORTRAIT, REVERSE_LANDSCAPE

OutputDeviceAssigned TextSyntax

PageRanges SetOfInteger

PagesPerMinute IntegerSyntax

PagesPerMinuteColor IntegerSyntax

PDLOverrideSupported ATTEMPTED, NOT_ATTEMPTED

PresentationDirection TORIGHT_TOBOTTOM, TORIGHT_TOTOP,
TOBOTTOM_TORIGHT, TOBOTTOM_TOLEFT,

TOLEFT_TOBOTTOM, TOLEFT_TOTOP,

TOTOP_TORIGHT, TOTOP_TOLEFT

PrinterInfo TextSyntax

PrinterIsAcceptingJobs ACCEPTING_JOBS, NOT_ACCEPTING_JOBS

PrinterLocation TextSyntax

PrinterMakeAndModel TextSyntax

PrinterMessageFromOperator TextSyntax

PrinterMoreInfo URISyntax

PrinterMoreInfoManufacturer URISyntax

PrinterName TextSyntax

PrinterResolution ResolutionSyntax

PrinterState PROCESSING, IDLE, STOPPED, UNKNOWN

MediaSizeName ISO_A0 - ISO_A10, ISO_B0 - ISO_B10,
ISO_C0 - ISO_C10, NA_LETTER,

NA_LEGAL, various other paper and

envelope size names

MediaTray TOP, MIDDLE, BOTTOM, SIDE, ENVELOPE,

LARGE_CAPACITY, MAIN, MANUAL

MultipleDocumentHandling SINGLE_DOCUMENT,

SINGLE_DOCUMENT_NEW_SHEET,

SEPARATE_DOCUMENTS_COLLATED_COPIES,

SEPARATE_DOCUMENTS_UNCOLLATED_COPIES

NumberOfDocuments IntegerSyntax

NumberOfInterveningJobs IntegerSyntax

NumberUp IntegerSyntax

OrientationRequested PORTRAIT, LANDSCAPE,

REVERSE_PORTRAIT, REVERSE_LANDSCAPE

OutputDeviceAssigned TextSyntax

PageRanges SetOfInteger

PagesPerMinute IntegerSyntax

PagesPerMinuteColor IntegerSyntax

PDLOverrideSupported ATTEMPTED, NOT_ATTEMPTED

PresentationDirection TORIGHT_TOBOTTOM, TORIGHT_TOTOP,
TOBOTTOM_TORIGHT, TOBOTTOM_TOLEFT,

TOLEFT_TOBOTTOM, TOLEFT_TOTOP,

TOTOP_TORIGHT, TOTOP_TOLEFT

PrinterInfo TextSyntax

PrinterIsAcceptingJobs ACCEPTING_JOBS, NOT_ACCEPTING_JOBS

PrinterLocation TextSyntax

PrinterMakeAndModel TextSyntax

PrinterMessageFromOperator TextSyntax

PrinterMoreInfo URISyntax

PrinterMoreInfoManufacturer URISyntax

PrinterName TextSyntax

PrinterResolution ResolutionSyntax

PrinterState PROCESSING, IDLE, STOPPED, UNKNOWN

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Attribute Superclass or Enumeration Constants DA PJA PRA PSA

PrinterStateReason COVER_OPEN, FUSER_OVER_TEMP,
MEDIA_JAM, and many others

PrinterStateReasons HashMap

PrinterURI URISyntax

PrintQuality DRAFT, NORMAL, HIGH

QueuedJobCount IntegerSyntax

ReferenceUriSchemesSupported FILE, FTP, GOPHER, HTTP, HTTPS,

NEWS, NNTP, WAIS

RequestingUserName TextSyntax

Severity ERROR, REPORT, WARNING

SheetCollate COLLATED, UNCOLLATED

Sides ONE_SIDED, DUPLEX

(=TWO_SIDED_LONG_EDGE), TUMBLE

(=TWO_SIDED_SHORT_EDGE)

Note

As you can see, there are lots of attributes, many of which are quite specialized. The source for most of
the attributes is the Internet Printing Protocol 1.1 (RFC 2911).

Note

An earlier version of the printing API introduced the JobAttributes and PageAttributes classes, the

purpose of which is similar to the printing attributes covered in this section. These classes are now
obsolete.

PrinterStateReason COVER_OPEN, FUSER_OVER_TEMP,
MEDIA_JAM, and many others

PrinterStateReasons HashMap

PrinterURI URISyntax

PrintQuality DRAFT, NORMAL, HIGH

QueuedJobCount IntegerSyntax

ReferenceUriSchemesSupported FILE, FTP, GOPHER, HTTP, HTTPS,

NEWS, NNTP, WAIS

RequestingUserName TextSyntax

Severity ERROR, REPORT, WARNING

SheetCollate COLLATED, UNCOLLATED

Sides ONE_SIDED, DUPLEX

(=TWO_SIDED_LONG_EDGE), TUMBLE

(=TWO_SIDED_SHORT_EDGE)

Note

As you can see, there are lots of attributes, many of which are quite specialized. The source for most of
the attributes is the Internet Printing Protocol 1.1 (RFC 2911).

Note

An earlier version of the printing API introduced the JobAttributes and PageAttributes classes, the

purpose of which is similar to the printing attributes covered in this section. These classes are now
obsolete.

javax.print.attribute.Attribute 1.4

Class getCategory()

gets the category of this attribute.

String getName()

gets the name of this attribute.

javax.print.attribute.AttributeSet 1.4

boolean add(Attribute attr)

adds an attribute to this set. If the set has another attribute with the same category, that
attribute is replaced by the given attribute. Returns true if the set changed as a result of

this operation.

Attribute get(Class category)

retrieves the attribute with the given category key, or null if no such attribute exists.

boolean remove(Attribute attr)

boolean remove(Class category)

removes the given attribute, or the attribute with the given category, from the set.
Returns true if the set changed as a result of this operation.

Attribute[] toArray()

returns an array with all attributes in this set.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.print.PrintService 1.4

PrintServiceAttributeSet getAttributes()

gets the attributes of this print service.

javax.print.DocPrintJob 1.4

PrintJobAttributeSet getAttributes()

gets the attributes of this print job.

This concludes our discussion on printing. You now know how to print 2D graphics and other document types, how to enumerate
printers and stream print services, and how to set and retrieve attributes. Next, we turn to two important user interface issues, the
clipboard and support for the drag-and-drop mechanism.

The Clipboard

One of the most useful and convenient user interface mechanisms of GUI environments (such as Windows and
the X Window System) is cut and paste. You select some data in one program and cut or copy them to the
clipboard. Then, you select another program and paste the clipboard contents into that application. Using the
clipboard, you can transfer text, images, or other data from one document to another, or, of course, from one
place in a document to another place in the same document. Cut and paste is so natural that most computer
users never think about it.

Even though the clipboard is conceptually simple, implementing clipboard services is actually harder than you
might think. Suppose you copy text from a word processor to the clipboard. If you paste that text into another
word processor, then you expect that the fonts and formatting will stay intact. That is, the text in the clipboard
needs to retain the formatting information. However, if you paste the text into a plain text field, then you
expect that just the characters are pasted in, without additional formatting codes. To support this flexibility, the
data provider can offer the clipboard data in multiple formats, and the data consumer can pick one of them.

The system clipboard implementations of Microsoft Windows and the Macintosh are similar, but, of course, there
are slight differences. However, the X Window System clipboard mechanism is much more limited—cutting and
pasting of anything but plain text is only sporadically supported. You should consider these limitations when
trying out the programs in this section.

Note

Check out the file jre/lib/flavormap.properties on your platform to get an idea

about what kinds of objects can be transferred between Java programs and the
system clipboard.

Often, programs need to support cut and paste of data types that the system clipboard cannot handle. The data
transfer API supports the transfer of arbitrary local object references in the same virtual machine. Between
different virtual machines, you can transfer serialized objects and references to remote objects.

Table 7-5 summarizes the data transfer capabilities of the clipboard mechanism.

Table 7-5. Capabilities of the Java Data Transfer Mechanism

Transfer Format

Between a Java program and a native program Text, images, file lists, . . .
(depending on the host platform)

Between two cooperating Java programs Serialized and remote objects

Within one Java program Any object

Classes and Interfaces for Data Transfer

Data transfer in the Java technology is implemented in a package called java.awt.datatransfer. Here is an

overview of the most important classes and interfaces of that package.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Objects that can be transferred via a clipboard must implement the Transferable interface.

The Clipboard class describes a clipboard. Transferable objects are the only items that can be put on or

taken off a clipboard. The system clipboard is a concrete example of a Clipboard.

The DataFlavor class describes data flavors that can be placed on the clipboard.

The StringSelection class is a concrete class that implements the Transferable interface. It transfers

text strings.

A class must implement the ClipboardOwner interface if it wants to be notified when the clipboard

contents have been overwritten by somooeone else. Clipboard ownership enables "delayed formatting" of
complex data. If a program transfers simple data (such as a string), then it simply sets the clipboard
contents and moves on to do the next thing. However, if a program will place complex data that can be
formatted in multiple flavors onto the clipboard, then it might not actually want to prepare all the flavors,
because there is a good chance that most of them are never needed. However, then it needs to hang on
to the clipboard data so that it can create the flavors later when they are requested. The clipboard owner
is notified (by a call to its lostOwnership method) when the contents of the clipboard change. That tells it

that the information is no longer needed. In our sample programs, we don't worry about clipboard
ownership.

Transferring Text

The best way to get comfortable with the data transfer classes is to start with the simplest situation:
transferring text to and from the system clipboard. First, get a reference to the system clipboard.

Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();

For strings to be transferred to the clipboard, they must be wrapped into StringSelection objects.

String text = . . .

StringSelection selection = new StringSelection(text);

The actual transfer is done by a call to setContents, which takes a StringSelection object and a

ClipBoardOwner as parameters. If you are not interested in designating a clipboard owner, set the second

parameter to null.

clipboard.setContents(selection, null);

Here is the reverse operation, reading a string from the clipboard:

DataFlavor flavor = DataFlavor.stringFlavor;
if (clipboard.isDataFlavorAvailable(flavor)

 String text = (String) clipboard.getData(flavor);

The parameter of the getContents call is an Object reference of the requesting object, but because the current

implementation of the Clipboard class ignores it, we just pass null.

The return value of getContents can be null. That indicates that the clipboard is either empty or that it has no

data that the Java platform knows how to retrieve as text.

Listing 7-11 is a program that demonstrates cutting and pasting between a Java application and the system
clipboard. If you select an area of text in the text area and click Copy, then the selected text is copied to the
system clipboard. You can then paste it into any text editor (see Figure 7-40). Conversely, when you copy text
from the text editor, you can paste it into our sample program.

Figure 7-40. The TextTransferTest program

[View full size image]

Listing 7-11. TextTransferTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.datatransfer.*;

 3. import java.awt.event.*;

 4. import java.io.*;

 5.

 6. import javax.swing.*;

 7.

 8. /**

 9. * This program demonstrates the transfer of text between a Java application and the system

 10. * clipboard.

 11. * @version 1.13 2007-08-16

 12. * @author Cay Horstmann

 13. */

 14. public class TextTransferTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. EventQueue.invokeLater(new Runnable()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 19. {

 20. public void run()

 21. {

 22. JFrame frame = new TextTransferFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. /**

 31. * This frame has a text area and buttons for copying and pasting text.

 32. */

 33. class TextTransferFrame extends JFrame

 34. {

 35. public TextTransferFrame()

 36. {

 37. setTitle("TextTransferTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. textArea = new JTextArea();

 41. add(new JScrollPane(textArea), BorderLayout.CENTER);

 42. JPanel panel = new JPanel();

 43.

 44. JButton copyButton = new JButton("Copy");

 45. panel.add(copyButton);

 46. copyButton.addActionListener(new ActionListener()

 47. {

 48. public void actionPerformed(ActionEvent event)

 49. {

 50. copy();

 51. }

 52. });

 53.

 54. JButton pasteButton = new JButton("Paste");

 55. panel.add(pasteButton);

 56. pasteButton.addActionListener(new ActionListener()

 57. {

 58. public void actionPerformed(ActionEvent event)

 59. {

 60. paste();

 61. }

 62. });

 63.

 64. add(panel, BorderLayout.SOUTH);

 65. }

 66.

 67. /**

 68. * Copies the selected text to the system clipboard.

 69. */

 70. private void copy()

 71. {

 72. Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();

 73. String text = textArea.getSelectedText();

 74. if (text == null) text = textArea.getText();

 75. StringSelection selection = new StringSelection(text);

 76. clipboard.setContents(selection, null);

 77. }

 78.

 79. /**

 80. * Pastes the text from the system clipboard into the text area.

 81. */

 82. private void paste()

 83. {

 84. Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();

 85. DataFlavor flavor = DataFlavor.stringFlavor;

 86. if (clipboard.isDataFlavorAvailable(flavor))

 87. {

 88. try

 89. {

 90. String text = (String) clipboard.getData(flavor);

 91. textArea.replaceSelection(text);

 92. }

 93. catch (UnsupportedFlavorException e)

 94. {

 95. JOptionPane.showMessageDialog(this, e);

 96. }

 97. catch (IOException e)

 98. {

 99. JOptionPane.showMessageDialog(this, e);

100. }

101. }

102. }

103.

104. private JTextArea textArea;

105.

106. private static final int DEFAULT_WIDTH = 300;

107. private static final int DEFAULT_HEIGHT = 300;

108. }

java.awt.Toolkit 1.0

Clipboard getSystemClipboard() 1.1

gets the system clipboard.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.datatransfer.Clipboard 1.1

Transferable getContents(Object requester)

gets the clipboard contents.

Parameters: requester The object requesting the clipboard
contents; this value is not actually used

void setContents(Transferable contents, ClipboardOwner owner)

puts contents on the clipboard.

Parameters: contents The Transferable encapsulating the contents

 owner The object to be notified (via its lostOwnership

method) when new information is placed on the
clipboard, or null if no notification is desired

boolean isDataFlavorAvailable(DataFlavor flavor) 5.0

returns true if the clipboard has data in the given flavor.

Object getData(DataFlavor flavor) 5.0

gets the data in the given flavor, or throws an UnsupportedFlavorException if no

data are available in the given flavor.

java.awt.datatransfer.ClipboardOwner 1.1

void lostOwnership(Clipboard clipboard, Transferable contents)

notifies this object that it is no longer the owner of the contents of the
clipboard.

Parameters: clipboard The clipboard onto which the contents
were placed

 contents The item that this owner had placed onto
the clipboard

java.awt.datatransfer.Transferable 1.1

boolean isDataFlavorSupported(DataFlavor flavor)

returns true if the specified flavor is one of the supported data flavors;

false otherwise.

Object getTransferData(DataFlavor flavor)

returns the data, formatted in the requested flavor. Throws an
UnsupportedFlavorException if the flavor requested is not supported.

The Transferable Interface and Data Flavors

A DataFlavor is defined by two characteristics:

A MIME type name (such as "image/gif").

A representation class for accessing the data (such as java.awt.Image).

In addition, every data flavor has a human-readable name (such as "GIF Image").

The representation class can be specified with a class parameter in the MIME type, for example,

image/gif;class=java.awt.Image

Note

This is just an example to show the syntax. There is no standard data flavor for
transferring GIF image data.

If no class parameter is given, then the representation class is InputStream.

For transferring local, serialized, and remote Java objects, Sun Microsystems defines three MIME types:

application/x-java-jvm-local-objectref
application/x-java-serialized-object

application/x-java-remote-object

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

The x- prefix indicates that this is an experimental name, not one that is sanctioned

by IANA, the organization that assigns standard MIME type names.

For example, the standard stringFlavor data flavor is described by the MIME type

application/x-java-serialized-object;class=java.lang.String

You can ask the clipboard to list all available flavors:

DataFlavor[] flavors = clipboard.getAvailableDataFlavors()

You can also install a FlavorListener onto the clipboard. The listener is notified when the collection of data

flavors on the clipboard changes. See the API notes for details.

java.awt.datatransfer.DataFlavor 1.1

DataFlavor(String mimeType, String humanPresentableName)

creates a data flavor that describes stream data in a format described by a MIME
type.

Parameters: mimeType A MIME type string

 humanPresentableName A more readable version of the name

DataFlavor(Class class, String humanPresentableName)

creates a data flavor that describes a Java platform class. Its MIME type is
application/x-java-serialized-object;class=className.

Parameters: class The class that is retrieved from the
Transferable

 humanPresentableName A readable version of the name

String getMimeType()

returns the MIME type string for this data flavor.

boolean isMimeTypeEqual(String mimeType)

tests whether this data flavor has the given MIME type.

String getHumanPresentableName()

returns the human-presentable name for the data format of this data flavor.

Class getRepresentationClass()

returns a Class object that represents the class of the object that a Transferable

object will return when called with this data flavor. This is either the class

parameter of the MIME type or InputStream.

java.awt.datatransfer.Clipboard 1.1

DataFlavor[] getAvailableDataFlavors() 5.0

returns an array of the available flavors.

void addFlavorListener(FlavorListener listener) 5.0

adds a listener that is notified when the set of available flavors changes.

java.awt.datatransfer.Transferable 1.1

DataFlavor[] getTransferDataFlavors()

returns an array of the supported flavors.

java.awt.datatransfer.FlavorListener 5.0

void flavorsChanged(FlavorEvent event)

is called when a clipboard's set of available flavors changes.

Building an Image Transferable

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Objects that you want to transfer via the clipboard must implement the Transferable interface. The

StringSelection class is currently the only public class in the Java standard library that implements the

Transferable interface. In this section, you will see how to transfer images into the clipboard. Because Java

does not supply a class for image transfer, you must implement it yourself.

The class is completely trivial. It simply reports that the only available data format is DataFlavor.imageFlavor,

and it holds an image object.

Code View:
class ImageTransferable implements Transferable

{

 public ImageTransferable(Image image)

 {

 theImage = image;

 }

 public DataFlavor[] getTransferDataFlavors()

 {
 return new DataFlavor[] { DataFlavor.imageFlavor };

 }

 public boolean isDataFlavorSupported(DataFlavor flavor)

 {

 return flavor.equals(DataFlavor.imageFlavor);

 }

 public Object getTransferData(DataFlavor flavor)

 throws UnsupportedFlavorException

 {

 if(flavor.equals(DataFlavor.imageFlavor))

 {

 return theImage;
 }

 else

 {

 throw new UnsupportedFlavorException(flavor);

 }

 }

 private Image theImage;

}

Note

Java SE supplies the DataFlavor.imageFlavor constant and does all the heavy

lifting to convert between Java images and native clipboard images. But, curiously,
it does not supply the wrapper class that is necessary to place images onto the
clipboard.

The program of Listing 7-12 demonstrates the transfer of images between a Java application and the system
clipboard. When the program starts, it generates an image containing a red circle. Click the Copy button to copy
the image to the clipboard and then paste it into another application (see Figure 7-41). From another
application, copy an image into the system clipboard. Then click the Paste button and see the image being
pasted into the example program (see Figure 7-42).

Figure 7-41. Copying from a Java program to a native program

[View full size image]

Figure 7-42. Copying from a native program to a Java program

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The program is a straightforward modification of the text transfer program. The data flavor is now
DataFlavor.imageFlavor, and we use the ImageTransferable class to transfer an image to the system

clipboard.

Listing 7-12. ImageTransferTest.java

Code View:
 1. import java.io.*;

 2. import java.awt.*;

 3. import java.awt.datatransfer.*;

 4. import java.awt.event.*;

 5. import java.awt.image.*;

 6. import javax.swing.*;

 7.

 8. /**

 9. * This program demonstrates the transfer of images between a Java application and the system

 10. * clipboard.

 11. * @version 1.22 2007-08-16

 12. * @author Cay Horstmann

 13. */

 14. public class ImageTransferTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. JFrame frame = new ImageTransferFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. /**

 31. * This frame has an image label and buttons for copying and pasting an image.

 32. */

 33. class ImageTransferFrame extends JFrame

 34. {

 35. public ImageTransferFrame()

 36. {

 37. setTitle("ImageTransferTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. label = new JLabel();

 41. image = new BufferedImage(DEFAULT_WIDTH, DEFAULT_HEIGHT, BufferedImage.TYPE_INT_ARGB);

 42. Graphics g = image.getGraphics();

 43. g.setColor(Color.WHITE);

 44. g.fillRect(0, 0, DEFAULT_WIDTH, DEFAULT_HEIGHT);

 45. g.setColor(Color.RED);

 46. g.fillOval(DEFAULT_WIDTH / 4, DEFAULT_WIDTH / 4, DEFAULT_WIDTH / 2, DEFAULT_HEIGHT / 2);

 47.

 48. label.setIcon(new ImageIcon(image));

 49. add(new JScrollPane(label), BorderLayout.CENTER);

 50. JPanel panel = new JPanel();

 51.

 52. JButton copyButton = new JButton("Copy");

 53. panel.add(copyButton);

 54. copyButton.addActionListener(new ActionListener()

 55. {

 56. public void actionPerformed(ActionEvent event)

 57. {

 58. copy();

 59. }

 60. });

 61.

 62. JButton pasteButton = new JButton("Paste");

 63. panel.add(pasteButton);

 64. pasteButton.addActionListener(new ActionListener()

 65. {

 66. public void actionPerformed(ActionEvent event)

 67. {

 68. paste();

 69. }

 70. });

 71.

 72. add(panel, BorderLayout.SOUTH);

 73. }

 74.

 75. /**

 76. * Copies the current image to the system clipboard.

 77. */

 78. private void copy()

 79. {

 80. Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();

 81. ImageTransferable selection = new ImageTransferable(image);

 82. clipboard.setContents(selection, null);

 83. }

 84.

 85. /**

 86. * Pastes the image from the system clipboard into the image label.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 87. */

 88. private void paste()

 89. {

 90. Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();

 91. DataFlavor flavor = DataFlavor.imageFlavor;

 92. if (clipboard.isDataFlavorAvailable(flavor))

 93. {

 94. try

 95. {

 96. image = (Image) clipboard.getData(flavor);

 97. label.setIcon(new ImageIcon(image));

 98. }

 99. catch (UnsupportedFlavorException exception)

100. {

101. JOptionPane.showMessageDialog(this, exception);

102. }

103. catch (IOException exception)

104. {

105. JOptionPane.showMessageDialog(this, exception);

106. }

107. }

108. }

109.

110. private JLabel label;

111. private Image image;

112.

113. private static final int DEFAULT_WIDTH = 300;

114. private static final int DEFAULT_HEIGHT = 300;

115. }

116.

117. /**

118. * This class is a wrapper for the data transfer of image objects.

119. */

120. class ImageTransferable implements Transferable

121. {

122. /**

123. * Constructs the selection.

124. * @param image an image

125. */

126. public ImageTransferable(Image image)

127. {

128. theImage = image;

129. }

130.

131. public DataFlavor[] getTransferDataFlavors()

132. {

133. return new DataFlavor[] { DataFlavor.imageFlavor };

134. }

135.

136. public boolean isDataFlavorSupported(DataFlavor flavor)

137. {

138. return flavor.equals(DataFlavor.imageFlavor);

139. }

140.

141. public Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException

142. {

143. if (flavor.equals(DataFlavor.imageFlavor))

144. {

145. return theImage;

146. }

147. else

148. {

149. throw new UnsupportedFlavorException(flavor);

150. }

151. }

152.

153. private Image theImage;

154. }

Transferring Java Objects via the System Clipboard

Suppose you want to copy and paste objects from one Java application to another. In that case, you cannot use
local clipboards. Fortunately, you can place serialized Java objects onto the system clipboard.

The program in Listing 7-13 demonstrates this capability. The program shows a color chooser. The Copy button
copies the current color to the system clipboard as a serialized Color object. The Paste button checks whether

the system clipboard contains a serialized Color object. If so, it fetches the color and sets it as the current
choice of the color chooser.

You can transfer the serialized object between two Java applications (see Figure 7-43). Run two copies of the
SerialTransferTest program. Click Copy in the first program, then click Paste in the second program. The

Color object is transferred from one virtual machine to the other.

Figure 7-43. Data are copied between two instances of a Java application

[View full size image]

To enable the data transfer, the Java platform places binary data on the system clipboard that contains the
serialized object. Another Java program—not necessarily of the same type as the one that generated the
clipboard data—can retrieve the clipboard data and deserialize the object.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Of course, a non-Java application will not know what to do with the clipboard data. For that reason, the example
program offers the clipboard data in a second flavor, as text. The text is simply the result of the toString

method, applied to the transferred object. To see the second flavor, run the program, click on a color, and then
select the Paste command in your text editor. A string such as

java.awt.Color[r=255,g=0,b=51]

will be inserted into your document.

Essentially no additional programming is required to transfer a serializable object. You use the MIME type

application/x-java-serialized-object;class=className

As before, you have to build your own transfer wrapper—see the example code for details.

Listing 7-13. SerialTransferTest.java

Code View:
 1. import java.io.*;

 2. import java.awt.*;

 3. import java.awt.datatransfer.*;

 4. import java.awt.event.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program demonstrates the transfer of serialized objects between virtual machines.

 9. * @version 1.02 2007-08-16

 10. * @author Cay Horstmann

 11. */

 12. public class SerialTransferTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new SerialTransferFrame();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. /**

 29. * This frame contains a color chooser, and copy and paste buttons.

 30. */

 31. class SerialTransferFrame extends JFrame

 32. {

 33. public SerialTransferFrame()

 34. {

 35. setTitle("SerialTransferTest");

 36.

 37. chooser = new JColorChooser();

 38. add(chooser, BorderLayout.CENTER);

 39. JPanel panel = new JPanel();

 40.

 41. JButton copyButton = new JButton("Copy");

 42. panel.add(copyButton);

 43. copyButton.addActionListener(new ActionListener()

 44. {

 45. public void actionPerformed(ActionEvent event)

 46. {

 47. copy();

 48. }

 49. });

 50.

 51. JButton pasteButton = new JButton("Paste");

 52. panel.add(pasteButton);

 53. pasteButton.addActionListener(new ActionListener()

 54. {

 55. public void actionPerformed(ActionEvent event)

 56. {

 57. paste();

 58. }

 59. });

 60.

 61. add(panel, BorderLayout.SOUTH);

 62. pack();

 63. }

 64.

 65. /**

 66. * Copies the chooser's color into the system clipboard.

 67. */

 68. private void copy()

 69. {

 70. Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();

 71. Color color = chooser.getColor();

 72. SerialTransferable selection = new SerialTransferable(color);

 73. clipboard.setContents(selection, null);

 74. }

 75.

 76. /**

 77. * Pastes the color from the system clipboard into the chooser.

 78. */

 79. private void paste()

 80. {

 81. Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();

 82. try

 83. {

 84. DataFlavor flavor = new DataFlavor(

 85. "application/x-java-serialized-object;class=java.awt.Color");

 86. if (clipboard.isDataFlavorAvailable(flavor))

 87. {

 88. Color color = (Color) clipboard.getData(flavor);

 89. chooser.setColor(color);

 90. }

 91. }

 92. catch (ClassNotFoundException e)

 93. {

 94. JOptionPane.showMessageDialog(this, e);

 95. }

 96. catch (UnsupportedFlavorException e)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 97. {

 98. JOptionPane.showMessageDialog(this, e);

 99. }

100. catch (IOException e)

101. {

102. JOptionPane.showMessageDialog(this, e);

103. }

104. }

105.

106. private JColorChooser chooser;

107. }

108.

109. /**

110. * This class is a wrapper for the data transfer of serialized objects.

111. */

112. class SerialTransferable implements Transferable

113. {

114. /**

115. * Constructs the selection.

116. * @param o any serializable object

117. */

118. SerialTransferable(Serializable o)

119. {

120. obj = o;

121. }

122.

123. public DataFlavor[] getTransferDataFlavors()

124. {

125. DataFlavor[] flavors = new DataFlavor[2];

126. Class<?> type = obj.getClass();

127. String mimeType = "application/x-java-serialized-object;class=" + type.getName();

128. try

129. {

130. flavors[0] = new DataFlavor(mimeType);

131. flavors[1] = DataFlavor.stringFlavor;

132. return flavors;

133. }

134. catch (ClassNotFoundException e)

135. {

136. return new DataFlavor[0];

137. }

138. }

139.

140. public boolean isDataFlavorSupported(DataFlavor flavor)

141. {

142. return DataFlavor.stringFlavor.equals(flavor)

143. || "application".equals(flavor.getPrimaryType())

144. && "x-java-serialized-object".equals(flavor.getSubType())

145. && flavor.getRepresentationClass().isAssignableFrom(obj.getClass());

146. }

147.

148. public Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException

149. {

150. if (!isDataFlavorSupported(flavor)) throw new UnsupportedFlavorException(flavor);

151.

152. if (DataFlavor.stringFlavor.equals(flavor)) return obj.toString();

153.

154. return obj;

155. }

156.

157. private Serializable obj;

158. }

Using a Local Clipboard to Transfer Object References

Occasionally, you might need to copy and paste a data type that isn't one of the data types supported by the
system clipboard, and that isn't serializable. To transfer an arbitrary Java object reference within the same JVM,
you use the MIME type

application/x-java-jvm-local-objectref;class=className

You need to define a Transferable wrapper for this type. The process is entirely analogous to the

SerialTransferable wrapper of the preceding example.

An object reference is only meaningful within a single virtual machine. For that reason, you cannot copy the
shape object to the system clipboard. Instead, use a local clipboard:

Clipboard clipboard = new Clipboard("local");

The construction parameter is the clipboard name.

However, using a local clipboard has one major disadvantage. You need to synchronize the local and the system
clipboard, so that users don't confuse the two. Currently, the Java platform doesn't do that synchronization for
you.

java.awt.datatransfer.Clipboard 1.1

Clipboard(String name)

constructs a local clipboard with the given name.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Drag and Drop

When you use cut and paste to transmit information between two programs, the clipboard acts as an intermediary.
The drag and drop metaphor cuts out the middleman and lets two programs communicate directly. The Java
platform offers basic support for drag and drop. You can carry out drag and drop operations between Java
applications and native applications. This section shows you how to write a Java application that is a drop target,
and an application that is a drag source.

Before going deeper into the Java platform support for drag and drop, let us quickly look at the drag-and-drop user
interface. We use the Windows Explorer and WordPad programs as examples—on another platform, you can
experiment with locally available programs with drag-and-drop capabilities.

You initiate a drag operation with a gesture inside a drag source —by first selecting one or more elements and then
dragging the selection away from its initial location. When you release the mouse button over a drop target that
accepts the drop operation, the drop target queries the drag source for information about the dropped elements and
carries out an appropriate operation. For example, if you drop a file icon from a file manager on top of a directory
icon, then the file is moved into that directory. However, if you drag it to a text editor, then the text editor opens
the file. (This requires, of course, that you use a file manager and text editor that are enabled for drag and drop,
such as Explorer/WordPad in Windows or Nautilus/gedit in Gnome).

If you hold down the CTRL key while dragging, then the type of the drop action changes from a move action to a
copy action, and a copy of the file is placed into the directory. If you hold down both SHIFT and CTRL keys, then a link
to the file is placed into the directory. (Other platforms might use other keyboard combinations for these
operations.)

Thus, there are three types of drop actions with different gestures:

Move

Copy

Link

The intention of the link action is to establish a reference to the dropped element. Such links typically require
support from the host operating system (such as symbolic links for files, or object linking for document
components) and don't usually make a lot of sense in cross-platform programs. In this section, we focus on using
drag and drop for copying and moving.

There is usually some visual feedback for the drag operation. Minimally, the cursor shape changes. As the cursor
moves over possible drop targets, the cursor shape indicates whether the drop is possible or not. If a drop is
possible, the cursor shape also indicates the type of the drop action. Table 7-6 shows several drop cursor shapes.

Table 7-6. Drop Cursor Shapes

Action Windows Icon Gnome Icon

Move

Copy

Action Windows Icon Gnome Icon

Link

Drop not allowed

You can also drag other elements besides file icons. For example, you can select text in WordPad or gedit and drag
it. Try dropping text fragments into willing drop targets and see how they react.

Note

This experiment shows a disadvantage of drag and drop as a user interface mechanism.
It can be difficult for users to anticipate what they can drag, where they can drop it,
and what happens when they do. Because the default "move" action can remove the
original, many users are understandably cautious about experimenting with drag and
drop.

Data Transfer Support in Swing

Starting with Java SE 1.4, several Swing components have built-in support for drag and drop (see Table 7-7). You
can drag selected text from a number of components, and you can drop text into text components. For backward
compatibility, you must call the setDragEnabled method to activate dragging. Dropping is always enabled.

Table 7-7. Data Transfer Support in Swing Components

Component Drag Source Drop Target

JFileChooser Exports file list N/A

JColorChooser Exports color object Accepts color objects

JTextField

JFormattedTextField

Exports selected text Accepts text

JPasswordField N/A (for security) Accepts text

JTextArea

JTextPane

JEditorPane

Exports selected text Accepts text and file lists

JList

JTable

JTree

Exports text description of
selection (copy only)

N/A

Note

Link

Drop not allowed

You can also drag other elements besides file icons. For example, you can select text in WordPad or gedit and drag
it. Try dropping text fragments into willing drop targets and see how they react.

Note

This experiment shows a disadvantage of drag and drop as a user interface mechanism.
It can be difficult for users to anticipate what they can drag, where they can drop it,
and what happens when they do. Because the default "move" action can remove the
original, many users are understandably cautious about experimenting with drag and
drop.

Data Transfer Support in Swing

Starting with Java SE 1.4, several Swing components have built-in support for drag and drop (see Table 7-7). You
can drag selected text from a number of components, and you can drop text into text components. For backward
compatibility, you must call the setDragEnabled method to activate dragging. Dropping is always enabled.

Table 7-7. Data Transfer Support in Swing Components

Component Drag Source Drop Target

JFileChooser Exports file list N/A

JColorChooser Exports color object Accepts color objects

JTextField

JFormattedTextField

Exports selected text Accepts text

JPasswordField N/A (for security) Accepts text

JTextArea

JTextPane

JEditorPane

Exports selected text Accepts text and file lists

JList

JTable

JTree

Exports text description of
selection (copy only)

N/A

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The java.awt.dnd package provides a lower-level drag-and-drop API that forms the

basis for the Swing drag and drop. We do not discuss that API in this book.

The program in Listing 7-14 demonstrates the behavior. As you run the program, note these points:

You can select multiple items in the list, table, or tree and drag them.

Dragging items from the table is a bit awkward. You first select with the mouse, then you let go of the mouse
button, then click it again, and then you drag.

When you drop the items in the text area, you can see how the dragged information is formatted. Table cells
are separated by tabs, and each selected row is on a separate line (see Figure 7-44).

Figure 7-44. The Swing drag-and-drop test program

[View full size image]

You can only copy, not move, items, from the list, table, tree, file chooser, or color chooser. Removing items
from a list, table, or tree is not possible with all data models. You will see in the next section how to
implement this capability when the data model is editable.

You cannot drag into the list, table, tree, or file chooser.

If you run two copies of the program, you can drag a color from one color chooser to the other.

You cannot drag text out of the text area because we didn't call setDragEnabled on it.

The Swing package provides a potentially useful mechanism to quickly turn a component into a drag source and
drop target. You can install a transfer handler for a given property. For example, in our sample program, we call

textField.setTransferHandler(new TransferHandler("background"));

You can now drag a color into the text field, and its background color changes.

When a drop occurs, then the transfer handler checks whether one of the data flavors has representation class

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Color . If so, it invokes the setBackground method.

By installing this transfer handler into the text field, you disable the standard transfer handler. You can no longer
cut, copy, paste, drag, or drop text in the text field. However, you can now drag color out of this text field. You still
need to select some text to initiate the drag gesture. When you drag the text, you will find that you can drop it into
the color chooser and change its color value to the text field's background color. However, you cannot drop the text
into the text area.

Listing 7-14. SwingDnDTest.java

Code View:
 1. import java.awt.*;

 2.

 3. import javax.swing.*;

 4. import javax.swing.border.*;

 5. import javax.swing.event.*;

 6.

 7. /**

 8. * This program demonstrates the basic Swing support for drag and drop.

 9. * @version 1.10 2007-09-20

10. * @author Cay Horstmann

11. */

12. public class SwingDnDTest

13. {

14. public static void main(String[] args)

15. {

16. EventQueue.invokeLater(new Runnable()

17. {

18. public void run()

19. {

20. JFrame frame = new SwingDnDFrame();

21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

22. frame.setVisible(true);

23. }

24. });

25. }

26. }

27.

28. class SwingDnDFrame extends JFrame

29. {

30. public SwingDnDFrame()

31. {

32. setTitle("SwingDnDTest");

33. JTabbedPane tabbedPane = new JTabbedPane();

34.

35. JList list = SampleComponents.list();

36. tabbedPane.addTab("List", list);

37. JTable table = SampleComponents.table();

38. tabbedPane.addTab("Table", table);

39. JTree tree = SampleComponents.tree();

40. tabbedPane.addTab("Tree", tree);

41. JFileChooser fileChooser = new JFileChooser();

42. tabbedPane.addTab("File Chooser", fileChooser);

43. JColorChooser colorChooser = new JColorChooser();

44. tabbedPane.addTab("Color Chooser", colorChooser);

45.

46. final JTextArea textArea = new JTextArea(4, 40);

47. JScrollPane scrollPane = new JScrollPane(textArea);

48. scrollPane.setBorder(new TitledBorder(new EtchedBorder(), "Drag text here"));

49.

50. JTextField textField = new JTextField("Drag color here");

51. textField.setTransferHandler(new TransferHandler("background"));

52.

53. tabbedPane.addChangeListener(new ChangeListener()

54. {

55. public void stateChanged(ChangeEvent e)

56. {

57. textArea.setText("");

58. }

59. });

60.

61. tree.setDragEnabled(true);

62. table.setDragEnabled(true);

63. list.setDragEnabled(true);

64. fileChooser.setDragEnabled(true);

65. colorChooser.setDragEnabled(true);

66. textField.setDragEnabled(true);

67.

68. add(tabbedPane, BorderLayout.NORTH);

69. add(scrollPane, BorderLayout.CENTER);

70. add(textField, BorderLayout.SOUTH);

71. pack();

72. }

73. }

javax.swing.JComponent 1.2

void setTransferHandler(TransferHandler handler) 1.4

sets a transfer handler to handle data transfer operations (cut, copy, paste,
drag, drop).

javax.swing.TransferHandler 1.4

TransferHandler(String propertyName)

constructs a transfer handler that reads or writes the JavaBeans component
property with the given name when a data transfer operation is executed.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javx.swing.JFileChooser 1.2
javax.swing.JColorChooser 1.2
javax.swing.JTextComponent 1.2

javax.swing.JList 1.2
javax.swing.JTable 1.2
javax.swing.JTree 1.2

void setDragEnabled(boolean b) 1.4

enables or disables dragging of data out of this component.

Drag Sources

In the previous section, you saw how to take advantage of the basic drag-and-drop support in Swing. In this
section, we show you how to configure any component as a drag source. In the next section, we discuss drop
targets and present a sample component that is both a source and a target for images.

To customize the drag-and-drop behavior of a Swing component, you subclass the TransferHandler class. First,

override the getSourceActions method to indicate which actions (copy, move, link) your component supports.

Next, override the getTransferable method that produces a Transferable object, following the same process that

you use for copying to the clipboard.

In our sample program, we drag images out of a JList that is filled with image icons (see Figure 7-45). Here is the

implementation of the createTransferable method. The selected image is simply placed into an

ImageTransferable wrapper.

protected Transferable createTransferable(JComponent source)

{
 JList list = (JList) source;

 int index = list.getSelectedIndex();

 if (index < 0) return null;

 ImageIcon icon = (ImageIcon) list.getModel().getElementAt(index);

 return new ImageTransferable(icon.getImage());

}

Figure 7-45. The ImageList drag-and-drop application
"Foxkeh" 2006 Mozilla Japan.

[View full size image]

In our example, we are fortunate that a JList is already wired for initiating a drag gesture. You simply activate that
mechanism by calling the setDragEnabled method. If you add drag support to a component that does not

recognize a drag gesture, you need to initiate the transfer yourself. For example, here is how you can initiate
dragging on a JLabel :

Code View:
label.addMouseListener(new MouseAdapter()

{

 public void mousePressed(MouseEvent evt)

 {
 int mode;

 if ((evt.getModifiers() & (InputEvent.CTRL_MASK | InputEvent.SHIFT_MASK)) != 0)

 mode = TransferHandler.COPY;

 else mode = TransferHandler.MOVE;

 JComponent comp = (JComponent) evt.getSource();

 TransferHandler th = comp.getTransferHandler();

 th.exportAsDrag(comp, evt, mode);

 }

});

Here, we simply start the transfer when the user clicks on the label. A more sophisticated implementation would
watch for a mouse motion that drags the mouse by a small amount.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

When the user completes the drop action, the exportDone method of the source transfer handler is invoked. In that

method, you need to remove the transferred object if the user carried out a move action. Here is the
implementation for the image list:

protected void exportDone(JComponent source, Transferable data, int action)

{

 if (action == MOVE)

 {

 JList list = (JList) source;

 int index = list.getSelectedIndex();

 if (index < 0) return;

 DefaultListModel model = (DefaultListModel) list.getModel();

 model.remove(index);

 }
}

To summarize, to turn a component into a drag source, you add a transfer handler that specifies the following:

Which actions are supported.

Which data is transferred.

And how the original data is removed after a move action.

In addition, if your drag source is a component other than those listed in Table 7-7 on page 654 , you need to watch
for a mouse gesture and initiate the transfer.

javax.swing.TransferHandler 1.4

int getSourceActions(JComponent c)

override to return the allowable source actions (bitwise or combination of
COPY , MOVE , and LINK) when dragging from the given component.

protected Transferable createTransferable(JComponent source)

override to create the Transferable for the data that is to be dragged.

void exportAsDrag(JComponent comp, InputEvent e, int action)

starts a drag gesture from the given component. The action is COPY , MOVE ,

or LINK .

protected void exportDone(JComponent source, Transferable data,

int action)

override to adjust the drag source after a successful transfer.

Drop Targets

In this section, we show you how to implement a drop target. Our example is again a JList with image icons. We

add drop support so that users can drop images into the list.

To make a component into a drop target, you set a TransferHandler and implement the canImport and

importData methods.

Note

As of Java SE 6, you can add a transfer handler to a JFrame . This is most commonly

used for dropping files into an application. Valid drop locations include the frame
decorations and the menu bar, but not components contained in the frame (which have
their own transfer handlers).

The canImport method is called continuously as the user moves the mouse over the drop target component. Return

true if a drop is allowed. This information affects the cursor icon that gives visual feedback whether the drop is

allowed.

As of Java SE 6, the canImport method has a parameter of type TransferHandler.TransferSupport . Through this

parameter, you can obtain the drop action chosen by the user, the drop location, and the data to be transferred.
(Before Java SE 6, a different canImport method was called that only supplies a list of data flavors.)

In the canImport method, you can also override the user drop action. For example, if a user chose the move action
but it would be inappropriate to remove the original, you can force the transfer handler to use a copy action
instead.

Here is a typical example. The image list component is willing to accept drops of file lists and images. However, if a
file list is dragged into the component, then a user-selected MOVE action is changed into a COPY action, so that the

image files do not get deleted.

public boolean canImport(TransferSupport support)
{

 if (support.isDataFlavorSupported(DataFlavor.javaFileListFlavor))

 {

 if (support.getUserDropAction() == MOVE) support.setDropAction(COPY);

 return true;

 }

 else return support.isDataFlavorSupported(DataFlavor.imageFlavor);

}

A more sophisticated implementation could check that the files actually contain images.

The Swing components JList , JTable , JTree , and JTextComponent give visual feedback about insertion positions

as the mouse is moved over the drop target. By default, the selection (for JList , JTable , and JTree) or the caret

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

(for JTextComponent) is used to indicate the drop location. That approach is neither user-friendly nor flexible, and

it is the default solely for backward compatibility. You should call the setDropMode method to choose a more

appropriate visual feedback.

You can control whether the dropped data should overwrite existing items or be inserted between them. For
example, in our sample program, we call

setDropMode(DropMode.ON_OR_INSERT);

to allow the user to drop onto an item (thereby replacing it), or to insert between two items (see Figure 7-46).
Table 7-8 shows the drop modes supported by the Swing components.

Figure 7-46. Visual indicators for dropping onto an item and between two items
"Foxkeh" 2006 Mozilla Japan.

Table 7-8. Drop Modes

Component Supported Drop Modes

JList , JTree ON , INSERT , ON_OR_INSERT , USE_SELECTION

JTable ON , INSERT , ON_OR_INSERT , INSERT_ROWS , INSERT_COLS ,

ON_OR_INSERT_ROWS , ON_OR_INSERT_COLS , USE_SELECTION

JTextComponent INSERT , USE_SELECTION (actually moves the caret, not the

selection)

Once the user completes the drop gesture, the importData method is invoked. You need to obtain the data from

the drag source. Invoke the getTransferable method on the TransferSupport parameter to obtain a reference to

a Transferable object. This is the same interface that is used for copy and paste.

One data type that is commonly used for drag and drop is the DataFlavor.javaFileListFlavor . A file list

describes a set of files that is dropped onto the target. The transfer data is an object of type List<File> . Here is

the code for retrieving the files:

Code View:
DataFlavor[] flavors = transferable.getTransferDataFlavors();

if (Arrays.asList(flavors).contains(DataFlavor.javaFileListFlavor))

{

 List<File> fileList = (List<File>) transferable.getTransferData(DataFlavor.javaFileListFlavor);

 for (File f : fileList)

 {

 do something with f;

 }

}

When dropping into one of the components listed in Table 7-8 , you need to know precisely where to drop the data.
Invoke the getDropLocation method on the TransferSupport parameter to find where the drop occurred. This

method returns an object of a subclass of TransferHandler.DropLocation . The JList , JTable , JTree , and

JTextComponent classes define subclasses that specify location in the particular data model. For example, a location

in a list is simply an integer index, but a location in a tree is a tree path. Here is how we obtain the drop location in
our image list:

Code View:
int index;

if (support.isDrop())

{

 JList.DropLocation location = (JList.DropLocation) support.getDropLocation();

 index = location.getIndex();
}

else index = model.size();

The JList.DropLocation subclass has a method getIndex that returns the index of the drop. (The

JTree.DropLocation subclass has a method getPath instead.)

The importData method is also called when data is pasted into the component with the CTRL+V keystroke. In that

case, the getDropLocation method would throw an IllegalStateException . Therefore, if the isDrop method

returns false , we simply append the pasted data to the end of the list.

When inserting into a list, table, or tree, you also need to check whether the data is supposed to be inserted
between items or whether it should replace the item at the drop location. For a list, invoke the isInsert method of

the JList.DropLocation . For the other components, see the API notes for their drop location classes at the end of

this section.

To summarize, to turn a component into a drop target, you add a transfer handler that specifies the following:

When a dragged item can be accepted.

How the dropped data is imported.

In addition, if you add drop support to a JList , JTable , JTree , or JTextComponent , you should set the drop

mode.

Listing 7-15 shows the complete program. Note that the ImageList class is both a drag source and a drop target.

Try dragging images between the two lists. You can also drag image files from a file chooser of another program
into the lists.

Listing 7-15. ImageListDragDrop.java

Code View:
 1. import java.awt.*;

 2. import java.awt.datatransfer.*;

 3. import java.io.*;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 4. import java.util.*;

 5. import javax.imageio.*;

 6. import javax.swing.*;

 7. import java.util.List;

 8.

 9. /**

 10. * This program demonstrates drag and drop in an image list.

 11. * @version 1.00 2007-09-20

 12. * @author Cay Horstmann

 13. */

 14. public class ImageListDnDTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. EventQueue.invokeLater(new Runnable()

 19. {

 20. public void run()

 21. {

 22. JFrame frame = new ImageListDnDFrame();

 23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 24. frame.setVisible(true);

 25. }

 26. });

 27. }

 28. }

 29.

 30. class ImageListDnDFrame extends JFrame

 31. {

 32. public ImageListDnDFrame()

 33. {

 34. setTitle("ImageListDnDTest");

 35. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 36.

 37. list1 = new ImageList(new File("images1").listFiles());

 38. list2 = new ImageList(new File("images2").listFiles());

 39. setLayout(new GridLayout(2, 1));

 40. add(new JScrollPane(list1));

 41. add(new JScrollPane(list2));

 42. }

 43.

 44. private ImageList list1;

 45. private ImageList list2;

 46. private static final int DEFAULT_WIDTH = 600;

 47. private static final int DEFAULT_HEIGHT = 500;

 48. }

 49.

 50. class ImageList extends JList

 51. {

 52. public ImageList(File[] imageFiles)

 53. {

 54. DefaultListModel model = new DefaultListModel();

 55. for (File f : imageFiles)

 56. model.addElement(new ImageIcon(f.getPath()));

 57.

 58. setModel(model);

 59. setVisibleRowCount(0);

 60. setLayoutOrientation(JList.HORIZONTAL_WRAP);

 61. setDragEnabled(true);

 62. setDropMode(DropMode.ON_OR_INSERT);

 63. setTransferHandler(new ImageListTransferHandler());

 64. }

 65. }

 66.

 67. class ImageListTransferHandler extends TransferHandler

 68. {

 69. // Support for drag

 70.

 71. public int getSourceActions(JComponent source)

 72. {

 73. return COPY_OR_MOVE;

 74. }

 75.

 76. protected Transferable createTransferable(JComponent source)

 77. {

 78. JList list = (JList) source;

 79. int index = list.getSelectedIndex();

 80. if (index < 0) return null;

 81. ImageIcon icon = (ImageIcon) list.getModel().getElementAt(index);

 82. return new ImageTransferable(icon.getImage());

 83. }

 84.

 85. protected void exportDone(JComponent source, Transferable data, int action)

 86. {

 87. if (action == MOVE)

 88. {

 89. JList list = (JList) source;

 90. int index = list.getSelectedIndex();

 91. if (index < 0) return;

 92. DefaultListModel model = (DefaultListModel) list.getModel();

 93. model.remove(index);

 94. }

 95. }

 96.

 97. // Support for drop

 98.

 99. public boolean canImport(TransferSupport support)

100. {

101. if (support.isDataFlavorSupported(DataFlavor.javaFileListFlavor))

102. {

103. if (support.getUserDropAction() == MOVE) support.setDropAction(COPY);

104. return true;

105. }

106. else return support.isDataFlavorSupported(DataFlavor.imageFlavor);

107. }

108.

109. public boolean importData(TransferSupport support)

110. {

111. JList list = (JList) support.getComponent();

112. DefaultListModel model = (DefaultListModel) list.getModel();

113.

114. Transferable transferable = support.getTransferable();

115. List<DataFlavor> flavors = Arrays.asList(transferable.getTransferDataFlavors());

116.

117. List<Image> images = new ArrayList<Image>();

118.

119. try

120. {

121. if (flavors.contains(DataFlavor.javaFileListFlavor))

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

122. {

123. List<File> fileList = (List<File>) transferable

124. .getTransferData(DataFlavor.javaFileListFlavor);

125. for (File f : fileList)

126. {

127. try

128. {

129. images.add(ImageIO.read(f));

130. }

131. catch (IOException ex)

132. {

133. // couldn't read image--skip

134. }

135. }

136. }

137. else if (flavors.contains(DataFlavor.imageFlavor))

138. {

139. images.add((Image) transferable.getTransferData(DataFlavor.imageFlavor));

140. }

141.

142. int index;

143. if (support.isDrop())

144. {

145. JList.DropLocation location = (JList.DropLocation) support.getDropLocation();

146. index = location.getIndex();

147. if (!location.isInsert()) model.remove(index); // replace location

148. }

149. else index = model.size();

150. for (Image image : images)

151. {

152. model.add(index, new ImageIcon(image));

153. index++;

154. }

155. return true;

156. }

157. catch (IOException ex)

158. {

159. return false;

160. }

161. catch (UnsupportedFlavorException ex)

162. {

163. return false;

164. }

165. }

166. }

javax.swing.TransferHandler 1.4

boolean canImport(TransferSupport support) 6

override to indicate whether the target component can accept the drag
described by the TransferSupport parameter.

boolean importData(TransferSupport support) 6

override to carry out the drop or paste gesture described by the
TransferSupport parameter, and return true if the import was successful.

javax.swing.JFrame 1.2

void setTransferHandler(TransferHandler handler) 6

sets a transfer handler to handle drop and paste operations only

javax.swing.JList 1.2
javax.swing.JTable 1.2
javax.swing.JTree 1.2

javax.swing.JTextComponent 1.2

void setDropMode(DropMode mode) 6

set the drop mode of this component to one of the values specified in Table
7-8 .

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.TransferHandler.TransferSupport 6

Component getComponent()

gets the target component of this transfer.

DataFlavor[] getDataFlavors()

gets the data flavors of the data to be transferred.

boolean isDrop()

true if this transfer is a drop, false if it is a paste.

int getUserDropAction()

gets the drop action chosen by the user (MOVE , COPY , or LINK).

getSourceDropActions()

gets the drop actions that are allowed by the drag source.

getDropAction()

setDropAction()

gets or sets the drop action of this transfer. Initially, this is the user drop
action, but it can be overridden by the transfer handler.

DropLocation getDropLocation()

gets the location of the drop, or throws an IllegalStateException if this

transfer is not a drop.

javax.swing.TransferHandler.DropLocation 6

Point getDropPoint()

gets the mouse location of the drop in the target component.

javax.swing.JList.DropLocation 6

boolean isInsert()

returns true if the data are to be inserted before a given location, false if

they are to replace existing data.

int getIndex()

gets the model index for the insertion or replacement.

javax.swing.JTable.DropLocation 6

boolean isInsertRow()

boolean isInsertColumn()

returns true if data are to be inserted before a row or column.

int getRow()

int getColumn()

gets the model row or column index for the insertion or replacement, or -1
if the drop occurred in an empty area.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.swing.JTree.DropLocation 6

TreePath getPath()

int getChildIndex()

returns the tree path and child that, together with the drop mode of the target component,
define the drop location, as described in Table 7-9 .

Table 7-9. Drop Location Handling in JTree

Drop Mode Tree Edit Action

INSERT Insert as child of the path, before the child index.

ON or USE_SELECTION Replace the data of the path (child index not used).

INSERT_OR_ON If the child index is -1, do as in ON , otherwise as in INSERT .

javax.swing.JTextComponent.DropLocation 6

int getIndex()

the index at which to insert the data.

Platform Integration

We finish this chapter with several features that were added to Java SE 6 to make Java applications feel more
like native applications. The splash screen feature allows your application to display a splash screen as the
virtual machine starts up. The java.awt.Desktop class lets you launch native applications such as the default

browser and e-mail program. Finally, you now have access to the system tray and can clutter it up with icons,
just like so many native applications do.

Splash Screens

A common complaint about Java applications is their long startup time. The Java virtual machine takes some
time to load all required classes, particularly for a Swing application that needs to pull in large amounts of
Swing and AWT library code. Users dislike applications that take a long time to bring up an initial screen, and
they might even try launching the application multiple times if they don't know whether the first launch was
successful. The remedy is a splash screen, a small window that appears quickly, telling the user that the
application has been launched successfully.

Traditionally, this has been difficult for Java applications. Of course, you can put up a window as soon as your
main method starts. However, the main method is only launched after the class loader has loaded all dependent

classes, which might take a while.

Java SE 6 solves this problem by enabling the virtual machine to show an image immediately on launch. There
are two mechanisms for specifying that image. You can use the -splash command-line option:

java -splash:myimage.png MyApp

Alternatively, you can specify it in the manifest of a JAR file:

Main-Class: MyApp

SplashScreen-Image: myimage.gif

The image is displayed immediately and automatically disappears when the first AWT window is made visible.
You can supply any GIF, JPEG, or PNG image. Animation (in GIF) and transparency (GIF and PNG) are
supported.

If your application is ready to go as soon as it reaches main, you can skip the remainder of this section.

However, many applications use a plug-in architecture in which a small core loads a set of plugins at startup.
Eclipse and NetBeans are typical examples. In that case, you can indicate the loading progress on the splash
screen.

There are two approaches. You can draw directly on the splash screen, or you can replace it with a borderless
frame with identical contents, and then draw inside the frame. Our sample program shows both techniques.

To draw directly on the splash screen, get a reference to the splash screen and get its graphics context and
dimensions:

SplashScreen splash = SplashScreen.getSplashScreen();

Graphics2D g2 = splash.createGraphics();
Rectangle bounds = splash.getBounds();

You can now draw in the usual way. When you are done, call update to ensure that the drawing is refreshed.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Our sample program draws a simple progress bar, as seen in the left image in Figure 7-47.

g.fillRect(x, y, width * percent / 100, height);

splash.update();

Figure 7-47. The initial splash screen and a borderless follow-up window

Note

The splash screen is a singleton object. You cannot construct your own. If no splash
screen was set on the command line or in the manifest, the getSplashScreen
method returns null.

Drawing directly on the splash screen has a drawback. It is tedious to compute all pixel positions, and your
progress indicator won't match the native progress bar. To avoid these problems, you can replace the initial
splash screen with a follow-up window of the same size and content as soon as the main method starts. That

window can contain arbitrary Swing components.

Our sample program in Listing 7-16 demonstrates this technique. The right image in Figure 7-47 shows a
borderless frame with a panel that paints the splash screen and contains a JProgressBar. Now we have full

access to the Swing API and can easily add message strings without having to fuss with pixel positions.

Note that we do not need to remove the initial splash screen. It is automatically removed as soon as the follow-
up window is made visible.

Caution

Unfortunately, there is a noticeable flash when the splash screen is replaced by the
follow-up window.

Listing 7-16. SplashScreenTest.java

Code View:
 1. import java.awt.*;

 2. import java.util.List;

 3. import javax.swing.*;

 4.

 5. /**

 6. * This program demonstrates the splash screen API.

 7. * @version 1.00 2007-09-21

 8. * @author Cay Horstmann

 9. */

 10. public class SplashScreenTest

 11. {

 12. private static void drawOnSplash(int percent)

 13. {

 14. Rectangle bounds = splash.getBounds();

 15. Graphics2D g = splash.createGraphics();

 16. int height = 20;

 17. int x = 2;

 18. int y = bounds.height - height - 2;

 19. int width = bounds.width - 4;

 20. Color brightPurple = new Color(76, 36, 121);

 21. g.setColor(brightPurple);

 22. g.fillRect(x, y, width * percent / 100, height);

 23. splash.update();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 24. }

 25.

 26. /**

 27. * This method draws on the splash screen.

 28. */

 29. private static void init1()

 30. {

 31. splash = SplashScreen.getSplashScreen();

 32. if (splash == null)

 33. {

 34. System.err.println("Did you specify a splash image with -splash or in the manifest?");

 35. System.exit(1);

 36. }

 37.

 38. try

 39. {

 40. for (int i = 0; i <= 100; i++)

 41. {

 42. drawOnSplash(i);

 43. Thread.sleep(100); // simulate startup work

 44. }

 45. }

 46. catch (InterruptedException e)

 47. {

 48. }

 49. }

 50.

 51. /**

 52. * This method displays a frame with the same image as the splash screen.

 53. */

 54. private static void init2()

 55. {

 56. final Image img = Toolkit.getDefaultToolkit().getImage(splash.getImageURL());

 57.

 58. final JFrame splashFrame = new JFrame();

 59. splashFrame.setUndecorated(true);

 60.

 61. final JPanel splashPanel = new JPanel()

 62. {

 63. public void paintComponent(Graphics g)

 64. {

 65. g.drawImage(img, 0, 0, null);

 66. }

 67. };

 68.

 69. final JProgressBar progressBar = new JProgressBar();

 70. progressBar.setStringPainted(true);

 71. splashPanel.setLayout(new BorderLayout());

 72. splashPanel.add(progressBar, BorderLayout.SOUTH);

 73.

 74. splashFrame.add(splashPanel);

 75. splashFrame.setBounds(splash.getBounds());

 76. splashFrame.setVisible(true);

 77.

 78. new SwingWorker<Void, Integer>()

 79. {

 80. protected Void doInBackground() throws Exception

 81. {

 82. try

 83. {

 84. for (int i = 0; i <= 100; i++)

 85. {

 86. publish(i);

 87. Thread.sleep(100);

 88. }

 89. }

 90. catch (InterruptedException e)

 91. {

 92. }

 93. return null;

 94. }

 95.

 96. protected void process(List<Integer> chunks)

 97. {

 98. for (Integer chunk : chunks)

 99. {

100. progressBar.setString("Loading module " + chunk);

101. progressBar.setValue(chunk);

102. splashPanel.repaint(); // because img is loaded asynchronously

103. }

104. }

105.

106. protected void done()

107. {

108. splashFrame.setVisible(false);

109.

110. JFrame frame = new JFrame();

111. frame.setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

112. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

113. frame.setTitle("SplashScreenTest");

114. frame.setVisible(true);

115. }

116. }.execute();

117. }

118.

119. public static void main(String args[])

120. {

121. init1();

122.

123. EventQueue.invokeLater(new Runnable()

124. {

125. public void run()

126. {

127. init2();

128. }

129. });

130. }

131.

132. private static SplashScreen splash;

133. private static final int DEFAULT_WIDTH = 300;

134. private static final int DEFAULT_HEIGHT = 300;

135. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.SplashScreen 6

static SplashScreen getSplashScreen()

gets a reference to the splash screen, or null if no splash screen is

present.

URL getImageURL()

void setImageURL(URL imageURL)

gets or sets the URL of the splash screen image. Setting the image
updates the splash screen.

Rectangle getBounds()

gets the bounds of the splash screen.

Graphics2D createGraphics()

gets a graphics context for drawing on the splash screen.

void update()

updates the display of the splash screen.

void close()

closes the splash screen. The splash screen is automatically closed when
the first AWT window is made visible.

Launching Desktop Applications

The java.awt.Desktop class lets you launch the default browser and e-mail program. You can also open, edit,

and print files, using the applications that are registered for the file type.

The API is very straightforward. First, call the static isDesktopSupported method. If it returns true, the current

platform supports the launching of desktop applications. Then call the static getDesktop method to obtain a

Desktop instance.

Not all desktop environments support all API operations. For example, in the Gnome desktop on Linux, it is
possible to open files, but you cannot print them. (There is no support for "verbs" in file associations.) To find
out what is supported on your platform, call the isSupported method, passing a value in the Desktop.Action

enumeration. Our sample program contains tests such as the following:

Code View:
if (desktop.isSupported(Desktop.Action.PRINT)) printButton.setEnabled(true);

To open, edit, or print a file, first check that the action is supported, and then call the open, edit, or print

method. To launch the browser, pass a URI. (See Chapter 3 for more information on URIs.) You can simply call

the URI constructor with a string containing an http or https URL.

To launch the default e-mail program, you need to construct a URI of a particular format, namely

mailto:recipient?query

Here recipient is the e-mail address of the recipient, such as president@whitehouse.gov, and query contains &-

separated name=value pairs, with percent-encoded values. (Percent encoding is essentially the same as the URL

encoding algorithm described in Chapter 3, but a space is encoded as %20, not +). An example is

subject=dinner%20RSVP&bcc=putin%40kremvax.ru. The format is documented in RFC 2368
(http://www.ietf.org/rfc/rfc2368.txt). Unfortunately, the URI class does not know anything about mailto URIs,

so you have to assemble and encode your own. To make matters worse, at the time of this writing, there is no
standard for dealing with non-ASCII characters. A common approach (which we take as well) is to convert each
character to UTF-8 and percent-encode the resulting bytes.

Our sample program in Listing 7-17 lets you open, edit, or print a file of your choice, browse a URL, or launch
your e-mail program (see Figure 7-48).

Figure 7-48. Launching a desktop application

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.ietf.org/rfc/rfc2368.txt

Listing 7-17. DesktopAppTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import java.net.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program demonstrates the desktop app API.

 9. * @version 1.00 2007-09-22

 10. * @author Cay Horstmann

 11. */

 12. public class DesktopAppTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new DesktopAppFrame();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. class DesktopAppFrame extends JFrame

 29. {

 30. public DesktopAppFrame()

 31. {

 32. setLayout(new GridBagLayout());

 33. final JFileChooser chooser = new JFileChooser();

 34. JButton fileChooserButton = new JButton("...");

 35. final JTextField fileField = new JTextField(20);

 36. fileField.setEditable(false);

 37. JButton openButton = new JButton("Open");

 38. JButton editButton = new JButton("Edit");

 39. JButton printButton = new JButton("Print");

 40. final JTextField browseField = new JTextField();

 41. JButton browseButton = new JButton("Browse");

 42. final JTextField toField = new JTextField();

 43. final JTextField subjectField = new JTextField();

 44. JButton mailButton = new JButton("Mail");

 45.

 46. openButton.setEnabled(false);

 47. editButton.setEnabled(false);

 48. printButton.setEnabled(false);

 49. browseButton.setEnabled(false);

 50. mailButton.setEnabled(false);

 51.

 52. if (Desktop.isDesktopSupported())

 53. {

 54. Desktop desktop = Desktop.getDesktop();

 55. if (desktop.isSupported(Desktop.Action.OPEN)) openButton.setEnabled(true);

 56. if (desktop.isSupported(Desktop.Action.EDIT)) editButton.setEnabled(true);

 57. if (desktop.isSupported(Desktop.Action.PRINT)) printButton.setEnabled(true);

 58. if (desktop.isSupported(Desktop.Action.BROWSE)) browseButton.setEnabled(true);

 59. if (desktop.isSupported(Desktop.Action.MAIL)) mailButton.setEnabled(true);

 60. }

 61.

 62. fileChooserButton.addActionListener(new ActionListener()

 63. {

 64. public void actionPerformed(ActionEvent e)

 65. {

 66. if (chooser.showOpenDialog(DesktopAppFrame.this) ==

 67. JFileChooser.APPROVE_OPTION)

 68. fileField.setText(chooser.getSelectedFile().getAbsolutePath());

 69. }

 70. });

 71.

 72. openButton.addActionListener(new ActionListener()

 73. {

 74. public void actionPerformed(ActionEvent e)

 75. {

 76. try

 77. {

 78. Desktop.getDesktop().open(chooser.getSelectedFile());

 79. }

 80. catch (IOException ex)

 81. {

 82. ex.printStackTrace();

 83. }

 84. }

 85. });

 86.

 87. editButton.addActionListener(new ActionListener()

 88. {

 89. public void actionPerformed(ActionEvent e)

 90. {

 91. try

 92. {

 93. Desktop.getDesktop().edit(chooser.getSelectedFile());

 94. }

 95. catch (IOException ex)

 96. {

 97. ex.printStackTrace();

 98. }

 99. }

100. });

101.

102. printButton.addActionListener(new ActionListener()

103. {

104. public void actionPerformed(ActionEvent e)

105. {

106. try

107. {

108. Desktop.getDesktop().print(chooser.getSelectedFile());

109. }

110. catch (IOException ex)

111. {

112. ex.printStackTrace();

113. }

114. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

115. });

116.

117. browseButton.addActionListener(new ActionListener()

118. {

119. public void actionPerformed(ActionEvent e)

120. {

121. try

122. {

123. Desktop.getDesktop().browse(new URI(browseField.getText()));

124. }

125. catch (URISyntaxException ex)

126. {

127. ex.printStackTrace();

128. }

129. catch (IOException ex)

130. {

131. ex.printStackTrace();

132. }

133. }

134. });

135.

136. mailButton.addActionListener(new ActionListener()

137. {

138. public void actionPerformed(ActionEvent e)

139. {

140. try

141. {

142. String subject = percentEncode(subjectField.getText());

143. URI uri = new URI("mailto:" + toField.getText() + "?subject=" + subject);

144.

145. System.out.println(uri);

146. Desktop.getDesktop().mail(uri);

147. }

148. catch (URISyntaxException ex)

149. {

150. ex.printStackTrace();

151. }

152. catch (IOException ex)

153. {

154. ex.printStackTrace();

155. }

156. }

157. });

158.

159. JPanel buttonPanel = new JPanel();

160. ((FlowLayout) buttonPanel.getLayout()).setHgap(2);

161. buttonPanel.add(openButton);

162. buttonPanel.add(editButton);

163. buttonPanel.add(printButton);

164.

165. add(fileChooserButton, new GBC(0, 0).setAnchor(GBC.EAST).setInsets(2));

166. add(fileField, new GBC(1, 0).setFill(GBC.HORIZONTAL));

167. add(buttonPanel, new GBC(2, 0).setAnchor(GBC.WEST).setInsets(0));

168. add(browseField, new GBC(1, 1).setFill(GBC.HORIZONTAL));

169. add(browseButton, new GBC(2, 1).setAnchor(GBC.WEST).setInsets(2));

170. add(new JLabel("To:"), new GBC(0, 2).setAnchor(GBC.EAST).setInsets(5, 2, 5, 2));

171. add(toField, new GBC(1, 2).setFill(GBC.HORIZONTAL));

172. add(mailButton, new GBC(2, 2).setAnchor(GBC.WEST).setInsets(2));

173. add(new JLabel("Subject:"), new GBC(0, 3).setAnchor(GBC.EAST).setInsets(5, 2, 5, 2));

174. add(subjectField, new GBC(1, 3).setFill(GBC.HORIZONTAL));

175.

176. pack();

177. }

178.

179. private static String percentEncode(String s)

180. {

181. try

182. {

183. return URLEncoder.encode(s, "UTF-8").replaceAll("[+]", "%20");

184. }

185. catch (UnsupportedEncodingException ex)

186. {

187. return null; // UTF-8 is always supported

188. }

189. }

190. }

java.awt.Desktop 6

static boolean isDesktopSupported()

returns true if launching of desktop applications is supported on this

platform.

static Desktop getDesktop()

returns the Desktop object for launching desktop operations. Throws an

UnsupportedOperationException if this platform does not support
launching of desktop operations.

boolean isSupported(Desktop.Action action)

returns true if the given action is supported. action is one of OPEN,

EDIT, PRINT, BROWSE, or MAIL.

void open(File file)

launches the application that is registered for viewing the given file.

void edit(File file)

launches the application that is registered for editing the given file.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

void print(File file)

prints the given file.

void browse(URI uri)

launches the default browser on the given URI.

void mail()

void mail(URI uri)

launches the default mailer. The second version can can be used to fill in
parts of the e-mail message.

The System Tray

Many desktop environments have an area for icons of programs that run in the background and occasionally
notify users of events. In Windows, this area is called the system tray, and the icons are called tray icons. The
Java API adopts the same terminology. A typical example of such a program is a monitor that checks for
software updates. If new software updates are available, the monitor program can change the appearance of
the icon or display a message near the icon.

Frankly, the system tray is somewhat overused, and computer users are not usually filled with joy when they
discover yet another tray icon. Our sample system tray application—a program that dispenses virtual fortune
cookies—is no exception to that rule.

The java.awt.SystemTray class is the cross-platform conduit to the system tray. Similar to the Desktop class

discussed in the preceding section, you first call the static isSupported method to check that the local Java

platform supports the system tray. If so, you get a SystemTray singleton by calling the static getSystemTray

method.

The most important method of the SystemTray class is the add method that lets you add a TrayIcon instance.

A tray icon has three key properties:

The icon image.

The tooltip that is visible when the mouse hovers over the icon.

The pop-up menu that is displayed when the user clicks on the icon with the right mouse button.

The pop-up menu is an instance of the PopupMenu class of the AWT library, representing a native pop-up menu,

not a Swing menu. You add AWT MenuItem instances, each of which has an action listener just like the Swing

counterpart.

Finally, a tray icon can display notifications to the user (see Figure 7-49). Call the displayMessage method of

the TrayIcon class and specify the caption, message, and message type.

Code View:
trayIcon.displayMessage("Your Fortune", fortunes.get(index), TrayIcon.MessageType.INFO);

Figure 7-49. A notification from a tray icon

Listing 7-18 shows the application that places a fortune cookie icon into the system tray. The program reads a
fortune cookie file (from the venerable UNIX fortune program) in which each fortune is terminated by a line
containing a % character. It displays a message every ten seconds. Mercifully, there is a pop-up menu with an

item to exit the application. If only all tray icons were so considerate!

Listing 7-18. SystemTrayTest.java

Code View:
 1. import java.awt.*;

 2. import java.util.*;

 3. import java.util.List;

 4. import java.awt.event.*;

 5. import java.io.*;

 6. import javax.swing.Timer;

 7.

 8. /**

 9. * This program demonstrates the system tray API.

 10. * @version 1.00 2007-09-22

 11. * @author Cay Horstmann

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 12. */

 13. public class SystemTrayTest

 14. {

 15. public static void main(String[] args)

 16. {

 17. final TrayIcon trayIcon;

 18.

 19. if (!SystemTray.isSupported())

 20. {

 21. System.err.println("System tray is not supported.");

 22. return;

 23. }

 24.

 25. SystemTray tray = SystemTray.getSystemTray();

 26. Image image = Toolkit.getDefaultToolkit().getImage("cookie.png");

 27.

 28. PopupMenu popup = new PopupMenu();

 29. MenuItem exitItem = new MenuItem("Exit");

 30. exitItem.addActionListener(new ActionListener()

 31. {

 32. public void actionPerformed(ActionEvent e)

 33. {

 34. System.exit(0);

 35. }

 36. });

 37. popup.add(exitItem);

 38.

 39. trayIcon = new TrayIcon(image, "Your Fortune", popup);

 40.

 41. trayIcon.setImageAutoSize(true);

 42. trayIcon.addActionListener(new ActionListener()

 43. {

 44. public void actionPerformed(ActionEvent e)

 45. {

 46. trayIcon.displayMessage("How do I turn this off?",

 47. "Right-click on the fortune cookie and select Exit.",

 48. TrayIcon.MessageType.INFO);

 49. }

 50. });

 51.

 52. try

 53. {

 54. tray.add(trayIcon);

 55. }

 56. catch (AWTException e)

 57. {

 58. System.err.println("TrayIcon could not be added.");

 59. return;

 60. }

 61.

 62. final List<String> fortunes = readFortunes();

 63. Timer timer = new Timer(10000, new ActionListener()

 64. {

 65. public void actionPerformed(ActionEvent e)

 66. {

 67. int index = (int) (fortunes.size() * Math.random());

 68. trayIcon.displayMessage("Your Fortune", fortunes.get(index),

 69. TrayIcon.MessageType.INFO);

 70. }

 71. });

 72. timer.start();

 73. }

 74.

 75. private static List<String> readFortunes()

 76. {

 77. List<String> fortunes = new ArrayList<String>();

 78. try

 79. {

 80. Scanner in = new Scanner(new File("fortunes"));

 81. StringBuilder fortune = new StringBuilder();

 82. while (in.hasNextLine())

 83. {

 84. String line = in.nextLine();

 85. if (line.equals("%"))

 86. {

 87. fortunes.add(fortune.toString());

 88. fortune = new StringBuilder();

 89. }

 90. else

 91. {

 92. fortune.append(line);

 93. fortune.append(' ');

 94. }

 95. }

 96. }

 97. catch (IOException ex)

 98. {

 99. ex.printStackTrace();

100. }

101. return fortunes;

102. }

103.

104. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.awt.SystemTray 6

static boolean isSupported()

returns true if system tray access is supported on this platform.

static SystemTray getSystemTray()

returns the SystemTray object for accessing the system tray. Throws an

UnsupportedOperationException if this platform does not support

system tray access.

Dimension getTrayIconSize()

gets the dimensions for an icon in the system tray.

void add(TrayIcon trayIcon)

void remove(TrayIcon trayIcon)

adds or removes a system tray icon.

java.awt.TrayIcon 6

TrayIcon(Image image)

TrayIcon(Image image, String tooltip)

TrayIcon(Image image, String tooltip, PopupMenu popupMenu)

constructs a tray icon with the given image, tooltip, and pop-up menu.

Image getImage()

void setImage(Image image)

String getTooltip()

void setTooltip(String tooltip)

PopupMenu getPopupMenu()

void setPopupMenu(PopupMenu popupMenu)

gets or sets the image, tooltip, or pop-up menu of this tooltip.

boolean isImageAutoSize()

void setImageAutoSize(boolean autosize)

gets or sets the imageAutoSize property. If set, the image is scaled to

fit the tooltip icon area. If not (the default), it is cropped (if too large) or
centered (if too small).

void displayMessage(String caption, String text,

TrayIcon.MessageType messageType)

displays a message near the tray icon. The message type is one of INFO,

WARNING, ERROR, or NONE.

public void addActionListener(ActionListener listener)

public void removeActionListener(ActionListener listener)

adds or removes an action listener when the listenercalled is platform-
dependent. Typical cases are clicking on a notification or double-clicking
on the tray icon.

You have now reached the end of this long chapter covering advanced AWT features. In the next chapter, we
discuss the JavaBeans specification and its use for GUI builders.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 8. JavaBeans Components

WHY BEANS?

THE BEAN-WRITING PROCESS

USING BEANS TO BUILD AN APPLICATION

NAMING PATTERNS FOR BEAN PROPERTIES AND EVENTS

BEAN PROPERTY TYPES

BEANINFO CLASSES

PROPERTY EDITORS

CUSTOMIZERS

JAVABEANS PERSISTENCE

The official definition of a bean, as given in the JavaBeans specification, is: "A bean is a reusable software
component based on Sun's JavaBeans specification that can be manipulated visually in a builder tool."

Once you implement a bean, others can use it in a builder environment (such as NetBeans). Instead of having
to write tedious code, they can simply drop your bean into a GUI form and customize it with dialog boxes.

This chapter explains how you can implement beans so that other developers can use them easily.

Note

We'd like to address a common confusion before going any further: The JavaBeans
that we discuss in this chapter have little in common with Enterprise JavaBeans
(EJB). Enterprise JavaBeans are server-side components with support for
transactions, persistence, replication, and security. At a very basic level, they too
are components that can be manipulated in builder tools. However, the Enterprise
JavaBeans technology is quite a bit more complex than the "Standard Edition"
JavaBeans technology.

That does not mean that standard JavaBeans components are limited to client-side
programming. Web technologies such as JavaServer Faces (JSF) and JavaServer
Pages (JSP) rely heavily on the JavaBeans component model.

Why Beans?

Programmers with experience in Visual Basic will immediately know why beans are so important. Programmers
coming from an environment in which the tradition is to "roll your own" for everything often find it hard to
believe that Visual Basic is one of the most successful examples of reusable object technology. For those who
have never worked with Visual Basic, here, in a nutshell, is how you build a Visual Basic application:

You build the interface by dropping components (called controls in Visual Basic) onto a form window.1.

Through property inspectors, you set properties of the components such as height, color, or other
behavior.

2.

The property inspectors also list the events to which components can react. Some events can be hooked
up through dialog boxes. For other events, you write short snippets of event handling code.

3.

For example, in Volume I, Chapter 2, we wrote a program that displays an image in a frame. It took over a page
of code. Here's what you would do in Visual Basic to create a program with pretty much the same functionality:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

1. Add two controls to a window: an Image control for displaying graphics and a Common Dialog control for
selecting a file.

2. Set the Filter properties of the CommonDialog control so that only files that the Image control can handle
will show up, as shown in Figure 8-1.

Figure 8-1. The Properties window in Visual Basic for an image application

[View full size image]

3. Write four lines of Visual Basic code that will be activated when the project first starts running. All the
code you need for this sequence looks like this:

Private Sub Form_Load()
 CommonDialog1.ShowOpen
 Image1.Picture = LoadPicture(CommonDialog1.FileName)
End Sub

The code pops up the file dialog box—but only files with the right extension are shown because of how we
set the filter property. After the user selects an image file, the code then tells the Image control to display
it.

That's it. The layout activity, combined with these statements, gives essentially the same functionality as a page
of Java code. Clearly, it is a lot easier to learn how to drop down components and set properties than it is to

write a page of code.

We do not want to imply that Visual Basic is a good solution for every problem. It is clearly optimized for a
particular kind of problem—UI-intensive Windows programs. The JavaBeans technology was invented to make
Java technology competitive in this arena. It enables vendors to create Visual Basic-style development
environments. These environments make it possible to build user interfaces with a minimum of programming.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 8. JavaBeans Components

WHY BEANS?

THE BEAN-WRITING PROCESS

USING BEANS TO BUILD AN APPLICATION

NAMING PATTERNS FOR BEAN PROPERTIES AND EVENTS

BEAN PROPERTY TYPES

BEANINFO CLASSES

PROPERTY EDITORS

CUSTOMIZERS

JAVABEANS PERSISTENCE

The official definition of a bean, as given in the JavaBeans specification, is: "A bean is a reusable software
component based on Sun's JavaBeans specification that can be manipulated visually in a builder tool."

Once you implement a bean, others can use it in a builder environment (such as NetBeans). Instead of having
to write tedious code, they can simply drop your bean into a GUI form and customize it with dialog boxes.

This chapter explains how you can implement beans so that other developers can use them easily.

Note

We'd like to address a common confusion before going any further: The JavaBeans
that we discuss in this chapter have little in common with Enterprise JavaBeans
(EJB). Enterprise JavaBeans are server-side components with support for
transactions, persistence, replication, and security. At a very basic level, they too
are components that can be manipulated in builder tools. However, the Enterprise
JavaBeans technology is quite a bit more complex than the "Standard Edition"
JavaBeans technology.

That does not mean that standard JavaBeans components are limited to client-side
programming. Web technologies such as JavaServer Faces (JSF) and JavaServer
Pages (JSP) rely heavily on the JavaBeans component model.

Why Beans?

Programmers with experience in Visual Basic will immediately know why beans are so important. Programmers
coming from an environment in which the tradition is to "roll your own" for everything often find it hard to
believe that Visual Basic is one of the most successful examples of reusable object technology. For those who
have never worked with Visual Basic, here, in a nutshell, is how you build a Visual Basic application:

You build the interface by dropping components (called controls in Visual Basic) onto a form window.1.

Through property inspectors, you set properties of the components such as height, color, or other
behavior.

2.

The property inspectors also list the events to which components can react. Some events can be hooked
up through dialog boxes. For other events, you write short snippets of event handling code.

3.

For example, in Volume I, Chapter 2, we wrote a program that displays an image in a frame. It took over a page
of code. Here's what you would do in Visual Basic to create a program with pretty much the same functionality:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

1. Add two controls to a window: an Image control for displaying graphics and a Common Dialog control for
selecting a file.

2. Set the Filter properties of the CommonDialog control so that only files that the Image control can handle
will show up, as shown in Figure 8-1.

Figure 8-1. The Properties window in Visual Basic for an image application

[View full size image]

3. Write four lines of Visual Basic code that will be activated when the project first starts running. All the
code you need for this sequence looks like this:

Private Sub Form_Load()
 CommonDialog1.ShowOpen
 Image1.Picture = LoadPicture(CommonDialog1.FileName)
End Sub

The code pops up the file dialog box—but only files with the right extension are shown because of how we
set the filter property. After the user selects an image file, the code then tells the Image control to display
it.

That's it. The layout activity, combined with these statements, gives essentially the same functionality as a page
of Java code. Clearly, it is a lot easier to learn how to drop down components and set properties than it is to

write a page of code.

We do not want to imply that Visual Basic is a good solution for every problem. It is clearly optimized for a
particular kind of problem—UI-intensive Windows programs. The JavaBeans technology was invented to make
Java technology competitive in this arena. It enables vendors to create Visual Basic-style development
environments. These environments make it possible to build user interfaces with a minimum of programming.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The Bean-Writing Process

Writing a bean is not technically difficult—there are only a few new classes and interfaces for you to master. In
particular, the simplest kind of bean is nothing more than a Java class that follows some fairly strict naming
conventions for its methods.

Note

Some authors claim that a bean must have a default constructor. The JavaBeans
specification is actually silent on this issue. However, most builder tools require a
default constructor for each bean, so that they can instantiate beans without
construction parameters.

Listing 8-1 at the end of this section shows the code for an ImageViewer bean that could give a Java builder
environment the same functionality as the Visual Basic image control we mentioned in the previous section.
When you look at this code, notice that the ImageViewerBean class really doesn't look any different from any

other class. For example, all accessor methods begin with get, and all mutator methods begin with set. As you
will soon see, builder tools use this standard naming convention to discover properties. For example, fileName

is a property of this bean because it has get and set methods.

Note that a property is not the same as an instance field. In this particular example, the fileName property is

computed from the file instance field. Properties are conceptually at a higher level than instance fields—they

are features of the interface, whereas instance fields belong to the implementation of the class.

One point that you need to keep in mind when you read through the examples in this chapter is that real-world
beans are much more elaborate and tedious to code than our brief examples, for two reasons.

Beans must be usable by less-than-expert programmers. You need to expose lots of properties so that
your users can access most of the functionality of your bean with a visual design tool and without
programming.

1.

The same bean must be usable in a wide variety of contexts. Both the behavior and the appearance of
your bean must be customizable. Again, this means exposing lots of properties.

2.

A good example of a bean with rich behavior is CalendarBean by Kai Tödter (see Figure 8-2). The bean and its

source code are freely available from http://www.toedter.com/en/jcalendar. This bean gives users a convenient
way of entering dates, by locating them in a calendar display. This is obviously pretty complex and not
something one would want to program from scratch. By using a bean such as this one, you can take advantage
of the work of others, simply by dropping the bean into a builder tool.

Figure 8-2. A calendar bean

http://www.toedter.com/en/jcalendar

[View full size image]

Fortunately, you need to master only a small number of concepts to write beans with a rich set of behaviors.
The example beans in this chapter, although not trivial, are kept simple enough to illustrate the necessary
concepts.

Listing 8-1. ImageViewerBean.java

Code View:
 1. package com.horstmann.corejava;

 2.

 3. import java.awt.*;

 4. import java.io.*;

 5. import javax.imageio.*;

 6. import javax.swing.*;

 7.

 8. /**

 9. * A bean for viewing an image.

10. * @version 1.21 2001-08-15

11. * @author Cay Horstmann

12. */

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

13. public class ImageViewerBean extends JLabel

14. {

15.

16. public ImageViewerBean()

17. {

18. setBorder(BorderFactory.createEtchedBorder());

19. }

20.

21. /**

22. * Sets the fileName property.

23. * @param fileName the image file name

24. */

25. public void setFileName(String fileName)

26. {

27. try

28. {

29. file = new File(fileName);

30. setIcon(new ImageIcon(ImageIO.read(file)));

31. }

32. catch (IOException e)

33. {

34. file = null;

35. setIcon(null);

36. }

37. }

38.

39. /**

40. * Gets the fileName property.

41. * @return the image file name

42. */

43. public String getFileName()

44. {

45. if (file == null) return "";

46. else return file.getPath();

47. }

48.

49. public Dimension getPreferredSize()

50. {

51. return new Dimension(XPREFSIZE, YPREFSIZE);

52. }

53.

54. private File file = null;

55. private static final int XPREFSIZE = 200;

56. private static final int YPREFSIZE = 200;

57. }

Using Beans to Build an Application

Before we get into the mechanics of writing beans, we want you to see how you might use or test them.
ImageViewerBean is a perfectly usable bean, but outside a builder environment it can't show off its special

features.

Each builder environment uses its own set of strategies to ease the programmer's life. We cover one
environment, the NetBeans integrated development environment, available from http://netbeans.org.

In this example, we use two beans, ImageViewerBean and FileNameBean. You have already seen the code for

ImageViewerBean. We will analyze the code for FileNameBean later in this chapter. For now, all you have to

know is that clicking the button with the ". . ." label opens a file chooser.

Packaging Beans in JAR Files

To make any bean usable in a builder tool, package into a JAR file all class files that are used by the bean code.
Unlike the JAR files for an applet, a JAR file for a bean needs a manifest file that specifies which class files in the
archive are beans and should be included in the builder's toolbox. For example, here is the manifest file
ImageViewerBean.mf for ImageViewerBean.

Manifest-Version: 1.0

Name: com/horstmann/corejava/ImageViewerBean.class

Java-Bean: True

Note the blank line between the manifest version and bean name.

Note

We place our example beans into the package com.horstmann.corejava because

some builder environments have problems loading beans from the default package.

If your bean contains multiple class files, you just mention in the manifest those class files that are beans and
that you want to have displayed in the toolbox. For example, you could place ImageViewerBean and

FileNameBean into the same JAR file and use the manifest

Manifest-Version: 1.0

Name: com/horstmann/corejava/ImageViewerBean.class

Java-Bean: True

Name: com/horstmann/corejava/FileNameBean.class

Java-Bean: True

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://netbeans.org

Caution

Some builder tools are extremely fussy about manifests. Make sure that there are
no spaces after the ends of each line, that there are blank lines after the version
and between bean entries, and that the last line ends in a newline.

To make the JAR file, follow these steps:

1. Edit the manifest file.

2. Gather all needed class files in a directory.

3. Run the jar tool as follows:

jar cvfm JarFile ManifestFile ClassFiles

For example,

Code View:
jar cvfm ImageViewerBean.jar ImageViewerBean.mf com/horstmann/corejava/*.class

You can also add other items, such as icon images, to the JAR file. We discuss bean icons later in this chapter.

Caution

Make sure to include all files that your bean needs in the JAR file. In particular, pay
attention to inner class files such as FileNameBean$1.class.

Builder environments have a mechanism for adding new beans, typically by loading JAR files. Here is what you
do to import beans into NetBeans version 6.

Compile the ImageViewerBean and FileNameBean classes and package them into JAR files. Then start NetBeans

and follow these steps.

1. Select Tools -> Palette -> Swing/AWT Components from the menu.

2. Click the Add from JAR button.

3. In the file dialog box, move to the ImageViewerBean directory and select ImageViewerBean.jar.

4. Now a dialog box pops up that lists all the beans that were found in the JAR file. Select ImageViewerBean.

5. Finally, you are asked into which palette you want to place the beans. Select Beans. (There are other
palettes for Swing components, AWT components, and so on.)

6. Have a look at the Beans palette. It now contains an icon representing the new bean However, the icon is
just a default icon—you will see later how to add icons to a bean.

Repeat these steps with FileNameBean. Now you are ready to compose these beans into an application.

Composing Beans in a Builder Environment

The promise of component-based development is to compose your application from prefabricated components,
with a minimum of programming. In this section, you will see how to compose an application from the
ImageViewerBean and FileNameBean components.

In NetBeans 6, select File -> New Project from the menu. A dialog box pops up. Select Java, then Java
Application (see Figure 8-3).

Figure 8-3. Creating a new project

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Click the Next button. On the following screen, set a name for your application (such as ImageViewer), and click

the Finish button. Now you see a project viewer on the left and the source code editor in the middle.

Right-click the project name in the project viewer and select New -> JFrame Form from the menu (see Figure 8-
4).

Figure 8-4. Creating a form view

[View full size image]

A dialog box pops up. Enter a name for the frame class (such as ImageViewerFrame), and click the Finish

button. You now get a form editor with a blank frame. To add a bean to the form, select the bean in the palette
that is located to the right of the form editor. Then click the frame.

Figure 8-5 shows the result of adding an ImageViewerBean onto the frame.

Figure 8-5. Adding a bean

[View full size image]

If you look into the source window, you will find that the source code now contains the Java instructions to add
the bean objects to the frame (see Figure 8-6). The source code is bracketed by dire warnings that you should
not edit it. Any edits would be lost when the builder environment updates the code as you modify the form.

Figure 8-6. The source code for adding the bean

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

A builder environment is not required to update source code as you build an
application. A builder environment can generate source code when you are done
editing, serialize the beans you customized, or perhaps produce an entirely different
description of your building activity.

For example, the experimental Bean Builder at http://bean-builder.dev.java.net lets
you design GUI applications without writing any source code at all.

The JavaBeans mechanism doesn't attempt to force an implementation strategy on
a builder tool. Instead, it aims to supply information about beans to builder tools
that can choose to take advantage of the information in one way or another.

Now go back to the design view and click ImageViewerBean in the form. On the right-hand side is a property

inspector that lists the bean property names and their current values. This is a vital part of component-based

http://bean-builder.dev.java.net

development tools because setting properties at design time is how you set the initial state of a component.

For example, you can modify the text property of the label used for the image bean by simply typing a new

name into the property inspector. Changing the text property is simple—you just edit a string in a text field.

Try it out—set the label text to "Hello". The form is immediately updated to reflect your change (see Figure 8-

7).

Figure 8-7. Changing a property in the property inspector

[View full size image]

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

When you change the setting of a property, the NetBeans environment updates the
source code to reflect your action. For example, if you set the text field to Hello,
the instruction

imageViewerBean.setText("Hello");

is added to the initComponents method. As already mentioned, other builder tools

might have different strategies for recording property settings.

Properties don't have to be strings; they can be values of any Java type. To make it possible for users to set
values for properties of any type, builder tools use specialized property editors. (Property editors either come
with the builder or are supplied by the bean developer. You see how to write your own property editors later in
this chapter.)

To see a simple property editor at work, look at the foreground property. The property type is Color. You can

see the color editor, with a text field containing a string [0,0,0] and a button labeled ". . ." that brings up a

color chooser. Go ahead and change the foreground color. Notice that you'll immediately see the change to the
property value—the label text changes color.

More interestingly, choose a file name for an image file in the property inspector. Once you do so,
ImageViewerBean automatically displays the image.

Note

If you look closely at the property inspector in NetBeans, you will find a large
number of mysterious properties such as focusCycleRoot and paintingForPrint.

These are inherited from the JLabel superclass. You will see later in this chapter

how you can suppress them from the property inspector.

To complete our application, place a FileNameBean object into the frame. Now we want the image to be loaded

when the fileName property of FileNameBean is changed. This happens through a PropertyChange event; we

discuss these kinds of events later in this chapter.

To react to the event, select FileNameBean and select the Events tab from its property inspector. Then click the

"..." button next to the propertyChange entry. A dialog box appears that shows that no handlers are currently

associated with this event. Click the Add button in the dialog box. You are prompted for a method name (see
Figure 8-8). Type loadImage.

Figure 8-8. Adding an event to a bean

[View full size image]

Now look at the code editor. Event handling code has been added, and there is a new method:

private void loadImage(java.beans.PropertyChange evt)

{

 // TODO add your handling code here
}

Add the following line of code to that method:

imageViewerBean1.setFileName(fileNameBean1.getFileName());

Then compile and execute the frame class. You now have a complete image viewer application. Click the button
with the ". . ." label and select an image file. The image is displayed in the image viewer (see Figure 8-9).

Figure 8-9. The image viewer application

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

This process demonstrates that you can create a Java application from beans by setting properties and
providing a small amount of code for event handlers.

Naming Patterns for Bean Properties and Events

In this section, we cover the basic rules for designing your own beans. First, we want to stress there is no
cosmic beans class that you extend to build your beans. Visual beans directly or indirectly extend the Component

class, but nonvisual beans don't have to extend any particular superclass. Remember, a bean is simply any class
that can be manipulated in a builder tool. The builder tool does not look at the superclass to determine the bean
nature of a class, but it analyzes the names of its methods. To enable this analysis, the method names for
beans must follow certain patterns.

Note

There is a java.beans.Beans class, but all methods in it are static. Extending it

would, therefore, be rather pointless, even though you will see it done occasionally,
supposedly for greater "clarity." Clearly, because a bean can't extend both Beans

and Component, this approach can't work for visual beans. In fact, the Beans class

contains methods that are designed to be called by builder tools, for example, to
check whether the tool is operating at design time or run time.

Other languages for visual design environments, such as Visual Basic and C#, have special keywords such as
"Property" and "Event" to express these concepts directly. The designers of the Java specification decided not to
add keywords to the language to support visual programming. Therefore, they needed an alternative so that a
builder tool could analyze a bean to learn its properties or events. Actually, there are two alternative
mechanisms. If the bean writer uses standard naming patterns for properties and events, then the builder tool
can use the reflection mechanism to understand what properties and events the bean is supposed to expose.
Alternatively, the bean writer can supply a bean information class that tells the builder tool about the properties
and events of the bean. We start out using the naming patterns because they are easy to use. You'll see later in
this chapter how to supply a bean information class.

Note

Although the documentation calls these standard naming patterns "design patterns,"
these are really only naming conventions and have nothing to do with the design
patterns that are used in object-oriented programming.

The naming pattern for properties is simple: Any pair of methods

public Type getPropertyName()

public void setPropertyName(Type newValue)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

corresponds to a read/write property.

For example, in our ImageViewerBean, there is only one read/write property (for the file name to be viewed),

with the following methods:

public String getFileName()

public void setFileName(String newValue)

If you have a get method but not an associated set method, you define a read-only property. Conversely, a

set method without an associated get method defines a write-only property.

Note

The get and set methods you create can do more than simply get and set a private

data field. Like any Java method, they can carry out arbitrary actions. For example,
the setFileName method of the ImageViewerBean class not only sets the value of

the fileName data field, but also opens the file and loads the image.

Note

In Visual Basic and C#, properties also come from get and set methods. However,

in both these languages, you explicitly define properties rather than having builder
tools second-guess the programmer's intentions by analyzing method names. In
those languages, properties have another advantage: Using a property name on the
left side of an assignment automatically calls the set method. Using a property

name in an expression automatically calls the get method. For example, in Visual
Basic you can write

imageBean.fileName = "corejava.gif"

instead of

imageBean.setFileName("corejava.gif");

This syntax was considered for Java, but the language designers felt that it was a
poor idea to hide a method call behind syntax that looks like field access.

There is one exception to the get/set naming pattern. Properties that have boolean values should use an

is/set naming pattern, as in the following examples:

public boolean isPropertyName()

public void setPropertyName(boolean b)

For example, an animation might have a property running, with two methods

public boolean isRunning()
public void setRunning(boolean b)

The setRunning method would start and stop the animation. The isRunning method would report its current

status.

Note

It is legal to use a get prefix for a boolean property accessor (such as getRunning),

but the is prefix is preferred.

Be careful with the capitalization pattern you use for your method names. The designers of the JavaBeans
specification decided that the name of the property in our example would be fileName, with a lowercase f, even
though the get and set methods contain an uppercase F (getFileName, setFileName). The bean analyzer

performs a process called decapitalization to derive the property name. (That is, the first character after get or

set is converted to lower case.) The rationale is that this process results in method and property names that

are more natural to programmers.

However, if the first two letters are upper case (such as in getURL), then the first letter of the property is not

changed to lower case. After all, a property name of uRL would look ridiculous.

Note

What do you do if your class has a pair of get and set methods that doesn't

correspond to a property that you want users to manipulate in a property inspector?
In your own classes, you can of course avoid that situation by renaming your
methods. However, if you extend another class, then you inherit the method names
from the superclass. This happens, for example, when your bean extends JPanel or

JLabel—a large number of uninteresting properties show up in the property

inspector. You will see later in this chapter how you can override the automatic
property discovery process by supplying bean information. In the bean information,
you can specify exactly which properties your bean should expose.

For events, the naming patterns are equally simple. A bean builder environment will infer that your bean
generates events when you supply methods to add and remove event listeners. All event class names must end
in Event, and the classes must extend the EventObject class.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Suppose your bean generates events of type EventNameEvent. The listener interface must be called

EventNameListener, and the methods to manage the listeners must be called

public void addEventNameListener(EventNameListener e)

public void removeEventNameListener(EventNameListener e)

public EventNameListener getEventNameListeners()

If you look at the code for ImageViewerBean, you'll see that it has no events to expose. However, many Swing

components generate events, and they follow this pattern. For example, the AbstractButton class generates

ActionEvent objects, and it has the following methods to manage ActionListener objects:

public void addActionListener(ActionListener e)

public void removeActionListener(ActionListener e)
ActionListener[] getActionListeners()

Caution

If your event class doesn't extend EventObject, chances are that your code will

compile just fine because none of the methods of the EventObject class are actually

needed. However, your bean will mysteriously fail—the introspection mechanism will
not recognize the events.

Bean Property Types

A sophisticated bean will expose lots of different properties and events. Properties can be as simple as the
fileName property that you saw in ImageViewerBean and FileNameBean or as sophisticated as a color value or

even an array of data points—we encounter both of these cases later in this chapter. The JavaBeans
specification allows four types of properties, which we illustrate by various examples.

Simple Properties

A simple property is one that takes a single value such as a string or a number. The fileName property of the

ImageViewer is an example of a simple property. Simple properties are easy to program: Just use the set/get

naming convention we indicated earlier. For example, if you look at the code in Listing 8-1, you can see that all
it took to implement a simple string property is the following:

public void setFileName(String f)

{

 fileName = f;

 image = . . .

 repaint();

}

public String getFileName()

{

 if (file == null) return "";

 else return file.getPath();

}

Indexed Properties

An indexed property specifies an array. With an indexed property, you supply two pairs of get and set

methods: one for the array and one for individual entries. They must follow this pattern:

Type[] getPropertyName()

void setPropertyName(Type[] newValue)

Type getPropertyName(int i)

void setPropertyName(int i, Type newValue)

For example, the FileNameBean uses an indexed property for the file extensions. It provides these four

methods:

public String[] getExtensions() { return extensions; }

public void setExtensions(String[] newValue) { extensions = newValue; }

public String getExtensions(int i)

{

 if (0 <= i && i < extensions.length) return extensions[i];

 else return "";

}

public void setExtensions(int i, String newValue)

{

 if (0 <= i && i < extensions.length) extensions[i] = value;

}

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

. . .

private String[] extensions;

The setPropertyName(int, Type) method cannot be used to grow the array. To grow the array, you must

manually build a new array and then pass it to the setPropertyName(Type[]) method.

Bound Properties

Bound properties tell interested listeners that their value has changed. For example, the fileName property in

FileNameBean is a bound property. When the file name changes, then ImageViewerBean is automatically

notified and it loads the new file.

To implement a bound property, you must implement two mechanisms:

Whenever the value of the property changes, the bean must send a PropertyChange event to all

registered listeners. This change can occur when the set method is called or when some other method

(such as the action listener of the "..." button) changes the value.

1.

To enable interested listeners to register themselves, the bean has to implement the following two
methods:

void addPropertyChangeListener(PropertyChangeListener listener)

void removePropertyChangeListener(PropertyChangeListener listener)

It is also recommended (but not required) to provide the method

PropertyChangeListener[] getPropertyChangeListeners()

2.

The java.beans package has a convenience class, called PropertyChangeSupport, that manages the listeners
for you. To use this convenience class, add an instance field of this class:

Code View:
private PropertyChangeSupport changeSupport = new PropertyChangeSupport(this);

Delegate the task of adding and removing property change listeners to that object.

public void addPropertyChangeListener(PropertyChangeListener listener)

{

 changeSupport.addPropertyChangeListener(listener);

}

public void removePropertyChangeListener(PropertyChangeListener listener)

{

 changeSupport.removePropertyChangeListener(listener);

}

public PropertyChangeListener[] getPropertyChangeListeners()

{

 return changeSupport.getPropertyChangeListeners();

}

Whenever the value of the property changes, use the firePropertyChange method of the

PropertyChangeSupport object to deliver an event to all the registered listeners. That method has three

parameters: the name of the property, the old value, and the new value. Here is the boilerplate code for a
typical setter of a bound property:

public void setValue(Type newValue)

{

 Type oldValue = getValue();

 value = newValue;

 changeSupport.firePropertyChange("propertyName", oldValue, newValue);

}

To fire a change of an indexed property, you call

Code View:
changeSupport.fireIndexedPropertyChange("propertyName", index, oldValue, newValue);

Tip

If your bean extends any class that ultimately extends the Component class, then

you do not need to implement the addPropertyChangeListener,

removePropertyChangeListener, and getPropertyChangeListeners methods.

These methods are already implemented in the Component superclass. To notify the

listeners of a property change, simply call the firePropertyChange method of the
JComponent superclass. Unfortunately, firing of indexed property changes is not

supported.

Other beans that want to be notified when the property value changes must add a PropertyChangeListener.

That interface contains only one method:

void propertyChange(PropertyChangeEvent event)

The PropertyChangeEvent object holds the name of the property and the old and new values, obtainable with

the getPropertyName, getOldValue, and getNewValue methods.

If the property type is not a class type, then the property value objects are instances of the usual wrapper
classes.

Constrained Properties

A constrained property is constrained by the fact that any listener can "veto" proposed changes, forcing it to
revert to the old setting. The Java library contains only a few examples of constrained properties. One of them

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

is the closed property of the JInternalFrame class. If someone tries to call setClosed(true) on an internal

frame, then all of its VetoableChangeListeners are notified. If any of them throws a PropertyVetoException,

then the closed property is not changed, and the setClosed method throws the same exception. In particular,
a VetoableChangeListener may veto closing the frame if its contents have not been saved.

To build a constrained property, your bean must have the following two methods to manage
VetoableChangeListener objects:

public void addVetoableChangeListener(VetoableChangeListener listener);

public void removeVetoableChangeListener(VetoableChangeListener listener);

It also should have a method for getting all listeners:

VetoableChangeListener[] getVetoableChangeListeners()

Just as there is a convenience class to manage property change listeners, there is a convenience class, called
VetoableChangeSupport, that manages vetoable change listeners. Your bean should contain an object of this

class.

Code View:
private VetoableChangeSupport vetoSupport = new VetoableChangeSupport(this);

Adding and removing listeners should be delegated to this object. For example:

public void addVetoableChangeListener(VetoableChangeListener listener)

{

 vetoSupport.addVetoableChangeListener(listener);

}

public void removeVetoableChangeListener(VetoableChangeListener listener)

{

 vetoSupport.removeVetoableChangeListener(listener);
}

To update a constrained property value, a bean uses the following three-phase approach:

Notify all vetoable change listeners of the intent to change the property value. (Use the
fireVetoableChange method of the VetoableChangeSupport class.)

1.

If none of the vetoable change listeners has thrown a PropertyVetoException, then update the value of

the property.

2.

Notify all property change listeners to confirm that a change has occurred.3.

For example,

public void setValue(Type newValue) throws PropertyVetoException

{

 Type oldValue = getValue();

 vetoSupport.fireVetoableChange("value", oldValue, newValue);

 // survived, therefore no veto

 value = newValue;

 changeSupport.firePropertyChange("value", oldValue, newValue);

}

It is important that you don't change the property value until all the registered vetoable change listeners have
agreed to the proposed change. Conversely, a vetoable change listener should never assume that a change that
it agrees to is actually happening. The only reliable way to get notified when a change is actually happening is
through a property change listener.

Note

If your bean extends the JComponent class, you do not need a separate

VetoableChangeSupport object. Simply call the fireVetoableChange method of

the JComponent superclass. Note that you cannot install a vetoable change listener

for a specific property into a JComponent. You need to listen to all vetoable changes.

We end our discussion of JavaBeans properties by showing the full code for FileNameBean (see Listing 8-2). The

FileNameBean has an indexed extensions property and a constrained filename property. Because

FileNameBean extends the JPanel class, we did not have to explicitly use a PropertyChangeSupport object.

Instead, we rely on the ability of the JPanel class to manage property change listeners.

Listing 8-2. FileNameBean.java

Code View:
 1. package com.horstmann.corejava;

 2.

 3. import java.awt.*;

 4. import java.awt.event.*;

 5. import java.io.*;

 6. import java.util.*;

 7. import javax.swing.*;

 8. import javax.swing.filechooser.*;

 9.

 10. /**

 11. * A bean for specifying file names.

 12. * @version 1.30 2007-10-03

 13. * @author Cay Horstmann

 14. */

 15. public class FileNameBean extends JPanel

 16. {

 17. public FileNameBean()

 18. {

 19. dialogButton = new JButton("...");

 20. nameField = new JTextField(30);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 21.

 22. chooser = new JFileChooser();

 23. setPreferredSize(new Dimension(XPREFSIZE, YPREFSIZE));

 24.

 25. setLayout(new GridBagLayout());

 26. GridBagConstraints gbc = new GridBagConstraints();

 27. gbc.weightx = 100;

 28. gbc.weighty = 100;

 29. gbc.anchor = GridBagConstraints.WEST;

 30. gbc.fill = GridBagConstraints.BOTH;

 31. gbc.gridwidth = 1;

 32. gbc.gridheight = 1;

 33. add(nameField, gbc);

 34.

 35. dialogButton.addActionListener(new ActionListener()

 36. {

 37. public void actionPerformed(ActionEvent event)

 38. {

 39. chooser.setFileFilter(new FileNameExtensionFilter(Arrays.toString(extensions),

 40. extensions));

 41. int r = chooser.showOpenDialog(null);

 42. if (r == JFileChooser.APPROVE_OPTION)

 43. {

 44. File f = chooser.getSelectedFile();

 45. String name = f.getAbsolutePath();

 46. setFileName(name);

 47. }

 48. }

 49. });

 50. nameField.setEditable(false);

 51.

 52. gbc.weightx = 0;

 53. gbc.anchor = GridBagConstraints.EAST;

 54. gbc.fill = GridBagConstraints.NONE;

 55. gbc.gridx = 1;

 56. add(dialogButton, gbc);

 57. }

 58.

 59. /**

 60. * Sets the fileName property.

 61. * @param newValue the new file name

 62. */

 63. public void setFileName(String newValue)

 64. {

 65. String oldValue = nameField.getText();

 66. nameField.setText(newValue);

 67. firePropertyChange("fileName", oldValue, newValue);

 68. }

 69.

 70. /**

 71. * Gets the fileName property.

 72. * @return the name of the selected file

 73. */

 74. public String getFileName()

 75. {

 76. return nameField.getText();

 77. }

 78.

 79. /**

 80. * Gets the extensions property.

 81. * @return the default extensions in the file chooser

 82. */

 83. public String[] getExtensions()

 84. {

 85. return extensions;

 86. }

 87.

 88. /**

 89. * Sets the extensions property.

 90. * @param newValue the new default extensions

 91. */

 92. public void setExtensions(String[] newValue)

 93. {

 94. extensions = newValue;

 95. }

 96.

 97. /**

 98. * Gets one of the extensions property values.

 99. * @param i the index of the property value

100. * @return the value at the given index

101. */

102. public String getExtensions(int i)

103. {

104. if (0 <= i && i < extensions.length) return extensions[i];

105. else return "";

106. }

107.

108. /**

109. * Sets one of the extensions property values.

110. * @param i the index of the property value

111. * @param newValue the new value at the given index

112. */

113. public void setExtensions(int i, String newValue)

114. {

115. if (0 <= i && i < extensions.length) extensions[i] = newValue;

116. }

117.

118. private static final int XPREFSIZE = 200;

119. private static final int YPREFSIZE = 20;

120. private JButton dialogButton;

121. private JTextField nameField;

122. private JFileChooser chooser;

123. private String[] extensions = { "gif", "png" };

124. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.beans.PropertyChangeListener 1.1

void propertyChange(PropertyChangeEvent event)

is called when a property change event is fired.

java.beans.PropertyChangeSupport 1.1

PropertyChangeSupport(Object sourceBean)

constructs a PropertyChangeSupport object that manages listeners for

bound property changes of the given bean.

void addPropertyChangeListener(PropertyChangeListener

listener)

void addPropertyChangeListener(String propertyName,

PropertyChangeListener listener) 1.2

registers an interested listener for changes in all bound properties, or
only the named bound property.

void removePropertyChangeListener(PropertyChangeListener

listener)

void removePropertyChangeListener(String propertyName,

PropertyChangeListener listener) 1.2

removes a previously registered property change listener.

void firePropertyChange(String propertyName, Object oldValue,

Object newValue)

void firePropertyChange(String propertyName, int oldValue,

int newValue) 1.2

void firePropertyChange(String propertyName, boolean

oldValue, boolean newValue) 1.2

sends a PropertyChangeEvent to registered listeners.

void fireIndexedPropertyChange(String propertyName, int

index, Object oldValue, Object newValue) 5.0

void fireIndexedPropertyChange(String propertyName, int

index, int oldValue, int newValue) 5.0

void fireIndexedPropertyChange(String propertyName, int

index, boolean oldValue, boolean newValue) 5.0

sends an IndexedPropertyChangeEvent to registered listeners.

PropertyChangeListener[] getPropertyChangeListeners() 1.4

PropertyChangeListener[] getPropertyChangeListeners(String

propertyName) 1.4

gets the listeners for changes in all bound properties, or only the named
bound property.

java.beans.PropertyChangeEvent 1.1

PropertyChangeEvent(Object sourceBean, String propertyName,
Object oldValue, Object newValue)

constructs a new PropertyChangeEvent object, describing that the given

property has changed from oldValue to newValue.

String getPropertyName()

returns the name of the property.

Object getOldValue();

Object getNewValue()

returns the old and new value of the property.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.beans.IndexedPropertyChangeEvent 5.0

IndexedPropertyChangeEvent(Object sourceBean, String

propertyName, int index, Object oldValue, Object newValue)

constructs a new IndexedPropertyChangeEvent object, describing that

the given property has changed from oldValue to newValue at the given

index.

int getIndex()

returns the index at which the change occurred.

java.beans.VetoableChangeListener 1.1

void vetoableChange(PropertyChangeEvent event)

is called when a property is about to be changed. It should throw a
PropertyVetoException if the change is not acceptable.

java.beans.VetoableChangeSupport 1.1

VetoableChangeSupport(Object sourceBean)

constructs a PropertyChangeSupport object that manages listeners for

constrained property changes of the given bean.

void addVetoableChangeListener(VetoableChangeListener

listener)

void addVetoableChangeListener(String propertyName,

VetoableChangeListener listener) 1.2

registers an interested listener for changes in all constrained properties,
or only the named constrained property.

void removeVetoableChangeListener(VetoableChangeListener

listener)

void removeVetoableChangeListener(String propertyName,

VetoableChangeListener listener) 1.2

removes a previously registered vetoable change listener.

void fireVetoableChange(String propertyName, Object oldValue,

Object newValue)

void fireVetoableChange(String propertyName, int oldValue,

int newValue) 1.2

void fireVetoableChange(String propertyName, boolean

oldValue, boolean newValue) 1.2

sends a VetoableChangeEvent to registered listeners.

VetoableChangeListener[] getVetoableChangeListeners() 1.4

VetoableChangeListener[] getVetoableChangeListeners(String

propertyName) 1.4

gets the listeners for changes in all constrained properties, or only the
named bound property.

java.awt.Component 1.0

void addPropertyChangeListener(PropertyChangeListener

listener) 1.2

void addPropertyChangeListener(String propertyName,

PropertyChangeListener listener) 1.2

registers an interested listener for changes in all bound properties, or
only the named bound property.

void removePropertyChangeListener(PropertyChangeListener

listener) 1.2

void removePropertyChangeListener(String propertyName,

PropertyChangeListener listener) 1.2

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

removes a previously registered property change listener.

void firePropertyChange(String propertyName, Object oldValue,

Object newValue) 1.2

sends a PropertyChangeEvent to registered listeners.

javax.swing.JComponent 1.2

void addVetoableChangeListener(VetoableChangeListener

listener)

registers an interested listener for changes in all constrained properties,
or only the named constrained property.

void removeVetoableChangeListener(VetoableChangeListener

listener)

removes a previously registered vetoable change listener.

void fireVetoableChange(String propertyName, Object oldValue,

Object newValue)

sends a VetoableChangeEvent to registered listeners.

java.beans.PropertyVetoException 1.1

PropertyVetoException(String message, PropertyChangeEvent

event)

creates a new PropertyVetoException.

PropertyChangeEvent getPropertyChangeEvent()

returns the PropertyChangeEvent that was vetoed.

BeanInfo Classes

If you use the standard naming patterns for the methods of your bean class, then a builder tool can use
reflection to determine features such as properties and events. This process makes it simple to get started with
bean programming, but naming patterns are rather limiting. As your beans become complex, there might be
features of your bean that naming patterns will not reveal. Moreover, as we already mentioned, many beans
have get/set method pairs that should not correspond to bean properties.

If you need a more flexible mechanism for describing information about your bean, define an object that
implements the BeanInfo interface. When you provide such an object, a builder tool will consult it about the

features that your bean supports.

The name of the bean info class must be formed by adding BeanInfo to the name of the bean. For example, the

bean info class associated to the class ImageViewerBean must be named ImageViewerBeanBeanInfo. The bean

info class must be part of the same package as the bean itself.

You won't normally write a class that implements all methods of the BeanInfo interface. Instead, you should

extend the SimpleBeanInfo convenience class that has default implementations for all the methods in the
BeanInfo interface.

The most common reason for supplying a BeanInfo class is to gain control of the bean properties. You construct

a PropertyDescriptor for each property by supplying the name of the property and the class of the bean that

contains it.

Code View:
PropertyDescriptor descriptor = new PropertyDescriptor("fileName", ImageViewerBean.class);

Then implement the getPropertyDescriptors method of your BeanInfo class to return an array of all property
descriptors.

For example, suppose ImageViewerBean wants to hide all properties that it inherits from the JLabel superclass

and expose only the fileName property. The following BeanInfo class does just that:

Code View:
// bean info class for ImageViewerBean

class ImageViewerBeanBeanInfo extends SimpleBeanInfo

{

 public PropertyDescriptor[] getPropertyDescriptors()

 {

 return propertyDescriptors;

 }
 private PropertyDescriptor[] propertyDescriptors = new PropertyDescriptor[]

 {

 new PropertyDescriptor("fileName", ImageViewerBean.class);

 };

}

Other methods also return EventSetDescriptor and MethodDescriptor arrays, but they are less commonly

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

used. If one of these methods returns null (as is the case for the SimpleBeanInfo methods), then the standard

naming patterns apply. However, if you override a method to return a non-null array, then you must include all
properties, events, or methods in your array.

Note

Sometimes, you might want to write generic code that discovers properties or
events of an arbitrary bean. Call the static getBeanInfo method of the

Introspector class. The Introspector constructs a BeanInfo class that completely

describes the bean, taking into account the information in BeanInfo companion

classes.

Another useful method in the BeanInfo interface is the getIcon method that lets you give your bean a custom

icon. Builder tools will display the icon in a palette. Actually, you can specify four separate icon bitmaps. The
BeanInfo interface has four constants that cover the standard sizes:

ICON_COLOR_16x16

ICON_COLOR_32x32

ICON_MONO_16x16
ICON_MONO_32x32

In the following class, we use the loadImage convenience method in the SimpleBeanInfo class to load the icon

images:

Code View:
public class ImageViewerBeanBeanInfo extends SimpleBeanInfo

{

 public ImageViewerBeanBeanInfo()

 {

 iconColor16 = loadImage("ImageViewerBean_COLOR_16x16.gif");

 iconColor32 = loadImage("ImageViewerBean_COLOR_32x32.gif");
 iconMono16 = loadImage("ImageViewerBean_MONO_16x16.gif");

 iconMono32 = loadImage("ImageViewerBean_MONO_32x32.gif");

 }

 public Image getIcon(int iconType)

 {

 if (iconType == BeanInfo.ICON_COLOR_16x16) return iconColor16;

 else if (iconType == BeanInfo.ICON_COLOR_32x32) return iconColor32;

 else if (iconType == BeanInfo.ICON_MONO_16x16) return iconMono16;

 else if (iconType == BeanInfo.ICON_MONO_32x32) return iconMono32;

 else return null;

 }

 private Image iconColor16;

 private Image iconColor32;

 private Image iconMono16;

 private Image iconMono32;

}

java.beans.Introspector 1.1

static BeanInfo getBeanInfo(Class<?> beanClass)

gets the bean information of the given class.

java.beans.BeanInfo 1.1

PropertyDescriptor[] getPropertyDescriptors()

returns the descriptors for the bean properties. A return of null

indicates that the naming conventions should be used to find the
properties.

Image getIcon(int iconType)

returns an image object that can represent the bean in toolboxes, tool
bars, and the like. There are four constants, as described earlier, for the
standard types of icons.

java.beans.SimpleBeanInfo 1.1

Image loadImage(String resourceName)

returns an image object file associated to the resource. The resource
name is a path name, taken relative to the directory containing the bean
info class.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.beans.FeatureDescriptor 1.1

String getName()

void setName(String name)

gets or sets the programmatic name for the feature.

String getDisplayName()

void setDisplayName(String displayName)

gets or sets a display name for the feature. The default value is the
value returned by getName. However, currently there is no explicit

support for supplying feature names in multiple locales.

String getShortDescription()

void setShortDescription(String text)

gets or sets a string that a builder tool can use to provide a short
description for this feature. The default value is the return value of
getDisplayName.

boolean isExpert()

void setExpert(boolean b)

gets or sets an expert flag that a builder tool can use to determine
whether to hide the feature from a naive user.

boolean isHidden()

void setHidden(boolean b)

gets or sets a flag that a builder tool should hide this feature.

java.beans.PropertyDescriptor 1.1

PropertyDescriptor(String propertyName, Class<?> beanClass)

PropertyDescriptor(String propertyName, Class<?> beanClass,

String getMethod, String setMethod)

constructs a PropertyDescriptor object. The methods throw an

IntrospectionException if an error occurred during introspection. The

first constructor assumes that you follow the standard convention for the
names of the get and set methods.

Class<?> getPropertyType()

returns a Class object for the property type.

Method getReadMethod()

Method getWriteMethod()

returns the method to get or set the property.

java.beans.IndexedPropertyDescriptor 1.1

IndexedPropertyDescriptor(String propertyName, Class<?>

beanClass)

IndexedPropertyDescriptor(String propertyName, Class<?>

beanClass, String getMethod, String setMethod, String

indexedGetMethod, String indexedSetMethod)

constructs an IndexedPropertyDescriptor for the index property. The

first constructor assumes that you follow the standard convention for the
names of the get and set methods.

Method getIndexedReadMethod()

Method getIndexedWriteMethod()

returns the method to get or set an indexed value in the property.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Property Editors

If you add an integer or string property to a bean, then that property is automatically displayed in the bean's
property inspector. But what happens if you add a property whose values cannot easily be edited in a text field,
for example, a Date or a Color? Then, you need to provide a separate component by which the user can specify

the property value. Such components are called property editors. For example, a property editor for a date
object might be a calendar that lets the user scroll through the months and pick a date. A property editor for a
Color object would let the user select the red, green, and blue components of the color.

Actually, NetBeans already has a property editor for colors. Also, of course, there are property editors for basic
types such as String (a text field) and boolean (a checkbox).

The process for supplying a new property editor is slightly involved. First, you create a bean info class to
accompany your bean. Override the getPropertyDescriptors method. That method returns an array of

PropertyDescriptor objects. You create one object for each property that should be displayed on a property

editor, even those for which you just want the default editor.

You construct a PropertyDescriptor by supplying the name of the property and the class of the bean that
contains it.

Code View:
PropertyDescriptor descriptor = new PropertyDescriptor("titlePosition", ChartBean.class);

Then you call the setPropertyEditorClass method of the PropertyDescriptor class.

descriptor.setPropertyEditorClass(TitlePositionEditor.class);

Next, you build an array of descriptors for properties of your bean. For example, the chart bean that we discuss
in this section has five properties:

A Color property, graphColor

A String property, title

An int property, titlePosition

A double[] property, values

A boolean property, inverse

The code in Listing 8-3 shows the ChartBeanBeanInfo class that specifies the property editors for these

properties. It achieves the following:

1.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The getPropertyDescriptors method returns a descriptor for each property. The title and graphColor

properties are used with the default editors; that is, the string and color editors that come with the builder
tool.

1.

The titlePosition, values, and inverse properties use special editors of type TitlePositionEditor,

DoubleArrayEditor, and InverseEditor, respectively.

2.

Figure 8-10 shows the chart bean. You can see the title on the top. Its position can be set to left, center, or
right. The values property specifies the graph values. If the inverse property is true, then the background is

colored and the bars of the chart are white. You can find the code for the chart bean with the book's companion
code; the bean is simply a modification of the chart applet in Volume I, Chapter 10.

Figure 8-10. The chart bean

[View full size image]

Listing 8-3. ChartBeanBeanInfo.java

Code View:
 1. package com.horstmann.corejava;

 2.

 3. import java.awt.*;

 4. import java.beans.*;

 5.

 6. /**

 7. * The bean info for the chart bean, specifying the property editors.

 8. * @version 1.20 2007-10-05

 9. * @author Cay Horstmann

10. */

11. public class ChartBeanBeanInfo extends SimpleBeanInfo

12. {

13. public ChartBeanBeanInfo()

14. {

15. iconColor16 = loadImage("ChartBean_COLOR_16x16.gif");

16. iconColor32 = loadImage("ChartBean_COLOR_32x32.gif");

17. iconMono16 = loadImage("ChartBean_MONO_16x16.gif");

18. iconMono32 = loadImage("ChartBean_MONO_32x32.gif");

19.

20. try

21. {

22. PropertyDescriptor titlePositionDescriptor = new PropertyDescriptor("titlePosition",

23. ChartBean.class);

24. titlePositionDescriptor.setPropertyEditorClass(TitlePositionEditor.class);

25. PropertyDescriptor inverseDescriptor = new PropertyDescriptor("inverse", ChartBean.class);

26. inverseDescriptor.setPropertyEditorClass(InverseEditor.class);

27. PropertyDescriptor valuesDescriptor = new PropertyDescriptor("values", ChartBean.class);

28. valuesDescriptor.setPropertyEditorClass(DoubleArrayEditor.class);

29. propertyDescriptors = new PropertyDescriptor[] {

30. new PropertyDescriptor("title", ChartBean.class), titlePositionDescriptor,

31. valuesDescriptor, new PropertyDescriptor("graphColor", ChartBean.class),

32. inverseDescriptor };

33. }

34. catch (IntrospectionException e)

35. {

36. e.printStackTrace();

37. }

38. }

39.

40. public PropertyDescriptor[] getPropertyDescriptors()

41. {

42. return propertyDescriptors;

43. }

44.

45. public Image getIcon(int iconType)

46. {

47. if (iconType == BeanInfo.ICON_COLOR_16x16) return iconColor16;

48. else if (iconType == BeanInfo.ICON_COLOR_32x32) return iconColor32;

49. else if (iconType == BeanInfo.ICON_MONO_16x16) return iconMono16;

50. else if (iconType == BeanInfo.ICON_MONO_32x32) return iconMono32;

51. else return null;

52. }

53.

54. private PropertyDescriptor[] propertyDescriptors;

55. private Image iconColor16;

56. private Image iconColor32;

57. private Image iconMono16;

58. private Image iconMono32;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

59. }

java.beans.PropertyDescriptor 1.1

PropertyDescriptor(String name, Class<?> beanClass)

constructs a PropertyDescriptor object.

Parameters: name The name of the property

 beanClass The class of the bean to which the property
belongs

void setPropertyEditorClass(Class<?> editorClass)

sets the class of the property editor to be used with this property.

java.beans.BeanInfo 1.1

PropertyDescriptor[] getPropertyDescriptors()

returns a descriptor for each property that should be displayed in the
property inspector for the bean.

Writing Property Editors

Before we get into the mechanics of writing property editors, we should point out that a editor is under the
control of the builder, not the bean. When the builder displays the property inspector, it carries out the following
steps for each bean property.

1. It instantiates a property editor.

2. It asks the bean to tell it the current value of the property.

3. It then asks the property editor to display the value.

A property editor must supply a default constructor, and it must implement the PropertyEditor interface. You

will usually want to extend the convenience PropertyEditorSupport class that provides default versions of

these methods.

For every property editor you write, you choose one of three ways to display and edit the property value:

As a text string (define getAsText and setAsText)

As a choice field (define getAsText, setAsText, and getTags)

Graphically, by painting it (define isPaintable, paintValue, supportsCustomEditor, and

getCustomEditor)

We have a closer look at these choices in the following sections.

String-Based Property Editors

Simple property editors work with text strings. You override the setAsText and getAsText methods. For
example, our chart bean has a property that lets you choose where the title should be displayed: Left, Center,
or Right. These choices are implemented as an enumeration

public enum Position { LEFT, CENTER, RIGHT };

But of course, we don't want them to appear as uppercase strings LEFT, CENTER, RIGHT—unless we are trying to

enter the User Interface Hall of Horrors. Instead, we define a property editor whose getAsText method picks a

string that looks pleasing to the developer:

class TitlePositionEditor extends PropertyEditorSupport
{

 public String getAsText()

 {

 int index = ((ChartBean.Position) getValue()).ordinal();

 return tags[index];

 }

 . . .
 private String[] tags = { "Left", "Center", "Right" };

}

Ideally, these strings should appear in the current locale, not necessarily in English, but we leave that as an
exercise to the reader.

Conversely, we need to supply a method that converts a text string back to the property value:

public void setAsText(String s)

{

 int index = Arrays.asList(tags).indexOf(s);

 if (index >= 0) setValue(ChartBean.Position.values()[index]);

}

If we simply supply these two methods, the property inspector will provide a text field. It is initialized by a call
to getAsText, and the setAsText method is called when we are done editing. Of course, in our situation, this is

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

not a good choice for the titlePosition property, unless, of course, we are also competing for entry into the

User Interface Hall of Shame. It is better to display all valid settings in a combo box (see Figure 8-11). The
PropertyEditorSupport class gives a simple mechanism for indicating that a combo box is appropriate. Simply

write a getTags method that returns an array of strings.

public String[] getTags() { return tags; }

Figure 8-11. Custom property editors at work

The default getTags method returns null, indicating that a text field is appropriate for editing the property

value.

When supplying the getTags method, you still need to supply the getAsText and setAsText methods. The

getTags method simply specifies the strings that should be offered to the user. The getAsText/setAsText

methods translate between the strings and the data type of the property (which can be a string, an integer, an
enumeration, or a completely different type).

Finally, property editors should implement the getJavaInitializationString method.With this method, you
can give the builder tool the Java code that sets a property to its current value. The builder tool uses this string
for automatic code generation. Here is the method for the TitlePositionEditor:

Code View:
public String getJavaInitializationString()

{

 return ChartBean.Position.class.getName().replace('$', '.') + "." + getValue();

}

This method returns a string such as "com.horstmann.corejava.ChartBean.Position.LEFT". Try it out in

NetBeans: If you edit the titlePosition property, NetBeans inserts code such as

Code View:
chartBean1.setTitlePosition(com.horstmann.corejava.ChartBean.Position.LEFT);

In our situation, the code is a bit cumbersome because ChartBean.Position.class.getName() is the string

"com.horstmann.corejava.ChartBean$Position". We replace the $ with a period, and add the result of

invoking toString on the enumeration value.

Note

If a property has a custom editor that does not implement the
getJavaInitializationString method, NetBeans does not know how to generate

code and produces a setter with parameter ???.

Listing 8-4 shows the code for this property editor.

Listing 8-4. TitlePositionEditor.java

Code View:
 1. package com.horstmann.corejava;

 2.

 3. import java.beans.*;

 4. import java.util.*;

 5.

 6. /**

 7. * A custom editor for the titlePosition property of the ChartBean. The editor lets the user

 8. * choose between Left, Center, and Right

 9. * @version 1.20 2007-12-14

10. * @author Cay Horstmann

11. */

12. public class TitlePositionEditor extends PropertyEditorSupport

13. {

14. public String[] getTags()

15. {

16. return tags;

17. }

18.

19. public String getJavaInitializationString()

20. {

21. return ChartBean.Position.class.getName().replace('$', '.') + "." + getValue();

22. }

23.

24. public String getAsText()

25. {

26. int index = ((ChartBean.Position) getValue()).ordinal();

27. return tags[index];

28. }

29.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

30. public void setAsText(String s)

31. {

32. int index = Arrays.asList(tags).indexOf(s);

33. if (index >= 0) setValue(ChartBean.Position.values()[index]);

34. }

35.

36. private String[] tags = { "Left", "Center", "Right" };

37. }

GUI-Based Property Editors

A sophisticated property should not be edited as text. Instead, a graphical representation is displayed in the
property inspector, in the small area that would otherwise hold a text field or combo box. When the user clicks
on that area, a custom editor dialog box pops up (see Figure 8-12). The dialog box contains a component to edit
the property values, supplied by the property editor, and various buttons, supplied by the builder environment.
In our example, the customizer is rather spare, containing a single button. The book's companion code contains
a more elaborate editor for editing the chart values.

Figure 8-12. A custom editor dialog box

To build a GUI-based property editor, you first tell the property inspector that you will paint the value and not
use a string.

Override the getAsText method in the PropertyEditor interface to return null and the isPaintable method

to return true.

Then, you implement the paintValue method. It receives a Graphics context and the coordinates of the

rectangle inside which you can paint. Note that this rectangle is typically small, so you can't have a very
elaborate representation. We simply draw one of two icons (which you can see in Figure 8-11 on page 717).

public void paintValue(Graphics g, Rectangle box)

{

 ImageIcon icon = (Boolean) getValue() ? inverseIcon : normalIcon;

 int x = bounds.x + (bounds.width - icon.getIconWidth()) / 2;

 int y = bounds.y + (bounds.height - icon.getIconHeight()) / 2;

 g.drawImage(icon.getImage(), x, y, null);

}

This graphical representation is not editable. The user must click on it to pop up a custom editor.

You indicate that you will have a custom editor by overriding the supportsCustomEditor in the PropertyEditor

interface to return true.

Next, the getCustomEditor method of the PropertyEditor interface constructs and returns an object of the

custom editor class.

Listing 8-5 shows the code for the InverseEditor that displays the current property value in the property

inspector. Listing 8-6 shows the code for the custom editor panel for changing the value.

Listing 8-5. InverseEditor.java

Code View:
 1. package com.horstmann.corejava;

 2.

 3. import java.awt.*;

 4. import java.beans.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * The property editor for the inverse property of the ChartBean. The inverse property toggles

 9. * between colored graph bars and colored background.

10. * @version 1.30 2007-10-03

11. * @author Cay Horstmann

12. */

13. public class InverseEditor extends PropertyEditorSupport

14. {

15. public Component getCustomEditor()

16. {

17. return new InverseEditorPanel(this);

18. }

19.

20. public boolean supportsCustomEditor()

21. {

22. return true;

23. }

24.

25. public boolean isPaintable()

26. {

27. return true;

28. }

29.

30. public String getAsText()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

31. {

32. return null;

33. }

34.

35. public String getJavaInitializationString()

36. {

37. return "" + getValue();

38. }

39.

40. public void paintValue(Graphics g, Rectangle bounds)

41. {

42. ImageIcon icon = (Boolean) getValue() ? inverseIcon : normalIcon;

43. int x = bounds.x + (bounds.width - icon.getIconWidth()) / 2;

44. int y = bounds.y + (bounds.height - icon.getIconHeight()) / 2;

45. g.drawImage(icon.getImage(), x, y, null);

46. }

47.

48. private ImageIcon inverseIcon = new ImageIcon(getClass().getResource(

49. "ChartBean_INVERSE_16x16.gif"));

50. private ImageIcon normalIcon =

51. new ImageIcon(getClass().getResource("ChartBean_MONO_16x16.gif"));

52. }

Listing 8-6. InverseEditorPanel.java

Code View:
 1. package com.horstmann.corejava;

 2.

 3. import java.awt.event.*;

 4. import java.beans.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * The panel for setting the inverse property. It contains a button to toggle between normal

 9. * and inverse coloring.

10. * @version 1.30 2007-10-03

11. * @author Cay Horstmann

12. */

13. public class InverseEditorPanel extends JPanel

14. {

15. public InverseEditorPanel(PropertyEditorSupport ed)

16. {

17. editor = ed;

18. button = new JButton();

19. updateButton();

20. button.addActionListener(new ActionListener()

21. {

22. public void actionPerformed(ActionEvent event)

23. {

24. editor.setValue(!(Boolean) editor.getValue());

25. updateButton();

26. }

27. });

28. add(button);

29. }

30.

31. private void updateButton()

32. {

33. if ((Boolean) editor.getValue())

34. {

35. button.setIcon(inverseIcon);

36. button.setText("Inverse");

37. }

38. else

39. {

40. button.setIcon(normalIcon);

41. button.setText("Normal");

42. }

43. }

44.

45. private JButton button;

46. private PropertyEditorSupport editor;

47. private ImageIcon inverseIcon = new ImageIcon(getClass().getResource(

48. "ChartBean_INVERSE_16x16.gif"));

49. private ImageIcon normalIcon =

50. new ImageIcon(getClass().getResource("ChartBean_MONO_16x16.gif"));

51. }

java.beans.PropertyEditor 1.1

Object getValue()

returns the current value of the property. Basic types are wrapped into object
wrappers.

void setValue(Object newValue)

sets the property to a new value. Basic types must be wrapped into object wrappers.

Parameters: newValue The new value of the object; should be a newly
created object that the property can own

String getAsText()

override this method to return a string representation of the current value of the
property. The default returns null to indicate that the property cannot be

represented as a string.

void setAsText(String text)

override this method to set the property to a new value that is obtained by parsing

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

the text. May throw an IllegalArgumentException if the text does not represent a

legal value or if this property cannot be represented as a string.

String[] getTags()

override this method to return an array of all possible string representations of the
property values so they can be displayed in a Choice box. The default returns null to

indicate that there is not a finite set of string values.

boolean isPaintable()

override this method to return true if the class uses the paintValue method to

display the property.

void paintValue(Graphics g, Rectangle bounds)

override this method to represent the value by drawing into a graphics context in the
specified place on the component used for the property inspector.

boolean supportsCustomEditor()

override this method to return true if the property editor has a custom editor.

Component getCustomEditor()

override this method to return the component that contains a customized GUI for
editing the property value.

String getJavaInitializationString()

override this method to return a Java code string that can be used to generate code
that initializes the property value. Examples are "0", "new Color(64, 64, 64)".

Customizers

A property editor is responsible for allowing the user to set one property at a time. Especially if certain
properties of a bean relate to each other, it might be more user friendly to give users a way to edit multiple
properties at the same time. To enable this feature, you supply a customizer instead of (or in addition to)
multiple property editors.

Moreover, some beans might have features that are not exposed as properties and that therefore cannot be
edited through the property inspector. For those beans, a customizer is essential.

In the example program for this section, we develop a customizer for the chart bean. The customizer lets you
set several properties of the chart bean in one dialog box, as shown in Figure 8-13.

Figure 8-13. The customizer for the ChartBean

[View full size image]

To add a customizer to your bean, you must supply a BeanInfo class and override the getBeanDescriptor

method, as shown in the following example.

public ChartBean2BeanInfo extends SimpleBeanInfo

{

 public BeanDescriptor getBeanDescriptor()

 {
 return beanDescriptor;

 }

 . . .

 private BeanDescriptor beanDescriptor

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 = new BeanDescriptor(ChartBean2.class, ChartBean2Customizer.class);

}

Note that you need not follow any naming pattern for the customizer class. (Nevertheless, it is customary to
name the customizer as BeanNameCustomizer.)

You will see in the next section how to implement a customizer.

java.beans.BeanInfo 1.1

BeanDescriptor getBeanDescriptor()

returns a BeanDescriptor object that describes features of the bean.

java.beans.BeanDescriptor 1.1

BeanDescriptor(Class<?> beanClass, Class<?> customizerClass)

constructs a BeanDescriptor object for a bean that has a customizer.

Parameters: beanClass The Class object for the bean

 customizerClass The Class object for the bean's customizer

Writing a Customizer Class

Any customizer class you write must have a default constructor, extend the Component class, and implement the

Customizer interface. That interface has only three methods:

The setObject method, which takes a parameter that specifies the bean being customized

The addPropertyChangeListener and removePropertyChangeListener methods, which manage the

collection of listeners that are notified when a property is changed in the customizer

It is a good idea to update the visual appearance of the target bean by broadcasting a PropertyChangeEvent

whenever the user changes any of the property values, not just when the user is at the end of the customization
process.

Unlike property editors, customizers are not automatically displayed. In NetBeans, you must right-click on the
bean and select the Customize menu option to pop up the customizer. At that point, the builder calls the
setObject method of the customizer. Notice that your customizer is created before it is actually linked to an

instance of your bean. Therefore, you cannot assume any information about the state of a bean in the
constructor.

Because customizers typically present the user with many options, it is often handy to use the tabbed pane user
interface. We use this approach and have the customizer extend the JTabbedPane class.

The customizer gathers the following information in three panes:

Graph color and inverse mode

Title and title position

Data points

Of course, developing this kind of user interface can be tedious to code—our example devotes over 100 lines
just to set it up in the constructor. However, this task requires only the usual Swing programming skills, and we
don't dwell on the details here.

One trick is worth keeping in mind. You often need to edit property values in a customizer. Rather than
implementing a new interface for setting the property value of a particular class, you can simply locate an
existing property editor and add it to your user interface! For example, in our ChartBean2 customizer, we need

to set the graph color. Because we know that NetBeans has a perfectly good property editor for colors, we
locate it as follows:

PropertyEditor colorEditor = PropertyEditorManager.findEditor(Color.Class);

Component colorEditorComponent = colorEditor.getCustomEditor();

Once we have all components laid out, we initialize their values in the setObject method. The setObject

method is called when the customizer is displayed. Its parameter is the bean that is being customized. To
proceed, we store that bean reference—we'll need it later to notify the bean of property changes. Then, we
initialize each user interface component. Here is a part of the setObject method of the chart bean customizer

that does this initialization:

public void setObject(Object obj)

{
 bean = (ChartBean2) obj;

 titleField.setText(bean.getTitle());

 colorEditor.setValue(bean.getGraphColor());

 . . .

}

Finally, we hook up event handlers to track the user's activities. Whenever the user changes the value of a
component, the component fires an event that our customizer must handle. The event handler must update the
value of the property in the bean and must also fire a PropertyChangeEvent so that other listeners (such as the

property inspector) can be updated. Let us follow that process with a couple of user interface elements in the
chart bean customizer.

When the user types a new title, we want to update the title property. We attach a DocumentListener to the

text field into which the user types the title.

titleField.getDocument().addDocumentListener(new

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 DocumentListener()

 {

 public void changedUpdate(DocumentEvent event)
 {

 setTitle(titleField.getText());

 }

 public void insertUpdate(DocumentEvent event)

 {

 setTitle(titleField.getText());

 }

 public void removeUpdate(DocumentEvent event)

 {

 setTitle(titleField.getText());

 }

 });

The three listener methods call the setTitle method of the customizer. That method calls the bean to update

the property value and then fires a property change event. (This update is necessary only for properties that are
not bound.) Here is the code for the setTitle method.

public void setTitle(String newValue)

{

 if (bean == null) return;

 String oldValue = bean.getTitle();

 bean.setTitle(newValue);

 firePropertyChange("title", oldValue, newValue);

}

When the color value changes in the color property editor, we want to update the graph color of the bean. We
track the color changes by attaching a listener to the property editor. Perhaps confusingly, that editor also
sends out property change events.

colorEditor.addPropertyChangeListener(new

 PropertyChangeListener()

 {

 public void propertyChange(PropertyChangeEvent event)
 {

 setGraphColor((Color) colorEditor.getValue());

 }

 });

Listing 8-7 provides the full code of the chart bean customizer.

Listing 8-7. ChartBean2Customizer.java

Code View:
 1. package com.horstmann.corejava;

 2.

 3. import java.awt.*;

 4. import java.awt.event.*;

 5. import java.beans.*;

 6. import java.util.*;

 7. import javax.swing.*;

 8. import javax.swing.event.*;

 9.

 10. /**

 11. * A customizer for the chart bean that allows the user to edit all chart properties in a

 12. * single tabbed dialog.

 13. * @version 1.12 2007-10-03

 14. * @author Cay Horstmann

 15. */

 16. public class ChartBean2Customizer extends JTabbedPane implements Customizer

 17. {

 18. public ChartBean2Customizer()

 19. {

 20. data = new JTextArea();

 21. JPanel dataPane = new JPanel();

 22. dataPane.setLayout(new BorderLayout());

 23. dataPane.add(new JScrollPane(data), BorderLayout.CENTER);

 24. JButton dataButton = new JButton("Set data");

 25. dataButton.addActionListener(new ActionListener()

 26. {

 27. public void actionPerformed(ActionEvent event)

 28. {

 29. setData(data.getText());

 30. }

 31. });

 32. JPanel panel = new JPanel();

 33. panel.add(dataButton);

 34. dataPane.add(panel, BorderLayout.SOUTH);

 35.

 36. JPanel colorPane = new JPanel();

 37. colorPane.setLayout(new BorderLayout());

 38.

 39. normal = new JRadioButton("Normal", true);

 40. inverse = new JRadioButton("Inverse", false);

 41. panel = new JPanel();

 42. panel.add(normal);

 43. panel.add(inverse);

 44. ButtonGroup group = new ButtonGroup();

 45. group.add(normal);

 46. group.add(inverse);

 47. normal.addActionListener(new ActionListener()

 48. {

 49. public void actionPerformed(ActionEvent event)

 50. {

 51. setInverse(false);

 52. }

 53. });

 54.

 55. inverse.addActionListener(new ActionListener()

 56. {

 57. public void actionPerformed(ActionEvent event)

 58. {

 59. setInverse(true);

 60. }

 61. });

 62.

 63. colorEditor = PropertyEditorManager.findEditor(Color.class);

 64. colorEditor.addPropertyChangeListener(new PropertyChangeListener()

 65. {

 66. public void propertyChange(PropertyChangeEvent event)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 67. {

 68. setGraphColor((Color) colorEditor.getValue());

 69. }

 70. });

 71.

 72. colorPane.add(panel, BorderLayout.NORTH);

 73. colorPane.add(colorEditor.getCustomEditor(), BorderLayout.CENTER);

 74.

 75. JPanel titlePane = new JPanel();

 76. titlePane.setLayout(new BorderLayout());

 77.

 78. group = new ButtonGroup();

 79. position = new JRadioButton[3];

 80. position[0] = new JRadioButton("Left");

 81. position[1] = new JRadioButton("Center");

 82. position[2] = new JRadioButton("Right");

 83.

 84. panel = new JPanel();

 85. for (int i = 0; i < position.length; i++)

 86. {

 87. final ChartBean2.Position pos = ChartBean2.Position.values()[i];

 88. panel.add(position[i]);

 89. group.add(position[i]);

 90. position[i].addActionListener(new ActionListener()

 91. {

 92. public void actionPerformed(ActionEvent event)

 93. {

 94. setTitlePosition(pos);

 95. }

 96. });

 97. }

 98.

 99. titleField = new JTextField();

100. titleField.getDocument().addDocumentListener(new DocumentListener()

101. {

102. public void changedUpdate(DocumentEvent evt)

103. {

104. setTitle(titleField.getText());

105. }

106.

107. public void insertUpdate(DocumentEvent evt)

108. {

109. setTitle(titleField.getText());

110. }

111.

112. public void removeUpdate(DocumentEvent evt)

113. {

114. setTitle(titleField.getText());

115. }

116. });

117.

118. titlePane.add(titleField, BorderLayout.NORTH);

119. JPanel panel2 = new JPanel();

120. panel2.add(panel);

121. titlePane.add(panel2, BorderLayout.CENTER);

122. addTab("Color", colorPane);

123. addTab("Title", titlePane);

124. addTab("Data", dataPane);

125.

126. }

127.

128. /**

129. * Sets the data to be shown in the chart.

130. * @param s a string containing the numbers to be displayed, separated by white space

131. */

132. public void setData(String s)

133. {

134. StringTokenizer tokenizer = new StringTokenizer(s);

135.

136. int i = 0;

137. double[] values = new double[tokenizer.countTokens()];

138. while (tokenizer.hasMoreTokens())

139. {

140. String token = tokenizer.nextToken();

141. try

142. {

143. values[i] = Double.parseDouble(token);

144. i++;

145. }

146. catch (NumberFormatException e)

147. {

148. }

149. }

150. setValues(values);

151. }

152.

153. /**

154. * Sets the title of the chart.

155. * @param newValue the new title

156. */

157. public void setTitle(String newValue)

158. {

159. if (bean == null) return;

160. String oldValue = bean.getTitle();

161. bean.setTitle(newValue);

162. firePropertyChange("title", oldValue, newValue);

163. }

164.

165. /**

166. * Sets the title position of the chart.

167. * @param i the new title position (ChartBean2.LEFT, ChartBean2.CENTER, or ChartBean2.RIGHT)

168. */

169. public void setTitlePosition(ChartBean2.Position pos)

170. {

171. if (bean == null) return;

172. ChartBean2.Position oldValue = bean.getTitlePosition();

173. bean.setTitlePosition(pos);

174. firePropertyChange("titlePosition", oldValue, pos);

175. }

176.

177. /**

178. * Sets the inverse setting of the chart.

179. * @param b true if graph and background color are inverted

180. */

181. public void setInverse(boolean b)

182. {

183. if (bean == null) return;

184. boolean oldValue = bean.isInverse();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

185. bean.setInverse(b);

186. firePropertyChange("inverse", oldValue, b);

187. }

188.

189. /**

190. * Sets the values to be shown in the chart.

191. * @param newValue the new value array

192. */

193. public void setValues(double[] newValue)

194. {

195. if (bean == null) return;

196. double[] oldValue = bean.getValues();

197. bean.setValues(newValue);

198. firePropertyChange("values", oldValue, newValue);

199. }

200.

201. /**

202. * Sets the color of the chart

203. * @param newValue the new color

204. */

205. public void setGraphColor(Color newValue)

206. {

207. if (bean == null) return;

208. Color oldValue = bean.getGraphColor();

209. bean.setGraphColor(newValue);

210. firePropertyChange("graphColor", oldValue, newValue);

211. }

212.

213. public void setObject(Object obj)

214. {

215. bean = (ChartBean2) obj;

216.

217. data.setText("");

218. for (double value : bean.getValues())

219. data.append(value + "\n");

220.

221. normal.setSelected(!bean.isInverse());

222. inverse.setSelected(bean.isInverse());

223.

224. titleField.setText(bean.getTitle());

225.

226. for (int i = 0; i < position.length; i++)

227. position[i].setSelected(i == bean.getTitlePosition().ordinal());

228.

229. colorEditor.setValue(bean.getGraphColor());

230. }

231.

232. private ChartBean2 bean;

233. private PropertyEditor colorEditor;

234.

235. private JTextArea data;

236. private JRadioButton normal;

237. private JRadioButton inverse;

238. private JRadioButton[] position;

239. private JTextField titleField;

240. }

java.beans.Customizer 1.1

void setObject(Object bean)

specifies the bean to customize.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

JavaBeans Persistence

JavaBeans persistence uses JavaBeans properties to save beans to a stream and to read them back at a later
time or in a different virtual machine. In this regard, JavaBeans persistence is similar to object serialization.
(See Chapter 1 for more information on serialization.) However, there is an important difference: JavaBeans
persistence is suitable for long-term storage.

When an object is serialized, its instance fields are written to a stream. If the implementation of a class
changes, then its instance fields can change. You cannot simply read files that contain serialized objects of older
versions. It is possible to detect version differences and translate between old and new data representations.
However, the process is extremely tedious and should only be applied in desperate situations. Plainly,
serialization is unsuitable for long-term storage. For that reason, all Swing components have the following
message in their documentation: "Warning: Serialized objects of this class will not be compatible with future
Swing releases. The current serialization support is appropriate for short term storage or RMI between
applications."

The long-term persistence mechanism was invented as a solution for this problem. It was originally intended for
drag-and-drop GUI design tools. The design tool saves the result of mouse clicks—a collection of frames, panels,
buttons, and other Swing components—in a file, using the long-term persistence format. The running program
simply opens that file. This approach cuts out the tedious source code for laying out and wiring up Swing
components. Sadly, it has not been widely implemented.

Note

The Bean Builder at http://bean-builder.dev.java.net is an experimental GUI builder
with support for long-term persistence.

The basic idea behind JavaBeans persistence is simple. Suppose you want to save a JFrame object to a file so

that you can retrieve it later. If you look into the source code of the JFrame class and its superclasses, then you

see dozens of instance fields. If the frame were to be serialized, all of the field values would need to be written.
But think about how a frame is constructed:

JFrame frame = new JFrame();

frame.setTitle("My Application");

frame.setVisible(true);

The default constructor initializes all instance fields, and a couple of properties are set. If you archive the frame
object, the JavaBeans persistence mechanism saves exactly these statements in XML format:

<object class="javax.swing.JFrame">

 <void property="title">

 <string>My Application</string>
 </void>

 <void property="visible">

 <boolean>true</boolean>

 </void>

http://bean-builder.dev.java.net

</object>

When the object is read back, the statements are executed: A JFrame object is constructed, and its title and

visible properties are set to the given values. It does not matter if the internal representation of the JFrame

has changed in the meantime. All that matters is that you can restore the object by setting properties.

Note that only those properties that are different from the default are archived. The XMLEncoder makes a

default JFrame and compares its property with the frame that is being archived. Property setter statements are

generated only for properties that are different from the default. This process is called redundancy elimination.
As a result, the archives are generally smaller than the result of serialization. (When serializing Swing
components, the difference is particularly dramatic because Swing objects have a lot of state, most of which is
never changed from the default.)

Of course, there are minor technical hurdles with this approach. For example, the call

frame.setSize(600, 400);

is not a property setter. However, the XMLEncoder can cope with this: It writes the statement

<void property="bounds">

 <object class="java.awt.Rectangle">

 <int>0</int>

 <int>0</int>

 <int>600</int>
 <int>400</int>

 </object>

</void>

To save an object to a stream, use an XMLEncoder:

XMLEncoder out = new XMLEncoder(new FileOutputStream(. . .));

out.writeObject(frame);

out.close();

To read it back, use an XMLDecoder:

XMLDecoder in = new XMLDecoder(new FileInputStream(. . .));

JFrame newFrame = (JFrame) in.readObject();
in.close();

The program in Listing 8-8 shows how a frame can load and save itself (see Figure 8-14). When you run the
program, first click the Save button and save the frame to a file. Then move the original frame to a different
position and click Load to see another frame pop up at the original location. Have a look inside the XML file that
the program produces.

Figure 8-14. The PersistentFrameTest program

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

If you look closely at the XML output, you will find that the XMLEncoder carries out an amazing amount of work

when it saves the frame. The XMLEncoder produces statements that carry out the following actions:

Set various frame properties: size, layout, defaultCloseOperation, title, and so on.

Add buttons to the frame.

Add action listeners to the buttons.

Here, we had to construct the action listers with the EventHandler class. The XMLEncoder cannot archive

arbitrary inner classes, but it knows how to handle EventHandler objects.

Listing 8-8. PersistentFrameTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.beans.*;

 4. import java.io.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program demonstrates the use of an XML encoder and decoder to save and restore a frame.

 9. * @version 1.01 2007-10-03

10. * @author Cay Horstmann

11. */

12. public class PersistentFrameTest

13. {

14. public static void main(String[] args)

15. {

16. chooser = new JFileChooser();

17. chooser.setCurrentDirectory(new File("."));

18. PersistentFrameTest test = new PersistentFrameTest();

19. test.init();

20. }

21.

22. public void init()

23. {

24. frame = new JFrame();

25. frame.setLayout(new FlowLayout());

26. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

27. frame.setTitle("PersistentFrameTest");

28. frame.setSize(400, 200);

29.

30. JButton loadButton = new JButton("Load");

31. frame.add(loadButton);

32. loadButton.addActionListener(EventHandler.create(ActionListener.class, this, "load"));

33.

34. JButton saveButton = new JButton("Save");

35. frame.add(saveButton);

36. saveButton.addActionListener(EventHandler.create(ActionListener.class, this, "save"));

37.

38. frame.setVisible(true);

39. }

40.

41. public void load()

42. {

43. // show file chooser dialog

44. int r = chooser.showOpenDialog(null);

45.

46. // if file selected, open

47. if(r == JFileChooser.APPROVE_OPTION)

48. {

49. try

50. {

51. File file = chooser.getSelectedFile();

52. XMLDecoder decoder = new XMLDecoder(new FileInputStream(file));

53. decoder.readObject();

54. decoder.close();

55. }

56. catch (IOException e)

57. {

58. JOptionPane.showMessageDialog(null, e);

59. }

60. }

61. }

62.

63. public void save()

64. {

65. if (chooser.showSaveDialog(null) == JFileChooser.APPROVE_OPTION)

66. {

67. try

68. {

69. File file = chooser.getSelectedFile();

70. XMLEncoder encoder = new XMLEncoder(new FileOutputStream(file));

71. encoder.writeObject(frame);

72. encoder.close();

73. }

74. catch (IOException e)

75. {

76. JOptionPane.showMessageDialog(null, e);

77. }

78. }

79. }

80.

81. private static JFileChooser chooser;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

82. private JFrame frame;

83. }

Using JavaBeans Persistence for Arbitrary Data

JavaBeans persistence is not limited to the storage of Swing components. You can use the mechanism to store
any collection of objects, provided you follow a few simple rules. In the following sections, you learn how you
can use JavaBeans persistence as a long-term storage format for your own data.

The XMLEncoder has built-in support for the following types:

null

All primitive types and their wrappers

Enumerations (since Java SE 6)

String

Arrays

Collections and maps

The reflection types Class, Field, Method, and Proxy

The AWT types Color, Cursor, Dimension, Font, Insets, Point, Rectangle, and ImageIcon

AWT and Swing components, borders, layout managers, and models

Event handlers

Writing a Persistence Delegate to Construct an Object

Using JavaBeans persistence is trivial if one can obtain the state of every object by setting properties. But in
real programs, there are always a few classes that don't work that way. Consider, for example, the Employee

class of Volume I, Chapter 4. Employee isn't a well-behaved bean. It doesn't have a default constructor, and it

doesn't have methods setName, setSalary, setHireDay. To overcome this problem, you define a persistence

delegate. Such a delegate is responsible for generating an XML encoding of an object.

The persistence delegate for the Employee class overrides the instantiate method to produce an expression

that constructs an object.

 PersistenceDelegate delegate = new

 DefaultPersistenceDelegate()

 {
 protected Expression instantiate(Object oldInstance, Encoder out)

 {

 Employee e = (Employee) oldInstance;

 GregorianCalendar c = new GregorianCalendar();

 c.setTime(e.getHireDay());

 return new Expression(oldInstance, Employee.class, "new",

 new Object[]

 {

 e.getName(),

 e.getSalary(),

 c.get(Calendar.YEAR),

 c.get(Calendar.MONTH),

 c.get(Calendar.DATE)
 });

 }

 };

This means: "To re-create oldInstance, call the new method (i.e., the constructor) on the Employee.class

object, and supply the given parameters." The parameter name oldInstance is a bit misleading—this is simply

the instance that is being saved.

To install the persistence delegate, you have two choices. You can associate it with a specific XMLWriter:

out.setPersistenceDelegate(Employee.class, delegate);

Alternatively, you can set the persistenceDelegate attribute of the bean descriptor of the BeanInfo:

BeanInfo info = Introspector.getBeanInfo(GregorianCalendar.class);
info.getBeanDescriptor().setValue("persistenceDelegate", delegate);

Once the delegate is installed, you can save Employee objects. For example, the statements

Object myData = new Employee("Harry Hacker", 50000, 1989, 10, 1);
out.writeObject(myData);

generate the following output:

<object class="Employee">

 <string>Harry Hacker</string>

 <double>50000.0</double>

 <int>1989</int>

 <int>10</int>

 <int>1</int>

</object>

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

You only need to tweak the encoding process. There are no special decoding
methods. The decoder simply executes the statements and expressions that it finds
in its XML input.

Constructing an Object from Properties

If all constructor parameters can be obtained by accessing properties of oldInstance, then you need not write

the instantiate method yourself. Instead, simply construct a DefaultPersistenceDelegate and supply the

property names.

For example, the following statement sets the persistence delegate for the Rectangle2D.Double class:

Code View:
out.setPersistenceDelegate(Rectangle2D.Double.class,

 new DefaultPersistenceDelegate(new String[] { "x", "y", "width", "height" }));

This tells the encoder: "To encode a Rectangle2D.Double object, get its x, y, width, and height properties and

call the constructor with those four values." As a result, the output contains an element such as the following:

<object class="java.awt.geom.Rectangle2D$Double">

 <double>5.0</double>
 <double>10.0</double>

 <double>20.0</double>

 <double>30.0</double>

</object>

If you are the author of the class, you can do even better. Annotate the constructor with the
@ConstructorProperties annotation. Suppose, for example, the Employee class had a constructor with three
parameters (name, salary, and hire day). Then we could have annotated the constructor as follows:

@ConstructorProperties({"name", "salary", "hireDay"})

public Employee(String n, double s, Date d)

This tells the encoder to call the getName, getSalary, and getHireDay property getters and write the resulting

values into the object expression.

The @ConstructorProperties annotation was introduced in Java SE 6, and has so far only been used for

classes in the Java Management Extensions (JMX) API.

Constructing an Object with a Factory Method

Sometimes, you need to save objects that are obtained from factory methods, not constructors. Consider, for
example, how you get an InetAddress object:

byte[] bytes = new byte[] { 127, 0, 0, 1};

InetAddress address = InetAddress.getByAddress(bytes);

The instantiate method of the PersistenceDelegate produces a call to the factory method.

protected Expression instantiate(Object oldInstance, Encoder out)

{

 return new Expression(oldInstance, InetAddress.class, "getByAddress",

 new Object[] { ((InetAddress) oldInstance).getAddress() });

}

A sample output is

<object class="java.net.Inet4Address" method="getByAddress">

 <array class="byte" length="4">

 <void index="0">

 <byte>127</byte>

 </void>

 <void index="3">

 <byte>1</byte>

 </void>
 </array>

</object>

Caution

You must install this delegate with the concrete subclass, such as Inet4Address,

not with the abstract InetAddress class!

Postconstruction Work

The state of some classes is built up by calls to methods that are not property setters. You can cope with that
situation by overriding the initialize method of the DefaultPersistenceDelegate. The initialize method

is called after the instantiate method. You can generate a sequence of statements that are recorded in the

archive.

For example, consider the BitSet class. To re-create a BitSet object, you set all the bits that were present in

the original. The following initialize method generates the necessary statements:

Code View:
protected void initialize(Class<?> type, Object oldInstance, Object newInstance, Encoder out)

{

 super.initialize(type, oldInstance, newInstance, out);

 BitSet bs = (BitSet) oldInstance;

 for (int i = bs.nextSetBit(0); i >= 0; i = bs.nextSetBit(i + 1))

 out.writeStatement(new Statement(bs, "set", new Object[] { i, i + 1, true }));

}

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

A sample output is

<object class="java.util.BitSet">

 <void method="set">

 <int>1</int>

 <int>2</int>

 <boolean>true</boolean>

 </void>

 <void method="set">

 <int>4</int>

 <int>5</int>

 <boolean>true</boolean>
 </void>

</object>

Note

It would make more sense to write new Statement(bs, "set", new Object[] { i

}), but then the XMLWriter produces an unsightly statement that sets a property
with an empty name.

Transient Properties

Occasionally, a class has a property with a getter and setter that the XMLDecoder discovers, but you don't want

to include the property value in the archive. To suppress archiving of a property, mark it as transient in the
property descriptor. For example, the following statement marks the removeMode property of the

DamageReporter class (which you will see in detail in the next section) as transient.

BeanInfo info = Introspector.getBeanInfo(DamageReport.class);

for (PropertyDescriptor desc : info.getPropertyDescriptors())

 if (desc.getName().equals("removeMode"))

 desc.setValue("transient", Boolean.TRUE);

The program in Listing 8-9 shows the various persistence delegates at work. Keep in mind that this program
shows a worst-case scenario—in actual applications, many classes can be archived without the use of delegates.

Listing 8-9. PersistenceDelegateTest.java

Code View:
 1. import java.awt.geom.*;

 2. import java.beans.*;

 3. import java.net.*;

 4. import java.util.*;

 5.

 6. /**

 7. * This program demonstrates various persistence delegates.

 8. * @version 1.01 2007-10-03

 9. * @author Cay Horstmann

10. */

11. public class PersistenceDelegateTest

12. {

13. public static class Point

14. {

15. @ConstructorProperties({ "x", "y" })

16. public Point(int x, int y)

17. {

18. this.x = x;

19. this.y = y;

20. }

21.

22. public int getX()

23. {

24. return x;

25. }

26.

27. public int getY()

28. {

29. return y;

30. }

31.

32. private final int x, y;

33. }

34.

35. public static void main(String[] args) throws Exception

36. {

37. PersistenceDelegate delegate = new PersistenceDelegate()

38. {

39. protected Expression instantiate(Object oldInstance, Encoder out)

40. {

41. Employee e = (Employee) oldInstance;

42. GregorianCalendar c = new GregorianCalendar();

43. c.setTime(e.getHireDay());

44. return new Expression(oldInstance, Employee.class, "new", new Object[] {

45. e.getName(), e.getSalary(), c.get(Calendar.YEAR), c.get(Calendar.MONTH),

46. c.get(Calendar.DATE) });

47. }

48. };

49. BeanInfo info = Introspector.getBeanInfo(Employee.class);

50. info.getBeanDescriptor().setValue("persistenceDelegate", delegate);

51.

52. XMLEncoder out = new XMLEncoder(System.out);

53. out.setExceptionListener(new ExceptionListener()

54. {

55. public void exceptionThrown(Exception e)

56. {

57. e.printStackTrace();

58. }

59. });

60.

61. out.setPersistenceDelegate(Rectangle2D.Double.class, new DefaultPersistenceDelegate(

62. new String[] { "x", "y", "width", "height" }));

63.

64. out.setPersistenceDelegate(Inet4Address.class, new DefaultPersistenceDelegate()

65. {

66. protected Expression instantiate(Object oldInstance, Encoder out)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

67. {

68. return new Expression(oldInstance, InetAddress.class, "getByAddress",

69. new Object[] { ((InetAddress) oldInstance).getAddress() });

70. }

71. });

72.

73. out.setPersistenceDelegate(BitSet.class, new DefaultPersistenceDelegate()

74. {

75. protected void initialize(Class<?> type, Object oldInstance, Object newInstance,

76. Encoder out)

77. {

78. super.initialize(type, oldInstance, newInstance, out);

79. BitSet bs = (BitSet) oldInstance;

80. for (int i = bs.nextSetBit(0); i >= 0; i = bs.nextSetBit(i + 1))

81. out.writeStatement(new Statement(bs, "set",

82. new Object[] { i, i + 1, true }));

83. }

84. });

85.

86. out.writeObject(new Employee("Harry Hacker", 50000, 1989, 10, 1));

87. out.writeObject(new Point(17, 29));

88. out.writeObject(new java.awt.geom.Rectangle2D.Double(5, 10, 20, 30));

89. out.writeObject(InetAddress.getLocalHost());

90. BitSet bs = new BitSet();

91. bs.set(1, 4);

92. bs.clear(2, 3);

93. out.writeObject(bs);

94. out.close();

95. }

96. }

A Complete Example for JavaBeans Persistence

We end the description of JavaBeans persistence with a complete example (see Figure 8-15). This application
writes a damage report for a rental car. The rental car agent enters the rental record, selects the car type, uses
the mouse to click on damaged areas on the car, and saves the report. The application can also load existing
damage reports. Listing 8-10 contains the code for the program.

Figure 8-15. The DamageReporter application

The application uses JavaBeans persistence to save and load DamageReport objects (see Listing 8-11). It

illustrates the following aspects of the persistence technology:

Properties are automatically saved and restored. Nothing needs to be done for the rentalRecord and

carType properties.

Postconstruction work is required to restore the damage locations. The persistence delegate generates
statements that call the click method.

The Point2D.Double class needs a DefaultPersistenceDelegate that constructs a point from its x and y

properties.

The removeMode property (which specifies whether mouse clicks add or remove damage marks) is

transient because it should not be saved in damage reports.

Here is a sample damage report:

Code View:
<?xml version="1.0" encoding="UTF-8"?>

<java version="1.5.0" class="java.beans.XMLDecoder">

 <object class="DamageReport">

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 <object class="java.lang.Enum" method="valueOf">

 <class>DamageReport$CarType</class>

 <string>SEDAN</string>
 </object>

 <void property="rentalRecord">

 <string>12443-19</string>

 </void>

 <void method="click">

 <object class="java.awt.geom.Point2D$Double">

 <double>181.0</double>

 <double>84.0</double>

 </object>

 </void>

 <void method="click">

 <object class="java.awt.geom.Point2D$Double">
 <double>162.0</double>

 <double>66.0</double>

 </object>

 </void>

 </object>

</java>

Note

The sample application does not use JavaBeans persistence to save the GUI of the
application. That might be of interest to creators of development tools, but here we
are focusing on how to use the persistence mechanism to store application data.

This example ends our discussion of JavaBeans persistence. In summary, JavaBeans persistence archives are

Suitable for long-term storage.

Small and fast.

Easy to create.

Human editable.

A part of standard Java.

Listing 8-10. DamageReporter.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.awt.geom.*;

 4. import java.beans.*;

 5. import java.io.*;

 6. import java.util.*;

 7. import javax.swing.*;

 8.

 9. /**

 10. * This program demonstrates the use of an XML encoder and decoder. All GUI and drawing

 11. * code is collected in this class. The only interesting pieces are the action listeners for

 12. * openItem and saveItem. Look inside the DamageReport class for encoder customizations.

 13. * @version 1.01 2004-10-03

 14. * @author Cay Horstmann

 15. */

 16. public class DamageReporter extends JFrame

 17. {

 18. public static void main(String[] args)

 19. {

 20. JFrame frame = new DamageReporter();

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24.

 25. public DamageReporter()

 26. {

 27. setTitle("DamageReporter");

 28. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 29.

 30. chooser = new JFileChooser();

 31. chooser.setCurrentDirectory(new File("."));

 32.

 33. report = new DamageReport();

 34. report.setCarType(DamageReport.CarType.SEDAN);

 35.

 36. // set up the menu bar

 37. JMenuBar menuBar = new JMenuBar();

 38. setJMenuBar(menuBar);

 39.

 40. JMenu menu = new JMenu("File");

 41. menuBar.add(menu);

 42.

 43. JMenuItem openItem = new JMenuItem("Open");

 44. menu.add(openItem);

 45. openItem.addActionListener(new ActionListener()

 46. {

 47. public void actionPerformed(ActionEvent evt)

 48. {

 49. // show file chooser dialog

 50. int r = chooser.showOpenDialog(null);

 51.

 52. // if file selected, open

 53. if (r == JFileChooser.APPROVE_OPTION)

 54. {

 55. try

 56. {

 57. File file = chooser.getSelectedFile();

 58. XMLDecoder decoder = new XMLDecoder(new FileInputStream(file));

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 59. report = (DamageReport) decoder.readObject();

 60. decoder.close();

 61. rentalRecord.setText(report.getRentalRecord());

 62. carType.setSelectedItem(report.getCarType());

 63. repaint();

 64. }

 65. catch (IOException e)

 66. {

 67. JOptionPane.showMessageDialog(null, e);

 68. }

 69. }

 70. }

 71. });

 72.

 73. JMenuItem saveItem = new JMenuItem("Save");

 74. menu.add(saveItem);

 75. saveItem.addActionListener(new ActionListener()

 76. {

 77. public void actionPerformed(ActionEvent evt)

 78. {

 79. report.setRentalRecord(rentalRecord.getText());

 80. chooser.setSelectedFile(new File(rentalRecord.getText() + ".xml"));

 81.

 82. // show file chooser dialog

 83. int r = chooser.showSaveDialog(null);

 84.

 85. // if file selected, save

 86. if (r == JFileChooser.APPROVE_OPTION)

 87. {

 88. try

 89. {

 90. File file = chooser.getSelectedFile();

 91. XMLEncoder encoder = new XMLEncoder(new FileOutputStream(file));

 92. report.configureEncoder(encoder);

 93. encoder.writeObject(report);

 94. encoder.close();

 95. }

 96. catch (IOException e)

 97. {

 98. JOptionPane.showMessageDialog(null, e);

 99. }

100. }

101. }

102. });

103.

104. JMenuItem exitItem = new JMenuItem("Exit");

105. menu.add(exitItem);

106. exitItem.addActionListener(new ActionListener()

107. {

108. public void actionPerformed(ActionEvent event)

109. {

110. System.exit(0);

111. }

112. });

113.

114. // combo box for car type

115. rentalRecord = new JTextField();

116. carType = new JComboBox();

117. carType.addItem(DamageReport.CarType.SEDAN);

118. carType.addItem(DamageReport.CarType.WAGON);

119. carType.addItem(DamageReport.CarType.SUV);

120.

121. carType.addActionListener(new ActionListener()

122. {

123. public void actionPerformed(ActionEvent event)

124. {

125. DamageReport.CarType item = (DamageReport.CarType) carType.getSelectedItem();

126. report.setCarType(item);

127. repaint();

128. }

129. });

130.

131. // component for showing car shape and damage locations

132. carComponent = new JComponent()

133. {

134. public void paintComponent(Graphics g)

135. {

136. Graphics2D g2 = (Graphics2D) g;

137. g2.setColor(new Color(0.9f, 0.9f, 0.45f));

138. g2.fillRect(0, 0, getWidth(), getHeight());

139. g2.setColor(Color.BLACK);

140. g2.draw(shapes.get(report.getCarType()));

141. report.drawDamage(g2);

142. }

143. };

144. carComponent.addMouseListener(new MouseAdapter()

145. {

146. public void mousePressed(MouseEvent event)

147. {

148. report.click(new Point2D.Double(event.getX(), event.getY()));

149. repaint();

150. }

151. });

152.

153. // radio buttons for click action

154. addButton = new JRadioButton("Add");

155. removeButton = new JRadioButton("Remove");

156. ButtonGroup group = new ButtonGroup();

157. JPanel buttonPanel = new JPanel();

158. group.add(addButton);

159. buttonPanel.add(addButton);

160. group.add(removeButton);

161. buttonPanel.add(removeButton);

162. addButton.setSelected(!report.getRemoveMode());

163. removeButton.setSelected(report.getRemoveMode());

164. addButton.addActionListener(new ActionListener()

165. {

166. public void actionPerformed(ActionEvent event)

167. {

168. report.setRemoveMode(false);

169. }

170. });

171. removeButton.addActionListener(new ActionListener()

172. {

173. public void actionPerformed(ActionEvent event)

174. {

175. report.setRemoveMode(true);

176. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

177. });

178.

179. // layout components

180. JPanel gridPanel = new JPanel();

181. gridPanel.setLayout(new GridLayout(0, 2));

182. gridPanel.add(new JLabel("Rental Record"));

183. gridPanel.add(rentalRecord);

184. gridPanel.add(new JLabel("Type of Car"));

185. gridPanel.add(carType);

186. gridPanel.add(new JLabel("Operation"));

187. gridPanel.add(buttonPanel);

188.

189. add(gridPanel, BorderLayout.NORTH);

190. add(carComponent, BorderLayout.CENTER);

191. }

192.

193. private JTextField rentalRecord;

194. private JComboBox carType;

195. private JComponent carComponent;

196. private JRadioButton addButton;

197. private JRadioButton removeButton;

198. private DamageReport report;

199. private JFileChooser chooser;

200.

201. private static final int DEFAULT_WIDTH = 400;

202. private static final int DEFAULT_HEIGHT = 400;

203.

204. private static Map<DamageReport.CarType, Shape> shapes =

205. new EnumMap<DamageReport.CarType, Shape>(DamageReport.CarType.class);

206.

207. static

208. {

209. int width = 200;

210. int x = 50;

211. int y = 50;

212. Rectangle2D.Double body = new Rectangle2D.Double(x, y + width / 6, width - 1, width / 6);

213. Ellipse2D.Double frontTire = new Ellipse2D.Double(x + width / 6, y + width / 3,

214. width / 6, width / 6);

215. Ellipse2D.Double rearTire = new Ellipse2D.Double(x + width * 2 / 3, y + width / 3,

216. width / 6, width / 6);

217.

218. Point2D.Double p1 = new Point2D.Double(x + width / 6, y + width / 6);

219. Point2D.Double p2 = new Point2D.Double(x + width / 3, y);

220. Point2D.Double p3 = new Point2D.Double(x + width * 2 / 3, y);

221. Point2D.Double p4 = new Point2D.Double(x + width * 5 / 6, y + width / 6);

222.

223. Line2D.Double frontWindshield = new Line2D.Double(p1, p2);

224. Line2D.Double roofTop = new Line2D.Double(p2, p3);

225. Line2D.Double rearWindshield = new Line2D.Double(p3, p4);

226.

227. GeneralPath sedanPath = new GeneralPath();

228. sedanPath.append(frontTire, false);

229. sedanPath.append(rearTire, false);

230. sedanPath.append(body, false);

231. sedanPath.append(frontWindshield, false);

232. sedanPath.append(roofTop, false);

233. sedanPath.append(rearWindshield, false);

234. shapes.put(DamageReport.CarType.SEDAN, sedanPath);

235.

236. Point2D.Double p5 = new Point2D.Double(x + width * 11 / 12, y);

237. Point2D.Double p6 = new Point2D.Double(x + width, y + width / 6);

238. roofTop = new Line2D.Double(p2, p5);

239. rearWindshield = new Line2D.Double(p5, p6);

240.

241. GeneralPath wagonPath = new GeneralPath();

242. wagonPath.append(frontTire, false);

243. wagonPath.append(rearTire, false);

244. wagonPath.append(body, false);

245. wagonPath.append(frontWindshield, false);

246. wagonPath.append(roofTop, false);

247. wagonPath.append(rearWindshield, false);

248. shapes.put(DamageReport.CarType.WAGON, wagonPath);

249.

250. Point2D.Double p7 = new Point2D.Double(x + width / 3, y - width / 6);

251. Point2D.Double p8 = new Point2D.Double(x + width * 11 / 12, y - width / 6);

252. frontWindshield = new Line2D.Double(p1, p7);

253. roofTop = new Line2D.Double(p7, p8);

254. rearWindshield = new Line2D.Double(p8, p6);

255.

256. GeneralPath suvPath = new GeneralPath();

257. suvPath.append(frontTire, false);

258. suvPath.append(rearTire, false);

259. suvPath.append(body, false);

260. suvPath.append(frontWindshield, false);

261. suvPath.append(roofTop, false);

262. suvPath.append(rearWindshield, false);

263. shapes.put(DamageReport.CarType.SUV, suvPath);

264. }

265. }

Listing 8-11. DamageReport.java

Code View:
 1. import java.awt.*;

 2. import java.awt.geom.*;

 3. import java.beans.*;

 4. import java.util.*;

 5.

 6. /**

 7. * This class describes a vehicle damage report that will be saved and loaded with the

 8. * long-term persistence mechanism.

 9. * @version 1.21 2004-08-30

 10. * @author Cay Horstmann

 11. */

 12. public class DamageReport

 13. {

 14. public enum CarType

 15. {

 16. SEDAN, WAGON, SUV

 17. }

 18.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 19. // this property is saved automatically

 20. public void setRentalRecord(String newValue)

 21. {

 22. rentalRecord = newValue;

 23. }

 24.

 25. public String getRentalRecord()

 26. {

 27. return rentalRecord;

 28. }

 29.

 30. // this property is saved automatically

 31. public void setCarType(CarType newValue)

 32. {

 33. carType = newValue;

 34. }

 35.

 36. public CarType getCarType()

 37. {

 38. return carType;

 39. }

 40.

 41. // this property is set to be transient

 42. public void setRemoveMode(boolean newValue)

 43. {

 44. removeMode = newValue;

 45. }

 46.

 47. public boolean getRemoveMode()

 48. {

 49. return removeMode;

 50. }

 51.

 52. public void click(Point2D p)

 53. {

 54. if (removeMode)

 55. {

 56. for (Point2D center : points)

 57. {

 58. Ellipse2D circle = new Ellipse2D.Double(center.getX() - MARK_SIZE, center.getY()

 59. - MARK_SIZE, 2 * MARK_SIZE, 2 * MARK_SIZE);

 60. if (circle.contains(p))

 61. {

 62. points.remove(center);

 63. return;

 64. }

 65. }

 66. }

 67. else points.add(p);

 68. }

 69.

 70. public void drawDamage(Graphics2D g2)

 71. {

 72. g2.setPaint(Color.RED);

 73. for (Point2D center : points)

 74. {

 75. Ellipse2D circle = new Ellipse2D.Double(center.getX() - MARK_SIZE, center.getY()

 76. - MARK_SIZE, 2 * MARK_SIZE, 2 * MARK_SIZE);

 77. g2.draw(circle);

 78. }

 79. }

 80.

 81. public void configureEncoder(XMLEncoder encoder)

 82. {

 83. // this step is necessary to save Point2D.Double objects

 84. encoder.setPersistenceDelegate(Point2D.Double.class, new DefaultPersistenceDelegate(

 85. new String[] { "x", "y" }));

 86.

 87. // this step is necessary because the array list of points is not

 88. // (and should not be) exposed as a property

 89. encoder.setPersistenceDelegate(DamageReport.class, new DefaultPersistenceDelegate()

 90. {

 91. protected void initialize(Class<?> type, Object oldInstance, Object newInstance,

 92. Encoder out)

 93. {

 94. super.initialize(type, oldInstance, newInstance, out);

 95. DamageReport r = (DamageReport) oldInstance;

 96.

 97. for (Point2D p : r.points)

 98. out.writeStatement(new Statement(oldInstance, "click", new Object[] { p }));

 99. }

100. });

101.

102. }

103.

104. // this step is necessary to make the removeMode property transient

105. static

106. {

107. try

108. {

109. BeanInfo info = Introspector.getBeanInfo(DamageReport.class);

110. for (PropertyDescriptor desc : info.getPropertyDescriptors())

111. if (desc.getName().equals("removeMode")) desc.setValue("transient", Boolean.TRUE);

112. }

113. catch (IntrospectionException e)

114. {

115. e.printStackTrace();

116. }

117. }

118.

119. private String rentalRecord;

120. private CarType carType;

121. private boolean removeMode;

122. private ArrayList<Point2D> points = new ArrayList<Point2D>();

123.

124. private static final int MARK_SIZE = 5;

125. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.beans.XMLEncoder 1.4

XMLEncoder(OutputStream out)

constructs an XMLEncoder that sends its output to the given stream.

void writeObject(Object obj)

archives the given object.

void writeStatement(Statement stat)

writes the given statement to the archive. This method should only be
called from a persistence delegate.

java.beans.Encoder 1.4

void setPersistenceDelegate(Class<?> type,

PersistenceDelegate delegate)

PersistenceDelegate getPersistenceDelegate(Class<?> type)

sets or gets the delegate for archiving objects of the given type.

void setExceptionListener(ExceptionListener listener)

ExceptionListener getExceptionListener()

sets or gets the exception listener that is notified if an exception occurs
during the encoding process.

java.beans.ExceptionListener 1.4

void exceptionThrown(Exception e)

is called when an exception was thrown during the encoding or decoding
process.

java.beans.XMLDecoder 1.4

XMLDecoder(InputStream in)

constructs an XMLDecoder that reads an archive from the given input

stream.

Object readObject()

reads the next object from the archive.

void setExceptionListener(ExceptionListener listener)

ExceptionListener getExceptionListener()

sets or gets the exception listener that is notified if an exception occurs
during the encoding process.

java.beans.PersistenceDelegate 1.4

protected abstract Expression instantiate(Object oldInstance,

Encoder out)

returns an expression for instantiating an object that is equivalent to
oldInstance.

protected void initialize(Class<?> type, Object oldInstance,

Object newInstance, Encoder out)

writes statements to out that turn newInstance into an object that is

equivalent to oldInstance.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.beans.DefaultPersistenceDelegate 1.4

DefaultPersistenceDelegate()

constructs a persistence delegate for a class with a zero-parameter
constructor.

DefaultPersistenceDelegate(String[] propertyNames)

constructs a persistence delegate for a class whose construction
parameters are the values of the given properties.

protected Expression instantiate(Object oldInstance, Encoder

out)

returns an expression for invoking the constructor with either no
parameters or the values of the properties specified in the constructor.

protected void initialize(Class<?> type, Object oldInstance,

Object newInstance, Encoder out)

writes statements to out that apply property setters to newInstance,

attempting to turn it into an object that is equivalent to oldInstance.

java.beans.Expression 1.4

Expression(Object value, Object target, String methodName,

Object[] parameters)

constructs an expression that calls the given method on target, with the

given parameters. The result of the expression is assumed to be value.
To call a constructor, target should be a Class object and methodName

should be "new".

java.beans.Statement 1.4

Statement(Object target, String methodName, Object[]

parameters)

constructs a statement that calls the given method on target, with the

given parameters.

You have now worked your way through three long chapters on GUI programming with Swing, AWT, and
JavaBeans. In the next chapter, we move on to an entirely different topic: security. Security has always been a
core feature of the Java platform. As the world in which we live and compute gets more dangerous, a thorough
understanding of Java security will be of increasing importance for many developers.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 9. Security

CLASS LOADERS

BYTECODE VERIFICATION

SECURITY MANAGERS AND PERMISSIONS

USER AUTHENTICATION

DIGITAL SIGNATURES

CODE SIGNING

ENCRYPTION

When Java technology first appeared on the scene, the excitement was not about a well-crafted programming
language but about the possibility of safely executing applets that are delivered over the Internet (see Volume
I, Chapter 10 for more information about applets). Obviously, delivering executable applets is practical only
when the recipients are sure that the code can't wreak havoc on their machines. For this reason, security was
and is a major concern of both the designers and the users of Java technology. This means that unlike other
languages and systems, where security was implemented as an afterthought or a reaction to break-ins, security
mechanisms are an integral part of Java technology.

Three mechanisms help ensure safety:

Language design features (bounds checking on arrays, no unchecked type conversions, no pointer
arithmetic, and so on).

An access control mechanism that controls what the code can do (such as file access, network access, and
so on).

Code signing, whereby code authors can use standard cryptographic algorithms to authenticate Java code.
Then, the users of the code can determine exactly who created the code and whether the code has been
altered after it was signed.

We will first discuss class loaders that check class files for integrity when they are loaded into the virtual
machine. We will demonstrate how that mechanism can detect tampering with class files.

For maximum security, both the default mechanism for loading a class and a custom class loader need to work
with a security manager class that controls what actions code can perform. You'll see in detail how to configure
Java platform security.

Finally, you'll see the cryptographic algorithms supplied in the java.security package, which allow for code

signing and user authentication.

As always, we focus on those topics that are of greatest interest to application programmers. For an in-depth
view, we recommend the book Inside Java 2 Platform Security: Architecture, API Design, and Implementation,
2nd ed., by Li Gong, Gary Ellison, and Mary Dageforde (Prentice Hall PTR 2003).

Class Loaders

A Java compiler converts source instructions for the Java virtual machine. The virtual machine code is stored in
a class file with a .class extension. Each class file contains the definition and implementation code for one class

or interface. These class files must be interpreted by a program that can translate the instruction set of the
virtual machine into the machine language of the target machine.

Note that the virtual machine loads only those class files that are needed for the execution of a program. For
example, suppose program execution starts with MyProgram.class. Here are the steps that the virtual machine

carries out.

1. The virtual machine has a mechanism for loading class files, for example, by reading the files from disk or
by requesting them from the Web; it uses this mechanism to load the contents of the MyProgram class file.

2. If the MyProgram class has fields or superclasses of another class type, their class files are loaded as well.

(The process of loading all the classes that a given class depends on is called resolving the class.)

3. The virtual machine then executes the main method in MyProgram (which is static, so no instance of a

class needs to be created).

4. If the main method or a method that main calls requires additional classes, these are loaded next.

The class loading mechanism doesn't just use a single class loader, however. Every Java program has at least
three class loaders:

The bootstrap class loader

The extension class loader

The system class loader (also sometimes called the application class loader)

The bootstrap class loader loads the system classes (typically, from the JAR file rt.jar). It is an integral part of

the virtual machine and is usually implemented in C. There is no ClassLoader object corresponding to the

bootstrap class loader. For example,

String.class.getClassLoader()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

returns null.

The extension class loader loads "standard extensions" from the jre/lib/ext directory. You can drop JAR files

into that directory, and the extension class loader will find the classes in them, even without any class path.
(Some people recommend this mechanism to avoid the "class path from hell," but see the next cautionary
note.)

The system class loader loads the application classes. It locates classes in the directories and JAR/ZIP files on
the class path, as set by the CLASSPATH environment variable or the -classpath command-line option.

In Sun's Java implementation, the extension and system class loaders are implemented in Java. Both are
instances of the URLClassLoader class.

Caution

You can run into grief if you drop a JAR file into the jre/lib/ext directory and one
of its classes needs to load a class that is not a system or extension class. The
extension class loader does not use the class path. Keep that in mind before you
use the extension directory as a way to manage your class file hassles.

Note

In addition to all the places already mentioned, classes can be loaded from the
jre/lib/endorsed directory. This mechanism can only be used to replace certain

standard Java libraries (such as those for XML and CORBA support) with newer
versions. See
http://java.sun.com/javase/6/docs/technotes/guides/standards/index.html for
details.

The Class Loader Hierarchy

Class loaders have a parent/child relationship. Every class loader except for the bootstrap class loader has a
parent class loader. A class loader is supposed to give its parent a chance to load any given class and only load
it if the parent has failed. For example, when the system class loader is asked to load a system class (say,
java.util.ArrayList), then it first asks the extension class loader. That class loader first asks the bootstrap

class loader. The bootstrap class loader finds and loads the class in rt.jar, and neither of the other class

loaders searches any further.

Some programs have a plugin architecture in which certain parts of the code are packaged as optional plugins.
If the plugins are packaged as JAR files, you can simply load the plugin classes with an instance of
URLClassLoader.

http://java.sun.com/javase/6/docs/technotes/guides/standards/index.html

URL url = new URL("file:///path/to/plugin.jar");

URLClassLoader pluginLoader = new URLClassLoader(new URL[] { url });

Class<?> cl = pluginLoader.loadClass("mypackage.MyClass");

Because no parent was specified in the URLClassLoader constructor, the parent of the pluginLoader is the

system class loader. Figure 9-1 shows the hierarchy.

Figure 9-1. The class loader hierarchy

Most of the time, you don't have to worry about the class loader hierarchy. Generally, classes are loaded
because they are required by other classes, and that process is transparent to you.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Occasionally, you need to intervene and specify a class loader. Consider this example.

Your application code contains a helper method that calls Class.forName(classNameString).

That method is called from a plugin class.

The classNameString specifies a class that is contained in the plugin JAR.

The author of the plugin has the reasonable expectation that the class should be loaded. However, the helper
method's class was loaded by the system class loader, and that is the class loader used by Class.forName. The
classes in the plugin JAR are not visible. This phenomenon is called classloader inversion.

To overcome this problem, the helper method needs to use the correct class loader. It can require the class
loader as a parameter. Alternatively, it can require that the correct class loader is set as the context class loader
of the current thread. This strategy is used by many frameworks (such as the JAXP and JNDI frameworks that
we discussed in Chapters 2 and 4).

Each thread has a reference to a class loader, called the context class loader. The main thread's context class
loader is the system class loader. When a new thread is created, its context class loader is set to the creating
thread's context class loader. Thus, if you don't do anything, then all threads have their context class loader set
to the system class loader.

However, you can set any class loader by calling

Thread t = Thread.currentThread();

t.setContextClassLoader(loader);

The helper method can then retrieve the context class loader:

Thread t = Thread.currentThread();

ClassLoader loader = t.getContextClassLoader();
Class cl = loader.loadClass(className);

The question remains when the context class loader is set to the plugin class loader. The application designer
must make this decision. Generally, it is a good idea to set the context class loader when invoking a method of
a plugin class that was loaded with a different class loader. Alternatively, the caller of the helper method can set
the context class loader.

Tip

If you write a method that loads a class by name, it is a good idea to offer the caller
the choice between passing an explicit class loader and using the context class
loader. Don't simply use the class loader of the method's class.

Using Class Loaders as Namespaces

Every Java programmer knows that package names are used to eliminate name conflicts. There are two classes
called Date in the standard library, but of course their real names are java.util.Date and java.sql.Date. The

simple name is only a programmer convenience and requires the inclusion of appropriate import statements. In

a running program, all class names contain their package name.

It might surprise you, however, that you can have two classes in the same virtual machine that have the same
class and package name. A class is determined by its full name and the class loader. This technique is useful for
loading code from multiple sources. For example, a browser uses separate instances of the applet class loader
class for each web page. This allows the virtual machine to separate classes from different web pages, no
matter what they are named. Figure 9-2 shows an example. Suppose a web page contains two applets,
provided by different advertisers, and each applet has a class called Banner. Because each applet is loaded by a

separate class loader, these classes are entirely distinct and do not conflict with each other.

Figure 9-2. Two class loaders load different classes with the same name

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

This technique has other uses as well, such as "hot deployment" of servlets and
Enterprise JavaBeans. See
http://java.sun.com/developer/TechTips/2000/tt1027.html for more information.

Writing Your Own Class Loader

You can write your own class loader for specialized purposes. That lets you carry out custom checks before you
pass the bytecodes to the virtual machine. For example, you can write a class loader that can refuse to load a
class that has not been marked as "paid for."

To write your own class loader, you simply extend the ClassLoader class and override the method.

findClass(String className)

The loadClass method of the ClassLoader superclass takes care of the delegation to the parent and calls
findClass only if the class hasn't already been loaded and if the parent class loader was unable to load the

class.

Your implementation of this method must do the following:

1. Load the bytecodes for the class from the local file system or from some other source.

2. Call the defineClass method of the ClassLoader superclass to present the bytecodes to the virtual

machine.

In the program of Listing 9-1, we implement a class loader that loads encrypted class files. The program asks
the user for the name of the first class to load (that is, the class containing main) and the decryption key. It

then uses a special class loader to load the specified class and calls the main method. The class loader decrypts
the specified class and all nonsystem classes that are referenced by it. Finally, the program calls the main

method of the loaded class (see Figure 9-3).

Figure 9-3. The ClassLoaderTest program

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/developer/TechTips/2000/tt1027.html

For simplicity, we ignore 2,000 years of progress in the field of cryptography and use the venerable Caesar
cipher for encrypting the class files.

Note

David Kahn's wonderful book The Codebreakers (Macmillan, 1967, p. 84) refers to
Suetonius as a historical source for the Caesar cipher. Caesar shifted the 24 letters
of the Roman alphabet by 3 letters, which at the time baffled his adversaries.

When this chapter was first written, the U.S. government restricted the export of
strong encryption methods. Therefore, we used Caesar's method for our example
because it was clearly legal for export.

Our version of the Caesar cipher has as a key a number between 1 and 255. To decrypt, simply add that key to
every byte and reduce modulo 256. The Caesar.java program of Listing 9-2 carries out the encryption.

So that we do not confuse the regular class loader, we use a different extension, .caesar, for the encrypted

class files.

To decrypt, the class loader simply subtracts the key from every byte. In the companion code for this book, you
will find four class files, encrypted with a key value of 3—the traditional choice. To run the encrypted program,
you need the custom class loader defined in our ClassLoaderTest program.

Encrypting class files has a number of practical uses (provided, of course, that you use a cipher stronger than
the Caesar cipher). Without the decryption key, the class files are useless. They can neither be executed by a
standard virtual machine nor readily disassembled.

This means that you can use a custom class loader to authenticate the user of the class or to ensure that a
program has been paid for before it will be allowed to run. Of course, encryption is only one application of a
custom class loader. You can use other types of class loaders to solve other problems, for example, storing class
files in a database.

Listing 9-1. ClassLoaderTest.java

Code View:
 1. import java.io.*;

 2. import java.lang.reflect.*;

 3. import java.awt.*;

 4. import java.awt.event.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program demonstrates a custom class loader that decrypts class files.

 9. * @version 1.22 2007-10-05

 10. * @author Cay Horstmann

 11. */

 12. public class ClassLoaderTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20.

 21. JFrame frame = new ClassLoaderFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame contains two text fields for the name of the class to load and the decryption key.

 31. */

 32. class ClassLoaderFrame extends JFrame

 33. {

 34. public ClassLoaderFrame()

 35. {

 36. setTitle("ClassLoaderTest");

 37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 38. setLayout(new GridBagLayout());

 39. add(new JLabel("Class"), new GBC(0, 0).setAnchor(GBC.EAST));

 40. add(nameField, new GBC(1, 0).setWeight(100, 0).setAnchor(GBC.WEST));

 41. add(new JLabel("Key"), new GBC(0, 1).setAnchor(GBC.EAST));

 42. add(keyField, new GBC(1, 1).setWeight(100, 0).setAnchor(GBC.WEST));

 43. JButton loadButton = new JButton("Load");

 44. add(loadButton, new GBC(0, 2, 2, 1));

 45. loadButton.addActionListener(new ActionListener()

 46. {

 47. public void actionPerformed(ActionEvent event)

 48. {

 49. runClass(nameField.getText(), keyField.getText());

 50. }

 51. });

 52. pack();

 53. }

 54.

 55. /**

 56. * Runs the main method of a given class.

 57. * @param name the class name

 58. * @param key the decryption key for the class files

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 59. */

 60. public void runClass(String name, String key)

 61. {

 62. try

 63. {

 64. ClassLoader loader = new CryptoClassLoader(Integer.parseInt(key));

 65. Class<?> c = loader.loadClass(name);

 66. Method m = c.getMethod("main", String[].class);

 67. m.invoke(null, (Object) new String[] {});

 68. }

 69. catch (Throwable e)

 70. {

 71. JOptionPane.showMessageDialog(this, e);

 72. }

 73. }

 74.

 75. private JTextField keyField = new JTextField("3", 4);

 76. private JTextField nameField = new JTextField("Calculator", 30);

 77. private static final int DEFAULT_WIDTH = 300;

 78. private static final int DEFAULT_HEIGHT = 200;

 79. }

 80.

 81. /**

 82. * This class loader loads encrypted class files.

 83. */

 84. class CryptoClassLoader extends ClassLoader

 85. {

 86. /**

 87. * Constructs a crypto class loader.

 88. * @param k the decryption key

 89. */

 90. public CryptoClassLoader(int k)

 91. {

 92. key = k;

 93. }

 94.

 95. protected Class<?> findClass(String name) throws ClassNotFoundException

 96. {

 97. byte[] classBytes = null;

 98. try

 99. {

100. classBytes = loadClassBytes(name);

101. }

102. catch (IOException e)

103. {

104. throw new ClassNotFoundException(name);

105. }

106.

107. Class<?> cl = defineClass(name, classBytes, 0, classBytes.length);

108. if (cl == null) throw new ClassNotFoundException(name);

109. return cl;

110. }

111.

112. /**

113. * Loads and decrypt the class file bytes.

114. * @param name the class name

115. * @return an array with the class file bytes

116. */

117. private byte[] loadClassBytes(String name) throws IOException

118. {

119. String cname = name.replace('.', '/') + ".caesar";

120. FileInputStream in = null;

121. in = new FileInputStream(cname);

122. try

123. {

124. ByteArrayOutputStream buffer = new ByteArrayOutputStream();

125. int ch;

126. while ((ch = in.read()) != -1)

127. {

128. byte b = (byte) (ch - key);

129. buffer.write(b);

130. }

131. in.close();

132. return buffer.toByteArray();

133. }

134. finally

135. {

136. in.close();

137. }

138. }

139.

140. private int key;

141. }

Listing 9-2. Caesar.java

Code View:
 1. import java.io.*;

 2.

 3. /**

 4. * Encrypts a file using the Caesar cipher.

 5. * @version 1.00 1997-09-10

 6. * @author Cay Horstmann

 7. */

 8. public class Caesar

 9. {

10. public static void main(String[] args)

11. {

12. if (args.length != 3)

13. {

14. System.out.println("USAGE: java Caesar in out key");

15. return;

16. }

17.

18. try

19. {

20. FileInputStream in = new FileInputStream(args[0]);

21. FileOutputStream out = new FileOutputStream(args[1]);

22. int key = Integer.parseInt(args[2]);

23. int ch;

24. while ((ch = in.read()) != -1)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

25. {

26. byte c = (byte) (ch + key);

27. out.write(c);

28. }

29. in.close();

30. out.close();

31. }

32. catch (IOException exception)

33. {

34. exception.printStackTrace();

35. }

36. }

37. }

java.lang.Class 1.0

ClassLoader getClassLoader()

gets the class loader that loaded this class.

java.lang.ClassLoader 1.0

ClassLoader getParent() 1.2

returns the parent class loader, or null if the parent class loader is the

bootstrap class loader.

static ClassLoader getSystemClassLoader() 1.2

gets the system class loader; that is, the class loader that was used to
load the first application class.

protected Class findClass(String name) 1.2

should be overridden by a class loader to find the bytecodes for a class
and present them to the virtual machine by calling the defineClass

method. In the name of the class, use . as package name separator, and

don't use a .class suffix.

Class defineClass(String name, byte[] byteCodeData, int

offset, int length)

adds a new class to the virtual machine whose bytecodes are provided in
the given data range.

java.net.URLClassLoader 1.2

URLClassLoader(URL[] urls)

URLClassLoader(URL[] urls, ClassLoader parent)

constructs a class loader that loads classes from the given URLs. If a URL
ends in a /, it is assumed to be a directory, otherwise it is assumed to
be a JAR file.

java.lang.Thread 1.0

ClassLoader getContextClassLoader() 1.2

gets the class loader that the creator of this thread has designated as
the most reasonable class loader to use when executing this thread.

void setContextClassLoader(ClassLoader loader) 1.2

sets a class loader for code in this thread to retrieve for loading classes.
If no context class loader is set explicitly when a thread is started, the
parent's context class loader is used.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 9. Security

CLASS LOADERS

BYTECODE VERIFICATION

SECURITY MANAGERS AND PERMISSIONS

USER AUTHENTICATION

DIGITAL SIGNATURES

CODE SIGNING

ENCRYPTION

When Java technology first appeared on the scene, the excitement was not about a well-crafted programming
language but about the possibility of safely executing applets that are delivered over the Internet (see Volume
I, Chapter 10 for more information about applets). Obviously, delivering executable applets is practical only
when the recipients are sure that the code can't wreak havoc on their machines. For this reason, security was
and is a major concern of both the designers and the users of Java technology. This means that unlike other
languages and systems, where security was implemented as an afterthought or a reaction to break-ins, security
mechanisms are an integral part of Java technology.

Three mechanisms help ensure safety:

Language design features (bounds checking on arrays, no unchecked type conversions, no pointer
arithmetic, and so on).

An access control mechanism that controls what the code can do (such as file access, network access, and
so on).

Code signing, whereby code authors can use standard cryptographic algorithms to authenticate Java code.
Then, the users of the code can determine exactly who created the code and whether the code has been
altered after it was signed.

We will first discuss class loaders that check class files for integrity when they are loaded into the virtual
machine. We will demonstrate how that mechanism can detect tampering with class files.

For maximum security, both the default mechanism for loading a class and a custom class loader need to work
with a security manager class that controls what actions code can perform. You'll see in detail how to configure
Java platform security.

Finally, you'll see the cryptographic algorithms supplied in the java.security package, which allow for code

signing and user authentication.

As always, we focus on those topics that are of greatest interest to application programmers. For an in-depth
view, we recommend the book Inside Java 2 Platform Security: Architecture, API Design, and Implementation,
2nd ed., by Li Gong, Gary Ellison, and Mary Dageforde (Prentice Hall PTR 2003).

Class Loaders

A Java compiler converts source instructions for the Java virtual machine. The virtual machine code is stored in
a class file with a .class extension. Each class file contains the definition and implementation code for one class

or interface. These class files must be interpreted by a program that can translate the instruction set of the
virtual machine into the machine language of the target machine.

Note that the virtual machine loads only those class files that are needed for the execution of a program. For
example, suppose program execution starts with MyProgram.class. Here are the steps that the virtual machine

carries out.

1. The virtual machine has a mechanism for loading class files, for example, by reading the files from disk or
by requesting them from the Web; it uses this mechanism to load the contents of the MyProgram class file.

2. If the MyProgram class has fields or superclasses of another class type, their class files are loaded as well.

(The process of loading all the classes that a given class depends on is called resolving the class.)

3. The virtual machine then executes the main method in MyProgram (which is static, so no instance of a

class needs to be created).

4. If the main method or a method that main calls requires additional classes, these are loaded next.

The class loading mechanism doesn't just use a single class loader, however. Every Java program has at least
three class loaders:

The bootstrap class loader

The extension class loader

The system class loader (also sometimes called the application class loader)

The bootstrap class loader loads the system classes (typically, from the JAR file rt.jar). It is an integral part of

the virtual machine and is usually implemented in C. There is no ClassLoader object corresponding to the

bootstrap class loader. For example,

String.class.getClassLoader()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

returns null.

The extension class loader loads "standard extensions" from the jre/lib/ext directory. You can drop JAR files

into that directory, and the extension class loader will find the classes in them, even without any class path.
(Some people recommend this mechanism to avoid the "class path from hell," but see the next cautionary
note.)

The system class loader loads the application classes. It locates classes in the directories and JAR/ZIP files on
the class path, as set by the CLASSPATH environment variable or the -classpath command-line option.

In Sun's Java implementation, the extension and system class loaders are implemented in Java. Both are
instances of the URLClassLoader class.

Caution

You can run into grief if you drop a JAR file into the jre/lib/ext directory and one
of its classes needs to load a class that is not a system or extension class. The
extension class loader does not use the class path. Keep that in mind before you
use the extension directory as a way to manage your class file hassles.

Note

In addition to all the places already mentioned, classes can be loaded from the
jre/lib/endorsed directory. This mechanism can only be used to replace certain

standard Java libraries (such as those for XML and CORBA support) with newer
versions. See
http://java.sun.com/javase/6/docs/technotes/guides/standards/index.html for
details.

The Class Loader Hierarchy

Class loaders have a parent/child relationship. Every class loader except for the bootstrap class loader has a
parent class loader. A class loader is supposed to give its parent a chance to load any given class and only load
it if the parent has failed. For example, when the system class loader is asked to load a system class (say,
java.util.ArrayList), then it first asks the extension class loader. That class loader first asks the bootstrap

class loader. The bootstrap class loader finds and loads the class in rt.jar, and neither of the other class

loaders searches any further.

Some programs have a plugin architecture in which certain parts of the code are packaged as optional plugins.
If the plugins are packaged as JAR files, you can simply load the plugin classes with an instance of
URLClassLoader.

http://java.sun.com/javase/6/docs/technotes/guides/standards/index.html

URL url = new URL("file:///path/to/plugin.jar");

URLClassLoader pluginLoader = new URLClassLoader(new URL[] { url });

Class<?> cl = pluginLoader.loadClass("mypackage.MyClass");

Because no parent was specified in the URLClassLoader constructor, the parent of the pluginLoader is the

system class loader. Figure 9-1 shows the hierarchy.

Figure 9-1. The class loader hierarchy

Most of the time, you don't have to worry about the class loader hierarchy. Generally, classes are loaded
because they are required by other classes, and that process is transparent to you.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Occasionally, you need to intervene and specify a class loader. Consider this example.

Your application code contains a helper method that calls Class.forName(classNameString).

That method is called from a plugin class.

The classNameString specifies a class that is contained in the plugin JAR.

The author of the plugin has the reasonable expectation that the class should be loaded. However, the helper
method's class was loaded by the system class loader, and that is the class loader used by Class.forName. The
classes in the plugin JAR are not visible. This phenomenon is called classloader inversion.

To overcome this problem, the helper method needs to use the correct class loader. It can require the class
loader as a parameter. Alternatively, it can require that the correct class loader is set as the context class loader
of the current thread. This strategy is used by many frameworks (such as the JAXP and JNDI frameworks that
we discussed in Chapters 2 and 4).

Each thread has a reference to a class loader, called the context class loader. The main thread's context class
loader is the system class loader. When a new thread is created, its context class loader is set to the creating
thread's context class loader. Thus, if you don't do anything, then all threads have their context class loader set
to the system class loader.

However, you can set any class loader by calling

Thread t = Thread.currentThread();

t.setContextClassLoader(loader);

The helper method can then retrieve the context class loader:

Thread t = Thread.currentThread();

ClassLoader loader = t.getContextClassLoader();
Class cl = loader.loadClass(className);

The question remains when the context class loader is set to the plugin class loader. The application designer
must make this decision. Generally, it is a good idea to set the context class loader when invoking a method of
a plugin class that was loaded with a different class loader. Alternatively, the caller of the helper method can set
the context class loader.

Tip

If you write a method that loads a class by name, it is a good idea to offer the caller
the choice between passing an explicit class loader and using the context class
loader. Don't simply use the class loader of the method's class.

Using Class Loaders as Namespaces

Every Java programmer knows that package names are used to eliminate name conflicts. There are two classes
called Date in the standard library, but of course their real names are java.util.Date and java.sql.Date. The

simple name is only a programmer convenience and requires the inclusion of appropriate import statements. In

a running program, all class names contain their package name.

It might surprise you, however, that you can have two classes in the same virtual machine that have the same
class and package name. A class is determined by its full name and the class loader. This technique is useful for
loading code from multiple sources. For example, a browser uses separate instances of the applet class loader
class for each web page. This allows the virtual machine to separate classes from different web pages, no
matter what they are named. Figure 9-2 shows an example. Suppose a web page contains two applets,
provided by different advertisers, and each applet has a class called Banner. Because each applet is loaded by a

separate class loader, these classes are entirely distinct and do not conflict with each other.

Figure 9-2. Two class loaders load different classes with the same name

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

This technique has other uses as well, such as "hot deployment" of servlets and
Enterprise JavaBeans. See
http://java.sun.com/developer/TechTips/2000/tt1027.html for more information.

Writing Your Own Class Loader

You can write your own class loader for specialized purposes. That lets you carry out custom checks before you
pass the bytecodes to the virtual machine. For example, you can write a class loader that can refuse to load a
class that has not been marked as "paid for."

To write your own class loader, you simply extend the ClassLoader class and override the method.

findClass(String className)

The loadClass method of the ClassLoader superclass takes care of the delegation to the parent and calls
findClass only if the class hasn't already been loaded and if the parent class loader was unable to load the

class.

Your implementation of this method must do the following:

1. Load the bytecodes for the class from the local file system or from some other source.

2. Call the defineClass method of the ClassLoader superclass to present the bytecodes to the virtual

machine.

In the program of Listing 9-1, we implement a class loader that loads encrypted class files. The program asks
the user for the name of the first class to load (that is, the class containing main) and the decryption key. It

then uses a special class loader to load the specified class and calls the main method. The class loader decrypts
the specified class and all nonsystem classes that are referenced by it. Finally, the program calls the main

method of the loaded class (see Figure 9-3).

Figure 9-3. The ClassLoaderTest program

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/developer/TechTips/2000/tt1027.html

For simplicity, we ignore 2,000 years of progress in the field of cryptography and use the venerable Caesar
cipher for encrypting the class files.

Note

David Kahn's wonderful book The Codebreakers (Macmillan, 1967, p. 84) refers to
Suetonius as a historical source for the Caesar cipher. Caesar shifted the 24 letters
of the Roman alphabet by 3 letters, which at the time baffled his adversaries.

When this chapter was first written, the U.S. government restricted the export of
strong encryption methods. Therefore, we used Caesar's method for our example
because it was clearly legal for export.

Our version of the Caesar cipher has as a key a number between 1 and 255. To decrypt, simply add that key to
every byte and reduce modulo 256. The Caesar.java program of Listing 9-2 carries out the encryption.

So that we do not confuse the regular class loader, we use a different extension, .caesar, for the encrypted

class files.

To decrypt, the class loader simply subtracts the key from every byte. In the companion code for this book, you
will find four class files, encrypted with a key value of 3—the traditional choice. To run the encrypted program,
you need the custom class loader defined in our ClassLoaderTest program.

Encrypting class files has a number of practical uses (provided, of course, that you use a cipher stronger than
the Caesar cipher). Without the decryption key, the class files are useless. They can neither be executed by a
standard virtual machine nor readily disassembled.

This means that you can use a custom class loader to authenticate the user of the class or to ensure that a
program has been paid for before it will be allowed to run. Of course, encryption is only one application of a
custom class loader. You can use other types of class loaders to solve other problems, for example, storing class
files in a database.

Listing 9-1. ClassLoaderTest.java

Code View:
 1. import java.io.*;

 2. import java.lang.reflect.*;

 3. import java.awt.*;

 4. import java.awt.event.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program demonstrates a custom class loader that decrypts class files.

 9. * @version 1.22 2007-10-05

 10. * @author Cay Horstmann

 11. */

 12. public class ClassLoaderTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20.

 21. JFrame frame = new ClassLoaderFrame();

 22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 23. frame.setVisible(true);

 24. }

 25. });

 26. }

 27. }

 28.

 29. /**

 30. * This frame contains two text fields for the name of the class to load and the decryption key.

 31. */

 32. class ClassLoaderFrame extends JFrame

 33. {

 34. public ClassLoaderFrame()

 35. {

 36. setTitle("ClassLoaderTest");

 37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 38. setLayout(new GridBagLayout());

 39. add(new JLabel("Class"), new GBC(0, 0).setAnchor(GBC.EAST));

 40. add(nameField, new GBC(1, 0).setWeight(100, 0).setAnchor(GBC.WEST));

 41. add(new JLabel("Key"), new GBC(0, 1).setAnchor(GBC.EAST));

 42. add(keyField, new GBC(1, 1).setWeight(100, 0).setAnchor(GBC.WEST));

 43. JButton loadButton = new JButton("Load");

 44. add(loadButton, new GBC(0, 2, 2, 1));

 45. loadButton.addActionListener(new ActionListener()

 46. {

 47. public void actionPerformed(ActionEvent event)

 48. {

 49. runClass(nameField.getText(), keyField.getText());

 50. }

 51. });

 52. pack();

 53. }

 54.

 55. /**

 56. * Runs the main method of a given class.

 57. * @param name the class name

 58. * @param key the decryption key for the class files

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 59. */

 60. public void runClass(String name, String key)

 61. {

 62. try

 63. {

 64. ClassLoader loader = new CryptoClassLoader(Integer.parseInt(key));

 65. Class<?> c = loader.loadClass(name);

 66. Method m = c.getMethod("main", String[].class);

 67. m.invoke(null, (Object) new String[] {});

 68. }

 69. catch (Throwable e)

 70. {

 71. JOptionPane.showMessageDialog(this, e);

 72. }

 73. }

 74.

 75. private JTextField keyField = new JTextField("3", 4);

 76. private JTextField nameField = new JTextField("Calculator", 30);

 77. private static final int DEFAULT_WIDTH = 300;

 78. private static final int DEFAULT_HEIGHT = 200;

 79. }

 80.

 81. /**

 82. * This class loader loads encrypted class files.

 83. */

 84. class CryptoClassLoader extends ClassLoader

 85. {

 86. /**

 87. * Constructs a crypto class loader.

 88. * @param k the decryption key

 89. */

 90. public CryptoClassLoader(int k)

 91. {

 92. key = k;

 93. }

 94.

 95. protected Class<?> findClass(String name) throws ClassNotFoundException

 96. {

 97. byte[] classBytes = null;

 98. try

 99. {

100. classBytes = loadClassBytes(name);

101. }

102. catch (IOException e)

103. {

104. throw new ClassNotFoundException(name);

105. }

106.

107. Class<?> cl = defineClass(name, classBytes, 0, classBytes.length);

108. if (cl == null) throw new ClassNotFoundException(name);

109. return cl;

110. }

111.

112. /**

113. * Loads and decrypt the class file bytes.

114. * @param name the class name

115. * @return an array with the class file bytes

116. */

117. private byte[] loadClassBytes(String name) throws IOException

118. {

119. String cname = name.replace('.', '/') + ".caesar";

120. FileInputStream in = null;

121. in = new FileInputStream(cname);

122. try

123. {

124. ByteArrayOutputStream buffer = new ByteArrayOutputStream();

125. int ch;

126. while ((ch = in.read()) != -1)

127. {

128. byte b = (byte) (ch - key);

129. buffer.write(b);

130. }

131. in.close();

132. return buffer.toByteArray();

133. }

134. finally

135. {

136. in.close();

137. }

138. }

139.

140. private int key;

141. }

Listing 9-2. Caesar.java

Code View:
 1. import java.io.*;

 2.

 3. /**

 4. * Encrypts a file using the Caesar cipher.

 5. * @version 1.00 1997-09-10

 6. * @author Cay Horstmann

 7. */

 8. public class Caesar

 9. {

10. public static void main(String[] args)

11. {

12. if (args.length != 3)

13. {

14. System.out.println("USAGE: java Caesar in out key");

15. return;

16. }

17.

18. try

19. {

20. FileInputStream in = new FileInputStream(args[0]);

21. FileOutputStream out = new FileOutputStream(args[1]);

22. int key = Integer.parseInt(args[2]);

23. int ch;

24. while ((ch = in.read()) != -1)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

25. {

26. byte c = (byte) (ch + key);

27. out.write(c);

28. }

29. in.close();

30. out.close();

31. }

32. catch (IOException exception)

33. {

34. exception.printStackTrace();

35. }

36. }

37. }

java.lang.Class 1.0

ClassLoader getClassLoader()

gets the class loader that loaded this class.

java.lang.ClassLoader 1.0

ClassLoader getParent() 1.2

returns the parent class loader, or null if the parent class loader is the

bootstrap class loader.

static ClassLoader getSystemClassLoader() 1.2

gets the system class loader; that is, the class loader that was used to
load the first application class.

protected Class findClass(String name) 1.2

should be overridden by a class loader to find the bytecodes for a class
and present them to the virtual machine by calling the defineClass

method. In the name of the class, use . as package name separator, and

don't use a .class suffix.

Class defineClass(String name, byte[] byteCodeData, int

offset, int length)

adds a new class to the virtual machine whose bytecodes are provided in
the given data range.

java.net.URLClassLoader 1.2

URLClassLoader(URL[] urls)

URLClassLoader(URL[] urls, ClassLoader parent)

constructs a class loader that loads classes from the given URLs. If a URL
ends in a /, it is assumed to be a directory, otherwise it is assumed to
be a JAR file.

java.lang.Thread 1.0

ClassLoader getContextClassLoader() 1.2

gets the class loader that the creator of this thread has designated as
the most reasonable class loader to use when executing this thread.

void setContextClassLoader(ClassLoader loader) 1.2

sets a class loader for code in this thread to retrieve for loading classes.
If no context class loader is set explicitly when a thread is started, the
parent's context class loader is used.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Bytecode Verification

When a class loader presents the bytecodes of a newly loaded Java platform class to the virtual machine, these
bytecodes are first inspected by a verifier. The verifier checks that the instructions cannot perform actions that
are obviously damaging. All classes except for system classes are verified. You can, however, deactivate
verification with the undocumented -noverify option.

For example,

java -noverify Hello

Here are some of the checks that the verifier carries out:

Variables are initialized before they are used.

Method calls match the types of object references.

Rules for accessing private data and methods are not violated.

Local variable accesses fall within the runtime stack.

The runtime stack does not overflow.

If any of these checks fails, then the class is considered corrupted and will not be loaded.

Note

If you are familiar with Gödel's theorem, you might wonder how the verifier can
prove that a class file is free from type mismatches, uninitialized variables, and
stack overflows. Gödel's theorem states that it is impossible to design algorithms
that process program files and decide whether the input programs have a particular
property (such as being free from stack overflows). Is this a conflict between the
public relations department at Sun Microsystems and the laws of logic? No—in fact,
the verifier is not a decision algorithm in the sense of Gödel. If the verifier accepts a
program, it is indeed safe. However, the verifier might reject virtual machine
instructions even though they would actually be safe. (You might have run into this
issue when you were forced to initialize a variable with a dummy value because the
compiler couldn't tell that it was going to be properly initialized.)

This strict verification is an important security consideration. Accidental errors, such as uninitialized variables,
can easily wreak havoc if they are not caught. More important, in the wide open world of the Internet, you must

be protected against malicious programmers who create evil effects on purpose. For example, by modifying
values on the runtime stack or by writing to the private data fields of system objects, a program can break
through the security system of a browser.

You might wonder, however, why a special verifier checks all these features. After all, the compiler would never
allow you to generate a class file in which an uninitialized variable is used or in which a private data field is
accessed from another class. Indeed, a class file generated by a compiler for the Java programming language
always passes verification. However, the bytecode format used in the class files is well documented, and it is an
easy matter for someone with some experience in assembly programming and a hex editor to manually produce
a class file that contains valid but unsafe instructions for the Java virtual machine. Once again, keep in mind
that the verifier is always guarding against maliciously altered class files, not just checking the class files
produced by a compiler.

Here's an example of how to construct such an altered class file. We start with the program VerifierTest.java

of Listing 9-3. This is a simple program that calls a method and displays the method result. The program can be
run both as a console program and as an applet. The fun method itself just computes 1 + 2.

static int fun()

{

 int m;

 int n;
 m = 1;

 n = 2;

 int r = m + n;

 return r;

}

As an experiment, try to compile the following modification of this program:

static int fun()

{

 int m = 1;

 int n;

 m = 1;

 m = 2;

 int r = m + n;

 return r;

}

In this case, n is not initialized, and it could have any random value. Of course, the compiler detects that

problem and refuses to compile the program. To create a bad class file, we have to work a little harder. First,
run the javap program to find out how the compiler translates the fun method. The command

javap -c VerifierTest

shows the bytecodes in the class file in mnemonic form.

Method int fun()

 0 iconst_1

 1 istore_0

 2 iconst_2

 3 istore_1

 4 iload_0

 5 iload_1

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 6 iadd

 7 istore_2

 8 iload_2
 9 ireturn

We use a hex editor to change instruction 3 from istore_1 to istore_0. That is, local variable 0 (which is m) is

initialized twice, and local variable 1 (which is n) is not initialized at all. We need to know the hexadecimal

values for these instructions. These values are readily available from The Java Virtual Machine Specification, 2nd
ed., by Tim Lindholm and Frank Yellin (Prentice Hall PTR 1999).

 0 iconst_1 04

 1 istore_0 3B

 2 iconst_2 05

 3 istore_1 3C

 4 iload_0 1A

 5 iload_1 1B

 6 iadd 60

 7 istore_2 3D
 8 iload_2 1C

 9 ireturn AC

You can use any hex editor to carry out the modification. In Figure 9-4, you see the class file
VerifierTest.class loaded into the Gnome hex editor, with the bytecodes of the fun method highlighted.

Figure 9-4. Modifying bytecodes with a hex editor

[View full size image]

Change 3C to 3B and save the class file. Then try running the VerifierTest program. You get an error

message:

Code View:
Exception in thread "main" java.lang.VerifyError: (class: VerifierTest, method:fun signature:

()I) Accessing value from uninitialized register 1

That is good—the virtual machine detected our modification.

Now run the program with the -noverify (or -Xverify:none) option.

java -noverify VerifierTest

The fun method returns a seemingly random value. This is actually 2 plus the value that happened to be stored

in the variable n, which never was initialized. Here is a typical printout:

1 + 2 == 15102330

To see how browsers handle verification, we wrote this program to run either as an application or an applet.
Load the applet into a browser, using a file URL such as

file:///C:/CoreJavaBook/v2ch9/VerifierTest/VerifierTest.html

You then see an error message displayed indicating that verification has failed (see Figure 9-5).

Figure 9-5. Loading a corrupted class file raises a method verification error

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 9-3. VerifierTest.java

Code View:
 1. import java.applet.*;

 2. import java.awt.*;

 3.

 4. /**

 5. * This application demonstrates the bytecode verifier of the virtual machine. If you use a

 6. * hex editor to modify the class file, then the virtual machine should detect the tampering.

 7. * @version 1.00 1997-09-10

 8. * @author Cay Horstmann

 9. */

10. public class VerifierTest extends Applet

11. {

12. public static void main(String[] args)

13. {

14. System.out.println("1 + 2 == " + fun());

15. }

16.

17. /**

18. * A function that computes 1 + 2

19. * @return 3, if the code has not been corrupted

20. */

21. public static int fun()

22. {

23. int m;

24. int n;

25. m = 1;

26. n = 2;

27. // use hex editor to change to "m = 2" in class file

28. int r = m + n;

29. return r;

30. }

31.

32. public void paint(Graphics g)

33. {

34. g.drawString("1 + 2 == " + fun(), 20, 20);

35. }

36. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Security Managers and Permissions

Once a class has been loaded into the virtual machine and checked by the verifier, the second security mechanism of the
Java platform springs into action: the security manager. The security manager is a class that controls whether a specific
operation is permitted. Operations checked by the security manager include the following:

Creating a new class loader

Exiting the virtual machine

Accessing a field of another class by using reflection

Accessing a file

Opening a socket connection

Starting a print job

Accessing the system clipboard

Accessing the AWT event queue

Bringing up a top-level window

There are many other checks such as these throughout the Java library.

The default behavior when running Java applications is that no security manager is installed, so all these operations are
permitted. The applet viewer, on the other hand, enforces a security policy that is quite restrictive.

For example, applets are not allowed to exit the virtual machine. If they try calling the exit method, then a security
exception is thrown. Here is what happens in detail. The exit method of the Runtime class calls the checkExit method of

the security manager. Here is the entire code of the exit method:

public void exit(int status)

{

 SecurityManager security = System.getSecurityManager();

 if (security != null)

 security.checkExit(status);

 exitInternal(status);

}

The security manager now checks if the exit request came from the browser or an individual applet. If the security
manager agrees with the exit request, then the checkExit method simply returns and normal processing continues.

However, if the security manager doesn't want to grant the request, the checkExit method throws a SecurityException

.

The exit method continues only if no exception occurred. It then calls the private native exitInternal method that

actually terminates the virtual machine. There is no other way of terminating the virtual machine, and because the
exitInternal method is private, it cannot be called from any other class. Thus, any code that attempts to exit the virtual

machine must go through the exit method and thus through the checkExit security check without triggering a security

exception.

Clearly, the integrity of the security policy depends on careful coding. The providers of system services in the standard
library must always consult the security manager before attempting any sensitive operation.

The security manager of the Java platform allows both programmers and system administrators fine-grained control over
individual security permissions. We describe these features in the following section. First, we summarize the Java 2
platform security model. We then show how you can control permissions with policy files. Finally, we explain how you can
define your own permission types.

Note

It is possible to implement and install your own security manager, but you should not
attempt this unless you are an expert in computer security. It is much safer to configure the
standard security manager.

Java Platform Security

JDK 1.0 had a very simple security model: Local classes had full permissions, and remote classes were confined to the
sandbox. Just like a child that can only play in a sandbox, remote code was only allowed to paint on the screen and
interact with the user. The applet security manager denied all access to local resources. JDK 1.1 implemented a slight
modification: Remote code that was signed by a trusted entity was granted the same permissions as local classes.
However, both versions of the JDK provided an all-or-nothing approach. Programs either had full access or they had to
play in the sandbox.

Starting with Java SE 1.2, the Java platform has a much more flexible mechanism. A security policy maps code sources to
permission sets (see Figure 9-6).

Figure 9-6. A security policy

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

A code source is specified by a code base and a set of certificates . The code base specifies the origin of the code. For
example, the code base of remote applet code is the HTTP URL from which the applet is loaded. The code base of code in
a JAR file is a file URL. A certificate, if present, is an assurance by some party that the code has not been tampered with.
We cover certificates later in this chapter.

A permission is any property that is checked by a security manager. The Java platform supports a number of permission
classes, each of which encapsulates the details of a particular permission. For example, the following instance of the
FilePermission class states that it is okay to read and write any file in the /tmp directory.

FilePermission p = new FilePermission("/tmp/*", "read,write");

More important, the default implementation of the Policy class reads permissions from a permission file. Inside a

permission file, the same read permission is expressed as

permission java.io.FilePermission "/tmp/*", "read,write";

We discuss permission files in the next section.

Figure 9-7 shows the hierarchy of the permission classes that were supplied with Java SE 1.2. Many more permission
classes have been added in subsequent Java releases.

Figure 9-7. A part of the hierarchy of permission classes

[View full size image]

In the preceding section, you saw that the SecurityManager class has security check methods such as checkExit . These

methods exist only for the convenience of the programmer and for backward compatibility. They all map into standard
permission checks. For example, here is the source code for the checkExit method:

public void checkExit()

{

 checkPermission(new RuntimePermission("exitVM"));

}

Each class has a protection domain, an object that encapsulates both the code source and the collection of permissions of
the class. When the SecurityManager needs to check a permission, it looks at the classes of all methods currently on the

call stack. It then gets the protection domains of all classes and asks each protection domain if its permission collection
allows the operation that is currently being checked. If all domains agree, then the check passes. Otherwise, a
SecurityException is thrown.

Why do all methods on the call stack need to allow a particular operation? Let us work through an example. Suppose the
init method of an applet wants to open a file. It might call

Reader in = new FileReader(name);

The FileReader constructor calls the FileInputStream constructor, which calls the checkRead method of the security

manager, which finally calls checkPermission with a FilePermission(name, "read" object. Table 9-1 shows the call

stack.

Table 9-1. Call Stack During Permission Checking

Class Method Code Source Permissions

SecurityManager checkPermission null AllPermission

SecurityManager checkRead null AllPermission

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Class Method Code Source Permissions

FileInputStream constructor null AllPermission

FileReader constructor null AllPermission

applet init applet code source applet permissions

. . .

The FileInputStream and SecurityManager classes are system classes for which CodeSource is null and permissions

consist of an instance of the AllPermission class, which allows all operations. Clearly, their permissions alone can't

determine the outcome of the check. As you can see, the checkPermission method must take into account the restricted

permissions of the applet class. By checking the entire call stack, the security mechanism ensures that one class can never
ask another class to carry out a sensitive operation on its behalf.

Note

This brief discussion of permission checking explains the basic concepts. However, we omit a
number of technical details here. With security, the devil lies in the details, and we encourage
you to read the book by Li Gong for more information. For a more critical view of the Java
platform security model, see the book Securing Java: Getting Down to Business with Mobile
Code , 2nd ed., by Gary McGraw and Ed W. Felten (Wiley 1999). You can find an online
version of that book at http://www.securingjava.com .

java.lang.SecurityManager 1.0

void checkPermission(Permission p) 1.2

checks whether this security manager grants the given permission. The method
throws a SecurityException if the permission is not granted.

java.lang.Class 1.0

ProtectionDomain getProtectionDomain() 1.2

gets the protection domain for this class, or null if this class was loaded without

a protection domain.

FileInputStream constructor null AllPermission

FileReader constructor null AllPermission

applet init applet code source applet permissions

. . .

The FileInputStream and SecurityManager classes are system classes for which CodeSource is null and permissions

consist of an instance of the AllPermission class, which allows all operations. Clearly, their permissions alone can't

determine the outcome of the check. As you can see, the checkPermission method must take into account the restricted

permissions of the applet class. By checking the entire call stack, the security mechanism ensures that one class can never
ask another class to carry out a sensitive operation on its behalf.

Note

This brief discussion of permission checking explains the basic concepts. However, we omit a
number of technical details here. With security, the devil lies in the details, and we encourage
you to read the book by Li Gong for more information. For a more critical view of the Java
platform security model, see the book Securing Java: Getting Down to Business with Mobile
Code , 2nd ed., by Gary McGraw and Ed W. Felten (Wiley 1999). You can find an online
version of that book at http://www.securingjava.com .

java.lang.SecurityManager 1.0

void checkPermission(Permission p) 1.2

checks whether this security manager grants the given permission. The method
throws a SecurityException if the permission is not granted.

java.lang.Class 1.0

ProtectionDomain getProtectionDomain() 1.2

gets the protection domain for this class, or null if this class was loaded without

a protection domain.

java.security.ProtectionDomain 1.2

ProtectionDomain(CodeSource source, PermissionCollection

permissions)

constructs a protection domain with the given code source and permissions.

CodeSource getCodeSource()

gets the code source of this protection domain.

boolean implies(Permission p)

returns true if the given permission is allowed by this protection domain.

java.security.CodeSource 1.2

Certificate[] getCertificates()

gets the certificate chain for class file signatures associated with this code
source.

URL getLocation()

gets the code base of class files associated with this code source.

Security Policy Files

The policy manager reads policy files that contain instructions for mapping code sources to permissions. Here is a typical
policy file:

grant codeBase "http://www.horstmann.com/classes"

{

 permission java.io.FilePermission "/tmp/*", "read,write";

};

This file grants permission to read and write files in the /tmp directory to all code that was downloaded from

http://www.horstmann.com/classes .

You can install policy files in standard locations. By default, there are two locations:

The file java.policy in the Java platform home directory

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.horstmann.com/classes

The file .java.policy (notice the period at the beginning of the file name) in the user home directory

Note

You can change the locations of these files in the java.security configuration file in the jre

/lib/security . The defaults are specified as

policy.url.1=file:${java.home}/lib/security/java.policy

policy.url.2=file:${user.home}/.java.policy

A system administrator can modify the java.security file and specify policy URLs that

reside on another server and that cannot be edited by users. There can be any number of
policy URLs (with consecutive numbers) in the policy file. The permissions of all files are
combined.

If you want to store policies outside the file system, you can implement a subclass of the
Policy class that gathers the permissions. Then change the line

policy.provider=sun.security.provider.PolicyFile

in the java.security configuration file.

During testing, we don't like to constantly modify the standard policy files. Therefore, we prefer to explicitly name the
policy file that is required for each application. Place the permissions into a separate file, say, MyApp.policy . To apply the

policy, you have two choices. You can set a system property inside your applications' main method:

System.setProperty("java.security.policy", "MyApp.policy");

Alternatively, you can start the virtual machine as

java -Djava.security.policy=MyApp.policy MyApp

For applets, you instead use

appletviewer -J-Djava.security.policy=MyApplet.policy MyApplet.html

(You can use the -J option of the appletviewer to pass any command-line argument to the virtual machine.)

In these examples, the MyApp.policy file is added to the other policies in effect. If you add a second equal sign, such as

java -Djava.security.policy==MyApp.policy MyApp

then your application uses only the specified policy file, and the standard policy files are ignored.

Caution

An easy mistake during testing is to accidentally leave a .java.policy file that grants a lot

of permissions, perhaps even AllPermission , in the current directory. If you find that your

application doesn't seem to pay attention to the restrictions in your policy file, check for a
left-behind .java.policy file in your current directory. If you use a UNIX system, this is a

particularly easy mistake to make because files with names that start with a period are not
displayed by default.

As you saw previously, Java applications by default do not install a security manager. Therefore, you won't see the effect
of policy files until you install one. You can, of course, add a line

System.setSecurityManager(new SecurityManager());

into your main method. Or you can add the command-line option -Djava.security.manager when starting the virtual

machine.

java -Djava.security.manager -Djava.security.policy=MyApp.policy MyApp

In the remainder of this section, we show you in detail how to describe permissions in the policy file. We describe the
entire policy file format, except for code certificates, which we cover later in this chapter.

A policy file contains a sequence of grant entries. Each entry has the following form:

grant codesource

{

 permission1;

 permission2;

 . . .

};

The code source contains a code base (which can be omitted if the entry applies to code from all sources) and the names
of trusted principals and certificate signers (which can be omitted if signatures are not required for this entry).

The code base is specified as

codeBase "url"

If the URL ends in a / , then it refers to a directory. Otherwise, it is taken to be the name of a JAR file. For example,

grant codeBase "www.horstmann.com/classes/" { . . . };

grant codeBase "www.horstmann.com/classes/MyApp.jar" { . . . };

The code base is a URL and should always contain forward slashes as file separators, even for file URLs in Windows. For

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

example,

grant codeBase "file:C:/myapps/classes/" { . . . };

Note

Everyone knows that http URLs start with two slashes (http://). But there seems sufficient

confusion about file URLs that the policy file reader accepts two forms of file URLs, namely,

file:// localFile and file: localFile . Furthermore, a slash before a Windows drive letter is

optional. That is, all of the following are acceptable:

file:C:/dir/filename.ext
file:/C:/dir/filename.ext

file://C:/dir/filename.ext

file:///C:/dir/filename.ext

Actually, in our tests, the file:////C:/dir/filename.ext is acceptable as well, and we

have no explanation for that.

The permissions have the following structure:

permission className targetName, actionList;

The class name is the fully qualified class name of the permission class (such as java.io.FilePermission). The target

name is a permission-specific value, for example, a file or directory name for the file permission, or a host and port for a
socket permission. The actionList is also permission specific. It is a list of actions, such as read or connect , separated by

commas. Some permission classes don't need target names and action lists. Table 9-2 lists the commonly used permission
classes and their actions.

Table 9-2. Permissions and Their Associated Targets and Actions

Permission Target Action

java.io.FilePermission file target (see text) read, write, execute, delete

java.net.SocketPermission socket target (see text) accept, connect, listen, resolve

java.util.PropertyPermission property target (see text) read , write

java.lang.RuntimePermission Code View:
createClassLoader

getClassLoader

setContextClassLoader

enableContextClassLoaderOverride

createSecurityManager

setSecurityManager

(none)

http://

Permission Target Action setSecurityManager

exitVM

getenv.variableName

shutdownHooks

setFactory

setIO

modifyThread

stopThread

modifyThreadGroup

getProtectionDomain

readFileDescriptor

writeFileDescriptor

loadLibrary.libraryName

accessClassInPackage.packageName

defineClassInPackage.packageName

accessDeclaredMembers.className

queuePrintJob

getStackTrace
setDefaultUncaughtExceptionHandler

preferences

usePolicy

java.awt.AWTPermission showWindowWithoutWarningBanner

accessClipboard

accessEventQueue

createRobot

fullScreenExclusive

listenToAllAWTEvents

readDisplayPixels
replaceKeyboardFocusManager

watchMousePointer

setWindowAlwaysOnTop

setAppletStub

(none)

java.net.NetPermission setDefaultAuthenticator
specifyStreamHandler

requestPasswordAuthentication

setProxySelector

getProxySelector

setCookieHandler

getCookieHandler

setResponseCache

getResponseCache

(none)

java.lang.reflect.ReflectPermission suppressAccessChecks (none)

java.io.SerializablePermission enableSubclassImplementation

enableSubstitution

(none)

setSecurityManager

exitVM

getenv.variableName

shutdownHooks

setFactory

setIO

modifyThread

stopThread

modifyThreadGroup

getProtectionDomain

readFileDescriptor

writeFileDescriptor

loadLibrary.libraryName

accessClassInPackage.packageName

defineClassInPackage.packageName

accessDeclaredMembers.className

queuePrintJob

getStackTrace
setDefaultUncaughtExceptionHandler

preferences

usePolicy

java.awt.AWTPermission showWindowWithoutWarningBanner

accessClipboard

accessEventQueue

createRobot

fullScreenExclusive

listenToAllAWTEvents

readDisplayPixels
replaceKeyboardFocusManager

watchMousePointer

setWindowAlwaysOnTop

setAppletStub

(none)

java.net.NetPermission setDefaultAuthenticator
specifyStreamHandler

requestPasswordAuthentication

setProxySelector

getProxySelector

setCookieHandler

getCookieHandler

setResponseCache

getResponseCache

(none)

java.lang.reflect.ReflectPermission suppressAccessChecks (none)

java.io.SerializablePermission enableSubclassImplementation

enableSubstitution

(none)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Permission Target Action

java.security.SecurityPermission createAccessControlContext

getDomainCombiner
getPolicy

setPolicy

getProperty.keyName

setProperty.keyName

insertProvider.providerName

removeProvider.providerName

setSystemScope

setIdentityPublicKey

setIdentityInfo

addIdentityCertificate
removeIdentityCertificate

printIdentity

clearProviderProperties.providerName

putProviderProperty.providerName

removeProviderProperty.providerName

getSignerPrivateKey

setSignerKeyPair

(none)

java.security.AllPermission (none) (none)

javax.audio.AudioPermission play

record

(none)

javax.security.auth.AuthPermission doAs

doAsPrivileged
getSubject

getSubjectFromDomainCombiner

setReadOnly

modifyPrincipals

modifyPublicCredentials

modifyPrivateCredentials

refreshCredential
destroyCredential

createLoginContext.contextName

getLoginConfiguration

setLoginConfiguration

refreshLoginConfiguration

(none)

java.util.logging.LoggingPermission control (none)

java.sql.SQLPermission setLog (none)

As you can see from Table 9-2 , most permissions simply permit a particular operation. You can think of the operation as
the target with an implied action "permit" . These permission classes all extend the BasicPermission class (see Figure

java.security.SecurityPermission createAccessControlContext

getDomainCombiner
getPolicy

setPolicy

getProperty.keyName

setProperty.keyName

insertProvider.providerName

removeProvider.providerName

setSystemScope

setIdentityPublicKey

setIdentityInfo

addIdentityCertificate
removeIdentityCertificate

printIdentity

clearProviderProperties.providerName

putProviderProperty.providerName

removeProviderProperty.providerName

getSignerPrivateKey

setSignerKeyPair

(none)

java.security.AllPermission (none) (none)

javax.audio.AudioPermission play

record

(none)

javax.security.auth.AuthPermission doAs

doAsPrivileged
getSubject

getSubjectFromDomainCombiner

setReadOnly

modifyPrincipals

modifyPublicCredentials

modifyPrivateCredentials

refreshCredential
destroyCredential

createLoginContext.contextName

getLoginConfiguration

setLoginConfiguration

refreshLoginConfiguration

(none)

java.util.logging.LoggingPermission control (none)

java.sql.SQLPermission setLog (none)

As you can see from Table 9-2 , most permissions simply permit a particular operation. You can think of the operation as
the target with an implied action "permit" . These permission classes all extend the BasicPermission class (see Figure

9-7 on page 774). However, the targets for the file, socket, and property permissions are more complex, and we need to
investigate them in detail.

File permission targets can have the following form:

file a file

directory / a directory

directory /* all files in the directory

* all files in the current directory

directory /- all files in the directory or one of its subdirectories

- all files in the current directory or one of its subdirectories

<<ALL FILES>> all files in the file system

For example, the following permission entry gives access to all files in the directory /myapp and any of its subdirectories.

permission java.io.FilePermission "/myapp/-", "read,write,delete";

You must use the \\ escape sequence to denote a backslash in a Windows file name.

permission java.io.FilePermission "c:\\myapp\\-", "read,write,delete";

Socket permission targets consist of a host and a port range. Host specifications have the following form:

hostname or IPaddress a single host

localhost or the empty string the local host

*. domainSuffix any host whose domain ends with the given suffix

* all hosts

Port ranges are optional and have the form:

: n a single port

: n - all ports numbered n and above

:- n all ports numbered n and below

: n 1- n 2 all ports in the given range

Here is an example:

Code View:
permission java.net.SocketPermission "*.horstmann.com:8000-8999", "connect";

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Finally, property permission targets can have one of two forms:

property a specific property

propertyPrefix .* all properties with the given prefix

Examples are "java.home" and "java.vm.*" .

For example, the following permission entry allows a program to read all properties that start with java.vm .

permission java.util.PropertyPermission "java.vm.*", "read";

You can use system properties in policy files. The token ${ property } is replaced by the property value. For example,

${user.home} is replaced by the home directory of the user. Here is a typical use of this system property in a permission

entry.

permission java.io.FilePermission "${user.home}", "read,write";

To create platform-independent policy files, it is a good idea to use the file.separator property instead of explicit / or

\\ separators. To make this simpler, the special notation ${/} is a shortcut for ${file.separator} . For example,

permission java.io.FilePermission "${user.home}${/}-", "read,write";

is a portable entry for granting permission to read and write in the user's home directory and any of its subdirectories.

Note

The JDK comes with a rudimentary tool, called policytool , that you can use to edit policy

files (see Figure 9-8). Of course, this tool is not suitable for end users who would be
completely mystified by most of the settings. We view it as a proof of concept for an
administration tool that might be used by system administrators who prefer point-and-click
over syntax. Still, what's missing is a sensible set of categories (such as low, medium, or
high security) that is meaningful to nonexperts. As a general observation, we believe that the
Java platform certainly contains all the pieces for a fine-grained security model but that it
could benefit from some polish in delivering these pieces to end users and system
administrators.

Figure 9-8. The policy tool

[View full size image]

Custom Permissions

In this section, you see how you can supply your own permission class that users can refer to in their policy files.

To implement your permission class, you extend the Permission class and supply the following methods:

A constructor with two String parameters, for the target and the action list

String getActions()

boolean equals()

int hashCode()

boolean implies(Permission other)

The last method is the most important. Permissions have an ordering, in which more general permissions imply more
specific ones. Consider the file permission

p1 = new FilePermission("/tmp/-", "read, write");

This permission allows reading and writing of any file in the /tmp directory and any of its subdirectories.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

This permission implies other, more specific permissions:

p2 = new FilePermission("/tmp/-", "read");

p3 = new FilePermission("/tmp/aFile", "read, write");

p4 = new FilePermission("/tmp/aDirectory/-", "write");

In other words, a file permission p1 implies another file permission p2 if

The target file set of p1 contains the target file set of p2 .1.

The action set of p1 contains the action set of p2 .2.

Consider the following example of the use of the implies method. When the FileInputStream constructor wants to open

a file for reading, it checks whether it has permission to do so. For that check, a specific file permission object is passed to
the checkPermission method:

checkPermission(new FilePermission(fileName, "read"));

The security manager now asks all applicable permissions whether they imply this permission. If any one of them implies
it, then the check passes.

In particular, the AllPermission implies all other permissions.

If you define your own permission classes, then you need to define a suitable notion of implication for your permission
objects. Suppose, for example, that you define a TVPermission for a set-top box powered by Java technology. A

permission

new TVPermission("Tommy:2-12:1900-2200", "watch,record")

might allow Tommy to watch and record television channels 2-12 between 19:00 and 22:00. You need to implement the
implies method so that this permission implies a more specific one, such as

new TVPermission("Tommy:4:2000-2100", "watch")

Implementation of a Permission Class

In the next sample program, we implement a new permission for monitoring the insertion of text into a text area. The
program ensures that you cannot add "bad words" such as sex, drugs, and C++ into a text area. We use a custom
permission class so that the list of bad words can be supplied in a policy file.

The following subclass of JTextArea asks the security manager whether it is okay to add new text:

class WordCheckTextArea extends JTextArea

{

 public void append(String text)

 {

 WordCheckPermission p = new WordCheckPermission(text, "insert");

 SecurityManager manager = System.getSecurityManager();

 if (manager != null) manager.checkPermission(p);

 super.append(text);

 }

}

If the security manager grants the WordCheckPermission , then the text is appended. Otherwise, the checkPermission

method throws an exception.

Word check permissions have two possible actions: insert (the permission to insert a specific text) and avoid (the

permission to add any text that avoids certain bad words). You should run this program with the following policy file:

grant

{

 permission WordCheckPermission "sex,drugs,C++", "avoid";

};

This policy file grants the permission to insert any text that avoids the bad words sex, drugs, and C++.

When designing the WordCheckPermission class, we must pay particular attention to the implies method. Here are the
rules that control whether permission p1 implies permission p2 .

If p1 has action avoid and p2 has action insert , then the target of p2 must avoid all words in p1 . For example, the

permission

WordCheckPermission "sex,drugs,C++", "avoid"

implies the permission

WordCheckPermission "Mary had a little lamb", "insert"

If p1 and p2 both have action avoid , then the word set of p2 must contain all words in the word set of p1 . For

example, the permission

WordCheckPermission "sex,drugs", "avoid"

implies the permission

WordCheckPermission "sex,drugs,C++", "avoid"

If p1 and p2 both have action insert , then the text of p1 must contain the text of p2 . For example, the permission

WordCheckPermission "Mary had a little lamb", "insert"

implies the permission

WordCheckPermission "a little lamb", "insert"

You can find the implementation of this class in Listing 9-4 .

Note that you retrieve the permission target with the confusingly named getName method of the Permission class.

Because permissions are described by a pair of strings in policy files, permission classes need to be prepared to parse
these strings. In particular, we use the following method to transform the comma-separated list of bad words of an avoid

permission into a genuine Set .

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

public Set<String> badWordSet()

{

 Set<String> set = new HashSet<String>();

 set.addAll(Arrays.asList(getName().split(",")));

 return set;

}

This code allows us to use the equals and containsAll methods to compare sets. As you saw in Chapter 2 , the equals

method of a set class finds two sets to be equal if they contain the same elements in any order. For example, the sets
resulting from "sex,drugs,C++" and "C++,drugs,sex" are equal.

Caution

Make sure that your permission class is a public class. The policy file loader cannot load
classes with package visibility outside the boot class path, and it silently ignores any classes
that it cannot find.

The program in Listing 9-5 shows how the WordCheckPermission class works. Type any text into the text field and click

the Insert button. If the security check passes, the text is appended to the text area. If not, an error message is displayed
(see Figure 9-9).

Figure 9-9. The PermissionTest program

Caution

If you carefully look at Figure 9-9 , you will see that the frame window has a warning border
with the misleading caption "Java Applet Window." The window caption is determined by

the showWindowWithoutWarningBanner target of the java.awt.AWTPermission . If you like,
you can edit the policy file to grant that permission.

You have now seen how to configure Java platform security. Most commonly, you will simply tweak the standard
permissions. For additional control, you can define custom permissions that can be configured in the same way as the
standard permissions.

Listing 9-4. WordCheckPermission.java

Code View:
 1. import java.security.*;

 2. import java.util.*;

 3.

 4. /**

 5. * A permission that checks for bad words.

 6. * @version 1.00 1999-10-23

 7. * @author Cay Horstmann

 8. */

 9. public class WordCheckPermission extends Permission

10. {

11. /**

12. * Constructs a word check permission

13. * @param target a comma separated word list

14. * @param anAction "insert" or "avoid"

15. */

16. public WordCheckPermission(String target, String anAction)

17. {

18. super(target);

19. action = anAction;

20. }

21.

22. public String getActions()

23. {

24. return action;

25. }

26.

27. public boolean equals(Object other)

28. {

29. if (other == null) return false;

30. if (!getClass().equals(other.getClass())) return false;

31. WordCheckPermission b = (WordCheckPermission) other;

32. if (!action.equals(b.action)) return false;

33. if (action.equals("insert")) return getName().equals(b.getName());

34. else if (action.equals("avoid")) return badWordSet().equals(b.badWordSet());

35. else return false;

36. }

37.

38. public int hashCode()

39. {

40. return getName().hashCode() + action.hashCode();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

41. }

42.

43. public boolean implies(Permission other)

44. {

45. if (!(other instanceof WordCheckPermission)) return false;

46. WordCheckPermission b = (WordCheckPermission) other;

47. if (action.equals("insert"))

48. {

49. return b.action.equals("insert") && getName().indexOf(b.getName()) >= 0;

50. }

51. else if (action.equals("avoid"))

52. {

53. if (b.action.equals("avoid")) return b.badWordSet().containsAll(badWordSet());

54. else if (b.action.equals("insert"))

55. {

56. for (String badWord : badWordSet())

57. if (b.getName().indexOf(badWord) >= 0) return false;

58. return true;

59. }

60. else return false;

61. }

62. else return false;

63. }

64.

65. /**

66. * Gets the bad words that this permission rule describes.

67. * @return a set of the bad words

68. */

69. public Set<String> badWordSet()

70. {

71. Set<String> set = new HashSet<String>();

72. set.addAll(Arrays.asList(getName().split(",")));

73. return set;

74. }

75.

76. private String action;

77. }

Listing 9-5. PermissionTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import javax.swing.*;

 4.

 5. /**

 6. * This class demonstrates the custom WordCheckPermission.

 7. * @version 1.03 2007-10-06

 8. * @author Cay Horstmann

 9. */

10. public class PermissionTest

11. {

12. public static void main(String[] args)

13. {

14. System.setProperty("java.security.policy", "PermissionTest.policy");

15. System.setSecurityManager(new SecurityManager());

16. EventQueue.invokeLater(new Runnable()

17. {

18. public void run()

19. {

20. JFrame frame = new PermissionTestFrame();

21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

22. frame.setVisible(true);

23. }

24. });

25. }

26. }

27.

28. /**

29. * This frame contains a text field for inserting words into a text area that is protected

30. * from "bad words".

31. */

32. class PermissionTestFrame extends JFrame

33. {

34. public PermissionTestFrame()

35. {

36. setTitle("PermissionTest");

37. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

38.

39. textField = new JTextField(20);

40. JPanel panel = new JPanel();

41. panel.add(textField);

42. JButton openButton = new JButton("Insert");

43. panel.add(openButton);

44. openButton.addActionListener(new ActionListener()

45. {

46. public void actionPerformed(ActionEvent event)

47. {

48. insertWords(textField.getText());

49. }

50. });

51.

52. add(panel, BorderLayout.NORTH);

53.

54. textArea = new WordCheckTextArea();

55. add(new JScrollPane(textArea), BorderLayout.CENTER);

56. }

57.

58. /**

59. * Tries to insert words into the text area. Displays a dialog if the attempt fails.

60. * @param words the words to insert

61. */

62. public void insertWords(String words)

63. {

64. try

65. {

66. textArea.append(words + "\n");

67. }

68. catch (SecurityException e)

69. {

70. JOptionPane.showMessageDialog(this, "I am sorry, but I cannot do that.");

71. }

72. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

73.

74. private JTextField textField;

75. private WordCheckTextArea textArea;

76. private static final int DEFAULT_WIDTH = 400;

77. private static final int DEFAULT_HEIGHT = 300;

78. }

79.

80. /**

81. * A text area whose append method makes a security check to see that no bad words are added.

82. */

83. class WordCheckTextArea extends JTextArea

84. {

85. public void append(String text)

86. {

87. WordCheckPermission p = new WordCheckPermission(text, "insert");

88. SecurityManager manager = System.getSecurityManager();

89. if (manager != null) manager.checkPermission(p);

90. super.append(text);

91. }

92. }

java.security.Permission 1.2

Permission(String name)

constructs a permission with the given target name.

String getName()

returns the target name of this permission.

boolean implies(Permission other)

checks whether this permission implies the other permission. That is the case if
the other permission describes a more specific condition that is a consequence of
the condition described by this permission.

User Authentication

The Java Authentication and Authorization Service (JAAS) is a part of Java SE 1.4 and beyond. The
"authentication" part is concerned with ascertaining the identity of a program user. The "authorization" part
maps users to permissions.

JAAS is a "pluggable" API that isolates Java applications from the particular technology used to implement
authentication. It supports, among others, UNIX logins, NT logins, Kerberos authentication, and certificate-
based authentication.

Once a user has been authenticated, you can attach a set of permissions. For example, here we grant Harry a
particular set of permissions that other users do not have:

grant principal com.sun.security.auth.UnixPrincipal "harry"

{

 permission java.util.PropertyPermission "user.*", "read";

 . . .
};

The com.sun.security.auth.UnixPrincipal class checks the name of the UNIX user who is running this

program. Its getName method returns the UNIX login name, and we check whether that name equals "harry".

You use a LoginContext to allow the security manager to check such a grant statement. Here is the basic

outline of the login code:

Code View:
try

{
 System.setSecurityManager(new SecurityManager());

 LoginContext context = new LoginContext("Login1"); // defined in JAAS configuration file

 context.login();

 // get the authenticated Subject

 Subject subject = context.getSubject();

 . . .

 context.logout();
}

catch (LoginException exception) // thrown if login was not successful

{

 exception.printStackTrace();
}

Now the subject denotes the individual who has been authenticated.

The string parameter "Login1" in the LoginContext constructor refers to an entry with the same name in the

JAAS configuration file. Here is a sample configuration file:

Login1

{

 com.sun.security.auth.module.UnixLoginModule required;

 com.whizzbang.auth.module.RetinaScanModule sufficient;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

};

Login2
{

 . . .

};

Of course, the JDK contains no biometric login modules. The following modules are supplied in the
com.sun.security.auth.module package:

UnixLoginModule

NTLoginModule

Krb5LoginModule

JndiLoginModule
KeyStoreLoginModule

A login policy consists of a sequence of login modules, each of which is labeled required, sufficient,

requisite, or optional. The meaning of these keywords is given by the following algorithm:

The modules are executed in turn, until a sufficient module succeeds, a requisite module fails, or the

end of the module list is reached.

1.

Authentication is successful if all required and requisite modules succeed, or if none of them were

executed, if at least one sufficient or optional module succeeds.

2.

A login authenticates a subject, which can have multiple principals. A principal describes some property of the
subject, such as the user name, group ID, or role. As you saw in the grant statement, principals govern

permissions. The com.sun.security.auth.UnixPrincipal describes the UNIX login name, and the

UnixNumericGroupPrincipal can test for membership in a UNIX group.

A grant clause can test for a principal, with the syntax

grant principalClass "principalName"

For example:

grant com.sun.security.auth.UnixPrincipal "harry"

When a user has logged in, you then run, in a separate access control context, the code that requires checking
of principals. Use the static doAs or doAsPrivileged method to start a new PrivilegedAction whose run

method executes the code.

Both of those methods execute an action by calling the run method of an object that implements the

PrivilegedAction interface, using the permissions of the subject's principals:

Code View:
PrivilegedAction<T> action = new

 PrivilegedAction()

 {

 public T run()

 {
 // run with permissions of subject principals

 . . .

 }

 };

T result = Subject.doAs(subject, action); // or Subject.doAsPrivileged(subject, action, null)

If the actions can throw checked exceptions, then you implement the PrivilegedExceptionAction interface

instead.

The difference between the doAs and doAsPrivileged methods is subtle. The doAs method starts out with the

current access control context, whereas the doAsPrivileged method starts out with a new context. The latter

method allows you to separate the permissions for the login code and the "business logic." In our example
application, the login code has permissions

permission javax.security.auth.AuthPermission "createLoginContext.Login1";

permission javax.security.auth.AuthPermission "doAsPrivileged";

The authenticated user has a permission

permission java.util.PropertyPermission "user.*", "read";

If we had used doAs instead of doAsPrivileged, then the login code would have also needed that permission!

The program in Listing 9-6 and Listing 9-7 demonstrates how to restrict permissions to certain users. The
AuthTest program authenticates a user and then runs a simple action that retrieves a system property.

To make this example work, package the code for the login and the action into two separate JAR files:

javac *.java

jar cvf login.jar AuthTest.class

jar cvf action.jar SysPropAction.class

If you look at the policy file in Listing 9-8, you will see that the UNIX user with the name harry has the
permission to read all files. Change harry to your login name. Then run the command

java -classpath login.jar:action.jar

 -Djava.security.policy=AuthTest.policy

 -Djava.security.auth.login.config=jaas.config

 AuthTest

Listing 9-12 shows the login configuration.

On Windows, change Unix to NT in both AuthTest.policy and jaas.config, and use a semicolon to separate

the JAR files:

java -classpath login.jar;action.jar . . .

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The AuthTest program should now display the value of the user.home property. However, if you change the

login name in the AuthTest.policy file, then a security exception should be thrown because you no longer

have the required permission.

Caution

Be careful to follow these instructions exactly. It is very easy to get the setup wrong
by making seemingly innocuous changes.

Listing 9-6. AuthTest.java

Code View:
 1. import java.security.*;

 2. import javax.security.auth.*;

 3. import javax.security.auth.login.*;

 4.

 5. /**

 6. * This program authenticates a user via a custom login and then executes the SysPropAction

 7. * with the user's privileges.

 8. * @version 1.01 2007-10-06

 9. * @author Cay Horstmann

10. */

11. public class AuthTest

12. {

13. public static void main(final String[] args)

14. {

15. System.setSecurityManager(new SecurityManager());

16. try

17. {

18. LoginContext context = new LoginContext("Login1");

19. context.login();

20. System.out.println("Authentication successful.");

21. Subject subject = context.getSubject();

22. System.out.println("subject=" + subject);

23. PrivilegedAction<String> action = new SysPropAction("user.home");

24. String result = Subject.doAsPrivileged(subject, action, null);

25. System.out.println(result);

26. context.logout();

27. }

28. catch (LoginException e)

29. {

30. e.printStackTrace();

31. }

32. }

33. }

Listing 9-7. SysPropAction.java

Code View:
 1. import java.security.*;

 2.

 3. /**

 4. This action looks up a system property.

 5. * @version 1.01 2007-10-06

 6. * @author Cay Horstmann

 7. */

 8. public class SysPropAction implements PrivilegedAction<String>

 9. {

10. /**

11. Constructs an action for looking up a given property.

12. @param propertyName the property name (such as "user.home")

13. */

14. public SysPropAction(String propertyName) { this.propertyName = propertyName; }

15.

16. public String run()

17. {

18. return System.getProperty(propertyName);

19. }

20.

21. private String propertyName;

22. }

Listing 9-8. AuthTest.policy

Code View:
 1. grant codebase "file:login.jar"

 2. {

 3. permission javax.security.auth.AuthPermission "createLoginContext.Login1";

 4. permission javax.security.auth.AuthPermission "doAsPrivileged";

 5. };

 6.

 7. grant principal com.sun.security.auth.UnixPrincipal "harry"

 8. {

 9. permission java.util.PropertyPermission "user.*", "read";

10. };

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.security.auth.login.LoginContext 1.4

LoginContext(String name)

constructs a login context. The name corresponds to the login descriptor

in the JAAS configuration file.

void login()

establishes a login or throws LoginException if the login failed. Invokes

the login method on the managers in the JAAS configuration file.

void logout()

logs out the subject. Invokes the logout method on the managers in the

JAAS configuration file.

Subject getSubject()

returns the authenticated subject.

javax.security.auth.Subject 1.4

Set<Principal> getPrincipals()

gets the principals of this subject.

static Object doAs(Subject subject, PrivilegedAction action)

static Object doAs(Subject subject, PrivilegedExceptionAction

action)

static Object doAsPrivileged(Subject subject,
PrivilegedAction action, AccessControlContext context)

static Object doAsPrivileged(Subject subject,

PrivilegedExceptionAction action, AccessControlContext

context)

executes the privileged action on behalf of the subject. Returns the
return value of the run method. The doAsPrivileged methods execute

the action in the given access control context. You can supply a "context
snapshot" that you obtained earlier by calling the static method
AccessController.getContext(), or you can supply null to execute

the code in a new context.

java.security.PrivilegedAction 1.4

Object run()

You must define this method to execute the code that you want to have
executed on behalf of a subject.

java.security.PrivilegedExceptionAction 1.4

Object run()

You must define this method to execute the code that you want to have
executed on behalf of a subject. This method may throw any checked
exceptions.

java.security.Principal 1.1

String getName()

returns the identifying name of this principal.

JAAS Login Modules

In this section, we look at a JAAS example that shows you

How to implement your own login module.

How to implement role-based authentication.

Supplying your own login module is useful if you store login information in a database. Even if you are happy
with the default module, studying a custom module will help you understand the JAAS configuration file options.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Role-based authentication is essential if you manage a large number of users. It would be impractical to put the
names of all legitimate users into a policy file. Instead, the login module should map users to roles such as
"admin" or "HR," and the permissions should be based on these roles.

One job of the login module is to populate the principal set of the subject that is being authenticated. If a login
module supports roles, it adds Principal objects that describe roles. The Java library does not provide a class

for this purpose, so we wrote our own (see Listing 9-9). The class simply stores a description/value pair, such as
role=admin. Its getName method returns that pair, so we can add role-based permissions into a policy file:

grant principal SimplePrincipal "role=admin" { . . . }

Our login module looks up users, passwords, and roles in a text file that contains lines like this:

harry|secret|admin

carl|guessme|HR

Of course, in a realistic login module, you would store this information in a database or directory.

You can find the code for the SimpleLoginModule in Listing 9-10. The checkLogin method checks whether the

user name and password match a user record in the password file. If so, we add two SimplePrincipal objects

to the subject's principal set:

Set<Principal> principals = subject.getPrincipals();

principals.add(new SimplePrincipal("username", username));

principals.add(new SimplePrincipal("role", role));

The remainder of SimpleLoginModule is straightforward plumbing. The initialize method receives

The Subject that is being authenticated.

A handler to retrieve login information.

A sharedState map that can be used for communication between login modules.

An options map that contains name/value pairs that are set in the login configuration.

For example, we configure our module as follows:

SimpleLoginModule required pwfile="password.txt";

The login module retrieves the pwfile settings from the options map.

The login module does not gather the user name and password; that is the job of a separate handler. This
separation allows you to use the same login module without worrying whether the login information comes from
a GUI dialog box, a console prompt, or a configuration file.

The handler is specified when you construct the LoginContext, for example,

LoginContext context = new LoginContext("Login1",

 new com.sun.security.auth.callback.DialogCallbackHandler());

The DialogCallbackHandler pops up a simple GUI dialog box to retrieve the user name and password.

com.sun.security.auth.callback.TextCallbackHandler gets the information from the console.

However, in our application, we have our own GUI for collecting the user name and password (see Figure 9-10).
We produce a simple handler that merely stores and returns that information (see Listing 9-11).

Figure 9-10. A custom login module

The handler has a single method, handle, that processes an array of Callback objects. A number of predefined

classes, such as NameCallback and PasswordCallback, implement the Callback interface. You could also add

your own class, such as RetinaScanCallback. The handler code is a bit unsightly because it needs to analyze

the types of the callback objects:

public void handle(Callback[] callbacks)

{

 for (Callback callback : callbacks)

 {

 if (callback instanceof NameCallback) . . .
 else if (callback instanceof PasswordCallback) . . .

 else . . .

 }

}

The login module prepares an array of the callbacks that it needs for authentication:

NameCallback nameCall = new NameCallback("username: ");

PasswordCallback passCall = new PasswordCallback("password: ", false);

callbackHandler.handle(new Callback[] { nameCall, passCall });

Then it retrieves the information from the callbacks.

The program in Listing 9-12 displays a form for entering the login information and the name of a system
property. If the user is authenticated, the property value is retrieved in a PrivilegedAction. As you can see

from the policy file in Listing 9-13, only users with the admin role have permission to read properties.

As in the preceding section, you must separate the login and action code. Create two JAR files:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javac *.java

jar cvf login.jar JAAS*.class Simple*.class

jar cvf action.jar SysPropAction.class

Then run the program as

java -classpath login.jar:action.jar

 -Djava.security.policy=JAASTest.policy

 -Djava.security.auth.login.config=jaas.config

 JAASTest

Listing 9-14 shows the login configuration.

Note

It is possible to support a more complex two-phase protocol, whereby a login is
committed if all modules in the login configuration were successful. For more information,
see the login module developer's guide at
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html.

Listing 9-9. SimplePrincipal.java

Code View:
 1. import java.security.*;

 2.

 3. /**

 4. * A principal with a named value (such as "role=HR" or "username=harry").

 5. * @version 1.0 2004-09-14

 6. * @author Cay Horstmann

 7. */

 8. public class SimplePrincipal implements Principal

 9. {

10. /**

11. * Constructs a SimplePrincipal to hold a description and a value.

12. * @param roleName the role name

13. */

14. public SimplePrincipal(String descr, String value)

15. {

16. this.descr = descr;

17. this.value = value;

18. }

19.

20. /**

21. * Returns the role name of this principal

22. * @return the role name

23. */

24. public String getName()

25. {

26. return descr + "=" + value;

27. }

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

28.

29. public boolean equals(Object otherObject)

30. {

31. if (this == otherObject) return true;

32. if (otherObject == null) return false;

33. if (getClass() != otherObject.getClass()) return false;

34. SimplePrincipal other = (SimplePrincipal) otherObject;

35. return getName().equals(other.getName());

36. }

37.

38. public int hashCode()

39. {

40. return getName().hashCode();

41. }

42.

43. private String descr;

44. private String value;

45. }

Listing 9-10. SimpleLoginModule.java

Code View:
 1. import java.io.*;

 2. import java.security.*;

 3. import java.util.*;

 4. import javax.security.auth.*;

 5. import javax.security.auth.callback.*;

 6. import javax.security.auth.login.*;

 7. import javax.security.auth.spi.*;

 8.

 9. /**

 10. * This login module authenticates users by reading usernames, passwords, and roles from a

 11. * text file.

 12. * @version 1.0 2004-09-14

 13. * @author Cay Horstmann

 14. */

 15. public class SimpleLoginModule implements LoginModule

 16. {

 17. public void initialize(Subject subject, CallbackHandler callbackHandler,

 18. Map<String, ?> sharedState, Map<String, ?> options)

 19. {

 20. this.subject = subject;

 21. this.callbackHandler = callbackHandler;

 22. this.options = options;

 23. }

 24.

 25. public boolean login() throws LoginException

 26. {

 27. if (callbackHandler == null) throw new LoginException("no handler");

 28.

 29. NameCallback nameCall = new NameCallback("username: ");

 30. PasswordCallback passCall = new PasswordCallback("password: ", false);

 31. try

 32. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 33. callbackHandler.handle(new Callback[] { nameCall, passCall });

 34. }

 35. catch (UnsupportedCallbackException e)

 36. {

 37. LoginException e2 = new LoginException("Unsupported callback");

 38. e2.initCause(e);

 39. throw e2;

 40. }

 41. catch (IOException e)

 42. {

 43. LoginException e2 = new LoginException("I/O exception in callback");

 44. e2.initCause(e);

 45. throw e2;

 46. }

 47.

 48. return checkLogin(nameCall.getName(), passCall.getPassword());

 49. }

 50.

 51. /**

 52. * Checks whether the authentication information is valid. If it is, the subject acquires

 53. * principals for the user name and role.

 54. * @param username the user name

 55. * @param password a character array containing the password

 56. * @return true if the authentication information is valid

 57. */

 58. private boolean checkLogin(String username, char[] password) throws LoginException

 59. {

 60. try

 61. {

 62. Scanner in = new Scanner(new FileReader("" + options.get("pwfile")));

 63. while (in.hasNextLine())

 64. {

 65. String[] inputs = in.nextLine().split("\\|");

 66. if (inputs[0].equals(username) && Arrays.equals(inputs[1].toCharArray(), password))

 67. {

 68. String role = inputs[2];

 69. Set<Principal> principals = subject.getPrincipals();

 70. principals.add(new SimplePrincipal("username", username));

 71. principals.add(new SimplePrincipal("role", role));

 72. return true;

 73. }

 74. }

 75. in.close();

 76. return false;

 77. }

 78. catch (IOException e)

 79. {

 80. LoginException e2 = new LoginException("Can't open password file");

 81. e2.initCause(e);

 82. throw e2;

 83. }

 84. }

 85.

 86. public boolean logout()

 87. {

 88. return true;

 89. }

 90.

 91. public boolean abort()

 92. {

 93. return true;

 94. }

 95.

 96. public boolean commit()

 97. {

 98. return true;

 99. }

100.

101. private Subject subject;

102. private CallbackHandler callbackHandler;

103. private Map<String, ?> options;

104. }

Listing 9-11. SimpleCallbackHandler.java

Code View:
 1. import javax.security.auth.callback.*;

 2.

 3. /**

 4. * This simple callback handler presents the given user name and password.

 5. * @version 1.0 2004-09-14

 6. * @author Cay Horstmann

 7. */

 8. public class SimpleCallbackHandler implements CallbackHandler

 9. {

10. /**

11. * Constructs the callback handler.

12. * @param username the user name

13. * @param password a character array containing the password

14. */

15. public SimpleCallbackHandler(String username, char[] password)

16. {

17. this.username = username;

18. this.password = password;

19. }

20.

21. public void handle(Callback[] callbacks)

22. {

23. for (Callback callback : callbacks)

24. {

25. if (callback instanceof NameCallback)

26. {

27. ((NameCallback) callback).setName(username);

28. }

29. else if (callback instanceof PasswordCallback)

30. {

31. ((PasswordCallback) callback).setPassword(password);

32. }

33. }

34. }

35.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

36. private String username;

37. private char[] password;

38. }

Listing 9-12. JAASTest.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import javax.security.auth.*;

 4. import javax.security.auth.login.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program authenticates a user via a custom login and then executes the SysPropAction

 9. * with the user's privileges.

10. * @version 1.0 2004-09-14

11. * @author Cay Horstmann

12. */

13. public class JAASTest

14. {

15. public static void main(final String[] args)

16. {

17. System.setSecurityManager(new SecurityManager());

18. EventQueue.invokeLater(new Runnable()

19. {

20. public void run()

21. {

22. JFrame frame = new JAASFrame();

23. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

24. frame.setVisible(true);

25. }

26. });

27. }

28. }

29.

30. /**

31. * This frame has text fields for user name and password, a field for the name of the requested

32. * system property, and a field to show the property value.

33. */

34. class JAASFrame extends JFrame

35. {

36. public JAASFrame()

37. {

38. setTitle("JAASTest");

39.

40. username = new JTextField(20);

41. password = new JPasswordField(20);

42. propertyName = new JTextField(20);

43. propertyValue = new JTextField(20);

44. propertyValue.setEditable(false);

45.

46. JPanel panel = new JPanel();

47. panel.setLayout(new GridLayout(0, 2));

48. panel.add(new JLabel("username:"));

49. panel.add(username);

50. panel.add(new JLabel("password:"));

51. panel.add(password);

52. panel.add(propertyName);

53. panel.add(propertyValue);

54. add(panel, BorderLayout.CENTER);

55.

56. JButton getValueButton = new JButton("Get Value");

57. getValueButton.addActionListener(new ActionListener()

58. {

59. public void actionPerformed(ActionEvent event)

60. {

61. getValue();

62. }

63. });

64. JPanel buttonPanel = new JPanel();

65. buttonPanel.add(getValueButton);

66. add(buttonPanel, BorderLayout.SOUTH);

67. pack();

68. }

69.

70. public void getValue()

71. {

72. try

73. {

74. LoginContext context = new LoginContext("Login1", new SimpleCallbackHandler(username

75. .getText(), password.getPassword()));

76. context.login();

77. Subject subject = context.getSubject();

78. propertyValue.setText(""

79. + Subject.doAsPrivileged(subject, new SysPropAction(propertyName.getText()), null));

80. context.logout();

81. }

82. catch (LoginException e)

83. {

84. JOptionPane.showMessageDialog(this, e);

85. }

86. }

87.

88. private JTextField username;

89. private JPasswordField password;

90. private JTextField propertyName;

91. private JTextField propertyValue;

92. }

Listing 9-13. JAASTest.policy

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. grant codebase "file:login.jar"

 2. {

 3. permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

 4. permission javax.security.auth.AuthPermission "createLoginContext.Login1";

 5. permission javax.security.auth.AuthPermission "doAsPrivileged";

 6. permission javax.security.auth.AuthPermission "modifyPrincipals";

 7. permission java.io.FilePermission "password.txt", "read";

 8. };

 9.

10. grant principal SimplePrincipal "role=admin"

11. {

12. permission java.util.PropertyPermission "*", "read";

13. };

Listing 9-14. jaas.config

1. Login1

2. {

3. SimpleLoginModule required pwfile="password.txt";

};

javax.security.auth.callback.CallbackHandler 1.4

void handle(Callback[] callbacks)

handles the given callbacks, interacting with the user if desired, and
stores the security information in the callback objects.

javax.security.auth.callback.NameCallback 1.4

NameCallback(String prompt)

NameCallback(String prompt, String defaultName)

constructs a NameCallback with the given prompt and default name.

void setName(String name)

String getName()

sets or gets the name gathered by this callback.

String getPrompt()

gets the prompt to use when querying this name.

String getDefaultName()

gets the default name to use when querying this name.

javax.security.auth.callback.PasswordCallback 1.4

PasswordCallback(String prompt, boolean echoOn)

constructs a PasswordCallback with the given prompt and echo flag.

void setPassword(char[] password)

char[] getPassword()

sets or gets the password gathered by this callback.

String getPrompt()

gets the prompt to use when querying this password.

boolean isEchoOn()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

gets the echo flag to use when querying this password.

javax.security.auth.spi.LoginModule 1.4

void initialize(Subject subject, CallbackHandler handler,

Map<String,?> sharedState, Map<String,?> options)

initializes this LoginModule for authenticating the given subject. During

login processing, uses the given handler to gather login information. Use
the sharedState map for communication with other login modules. The

options map contains the name/value pairs specified in the login

configuration for this module instance.

boolean login()

carries out the authentication process and populates the subject's
principals. Returns true if the login was successful.

boolean commit()

is called after all login modules were successful, for login scenarios that
require a two-phase commit. Returns true if the operation was

successful.

boolean abort()

is called if the failure of another login module caused the login process to
abort. Returns true if the operation was successful.

boolean logout()

logs out this subject. Returns true if the operation was successful.

Digital Signatures

As we said earlier, applets were what started the craze over the Java platform. In practice, people discovered that
although they could write animated applets like the famous "nervous text" applet, applets could not do a whole lot of
useful stuff in the JDK 1.0 security model. For example, because applets under JDK 1.0 were so closely supervised, they
couldn't do much good on a corporate intranet, even though relatively little risk attaches to executing an applet from your
company's secure intranet. It quickly became clear to Sun that for applets to become truly useful, it was important for
users to be able to assign different levels of security, depending on where the applet originated. If an applet comes from a
trusted supplier and it has not been tampered with, the user of that applet can then decide whether to give the applet
more privileges.

To give more trust to an applet, we need to know two things:

Where did the applet come from?

Was the code corrupted in transit?

In the past 50 years, mathematicians and computer scientists have developed sophisticated algorithms for ensuring the
integrity of data and for electronic signatures. The java.security package contains implementations of many of these

algorithms. Fortunately, you don't need to understand the underlying mathematics to use the algorithms in the
java.security package. In the next sections, we show you how message digests can detect changes in data files and how

digital signatures can prove the identity of the signer.

Message Digests

A message digest is a digital fingerprint of a block of data. For example, the so-called SHA1 (secure hash algorithm #1)
condenses any data block, no matter how long, into a sequence of 160 bits (20 bytes). As with real fingerprints, one hopes
that no two messages have the same SHA1 fingerprint. Of course, that cannot be true—there are only 2160 SHA1
fingerprints, so there must be some messages with the same fingerprint. But 2160 is so large that the probability of
duplication occurring is negligible. How negligible? According to James Walsh in True Odds: How Risks Affect Your Everyday
Life (Merritt Publishing 1996), the chance that you will die from being struck by lightning is about one in 30,000. Now,
think of nine other people, for example, your nine least favorite managers or professors. The chance that you and all of
them will die from lightning strikes is higher than that of a forged message having the same SHA1 fingerprint as the
original. (Of course, more than ten people, none of whom you are likely to know, will die from lightning strikes. However,
we are talking about the far slimmer chance that your particular choice of people will be wiped out.)

A message digest has two essential properties:

If one bit or several bits of the data are changed, then the message digest also changes.

A forger who is in possession of a given message cannot construct a fake message that has the same message digest
as the original.

The second property is again a matter of probabilities, of course. Consider the following message by the billionaire father:

"Upon my death, my property shall be divided equally among my children; however, my son George shall receive
nothing."

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

That message has an SHA1 fingerprint of

2D 8B 35 F3 BF 49 CD B1 94 04 E0 66 21 2B 5E 57 70 49 E1 7E

The distrustful father has deposited the message with one attorney and the fingerprint with another. Now, suppose George
can bribe the lawyer holding the message. He wants to change the message so that Bill gets nothing. Of course, that
changes the fingerprint to a completely different bit pattern:

2A 33 0B 4B B3 FE CC 1C 9D 5C 01 A7 09 51 0B 49 AC 8F 98 92

Can George find some other wording that matches the fingerprint? If he had been the proud owner of a billion computers
from the time the Earth was formed, each computing a million messages a second, he would not yet have found a message
he could substitute.

A number of algorithms have been designed to compute these message digests. The two best-known are SHA1, the secure
hash algorithm developed by the National Institute of Standards and Technology, and MD5, an algorithm invented by
Ronald Rivest of MIT. Both algorithms scramble the bits of a message in ingenious ways. For details about these
algorithms, see, for example, Cryptography and Network Security , 4th ed., by William Stallings (Prentice Hall 2005). Note
that recently, subtle regularities have been discovered in both algorithms. At this point, most cryptographers recommend
avoiding MD5 and using SHA1 until a stronger alternative becomes available. (See http://www.rsa.com/rsalabs/node.asp?
id=2834 for more information.)

The Java programming language implements both SHA1 and MD5. The MessageDigest class is a factory for creating

objects that encapsulate the fingerprinting algorithms. It has a static method, called getInstance , that returns an object

of a class that extends the MessageDigest class. This means the MessageDigest class serves double duty:

As a factory class

As the superclass for all message digest algorithms

For example, here is how you obtain an object that can compute SHA fingerprints:

MessageDigest alg = MessageDigest.getInstance("SHA-1");

(To get an object that can compute MD5, use the string "MD5" as the argument to getInstance .)

After you have obtained a MessageDigest object, you feed it all the bytes in the message by repeatedly calling the update

method. For example, the following code passes all bytes in a file to the alg object just created to do the fingerprinting:

InputStream in = . . .

int ch;

while ((ch = in.read()) != -1)

 alg.update((byte) ch);

Alternatively, if you have the bytes in an array, you can update the entire array at once:

byte[] bytes = . . .;

alg.update(bytes);

When you are done, call the digest method. This method pads the input—as required by the fingerprinting

algorithm—does the computation, and returns the digest as an array of bytes.

byte[] hash = alg.digest();

The program in Listing 9-15 computes a message digest, using either SHA or MD5. You can load the data to be digested
from a file, or you can type a message in the text area. Figure 9-11 shows the application.

Figure 9-11. Computing a message digest

Listing 9-15. MessageDigestTest.java

Code View:
 1. import java.io.*;

 2. import java.security.*;

 3. import java.awt.*;

 4. import java.awt.event.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This program computes the message digest of a file or the contents of a text area.

 9. * @version 1.13 2007-10-06

 10. * @author Cay Horstmann

 11. */

 12. public class MessageDigestTest

 13. {

 14. public static void main(String[] args)

 15. {

 16. EventQueue.invokeLater(new Runnable()

 17. {

 18. public void run()

 19. {

 20. JFrame frame = new MessageDigestFrame();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 22. frame.setVisible(true);

 23. }

 24. });

 25. }

 26. }

 27.

 28. /**

 29. * This frame contains a menu for computing the message digest of a file or text area, radio

 30. * buttons to toggle between SHA-1 and MD5, a text area, and a text field to show the

 31. * messge digest.

 32. */

 33. class MessageDigestFrame extends JFrame

 34. {

 35. public MessageDigestFrame()

 36. {

 37. setTitle("MessageDigestTest");

 38. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 39.

 40. JPanel panel = new JPanel();

 41. ButtonGroup group = new ButtonGroup();

 42. addRadioButton(panel, "SHA-1", group);

 43. addRadioButton(panel, "MD5", group);

 44.

 45. add(panel, BorderLayout.NORTH);

 46. add(new JScrollPane(message), BorderLayout.CENTER);

 47. add(digest, BorderLayout.SOUTH);

 48. digest.setFont(new Font("Monospaced", Font.PLAIN, 12));

 49.

 50. setAlgorithm("SHA-1");

 51.

 52. JMenuBar menuBar = new JMenuBar();

 53. JMenu menu = new JMenu("File");

 54. JMenuItem fileDigestItem = new JMenuItem("File digest");

 55. fileDigestItem.addActionListener(new ActionListener()

 56. {

 57. public void actionPerformed(ActionEvent event)

 58. {

 59. loadFile();

 60. }

 61. });

 62. menu.add(fileDigestItem);

 63. JMenuItem textDigestItem = new JMenuItem("Text area digest");

 64. textDigestItem.addActionListener(new ActionListener()

 65. {

 66. public void actionPerformed(ActionEvent event)

 67. {

 68. String m = message.getText();

 69. computeDigest(m.getBytes());

 70. }

 71. });

 72. menu.add(textDigestItem);

 73. menuBar.add(menu);

 74. setJMenuBar(menuBar);

 75. }

 76.

 77. /**

 78. * Adds a radio button to select an algorithm.

 79. * @param c the container into which to place the button

 80. * @param name the algorithm name

 81. * @param g the button group

 82. */

 83. public void addRadioButton(Container c, final String name, ButtonGroup g)

 84. {

 85. ActionListener listener = new ActionListener()

 86. {

 87. public void actionPerformed(ActionEvent event)

 88. {

 89. setAlgorithm(name);

 90. }

 91. };

 92. JRadioButton b = new JRadioButton(name, g.getButtonCount() == 0);

 93. c.add(b);

 94. g.add(b);

 95. b.addActionListener(listener);

 96. }

 97.

 98. /**

 99. * Sets the algorithm used for computing the digest.

100. * @param alg the algorithm name

101. */

102. public void setAlgorithm(String alg)

103. {

104. try

105. {

106. currentAlgorithm = MessageDigest.getInstance(alg);

107. digest.setText("");

108. }

109. catch (NoSuchAlgorithmException e)

110. {

111. digest.setText("" + e);

112. }

113. }

114.

115. /**

116. * Loads a file and computes its message digest.

117. */

118. public void loadFile()

119. {

120. JFileChooser chooser = new JFileChooser();

121. chooser.setCurrentDirectory(new File("."));

122.

123. int r = chooser.showOpenDialog(this);

124. if (r == JFileChooser.APPROVE_OPTION)

125. {

126. try

127. {

128. String name = chooser.getSelectedFile().getAbsolutePath();

129. computeDigest(loadBytes(name));

130. }

131. catch (IOException e)

132. {

133. JOptionPane.showMessageDialog(null, e);

134. }

135. }

136. }

137.

138. /**

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

139. * Loads the bytes in a file.

140. * @param name the file name

141. * @return an array with the bytes in the file

142. */

143. public byte[] loadBytes(String name) throws IOException

144. {

145. FileInputStream in = null;

146.

147. in = new FileInputStream(name);

148. try

149. {

150. ByteArrayOutputStream buffer = new ByteArrayOutputStream();

151. int ch;

152. while ((ch = in.read()) != -1)

153. buffer.write(ch);

154. return buffer.toByteArray();

155. }

156. finally

157. {

158. in.close();

159. }

160. }

161.

162. /**

163. * Computes the message digest of an array of bytes and displays it in the text field.

164. * @param b the bytes for which the message digest should be computed.

165. */

166. public void computeDigest(byte[] b)

167. {

168. currentAlgorithm.reset();

169. currentAlgorithm.update(b);

170. byte[] hash = currentAlgorithm.digest();

171. String d = "";

172. for (int i = 0; i < hash.length; i++)

173. {

174. int v = hash[i] & 0xFF;

175. if (v < 16) d += "0";

176. d += Integer.toString(v, 16).toUpperCase() + " ";

177. }

178. digest.setText(d);

179. }

180.

181. private JTextArea message = new JTextArea();

182. private JTextField digest = new JTextField();

183. private MessageDigest currentAlgorithm;

184. private static final int DEFAULT_WIDTH = 400;

185. private static final int DEFAULT_HEIGHT = 300;

186. }

java.security.MessageDigest 1.1

static MessageDigest getInstance(String algorithmName)

returns a MessageDigest object that implements the specified algorithm. Throws

NoSuchAlgorithmException if the algorithm is not provided.

void update(byte input)

void update(byte[] input)

void update(byte[] input, int offset, int len)

updates the digest, using the specified bytes.

byte[] digest()

completes the hash computation, returns the computed digest, and resets the
algorithm object.

void reset()

resets the digest.

Message Signing

In the last section, you saw how to compute a message digest, a fingerprint for the original message. If the message is
altered, then the fingerprint of the altered message will not match the fingerprint of the original. If the message and its
fingerprint are delivered separately, then the recipient can check whether the message has been tampered with. However,
if both the message and the fingerprint were intercepted, it is an easy matter to modify the message and then recompute
the fingerprint. After all, the message digest algorithms are publicly known, and they don't require secret keys. In that
case, the recipient of the forged message and the recomputed fingerprint would never know that the message has been
altered. Digital signatures solve this problem.

To help you understand how digital signatures work, we explain a few concepts from the field called public key
cryptography. Public key cryptography is based on the notion of a public key and private key. The idea is that you tell
everyone in the world your public key. However, only you hold the private key, and it is important that you safeguard it
and don't release it to anyone else. The keys are matched by mathematical relationships, but the exact nature of these
relationships is not important for us. (If you are interested, you can look it up in The Handbook of Applied Cryptography at
http://www.cacr.math.uwaterloo.ca/hac/ .)

The keys are quite long and complex. For example, here is a matching pair of public and private Digital Signature
Algorithm (DSA) keys.

Public key:

Code View:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.cacr.math.uwaterloo.ca/hac/

p:

fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df63413c5e12ed0899

bcd132acd50d99151bdc43ee737592e17

q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73da179069b32e29356

30e

1c2062354d0da20a6c416e50be794ca4

y:

c0b6e67b4ac098eb1a32c5f8c4c1f0e7e6fb9d832532e27d0bdab9ca2d2a8123ce5a8018b8161a760480fadd040b927

281ddb22cb9bc4df596d7de4d1b977d50

Private key:

Code View:
p:

fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df63413c5e12ed0899

bcd132acd50d99151bdc43ee737592e17

q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5

g:
678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73da179069b32e2935630

e1c2062354d0da20a6c416e50be794ca4

x: 146c09f881656cc6c51f27ea6c3a91b85ed1d70a

It is believed to be practically impossible to compute one key from the other. That is, even though everyone knows your
public key, they can't compute your private key in your lifetime, no matter how many computing resources they have
available.

It might seem difficult to believe that nobody can compute the private key from the public keys, but nobody has ever
found an algorithm to do this for the encryption algorithms that are in common use today. If the keys are sufficiently long,
brute force—simply trying all possible keys—would require more computers than can be built from all the atoms in the
solar system, crunching away for thousands of years. Of course, it is possible that someone could come up with algorithms
for computing keys that are much more clever than brute force. For example, the RSA algorithm (the encryption algorithm
invented by Rivest, Shamir, and Adleman) depends on the difficulty of factoring large numbers. For the last 20 years,
many of the best mathematicians have tried to come up with good factoring algorithms, but so far with no success. For
that reason, most cryptographers believe that keys with a "modulus" of 2,000 bits or more are currently completely safe
from any attack. DSA is believed to be similarly secure.

Figure 9-12 illustrates how the process works in practice.

Figure 9-12. Public key signature exchange with DSA

[View full size image]

Suppose Alice wants to send Bob a message, and Bob wants to know this message came from Alice and not an impostor.
Alice writes the message and then signs the message digest with her private key. Bob gets a copy of her public key. Bob
then applies the public key to verify the signature. If the verification passes, then Bob can be assured of two facts:

The original message has not been altered.

The message was signed by Alice, the holder of the private key that matches the public key that Bob used for
verification.

You can see why security for private keys is all-important. If someone steals Alice's private key or if a government can
require her to turn it over, then she is in trouble. The thief or a government agent can impersonate her by sending
messages, money transfer instructions, and so on, that others will believe came from Alice.

The X.509 Certificate Format

To take advantage of public key cryptography, the public keys must be distributed. One of the most common distribution
formats is called X.509. Certificates in the X.509 format are widely used by VeriSign, Microsoft, Netscape, and many other
companies, for signing e-mail messages, authenticating program code, and certifying many other kinds of data. The X.509
standard is part of the X.500 series of recommendations for a directory service by the international telephone standards
body, the CCITT.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The precise structure of X.509 certificates is described in a formal notation, called "abstract syntax notation #1" or ASN.1.
Figure 9-13 shows the ASN.1 definition of version 3 of the X.509 format. The exact syntax is not important for us, but, as
you can see, ASN.1 gives a precise definition of the structure of a certificate file. The basic encoding rules, or BER, and a
variation, called distinguished encoding rules (DER) describe precisely how to save this structure in a binary file. That is,
BER and DER describe how to encode integers, character strings, bit strings, and constructs such as SEQUENCE , CHOICE ,

and OPTIONAL .

Figure 9-13. ASN.1 definition of X.509v3

Code View:
[Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signature BIT STRING }

 TBSCertificate ::= SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version must be v2 or v3

 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version must be v2 or v3

 extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version must be v3

 }

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

 CertificateSerialNumber ::= INTEGER

 Validity ::= SEQUENCE {

 notBefore CertificateValidityDate,

 notAfter CertificateValidityDate }

 CertificateValidityDate ::= CHOICE {

 utcTime UTCTime,

 generalTime GeneralizedTime }

 UniqueIdentifier ::= BIT STRING

 SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT STRING }

 Extensions ::= SEQUENCE OF Extension

 Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER,

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING }

Note

You can find more information on ASN.1 in A Layman's Guide to a Subset of ASN.1, BER, and
DER by Burton S. Kaliski, Jr. (ftp://ftp.rsa.com/pub/pkcs/ps/layman.ps),
ASN.1—Communication Between Heterogeneous Systems by Olivier Dubuisson (Academic
Press 2000) (http://www.oss.com/asn1/dubuisson.html) and ASN.1 Complete by John
Larmouth (Morgan Kaufmann Publishers 1999) (http://www.oss.com/asn1/larmouth.html).

Verifying a Signature

The JDK comes with the keytool program, which is a command-line tool to generate and manage a set of certificates. We

expect that ultimately the functionality of this tool will be embedded in other, more user-friendly programs. But right now,
we use keytool to show how Alice can sign a document and send it to Bob, and how Bob can verify that the document

really was signed by Alice and not an imposter.

The keytool program manages keystores, databases of certificates and private/public key pairs. Each entry in the keystore

has an alias . Here is how Alice creates a keystore, alice.certs , and generates a key pair with alias alice .

keytool -genkeypair -keystore alice.certs -alias alice

When creating or opening a keystore, you are prompted for a keystore password. For this example, just use secret . If

you were to use the keytool -generated keystore for any serious purpose, you would need to choose a good password and

safeguard this file.

When generating a key, you are prompted for the following information:

Code View:
Enter keystore password: secret

Reenter new password: secret

What is your first and last name?
 [Unknown]: Alice Lee

What is the name of your organizational unit?

 [Unknown]: Engineering Department

What is the name of your organization?

 [Unknown]: ACME Software

What is the name of your City or Locality?

 [Unknown]: San Francisco

What is the name of your State or Province?

 [Unknown]: CA

What is the two-letter country code for this unit?

 [Unknown]: US

Is <CN=Alice Lee, OU=Engineering Department, O=ACME Software, L=San Francisco, ST=CA, C=US> cor-

rect?

 [no]: yes

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The keytool uses X.500 distinguished names, with components Common Name (CN), Organizational Unit (OU),

Organization (O), Location (L), State (ST), and Country (C) to identify key owners and certificate issuers.

Finally, specify a key password, or press ENTER to use the keystore password as the key password.

Suppose Alice wants to give her public key to Bob. She needs to export a certificate file:

keytool -exportcert -keystore alice.certs -alias alice -file alice.cer

Now Alice can send the certificate to Bob. When Bob receives the certificate, he can print it:

keytool -printcert -file alice.cer

The printout looks like this:

Code View:
Owner: CN=Alice Lee, OU=Engineering Department, O=ACME Software, L=San Francisco, ST=CA, C=US
Issuer: CN=Alice Lee, OU=Engineering Department, O=ACME Software, L=San Francisco, ST=CA, C=US

Serial number: 470835ce

Valid from: Sat Oct 06 18:26:38 PDT 2007 until: Fri Jan 04 17:26:38 PST 2008

Certificate fingerprints:

 MD5: BC:18:15:27:85:69:48:B1:5A:C3:0B:1C:C6:11:B7:81

 SHA1: 31:0A:A0:B8:C2:8B:3B:B6:85:7C:EF:C0:57:E5:94:95:61:47:6D:34

 Signature algorithm name: SHA1withDSA
 Version: 3

If Bob wants to check that he got the right certificate, he can call Alice and verify the certificate fingerprint over the phone.

Note

Some certificate issuers publish certificate fingerprints on their web sites. For example, to check the
VeriSign certificate in the keystore jre /lib/security/cacerts directory, use the -list option:

keytool -list -v -keystore jre/lib/security/cacerts

The password for this keystore is changeit . One of the certificates in this keystore is

Code View:
Owner: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only",

OU=Class 1 Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US

Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized

use only", OU=Class 1 Public Primary Certification Authority - G2, O="VeriSign, Inc.",

C=US

Serial number: 4cc7eaaa983e71d39310f83d3a899192

Valid from: Sun May 17 17:00:00 PDT 1998 until: Tue Aug 01 16:59:59 PDT 2028

Certificate fingerprints:

 MD5: DB:23:3D:F9:69:FA:4B:B9:95:80:44:73:5E:7D:41:83

 SHA1: 27:3E:E1:24:57:FD:C4:F9:0C:55:E8:2B:56:16:7F:62:F5:32:E5:47

You can check that your certificate is valid by visiting the web site
http://www.verisign.com/repository/root.html .

Once Bob trusts the certificate, he can import it into his keystore.

keytool -importcert -keystore bob.certs -alias alice -file alice.cer

Caution

Never import into a keystore a certificate that you don't fully trust. Once a certificate is added
to the keystore, any program that uses the keystore assumes that the certificate can be used
to verify signatures.

Now Alice can start sending signed documents to Bob. The jarsigner tool signs and verifies JAR files. Alice simply adds

the document to be signed into a JAR file.

jar cvf document.jar document.txt

Then she uses the jarsigner tool to add the signature to the file. She needs to specify the keystore, the JAR file, and the

alias of the key to use.

jarsigner -keystore alice.certs document.jar alice

When Bob receives the file, he uses the -verify option of the jarsigner program.

jarsigner -verify -keystore bob.certs document.jar

Bob does not need to specify the key alias. The jarsigner program finds the X.500 name of the key owner in the digital

signature and looks for matching certificates in the keystore.

If the JAR file is not corrupted and the signature matches, then the jarsigner program prints

jar verified.

Otherwise, the program displays an error message.

The Authentication Problem

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.verisign.com/repository/root.html

Suppose you get a message from your friend Alice, signed with her private key, using the method we just showed you. You
might already have her public key, or you can easily get it by asking her for a copy or by getting it from her web page.
Then, you can verify that the message was in fact authored by Alice and has not been tampered with. Now, suppose you
get a message from a stranger who claims to represent a famous software company, urging you to run the program that is
attached to the message. The stranger even sends you a copy of his public key so you can verify that he authored the
message. You check that the signature is valid. This proves that the message was signed with the matching private key
and that it has not been corrupted.

Be careful: You still have no idea who wrote the message. Anyone could have generated a pair of public and private keys,
signed the message with the private key, and sent the signed message and the public key to you. The problem of
determining the identity of the sender is called the authentication problem.

The usual way to solve the authentication problem is simple. Suppose the stranger and you have a common acquaintance
you both trust. Suppose the stranger meets your acquaintance in person and hands over a disk with the public key. Your
acquaintance later meets you, assures you that he met the stranger and that the stranger indeed works for the famous
software company, and then gives you the disk (see Figure 9-14). That way, your acquaintance vouches for the
authenticity of the stranger.

Figure 9-14. Authentication through a trusted intermediary

In fact, your acquaintance does not actually need to meet you. Instead, he can use his private key to sign the stranger's
public key file (see Figure 9-15).

Figure 9-15. Authentication through a trusted intermediary's signature

[View full size image]

When you get the public key file, you verify the signature of your friend, and because you trust him, you are confident that
he did check the stranger's credentials before applying his signature.

However, you might not have a common acquaintance. Some trust models assume that there is always a "chain of
trust"—a chain of mutual acquaintances—so that you trust every member of that chain. In practice, of course, that isn't
always true. You might trust your friend, Alice, and you know that Alice trusts Bob, but you don't know Bob and aren't sure
that you trust him. Other trust models assume that there is a benevolent big brother in whom we all trust. The best known
of these companies is VeriSign, Inc. (http://www.verisign.com).

You will often encounter digital signatures that are signed by one or more entities who will vouch for the authenticity, and
you will need to evaluate to what degree you trust the authenticators. You might place a great deal of trust in VeriSign,
perhaps because you saw their logo on many web pages or because you heard that they require multiple people with black
attach cases to come together into a secure chamber whenever new master keys are to be minted.

However, you should have realistic expectations about what is actually being authenticated. The CEO of VeriSign does not
personally meet every individual or company representative when authenticating a public key. You can get a "class 1" ID
simply by filling out a web form and paying a small fee. The key is mailed to the e-mail address included in the certificate.
Thus, you can be reasonably assured that the e-mail address is genuine, but the requestor could have filled in any name
and organization. There are more stringent classes of IDs. For example, with a "class 3" ID, VeriSign will require an

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

individual requestor to appear before a notary public, and it will check the financial rating of a corporate requestor. Other
authenticators will have different procedures. Thus, when you receive an authenticated message, it is important that you
understand what, in fact, is being authenticated.

Certificate Signing

In the section "Verifying a Signature " on page 814 , you saw how Alice used a selfsigned certificate to distribute a public
key to Bob. However, Bob needed to ensure that the certificate was valid by verifying the fingerprint with Alice.

Suppose Alice wants to send her colleague Cindy a signed message, but Cindy doesn't want to bother with verifying lots of
signature fingerprints. Now suppose that there is an entity that Cindy trusts to verify signatures. In this example, Cindy
trusts the Information Resources Department at ACME Software.

That department operates a certificate authority (CA). Everyone at ACME has the CA's public key in their keystore,
installed by a system administrator who carefully checked the key fingerprint. The CA signs the keys of ACME employees.
When they install each other's keys, then the keystore will trust them implicitly because they are signed by a trusted key.

Here is how you can simulate this process. Create a keystore acmesoft.certs . Generate a key par and export the public

key:

Code View:
keytool -genkeypair -keystore acmesoft.certs -alias acmeroot

keytool -exportcert -keystore acmesoft.certs -alias acmeroot -file acmeroot.cer

The public key is exported into a "self-signed" certificate. Then add it to every employee's keystore.

Code View:
keytool -importcert -keystore cindy.certs -alias acmeroot -file acmeroot.cer

For Alice to send messages to Cindy and to everyone else at ACME Software, she needs to bring her certificate to the
Information Resources Department and have it signed. Unfortunately, this functionality is missing in the keytool program.

In the book's companion code, we supply a CertificateSigner class to fill the gap. An authorized staff member at ACME

Software would verify Alice's identity and generate a signed certificate as follows:

java CertificateSigner -keystore acmesoft.certs -alias acmeroot

 -infile alice.cer -outfile alice_signedby_acmeroot.cer

The certificate signer program must have access to the ACME Software keystore, and the staff member must know the
keystore password. Clearly, this is a sensitive operation.

Alice gives the file alice_signedby_acmeroot.cer file to Cindy and to anyone else in ACME Software. Alternatively, ACME

Software can simply store the file in a company directory. Remember, this file contains Alice's public key and an assertion
by ACME Software that this key really belongs to Alice.

Now Cindy imports the signed certificate into her keystore:

Code View:
keytool -importcert -keystore cindy.certs -alias alice -file alice_signedby_acmeroot.cer

The keystore verifies that the key was signed by a trusted root key that is already present in the keystore. Cindy is not
asked to verify the certificate fingerprint.

Once Cindy has added the root certificate and the certificates of the people who regularly send her documents, she never
has to worry about the keystore again.

Certificate Requests

In the preceding section, we simulated a CA with a keystore and the CertificateSigner tool. However, most CAs run

more sophisticated software to manage certificates, and they use slightly different formats for certificates. This section
shows the added steps that are required to interact with those software packages.

We will use the OpenSSL software package as an example. The software is preinstalled for many Linux systems and Mac
OS X, and a Cygwin port is also available. Alternatively, you can download the software at http://www.openssl.org .

To create a CA, run the CA script. The exact location depends on your operating system. On Ubuntu, run

/usr/lib/ssl/misc/CA.pl -newca

This script creates a subdirectory called demoCA in the current directory. The directory contains a root key pair and storage

for certificates and certificate revocation lists.

You will want to import the public key into the Java keystore of all employees, but it is in the Privacy Enhanced Mail (PEM)
format, not the DER format that the keystore accepts easily. Copy the file demoCA/cacert.pem to a file acmeroot.pem and

open that file in a text editor. Remove everything before the line

-----BEGIN CERTIFICATE-----

and after the line

-----END CERTIFICATE-----

Now you can import acmeroot.pem into each keystore in the usual way:

keytool -importcert -keystore cindy.certs -alias alice -file acmeroot.pem

It seems quite incredible that the keytool cannot carry out this editing operation itself.

To sign Alice's public key, you start by generating a certificate request that contains the certificate in the PEM format:

keytool -certreq -keystore alice.store -alias alice -file alice.pem

To sign the certificate, run

openssl ca -in alice.pem -out alice_signedby_acmeroot.pem

As before, cut out everything outside the BEGIN CERTIFICATE /END CERTIFICATE markers from

alice_signedby_acmeroot.pem . Then import it into the keystore:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
keytool -importcert -keystore cindy.certs -alias alice -file alice_signedby_acmeroot.pem

You use the same steps to have a certificate signed by a public certificate authority such as VeriSign.

Code Signing

One of the most important uses of authentication technology is signing executable programs. If you download a
program, you are naturally concerned about damage that a program can do. For example, the program could
have been infected by a virus. If you know where the code comes from and that it has not been tampered with
since it left its origin, then your comfort level will be a lot higher than without this knowledge. In fact, if the
program was also written in the Java programming language, you can then use this information to make a
rational decision about what privileges you will allow that program to have. You might want it to run just in a
sandbox as a regular applet, or you might want to grant it a different set of rights and restrictions. For example,
if you download a word processing program, you might want to grant it access to your printer and to files in a
certain subdirectory. However, you might not want to give it the right to make network connections, so that the
program can't try to send your files to a third party without your knowledge.

You now know how to implement this sophisticated scheme.

Use authentication to verify where the code came from.1.

Run the code with a security policy that enforces the permissions that you want to grant the program,
depending on its origin.

2.

JAR File Signing

In this section, we show you how to sign applets and web start applications for use with the Java Plug-in
software. There are two scenarios:

Delivery in an intranet.

Delivery over the public Internet.

In the first scenario, a system administrator installs policy files and certificates on local machines. Whenever the
Java Plug-in tool loads signed code, it consults the policy file for the permissions and the keystore for
signatures. Installing the policies and certificates is straightforward and can be done once per desktop. End
users can then run signed corporate code outside the sandbox. Whenever a new program is created or an
existing one is updated, it must be signed and deployed on the web server. However, no desktops need to be
touched as the programs evolve. We think this is a reasonable scenario that can be an attractive alternative to
deploying corporate applications on every desktop.

In the second scenario, software vendors obtain certificates that are signed by CAs such as VeriSign. When an
end user visits a web site that contains a signed applet, a pop-up dialog box identifies the software vendor and
gives the end user two choices: to run the applet with full privileges or to confine it to the sandbox. We discuss
this less desirable scenario in detail in the section "Software Developer Certificates" on page 827.

For the remainder of this section, we describe how you can build policy files that grant specific permissions to
code from known sources. Building and deploying these policy files is not for casual end users. However, system
administrators can carry out these tasks in preparation for distributing intranet programs.

Suppose ACME Software wants its users to run certain programs that require local file access, and it wants to
deploy the programs through a browser, as applets or Web Start applications. Because these programs cannot

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

run inside the sandbox, ACME Software needs to install policy files on employee machines.

As you saw earlier in this chapter, ACME could identify the programs by their code base. But that means that
ACME would need to update the policy files each time the programs are moved to a different web server.
Instead, ACME decides to sign the JAR files that contain the program code.

First, ACME generates a root certificate:

keytool -genkeypair -keystore acmesoft.certs -alias acmeroot

Of course, the keystore containing the private root key must be kept at a safe place. Therefore, we create a
second keystore client.certs for the public certificates and add the public acmeroot certificate into it.

Code View:
keytool -exportcert -keystore acmesoft.certs -alias acmeroot -file acmeroot.cer
keytool -importcert -keystore client.certs -alias acmeroot -file acmeroot.cer

To make a signed JAR file, programmers add their class files to a JAR file in the usual way. For example,

javac FileReadApplet.java

jar cvf FileReadApplet.jar *.class

Then a trusted person at ACME runs the jarsigner tool, specifying the JAR file and the alias of the private key:

jarsigner -keystore acmesoft.certs FileReadApplet.jar acmeroot

The signed applet is now ready to be deployed on a web server.

Next, let us turn to the client machine configuration. A policy file must be distributed to each client machine.

To reference a keystore, a policy file starts with the line

keystore "keystoreURL", "keystoreType";

The URL can be absolute or relative. Relative URLs are relative to the location of the policy file. The type is JKS

if the keystore was generated by keytool. For example,

keystore "client.certs", "JKS";

Then grant clauses can have suffixes signedBy "alias", such as this one:

grant signedBy "acmeroot"

{

 . . .

};

Any signed code that can be verified with the public key associated with the alias is now granted the
permissions inside the grant clause.

You can try out the code signing process with the applet in Listing 9-16. The applet tries to read from a local
file. The default security policy only lets the applet read files from its code base and any subdirectories. Use
appletviewer to run the applet and verify that you can view files from the code base directory, but not from

other directories.

Now create a policy file applet.policy with the contents:

keystore "client.certs", "JKS";

grant signedBy "acmeroot"

{

 permission java.lang.RuntimePermission "usePolicy";

 permission java.io.FilePermission "/etc/*", "read";

};

The usePolicy permission overrides the default "all or nothing" permission for signed applets. Here, we say

that any applets signed by acmeroot are allowed to read files in the /etc directory. (Windows users: Substitute

another directory such as C:\Windows.)

Tell the applet viewer to use the policy file:

appletviewer -J-Djava.security.policy=applet.policy FileReadApplet.html

Now the applet can read files from the /etc directory, thus demonstrating that the signing mechanism works.

As a final test, you can run your applet inside the browser (see Figure 9-16). You need to copy the permission
file and keystore inside the Java deployment directory. If you run UNIX or Linux, that directory is the
.java/deployment subdirectory of your home directory. In Windows Vista, it is the

C:\Users\yourLoginName\AppData\Sun\Java\Deployment directory. In the following, we refer to that

directory as deploydir.

Figure 9-16. A signed applet can read local files

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Copy applet.policy and client.certs to the deploydir/security directory. In that directory, rename

applets.policy to java.policy. (Double-check that you are not wiping out an existing java.policy file. If

there is one, add the applet.policy contents to it.)

Tip

For more details on configuring client Java security, read the sections "Deployment
Configuration File and Properties" and "Java Control Panel" in the Java deployment
guide at
http://java.sun.com/javase/6/docs/technotes/guides/deployment/deployment-
guide/overview.html.

Restart your browser and load the FileReadApplet.html. You should not be prompted to accept any certificate.

Check that you can load any file in the /etc directory and the directory from which the applet was loaded, but

not from other directories.

When you are done, remember to clean up your deploydir/security directory. Remove the files java.policy

and client.certs. Restart your browser. If you load the applet again after cleaning up, you should no longer

be able to read files from the local file system. Instead, you will be prompted for a certificate. We discuss
security certificates in the next section.

http://java.sun.com/javase/6/docs/technotes/guides/deployment/deployment-

Listing 9-16. FileReadApplet.java

Code View:
 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import java.io.*;

 4. import java.util.*;

 5. import javax.swing.*;

 6.

 7. /**

 8. * This applet can run "outside the sandbox" and read local files when it is given the right

 9. * permissions.

10. * @version 1.11 2007-10-06

11. * @author Cay Horstmann

12. */

13. public class FileReadApplet extends JApplet

14. {

15. public void init()

16. {

17. EventQueue.invokeLater(new Runnable()

18. {

19. public void run()

20. {

21. fileNameField = new JTextField(20);

22. JPanel panel = new JPanel();

23. panel.add(new JLabel("File name:"));

24. panel.add(fileNameField);

25. JButton openButton = new JButton("Open");

26. panel.add(openButton);

27. ActionListener listener = new ActionListener()

28. {

29. public void actionPerformed(ActionEvent event)

30. {

31. loadFile(fileNameField.getText());

32. }

33. };

34. fileNameField.addActionListener(listener);

35. openButton.addActionListener(listener);

36.

37. add(panel, "North");

38.

39. fileText = new JTextArea();

40. add(new JScrollPane(fileText), "Center");

41. }

42. });

43. }

44.

45. /**

46. * Loads the contents of a file into the text area.

47. * @param filename the file name

48. */

49. public void loadFile(String filename)

50. {

51. try

52. {

53. fileText.setText("");

54. Scanner in = new Scanner(new FileReader(filename));

55. while (in.hasNextLine())

56. fileText.append(in.nextLine() + "\n");

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

57. in.close();

58. }

59. catch (IOException e)

60. {

61. fileText.append(e + "\n");

62. }

63. catch (SecurityException e)

64. {

65. fileText.append("I am sorry, but I cannot do that.\n");

66. fileText.append(e + "\n");

67. }

68. }

69. private JTextField fileNameField;

70. private JTextArea fileText;

71. }

Software Developer Certificates

Up to now, we discussed scenarios in which programs are delivered in an intranet and for which a system
administrator configures a security policy that controls the privileges of the programs. However, that strategy
only works with programs from known sources.

Suppose while surfing the Internet, you encounter a web site that offers to run an applet or web start
application from an unfamiliar vendor, provided you grant it the permission to do so (see Figure 9-17). Such a
program is signed with a software developer certificate that is issued by a CA. The pop-up dialog box identifies
the software developer and the certificate issuer. You now have two choices:

Run the program with full privileges.

Confine the program to the sandbox. (The Cancel button in the dialog box is misleading. If you click that
button, the applet is not canceled. Instead, it runs in the sandbox.)

Figure 9-17. Launching a signed applet

[View full size image]

What facts do you have at your disposal that might influence your decision? Here is what you know:

Thawte sold a certificate to the software developer.

The program really was signed with that certificate, and it hasn't been modified in transit.

The certificate really was signed by Thawte—it was verified by the public key in the local cacerts file.

Does that tell you whether the code is safe to run? Do you trust the vendor if all you know is the vendor name
and the fact that Thawte sold them a software developer certificate? Presumably Thawte went to some degree
of trouble to assure itself that ChemAxon Kft. is not an outright cracker. However, no certificate issuer carries
out a comprehensive audit of the honesty and competence of software vendors.

In the situation of an unknown vendor, an end user is ill-equipped to make an intelligent decision whether to let
this program run outside the sandbox, with all permissions of a local application. If the vendor is a well-known
company, then the user can at least take the past track record of the company into account.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

It is possible to use very weak certificates to sign code—see
http://www.dallaway.com/acad/webstart for a sobering example. Some developers
even instruct users to add untrusted certificates into their certificate store—for
example,
http://www.agsrhichome.bnl.gov/Controls/doc/javaws/javaws_howto.html. From a
security standpoint, this seems very bad.

We don't like situations in which a program demands "give me all rights, or I won't run at all." Naive users are
too often cowed into granting access that can put them in danger.

Would it help if each program explained what rights it needs and requested specific permission for those rights?
Unfortunately, as you have seen, that can get pretty technical. It doesn't seem reasonable for an end user to
have to ponder whether a program should really have the right to inspect the AWT event queue.

We remain unenthusiastic about software developer certificates. It would be better if applets and web start
applications on the public Internet tried harder to stay within their respective sandboxes, and if those
sandboxes were improved. The Web Start API that we discussed in Volume I, Chapter 10 is a step in the right
direction.

http://www.dallaway.com/acad/webstart
http://www.agsrhichome.bnl.gov/Controls/doc/javaws/javaws_howto.html

Encryption

So far, we have discussed one important cryptographic technique that is implemented in the Java security API,
namely, authentication through digital signatures. A second important aspect of security is encryption. When
information is authenticated, the information itself is plainly visible. The digital signature merely verifies that the
information has not been changed. In contrast, when information is encrypted, it is not visible. It can only be
decrypted with a matching key.

Authentication is sufficient for code signing—there is no need for hiding the code. However, encryption is
necessary when applets or applications transfer confidential information, such as credit card numbers and other
personal data.

Until recently, patents and export controls have prevented many companies, including Sun, from offering strong
encryption. Fortunately, export controls are now much less stringent, and the patent for an important algorithm
has expired. As of Java SE 1.4, good encryption support has been part of the standard library.

Symmetric Ciphers

The Java cryptographic extensions contain a class Cipher that is the superclass for all encryption algorithms.

You get a cipher object by calling the getInstance method:

Cipher cipher = Cipher.getInstance(algorithName);

or

Cipher cipher = Cipher.getInstance(algorithName, providerName);

The JDK comes with ciphers by the provider named "SunJCE". It is the default provider that is used if you don't

specify another provider name. You might want another provider if you need specialized algorithms that Sun
does not support.

The algorithm name is a string such as "AES" or "DES/CBC/PKCS5Padding".

The Data Encryption Standard (DES) is a venerable block cipher with a key length of 56 bits. Nowadays, the
DES algorithm is considered obsolete because it can be cracked with brute force (see, for example,
http://www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/). A far better alternative is its successor, the
Advanced Encryption Standard (AES). See http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf for a
detailed description of the AES algorithm. We use AES for our example.

Once you have a cipher object, you initialize it by setting the mode and the key:

int mode = . . .;

Key key = . . .;
cipher.init(mode, key);

The mode is one of

Cipher.ENCRYPT_MODE

Cipher.DECRYPT_MODE

Cipher.WRAP_MODE

Cipher.UNWRAP_MODE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

The wrap and unwrap modes encrypt one key with another—see the next section for an example.

Now you can repeatedly call the update method to encrypt blocks of data:

int blockSize = cipher.getBlockSize();

byte[] inBytes = new byte[blockSize];

. . . // read inBytes

int outputSize= cipher.getOutputSize(blockSize);

byte[] outBytes = new byte[outputSize];

int outLength = cipher.update(inBytes, 0, outputSize, outBytes);

. . . // write outBytes

When you are done, you must call the doFinal method once. If a final block of input data is available (with

fewer than blockSize bytes), then call

outBytes = cipher.doFinal(inBytes, 0, inLength);

If all input data have been encrypted, instead call

outBytes = cipher.doFinal();

The call to doFinal is necessary to carry out padding of the final block. Consider the DES cipher. It has a block

size of 8 bytes. Suppose the last block of the input data has fewer than 8 bytes. Of course, we can fill the
remaining bytes with 0, to obtain one final block of 8 bytes, and encrypt it. But when the blocks are decrypted,
the result will have several trailing 0 bytes appended to it, and therefore it will be slightly different from the
original input file. That could be a problem, and, to avoid it, we need a padding scheme. A commonly used
padding scheme is the one described in the Public Key Cryptography Standard (PKCS) #5 by RSA Security Inc.
(ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf). In this scheme, the last block is not padded with
a pad value of zero, but with a pad value that equals the number of pad bytes. In other words, if L is the last
(incomplete) block, then it is padded as follows:

L 01 if length(L) = 7

L 02 02 if length(L) = 6

L 03 03 03 if length(L) = 5
. . .

L 07 07 07 07 07 07 07 if length(L) = 1

Finally, if the length of the input is actually divisible by 8, then one block

08 08 08 08 08 08 08 08

is appended to the input and encrypted. For decryption, the very last byte of the plaintext is a count of the
padding characters to discard.

Key Generation

To encrypt, you need to generate a key. Each cipher has a different format for keys, and you need to make sure
that the key generation is random. Follow these steps:

1. Get a KeyGenerator for your algorithm.

2. Initialize the generator with a source for randomness. If the block length of the cipher is variable, also
specify the desired block length.

3. Call the generateKey method.

For example, here is how you generate an AES key.

KeyGenerator keygen = KeyGenerator.getInstance("AES");

SecureRandom random = new SecureRandom(); // see below

keygen.init(random);

Key key = keygen.generateKey();

Alternatively, you can produce a key from a fixed set of raw data (perhaps derived from a password or the
timing of keystrokes). Then use a SecretKeyFactory, like this:

SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("AES");

byte[] keyData = . . .; // 16 bytes for AES

SecretKeySpec keySpec = new SecretKeySpec(keyData, "AES");

Key key = keyFactory.generateSecret(keySpec);

When generating keys, make sure you use truly random numbers. For example, the regular random number
generator in the Random class, seeded by the current date and time, is not random enough. Suppose the

computer clock is accurate to 1/10 of a second. Then there are at most 864,000 seeds per day. If an attacker
knows the day a key was issued (as can often be deduced from a message date or certificate expiration date),
then it is an easy matter to generate all possible seeds for that day.

The SecureRandom class generates random numbers that are far more secure than those produced by the

Random class. You still need to provide a seed to start the number sequence at a random spot. The best method
for doing this is to obtain random input from a hardware device such as a white-noise generator. Another
reasonable source for random input is to ask the user to type away aimlessly on the keyboard, but each
keystroke should contribute only one or two bits to the random seed. Once you gather such random bits in an
array of bytes, you pass it to the setSeed method.

SecureRandom secrand = new SecureRandom();
byte[] b = new byte[20];

// fill with truly random bits

secrand.setSeed(b);

If you don't seed the random number generator, then it will compute its own 20-byte seed by launching
threads, putting them to sleep, and measuring the exact time when they are awakened.

Note

This algorithm is not known to be safe. In the past, algorithms that relied on timing
other components of the computer, such as hard disk access time, were later shown
not to be completely random.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The sample program at the end of this section puts the AES cipher to work (see Listing 9-17). To use the
program, you first generate a secret key. Run

java AESTest -genkey secret.key

The secret key is saved in the file secret.key.

Now you can encrypt with the command

java AESTest -encrypt plaintextFile encryptedFile secret.key

Decrypt with the command

java AESTest -decrypt encryptedFile decryptedFile secret.key

The program is straightforward. The -genkey option produces a new secret key and serializes it in the given file.

That operation takes a long time because the initialization of the secure random generator is time consuming.
The -encrypt and -decrypt options both call into the same crypt method that calls the update and doFinal

methods of the cipher. Note how the update method is called as long as the input blocks have the full length,

and the doFinal method is either called with a partial input block (which is then padded) or with no additional

data (to generate one pad block).

Listing 9-17. AESTest.java

Code View:
 1. import java.io.*;

 2. import java.security.*;

 3. import javax.crypto.*;

 4.

 5. /**

 6. * This program tests the AES cipher. Usage:

 7. * java AESTest -genkey keyfile

 8. * java AESTest -encrypt plaintext encrypted keyfile

 9. * java AESTest -decrypt encrypted decrypted keyfile

10. * @author Cay Horstmann

11. * @version 1.0 2004-09-14

12. */

13. public class AESTest

14. {

15. public static void main(String[] args)

16. {

17. try

18. {

19. if (args[0].equals("-genkey"))

20. {

21. KeyGenerator keygen = KeyGenerator.getInstance("AES");

22. SecureRandom random = new SecureRandom();

23. keygen.init(random);

24. SecretKey key = keygen.generateKey();

25. ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(args[1]));

26. out.writeObject(key);

27. out.close();

28. }

29. else

30. {

31. int mode;

32. if (args[0].equals("-encrypt")) mode = Cipher.ENCRYPT_MODE;

33. else mode = Cipher.DECRYPT_MODE;

34.

35. ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream(args[3]));

36. Key key = (Key) keyIn.readObject();

37. keyIn.close();

38.

39. InputStream in = new FileInputStream(args[1]);

40. OutputStream out = new FileOutputStream(args[2]);

41. Cipher cipher = Cipher.getInstance("AES");

42. cipher.init(mode, key);

43.

44. crypt(in, out, cipher);

45. in.close();

46. out.close();

47. }

48. }

49. catch (IOException e)

50. {

51. e.printStackTrace();

52. }

53. catch (GeneralSecurityException e)

54. {

55. e.printStackTrace();

56. }

57. catch (ClassNotFoundException e)

58. {

59. e.printStackTrace();

60. }

61. }

62.

63. /**

64. * Uses a cipher to transform the bytes in an input stream and sends the transformed bytes

65. * to an output stream.

66. * @param in the input stream

67. * @param out the output stream

68. * @param cipher the cipher that transforms the bytes

69. */

70. public static void crypt(InputStream in, OutputStream out, Cipher cipher)

71. throws IOException, GeneralSecurityException

72. {

73. int blockSize = cipher.getBlockSize();

74. int outputSize = cipher.getOutputSize(blockSize);

75. byte[] inBytes = new byte[blockSize];

76. byte[] outBytes = new byte[outputSize];

77.

78. int inLength = 0;

79. boolean more = true;

80. while (more)

81. {

82. inLength = in.read(inBytes);

83. if (inLength == blockSize)

84. {

85. int outLength = cipher.update(inBytes, 0, blockSize, outBytes);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

86. out.write(outBytes, 0, outLength);

87. }

88. else more = false;

89. }

90. if (inLength > 0) outBytes = cipher.doFinal(inBytes, 0, inLength);

91. else outBytes = cipher.doFinal();

92. out.write(outBytes);

93. }

94. }

javax.crypto.Cipher 1.4

static Cipher getInstance(String algorithmName)

static Cipher getInstance(String algorithmName, String

providerName)

returns a Cipher object that implements the specified algorithm. Throws

a NoSuchAlgorithmException if the algorithm is not provided.

int getBlockSize()

returns the size (in bytes) of a cipher block, or 0 if the cipher is not a
block cipher.

int getOutputSize(int inputLength)

returns the size of an output buffer that is needed if the next input has
the given number of bytes. This method takes into account any buffered
bytes in the cipher object.

void init(int mode, Key key)

initializes the cipher algorithm object. The mode is one of ENCRYPT_MODE,

DECRYPT_MODE, WRAP_MODE, or UNWRAP_MODE.

byte[] update(byte[] in)

byte[] update(byte[] in, int offset, int length)

int update(byte[] in, int offset, int length, byte[] out)

transforms one block of input data. The first two methods return the
output. The third method returns the number of bytes placed into out.

byte[] doFinal()

byte[] doFinal(byte[] in)

byte[] doFinal(byte[] in, int offset, int length)

int doFinal(byte[] in, int offset, int length, byte[] out)

transforms the last block of input data and flushes the buffer of this
algorithm object. The first three methods return the output. The fourth
method returns the number of bytes placed into out.

javax.crypto.KeyGenerator 1.4

static KeyGenerator getInstance(String algorithmName)

returns a KeyGenerator object that implements the specified algorithm.
Throws a NoSuchAlgorithmException if the algorithm is not provided.

void init(SecureRandom random)

void init(int keySize, SecureRandom random)

initializes the key generator.

SecretKey generateKey()

generates a new key.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.crypto.SecretKeyFactory 1.4

static SecretKeyFactory getInstance(String algorithmName)

static SecretKeyFactory getInstance(String algorithmName,

String providerName)

returns a SecretKeyFactory object for the specified algorithm.

SecretKey generateSecret(KeySpec spec)

generates a new secret key from the given specification.

javax.crypto.spec.SecretKeySpec 1.4

SecretKeySpec(byte[] key, String algorithmName)

constructs a key specification.

Cipher Streams

The JCE library provides a convenient set of stream classes that automatically encrypt or decrypt stream data.
For example, here is how you can encrypt data to a file:

Code View:
Cipher cipher = . . .;

cipher.init(Cipher.ENCRYPT_MODE, key);
CipherOutputStream out = new CipherOutputStream(new FileOutputStream(outputFileName), cipher);

byte[] bytes = new byte[BLOCKSIZE];

int inLength = getData(bytes); // get data from data source
while (inLength != -1)

{

 out.write(bytes, 0, inLength);

 inLength = getData(bytes); // get more data from data source

}

out.flush();

Similarly, you can use a CipherInputStream to read and decrypt data from a file:

Code View:
Cipher cipher = . . .;

cipher.init(Cipher.DECRYPT_MODE, key);

CipherInputStream in = new CipherInputStream(new FileInputStream(inputFileName), cipher);

byte[] bytes = new byte[BLOCKSIZE];
int inLength = in.read(bytes);

while (inLength != -1)

{

 putData(bytes, inLength); // put data to destination

 inLength = in.read(bytes);

}

The cipher stream classes transparently handle the calls to update and doFinal, which is clearly a convenience.

javax.crypto.CipherInputStream 1.4

CipherInputStream(InputStream in, Cipher cipher)

constructs an input stream that reads data from in and decrypts or

encrypts them by using the given cipher.

int read()

int read(byte[] b, int off, int len)

reads data from the input stream, which is automatically decrypted or
encrypted.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.crypto.CipherOutputStream 1.4

CipherOutputStream(OutputStream out, Cipher cipher)

constructs an output stream that writes data to out and encrypts or

decrypts them using the given cipher.

void write(int ch)

void write(byte[] b, int off, int len)

writes data to the output stream, which is automatically encrypted or
decrypted.

void flush()

flushes the cipher buffer and carries out padding if necessary.

Public Key Ciphers

The AES cipher that you have seen in the preceding section is a symmetric cipher. The same key is used for
encryption and for decryption. The Achilles heel of symmetric ciphers is key distribution. If Alice sends Bob an
encrypted method, then Bob needs the same key that Alice used. If Alice changes the key, then she needs to
send Bob both the message and, through a secure channel, the new key. But perhaps she has no secure channel
to Bob, which is why she encrypts her messages to him in the first place.

Public key cryptography solves that problem. In a public key cipher, Bob has a key pair consisting of a public
key and a matching private key. Bob can publish the public key anywhere, but he must closely guard the private
key. Alice simply uses the public key to encrypt her messages to Bob.

Actually, it's not quite that simple. All known public key algorithms are much slower than symmetric key
algorithms such as DES or AES. It would not be practical to use a public key algorithm to encrypt large amounts
of information. However, that problem can easily be overcome by combining a public key cipher with a fast
symmetric cipher, like this:

1. Alice generates a random symmetric encryption key. She uses it to encrypt her plaintext.

2. Alice encrypts the symmetric key with Bob's public key.

3. Alice sends Bob both the encrypted symmetric key and the encrypted plaintext.

4. Bob uses his private key to decrypt the symmetric key.

5. Bob uses the decrypted symmetric key to decrypt the message.

Nobody but Bob can decrypt the symmetric key because only Bob has the private key for decryption. Thus, the
expensive public key encryption is only applied to a small amount of key data.

The most commonly used public key algorithm is the RSA algorithm invented by Rivest, Shamir, and Adleman.

Until October 2000, the algorithm was protected by a patent assigned to RSA Security Inc. Licenses were not
cheap—typically a 3% royalty, with a minimum payment of $50,000 per year. Now the algorithm is in the public
domain. The RSA algorithm is supported in Java SE 5.0 and above.

Note

If you still use an older version of the JDK, check out the Legion of Bouncy Castle
(http://www.bouncycastle.org). It supplies a cryptography provider that includes
RSA as well as a number of algorithms that are not part of the SunJCE provider. The
Legion of Bouncy Castle provider has been signed by Sun Microsystems so that you
can combine it with the JDK.

To use the RSA algorithm, you need a public/private key pair. You use a KeyPairGenerator like this:

KeyPairGenerator pairgen = KeyPairGenerator.getInstance("RSA");

SecureRandom random = new SecureRandom();

pairgen.initialize(KEYSIZE, random);

KeyPair keyPair = pairgen.generateKeyPair();

Key publicKey = keyPair.getPublic();
Key privateKey = keyPair.getPrivate();

The program in Listing 9-18 has three options. The -genkey option produces a key pair. The -encrypt option

generates an AES key and wraps it with the public key.

Key key = . . .; // an AES key

Key publicKey = . . .; // a public RSA key
Cipher cipher = Cipher.getInstance("RSA");

cipher.init(Cipher.WRAP_MODE, publicKey);

byte[] wrappedKey = cipher.wrap(key);

It then produces a file that contains

The length of the wrapped key.

The wrapped key bytes.

The plaintext encrypted with the AES key.

The -decrypt option decrypts such a file. To try the program, first generate the RSA keys:

java RSATest -genkey public.key private.key

Then encrypt a file:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.bouncycastle.org

java RSATest -encrypt plaintextFile encryptedFile public.key

Finally, decrypt it and verify that the decrypted file matches the plaintext:

java RSATest -decrypt encryptedFile decryptedFile private.key

Listing 9-18. RSATest.java

Code View:
 1. import java.io.*;

 2. import java.security.*;

 3. import javax.crypto.*;

 4.

 5. /**

 6. * This program tests the RSA cipher. Usage:

 7. * java RSATest -genkey public private

 8. * java RSATest -encrypt plaintext encrypted public

 9. * java RSATest -decrypt encrypted decrypted private

 10. * @author Cay Horstmann

 11. * @version 1.0 2004-09-14

 12. */

 13. public class RSATest

 14. {

 15. public static void main(String[] args)

 16. {

 17. try

 18. {

 19. if (args[0].equals("-genkey"))

 20. {

 21. KeyPairGenerator pairgen = KeyPairGenerator.getInstance("RSA");

 22. SecureRandom random = new SecureRandom();

 23. pairgen.initialize(KEYSIZE, random);

 24. KeyPair keyPair = pairgen.generateKeyPair();

 25. ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(args[1]));

 26. out.writeObject(keyPair.getPublic());

 27. out.close();

 28. out = new ObjectOutputStream(new FileOutputStream(args[2]));

 29. out.writeObject(keyPair.getPrivate());

 30. out.close();

 31. }

 32. else if (args[0].equals("-encrypt"))

 33. {

 34. KeyGenerator keygen = KeyGenerator.getInstance("AES");

 35. SecureRandom random = new SecureRandom();

 36. keygen.init(random);

 37. SecretKey key = keygen.generateKey();

 38.

 39. // wrap with RSA public key

 40. ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream(args[3]));

 41. Key publicKey = (Key) keyIn.readObject();

 42. keyIn.close();

 43.

 44. Cipher cipher = Cipher.getInstance("RSA");

 45. cipher.init(Cipher.WRAP_MODE, publicKey);

 46. byte[] wrappedKey = cipher.wrap(key);

 47. DataOutputStream out = new DataOutputStream(new FileOutputStream(args[2]));

 48. out.writeInt(wrappedKey.length);

 49. out.write(wrappedKey);

 50.

 51. InputStream in = new FileInputStream(args[1]);

 52. cipher = Cipher.getInstance("AES");

 53. cipher.init(Cipher.ENCRYPT_MODE, key);

 54. crypt(in, out, cipher);

 55. in.close();

 56. out.close();

 57. }

 58. else

 59. {

 60. DataInputStream in = new DataInputStream(new FileInputStream(args[1]));

 61. int length = in.readInt();

 62. byte[] wrappedKey = new byte[length];

 63. in.read(wrappedKey, 0, length);

 64.

 65. // unwrap with RSA private key

 66. ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream(args[3]));

 67. Key privateKey = (Key) keyIn.readObject();

 68. keyIn.close();

 69.

 70. Cipher cipher = Cipher.getInstance("RSA");

 71. cipher.init(Cipher.UNWRAP_MODE, privateKey);

 72. Key key = cipher.unwrap(wrappedKey, "AES", Cipher.SECRET_KEY);

 73.

 74. OutputStream out = new FileOutputStream(args[2]);

 75. cipher = Cipher.getInstance("AES");

 76. cipher.init(Cipher.DECRYPT_MODE, key);

 77.

 78. crypt(in, out, cipher);

 79. in.close();

 80. out.close();

 81. }

 82. }

 83. catch (IOException e)

 84. {

 85. e.printStackTrace();

 86. }

 87. catch (GeneralSecurityException e)

 88. {

 89. e.printStackTrace();

 90. }

 91. catch (ClassNotFoundException e)

 92. {

 93. e.printStackTrace();

 94. }

 95. }

 96.

 97. /**

 98. * Uses a cipher to transform the bytes in an input stream and sends the transformed bytes

 99. * to an output stream.

100. * @param in the input stream

101. * @param out the output stream

102. * @param cipher the cipher that transforms the bytes

103. */

104. public static void crypt(InputStream in, OutputStream out, Cipher cipher)

105. throws IOException, GeneralSecurityException

106. {

107. int blockSize = cipher.getBlockSize();

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

108. int outputSize = cipher.getOutputSize(blockSize);

109. byte[] inBytes = new byte[blockSize];

110. byte[] outBytes = new byte[outputSize];

111.

112. int inLength = 0;

113. ;

114. boolean more = true;

115. while (more)

116. {

117. inLength = in.read(inBytes);

118. if (inLength == blockSize)

119. {

120. int outLength = cipher.update(inBytes, 0, blockSize, outBytes);

121. out.write(outBytes, 0, outLength);

122. }

123. else more = false;

124. }

125. if (inLength > 0) outBytes = cipher.doFinal(inBytes, 0, inLength);

126. else outBytes = cipher.doFinal();

127. out.write(outBytes);

128. }

129.

130. private static final int KEYSIZE = 512;

131. }

You have now seen how the Java security model allows the controlled execution of code, which is a unique and
increasingly important aspect of the Java platform. You have also seen the services for authentication and
encryption that the Java library provides. We did not cover a number of advanced and specialized issues, among
them:

The GSS-API for "generic security services" that provides support for the Kerberos protocol (and, in
principle, other protocols for secure message exchange). There is a tutorial at
http://java.sun.com/javase/6/docs/technotes/guides/security/jgss/tutorials/index.html.

Support for the Simple Authentication and Security Layer (SASL), used by the Lightweight Directory
Access Protocol (LDAP) and Internet Message Access Protocol (IMAP). If you need to implement SASL in
your own application, look at http://java.sun.com/javase/6/docs/technotes/guides/security/sasl/sasl-
refguide.html.

Support for SSL. Using SSL over HTTP is transparent to application programmers; simply use URLs that
start with https. If you want to add SSL to your own application, see the Java Secure Socket Extension

(JSEE) reference at
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html.

Now that we have completed our overview of Java security, we turn to distributed computing in Chapter 10.

http://java.sun.com/javase/6/docs/technotes/guides/security/jgss/tutorials/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/sasl/sasl-
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html

Chapter 10. Distributed Objects

THE ROLES OF CLIENT AND SERVER

REMOTE METHOD CALLS

THE RMI PROGRAMMING MODEL

PARAMETERS AND RETURN VALUES IN REMOTE METHODS

REMOTE OBJECT ACTIVATION

WEB SERVICES AND JAX-WS

Periodically, the programming community starts thinking of "objects everywhere" as the solution to all its
problems. The idea is to have a happy family of collaborating objects that can be located anywhere. When an
object on one computer needs to invoke a method on an object on another computer, it sends a network
message that contains the details of the request. The remote object computes a response, perhaps by accessing
a database or by communicating with additional objects. Once the remote object has the answer to the client
request, it sends the answer back over the network. Conceptuatlly, this process sounds quite simple, but you
need to understand what goes on under the hood to use distributed objects effectively.

In this chapter, we focus on Java technologies for distributed programming, in particular the Remote Method
Invocation (RMI) protocol for communicating between two Java virtual machines (which might run on different
computers). We then briefly visit the JAX-WS technology for making remote calls to web services.

The Roles of Client and Server

The basic idea behind all distributed programming is simple. A client computer makes a request and sends the
request data across a network to a server. The server processes the request and sends back a response for the
client to analyze. Figure 10-1 shows the process.

Figure 10-1. Transmitting objects between client and server

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

We would like to say at the outset that these requests and responses are not what you would see in a web
application. The client is not a web browser. It can be any application that executes business rules of any
complexity. The client application might or might not interact with a human user, and if it does, it can have a
command-line or Swing user interface. The protocol for the request and response data allows the transfer of
arbitrary objects, whereas traditional web applications are limited by using HTTP for the request and HTML for
the response.

What we want is a mechanism by which the client programmer makes a regular method call, without worrying
about sending data across the network or parsing the response. The solution is to install a proxy object on the
client. The proxy is an object located in the client virtual machine that appears to the client program as if it was
the remote object. The client calls the proxy, making a regular method call. The client proxy contacts the
server, using a network protocol.

Similarly, the programmer who implements the service doesn't want to fuss with client communication. The
solution is to install a second proxy object on the server. The server proxy communicates with the client proxy,
and it makes regular method calls to the object implemeting the service (see Figure 10-2).

Figure 10-2. Remote method call with proxies

[View full size image]

How do the proxies communicate with each other? That depends on the implementation technology. There are
three common choices:

The Java RMI technology supports method calls between distributed Java objects.

The Common Object Request Broker Architecture (CORBA) supports method calls between objects of any
programming language. CORBA uses the binary Internet Inter-ORB Protocol, or IIOP, to communicate
between objects.

The web services architecture is a collection of protocols, sometimes collectively described as WS-*. It is
also programming-language neutral. However, it uses XML-based communication formats. The format for
transmitting objects is the Simple Object Access Protocol (SOAP).

If the communicating programs are implemented in Java code, then the full generality and complexity of CORBA
or WS-* is not required. Sun developed a simple mechanism, called RMI, specifically for communication
between Java applications.

It is well worth learning about RMI, even if you are not going to use it in your own programs. You will learn the
mechanisms that are essential for programming distributed applications, using a straightforward architecture.
Moreover, if you use enterprise Java technologies, it is very useful to have a basic understanding of RMI
because that is the protocol used to communicate between enterprise Java beans (EJBs). EJBs are server-side
components that are composed to make up complex applications that run on multiple servers. To make effective
use of EJBs, you will want to have a good idea of the costs associated with remote calls.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Unlike RMI, CORBA and SOAP are completely language neutral. Client and server programs can be written in C,
C++, C#, Java, or any other language. You supply an interface description to specify the signatures of the
methods and the types of the data your objects can handle. These descriptions are formatted in a special
language, called Interface Definition Language (IDL) for CORBA and Web Services Description Language (WSDL)
for web services.

For many years, quite a few people believed that CORBA was the object model of the future. Frankly, though,
CORBA has a reputation—sometimes deserved—for complex implementations and interoperability problems,
and it has only reached modest success. We covered interoperability between Java and CORBA for five editions
of this book, but dropped it for lack of interest. Our sentiments about CORBA are similar to those expressed by
French president Charles De Gaulle about Brazil: It has a great future . . . and always will.

Web services had a similar amount of buzz when they first appeared, with the promise that they are simpler
and, of course, founded in the goodness of the World Wide Web and XML. However, with the passing of time
and the work of many committees, the protocol stack has become less simple, as it acquired more of the
features that CORBA had all along. The XML protocol has the advantage of being (barely) human-readable,
which helps with debugging. On the other hand, XML processing is a significant performance bottleneck.
Recently, the WS-* stack has lost quite a bit of its luster and it too is gaining a reputation—sometimes
deserved—for complex implementations and interoperability problems.

We close this chapter with an example of an application that consumes a web service. We have a look at the
underlying protocol so that you can see how communication between different programming languages is
implemented.

Chapter 10. Distributed Objects

THE ROLES OF CLIENT AND SERVER

REMOTE METHOD CALLS

THE RMI PROGRAMMING MODEL

PARAMETERS AND RETURN VALUES IN REMOTE METHODS

REMOTE OBJECT ACTIVATION

WEB SERVICES AND JAX-WS

Periodically, the programming community starts thinking of "objects everywhere" as the solution to all its
problems. The idea is to have a happy family of collaborating objects that can be located anywhere. When an
object on one computer needs to invoke a method on an object on another computer, it sends a network
message that contains the details of the request. The remote object computes a response, perhaps by accessing
a database or by communicating with additional objects. Once the remote object has the answer to the client
request, it sends the answer back over the network. Conceptuatlly, this process sounds quite simple, but you
need to understand what goes on under the hood to use distributed objects effectively.

In this chapter, we focus on Java technologies for distributed programming, in particular the Remote Method
Invocation (RMI) protocol for communicating between two Java virtual machines (which might run on different
computers). We then briefly visit the JAX-WS technology for making remote calls to web services.

The Roles of Client and Server

The basic idea behind all distributed programming is simple. A client computer makes a request and sends the
request data across a network to a server. The server processes the request and sends back a response for the
client to analyze. Figure 10-1 shows the process.

Figure 10-1. Transmitting objects between client and server

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

We would like to say at the outset that these requests and responses are not what you would see in a web
application. The client is not a web browser. It can be any application that executes business rules of any
complexity. The client application might or might not interact with a human user, and if it does, it can have a
command-line or Swing user interface. The protocol for the request and response data allows the transfer of
arbitrary objects, whereas traditional web applications are limited by using HTTP for the request and HTML for
the response.

What we want is a mechanism by which the client programmer makes a regular method call, without worrying
about sending data across the network or parsing the response. The solution is to install a proxy object on the
client. The proxy is an object located in the client virtual machine that appears to the client program as if it was
the remote object. The client calls the proxy, making a regular method call. The client proxy contacts the
server, using a network protocol.

Similarly, the programmer who implements the service doesn't want to fuss with client communication. The
solution is to install a second proxy object on the server. The server proxy communicates with the client proxy,
and it makes regular method calls to the object implemeting the service (see Figure 10-2).

Figure 10-2. Remote method call with proxies

[View full size image]

How do the proxies communicate with each other? That depends on the implementation technology. There are
three common choices:

The Java RMI technology supports method calls between distributed Java objects.

The Common Object Request Broker Architecture (CORBA) supports method calls between objects of any
programming language. CORBA uses the binary Internet Inter-ORB Protocol, or IIOP, to communicate
between objects.

The web services architecture is a collection of protocols, sometimes collectively described as WS-*. It is
also programming-language neutral. However, it uses XML-based communication formats. The format for
transmitting objects is the Simple Object Access Protocol (SOAP).

If the communicating programs are implemented in Java code, then the full generality and complexity of CORBA
or WS-* is not required. Sun developed a simple mechanism, called RMI, specifically for communication
between Java applications.

It is well worth learning about RMI, even if you are not going to use it in your own programs. You will learn the
mechanisms that are essential for programming distributed applications, using a straightforward architecture.
Moreover, if you use enterprise Java technologies, it is very useful to have a basic understanding of RMI
because that is the protocol used to communicate between enterprise Java beans (EJBs). EJBs are server-side
components that are composed to make up complex applications that run on multiple servers. To make effective
use of EJBs, you will want to have a good idea of the costs associated with remote calls.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Unlike RMI, CORBA and SOAP are completely language neutral. Client and server programs can be written in C,
C++, C#, Java, or any other language. You supply an interface description to specify the signatures of the
methods and the types of the data your objects can handle. These descriptions are formatted in a special
language, called Interface Definition Language (IDL) for CORBA and Web Services Description Language (WSDL)
for web services.

For many years, quite a few people believed that CORBA was the object model of the future. Frankly, though,
CORBA has a reputation—sometimes deserved—for complex implementations and interoperability problems,
and it has only reached modest success. We covered interoperability between Java and CORBA for five editions
of this book, but dropped it for lack of interest. Our sentiments about CORBA are similar to those expressed by
French president Charles De Gaulle about Brazil: It has a great future . . . and always will.

Web services had a similar amount of buzz when they first appeared, with the promise that they are simpler
and, of course, founded in the goodness of the World Wide Web and XML. However, with the passing of time
and the work of many committees, the protocol stack has become less simple, as it acquired more of the
features that CORBA had all along. The XML protocol has the advantage of being (barely) human-readable,
which helps with debugging. On the other hand, XML processing is a significant performance bottleneck.
Recently, the WS-* stack has lost quite a bit of its luster and it too is gaining a reputation—sometimes
deserved—for complex implementations and interoperability problems.

We close this chapter with an example of an application that consumes a web service. We have a look at the
underlying protocol so that you can see how communication between different programming languages is
implemented.

Remote Method Calls

The key to distributed computing is the remote method call. Some code on one machine (called the client)
wants to invoke a method on an object on another machine (the remote object). To make this possible, the
method parameters must somehow be shipped to the other machine, the server must be informed to locate the
remote object and execute the method, and the return value must be shipped back.

Before looking at this process in detail, we want to point out that the client/server terminology applies only to a
single method call. The computer that calls the remote method is the client for that call, and the computer
hosting the object that processes the call is the server for that call. It is entirely possible that the roles are
reversed somewhere down the road. The server of a previous call can itself become the client when it invokes a
remote method on an object residing on another computer.

Stubs and Parameter Marshalling

When client code wants to invoke a method on a remote object, it actually calls an ordinary method on a proxy
object called a stub. For example,

Warehouse centralWarehouse = get stub object;

double price = centralWarehouse.getPrice("Blackwell Toaster");

The stub resides on the client machine, not on the server. It knows how to contact the server over the network.
The stub packages the parameters used in the remote method into a block of bytes. The process of encoding
the parameters is called parameter marshalling. The purpose of parameter marshalling is to convert the
parameters into a format suitable for transport from one virtual machine to another. In the RMI protocol,
objects are encoded with the serialization mechanism that is described in Chapter 1. In the SOAP protocol,
objects are encoded as XML.

To sum up, the stub method on the client builds an information block that consists of

An identifier of the remote object to be used.

A description of the method to be called.

The parameters.

The stub then sends this information to the server. On the server side, a receiver object performs the following
actions:

It locates the remote object to be called.1.

It calls the desired method, passing the supplied parameters.2.

It captures the return value or exception of the call.3.

4.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

3.

It sends a package consisting of the marshalled return data back to the stub on the client.4.

The client stub unmarshals the return value or exception from the server. This value becomes the return value
of the stub call. Or, if the remote method threw an exception, the stub rethrows it in the virtual machine of the
caller. Figure 10-3 shows the information flow of a remote method invocation.

Figure 10-3. Parameter marshalling

[View full size image]

This process is obviously complex, but the good news is that it is completely automatic and, to a large extent,
transparent for the programmer.

The details for implementing remote objects and for getting client stubs depend on the technology for
distributed objects. In the following sections, we have a close look at RMI.

The RMI Programming Model

To introduce the RMI programming model, we start with a simple example. A remote object represents a
warehouse. The client program asks the warehouse about the price of a product. In the following sections, you
will see how to implement and launch the server and client programs.

Interfaces and Implementations

The capabilities of remote objects are expressed in interfaces that are shared between the client and server. For
example, the interface in Listing 10-1 describes the service provided by a remote warehouse object:

Listing 10-1. Warehouse.java

 1. import java.rmi.*;

 2.

 3. /**

 4. The remote interface for a simple warehouse.

 5. @version 1.0 2007-10-09

 6. @author Cay Horstmann

 7. */

 8. public interface Warehouse extends Remote

 9. {

10. double getPrice(String description) throws RemoteException;

11. }

Interfaces for remote objects must always extend the Remote interface defined in the java.rmi package. All the

methods in those interfaces must also declare that they will throw a RemoteException. Remote method calls

are inherently less reliable than local calls—it is always possible that a remote call will fail. For example, the
server might be temporarily unavailable, or there might be a network problem. Your client code must be
prepared to deal with these possibilities. For these reasons, you must handle the RemoteException with every

remote method call and specify the appropriate action to take when the call does not succeed.

Next, on the server side, you must provide the class that actually carries out the work advertised in the remote
interface—see Listing 10-2.

Listing 10-2. WarehouseImpl.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. import java.rmi.*;

 2. import java.rmi.server.*;

 3. import java.util.*;

 4.

 5. /**

 6. * This class is the implementation for the remote Warehouse interface.

 7. * @version 1.0 2007-10-09

 8. * @author Cay Horstmann

 9. */

10. public class WarehouseImpl extends UnicastRemoteObject implements Warehouse

11. {

12. public WarehouseImpl() throws RemoteException

13. {

14. prices = new HashMap<String, Double>();

15. prices.put("Blackwell Toaster", 24.95);

16. prices.put("ZapXpress Microwave Oven", 49.95);

17. }

18.

19. public double getPrice(String description) throws RemoteException

20. {

21. Double price = prices.get(description);

22. return price == null ? 0 : price;

23. }

24.

25. private Map<String, Double> prices;

26. }

Note

The WarehouseImpl constructor is declared to throw a RemoteException because

the superclass constructor can throw that exception. This happens when there is a
problem connecting to the network service that tracks remote objects.

You can tell that the class is the target of remote method calls because it extends UnicastRemoteObject. The

constructor of that class makes objects remotely accessible. The "path of least resistance" is to derive from
UnicastRemoteObject, and all service implementation classes in this chapter do so.

Occasionally, you might not want to extend the UnicastRemoteObject class, perhaps because your

implementation class already extends another class. In that situation, you need to manually instantiate the
remote objects and pass them to the static exportObject method. Instead of extending UnicastRemoteObject,

call

UnicastRemoteObject.exportObject(this, 0);

in the constructor of the remote object. The second parameter is 0 to indicate that any suitable port can be
used to listen to client connections.

Note

The term "unicast" refers to the fact that the remote object is located by making a
call to a single IP address and port. This is the only mechanism that is supported in
Java SE. More sophisticated distributed object systems (such as JINI) allow for
"multicast" lookup of remote objects that might be on a number of different servers.

The RMI Registry

To access a remote object that exists on the server, the client needs a local stub object. How can the client
request such a stub? The most common method is to call a remote method of another remote object and get a
stub object as a return value. There is, however, a chicken-and-egg problem here: The first remote object has
to be located some other way. For that purpose, the JDK provides a bootstrap registry service.

A server program registers at least one remote object with a bootstrap registry. To register a remote object,
you need a RMI URL and a reference to the implementation object.

RMI URLs start with rmi: and contain an optional host name, an optional port number, and the name of the

remote object that is (hopefully) unique. An example is:

rmi://regserver.mycompany.com:99/central_warehouse

By default, the host name is localhost and the port number is 1099. The server tells the registry at the given

location to associate or "bind" the name with the object.

Here is the code for registering a WarehouseImpl object with the RMI registry on the same server:

WarehouseImpl centralWarehouse = new WarehouseImpl();

Context namingContext = new InitialContext();

namingContext.bind("rmi:central_warehouse", centralWarehouse);

The program in Listing 10-3 simply constructs and registers a WarehouseImpl object.

Listing 10-3. WarehouseServer.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. import java.rmi.*;

 2. import javax.naming.*;

 3.

 4. /**

 5. * This server program instantiates a remote warehouse object, registers it with the naming

 6. * service, and waits for clients to invoke methods.

 7. * @version 1.12 2007-10-09

 8. * @author Cay Horstmann

 9. */

10.

11. public class WarehouseServer

12. {

13. public static void main(String[] args) throws RemoteException, NamingException

14. {

15. System.out.println("Constructing server implementation...");

16. WarehouseImpl centralWarehouse = new WarehouseImpl();

17.

18. System.out.println("Binding server implementation to registry...");

19. Context namingContext = new InitialContext();

20. namingContext.bind("rmi:central_warehouse", centralWarehouse);

21.

22. System.out.println("Waiting for invocations from clients...");

23. }

24. }

Note

For security reasons, an application can bind, unbind, or rebind registry object
references only if it runs on the same host as the registry. This prevents hostile
clients from changing the registry information. However, any client can look up
objects.

A client can enumerate all registered RMI objects by calling:

Code View:
Enumeration<NameClassPair> e = namingContext.list("rmi://regserver.mycompany.com");

NameClassPair is a helper class that contains both the name of the bound object and the name of its class. For

example, the following code displays the names of all registered objects:

while (e.hasMoreElements())

 System.out.println(e.nextElement().getName());

A client gets a stub to access a remote object by specifying the server and the remote object name in the
following way:

String url = "rmi://regserver.mycompany.com/central_warehouse";

Warehouse centralWarehouse = (Warehouse) namingContext.lookup(url);

Note

Because it is notoriously difficult to keep names unique in a global registry, you
should not use this technique as the general method for locating objects on the
server. Instead, there should be relatively few named remote objects registered
with the bootstrap service. These should be objects that can locate other objects for
you.

The code in Listing 10-4 shows the client that obtains a stub to the remote warehouse object and invokes the
remote getPrice method. Figure 10-4 shows the flow of control. The client obtains a Warehouse stub and

invokes the getPrice method on it. Behind the scenes, the stub contacts the server and causes the getPrice

method to be invoked on the WarehouseImpl object.

Figure 10-4. Calling the remote getDescription method

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 10-4. WarehouseClient.java

Code View:
 1. import java.rmi.*;

 2. import java.util.*;

 3. import javax.naming.*;

 4.

 5. /**

 6. * A client that invokes a remote method.

 7. * @version 1.0 2007-10-09

 8. * @author Cay Horstmann

 9. */

10. public class WarehouseClient

11. {

12. public static void main(String[] args) throws NamingException, RemoteException

13. {

14. Context namingContext = new InitialContext();

15.

16. System.out.print("RMI registry bindings: ");

17. Enumeration<NameClassPair> e = namingContext.list("rmi://localhost/");

18. while (e.hasMoreElements())

19. System.out.println(e.nextElement().getName());

20.

21. String url = "rmi://localhost/central_warehouse";

22. Warehouse centralWarehouse = (Warehouse) namingContext.lookup(url);

23.

24. String descr = "Blackwell Toaster";

25. double price = centralWarehouse.getPrice(descr);

26. System.out.println(descr + ": " + price);

27. }

28. }

javax.naming.InitialContext 1.3

InitialContext()

constructs a naming context that can be used for accessing the RMI
registry.

javax.naming.Context 1.3

static Object lookup(String name)

returns the object for the given name. Throws a NamingException if the

name is not currently bound.

static void bind(String name, Object obj)

binds name to the object obj. Throws a NameAlreadyBoundException if

the object is already bound.

static void unbind(String name)

unbinds the name. It is legal to unbind a name that doesn't exist.

static void rebind(String name, Object obj)

binds name to the object obj. Replaces any existing binding.

NamingEnumeration<NameClassPair> list(String name)

returns an enumeration listing all matching bound objects. To list all RMI
objects, call with "rmi:".

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.naming.NameClassPair 1.3

String getName()

gets the name of the named object.

String getClassName()

gets the name of the class to which the named object belongs.

java.rmi.Naming 1.1

static Remote lookup(String url)

returns the remote object for the URL. Throws a NotBoundException if

the name is not currently bound.

static void bind(String name, Remote obj)

binds name to the remote object obj. Throws an

AlreadyBoundException if the object is already bound.

static void unbind(String name)

unbinds the name. Throws the NotBound exception if the name is not

currently bound.

static void rebind(String name, Remote obj)

binds name to the remote object obj. Replaces any existing binding.

static String[] list(String url)

returns an array of strings of the URLs in the registry located at the
given URL. The array contains a snapshot of the names present in the
registry.

Deploying the Program

Deploying an application that uses RMI can be tricky because so many things can go wrong and the error
messages that you get when something does go wrong are so poor. We have found that it really pays off to test
the deployment under realistic conditions, separating the classes for client and server.

Make two separate directories to hold the classes for starting the server and client.

server/

 WarehouseServer.class

 Warehouse.class

 WarehouseImpl.class

client/

 WarehouseClient.class

 Warehouse.class

When deploying RMI applications, one commonly needs to dynamically deliver classes to running programs. One
example is the RMI registry. Keep in mind that one instance of the registry will serve many different RMI
applications. The RMI registry needs to have access to the class files of the service interfaces that are being
registered. When the registry starts, however, one cannot predict all future registration requests. Therefore, the
RMI registry dynamically loads the class files of any remote interfaces that it has not previously encountered.

Dynamically delivered class files are distributed through standard web servers. In our case, the server program
needs to make the Warehouse.class file available to the RMI registry, so we put that file into a third directory

that we call download.

download/

 Warehouse.class

We use a web server to serve the contents of that directory.

When the application is deployed, the server, RMI registry, web server, and client can be located on four
different computers—see Figure 10-5. However, for testing purposes, we will use a single computer.

Figure 10-5. Server calls in the Warehouse application

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

For security reasons, the rmiregistry service that is part of the JDK only allows

binding calls from the same host. That is, the server and rmiregistry process need

to be located on the same computer. However, the RMI architecture allows for a
more general RMI registry implementation that supports multiple servers.

To test the sample application, use the NanoHTTPD web server that is available from

http://elonen.iki.fi/code/nanohttpd. This tiny web server is implemented in a single Java source file. Open a new
console window, change to the download directory, and copy NanoHTTPD.java to that directory. Compile the
source file and start the web server, using the command

java NanoHTTPD 8080

The command-line argument is the port number. Use any other available port if port 8080 is already used on
your machine.

Next, open another console window, change to a directory that contains no class files, and start the RMI
registry:

rmiregistry

Caution

http://elonen.iki.fi/code/nanohttpd

Before starting the RMI registry, make sure that the CLASSPATH environment
variable is not set to anything, and double-check that the current directory contains
no class files. Otherwise, the RMI registry might find spurious class files, which will
confuse it when it should download additional classes from a different source. There
is a reason for this behavior; see
http://java.sun.com/javase/6/docs/technotes/guides/rmi/codebase.html. In a
nutshell, each stub object has a codebase entry that specifies from where it was
loaded. That codebase is used to load dependent classes. If the RMI registry finds a
class locally, it will set the wrong codebase.

Now you are ready to start the server. Open a third console window, change to the server directory, and issue

the command

java -Djava.rmi.server.codebase=http://localhost:8080/ WarehouseServer

The java.rmi.server.codebase property points to the URL for serving class files. The server program

communicates this URL to the RMI registry.

Have a peek at the console window running NanoHTTPD. You will see a message that demonstrates that the

Warehouse.class file has been served to the RMI registry.

Caution

It is very important that you make sure that the codebase URL ends with a slash
(/).

Note that the server program does not exit. This seems strange—after all, the program just creates a
WarehouseImpl object and registers it. Actually, the main method does exit immediately after registration, as

you would expect. However, when you create an object of a class that extends UnicastRemoteObject, a

separate thread that keeps the program alive indefinitely is started. Thus, the program stays around to allow
clients to connect to it.

Finally, open a fourth console window, change to the client directory, and run

java WarehouseClient

You will see a short message, indicating that the remote method was successfully invoked (see Figure 10-6).

Figure 10-6. Testing an RMI application

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/javase/6/docs/technotes/guides/rmi/codebase.html

Note

If you just want to test out basic program logic, you can put your client and server
class files into the same directory. Then you can start the RMI registry, server, and
client in that directory. However, because RMI class loading is the source of much
grief and confusion, we felt it best to show you the correct setup for dynamic class
loading right away.

Logging RMI Activity

If you start the server with the option

-Djava.rmi.server.logCalls=true WarehouseServer &

then the server logs all remote method calls on its console. Try it—you'll get a good impression of the RMI
traffic.

If you want to see additional logging messages, you have to configure RMI loggers, using the standard Java
logging API. (See Volume I, Chapter 11 for more information on logging.)

Make a file logging.properties with the following content:

Code View:

handlers=java.util.logging.ConsoleHandler

.level=FINE

java.util.logging.ConsoleHandler.level=FINE
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

You can fine-tune the settings by setting individual levels for each logger rather than setting the global level.
Table 10-1 lists the RMI loggers. For example, to track the class loading activity, you can set

sun.rmi.loader.level=FINE

Table 10-1. RMI Loggers

Logger Name Logged Activity

sun.rmi.server.call Server-side remote calls

sun.rmi.server.ref Server-side remote references

sun.rmi.client.call Client-side remote calls

sun.rmi.client.ref Client-side remote references

sun.rmi.dgc Distributed garbage collection

sun.rmi.loader RMIClassLoader

sun.rmi.transport.misc Transport layer

sun.rmi.transport.tcp TCP binding and connection

sun.rmi.transport.proxy HTTP tunneling

Start the RMI registry with the option

-J-Djava.util.logging.config.file=directory/logging.properties

Start the client and server with

-Djava.util.logging.config.file=directory/logging.properties

Here is an example of a logging message that shows a class loading problem: The RMI registry cannot find the
Warehouse class because the web server has been shut down.

Code View:
FINE: RMI TCP Connection(1)-127.0.1.1: (port 1099) op = 80

Oct 13, 2007 4:43:30 PM sun.rmi.server.LoaderHandler loadProxyClass

FINE: RMI TCP Connection(1)-127.0.1.1: interfaces = [java.rmi.Remote, Warehouse], codebase =

"http://localhost:8080/"

Oct 13, 2007 4:43:30 PM sun.rmi.server.LoaderHandler loadProxyClass

FINE: RMI TCP Connection(1)-127.0.1.1: proxy class resolution failed

java.lang.ClassNotFoundException: Warehouse

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Parameters and Return Values in Remote Methods

At the start of a remote method invocation, the parameters need to be moved from the virtual machine of the
client to the virtual machine of the server. After the invocation has completed, the return value needs to be
transferred in the other direction. When a value is passed from one virtual machine to another other, we
distinguish two cases: passing remote objects and passing nonremote objects. For example, suppose that a
client of the WarehouseServer passes a Warehouse reference (that is, a stub through which the remote

warehouse object can be called) to another remote method. That is an example of passing a remote object.
However, most method parameters will be ordinary Java objects, not stubs to remote objects. An example is
the String parameter of the getPrice method in our first sample application.

Transferring Remote Objects

When a reference to a remote object is passed from one virtual machine to the other, the sender and recipient
of the remote object both hold a reference to the same entity. That reference is not a memory location (which is
only meaningful in a single virtual machine), but it consists of a network address and a unique identifier for the
remote object. This information is encapsulated in a stub object.

Conceptually, passing a remote reference is quite similar to passing local object references within a virtual
machine. However, always keep in mind that a method call on a remote reference is significantly slower and
potentially less reliable than a method call on a local reference.

Transferring Nonremote Objects

Consider the String parameter of the getPrice method. The string value needs to be copied from the client to

the server. It is not difficult to imagine how a copy of a string can be transported across a network. The RMI
mechanism can also make copies of more complex objects, provided they are serializable. RMI uses the
serialization mechanism described in Chapter 1 to send objects across a network connection. This means that
any classes that implement the Serializable interface can be used as parameter or return types.

Passing parameters by serializing them has a subtle effect on the semantics of remote methods. When you pass
objects into a local method, object references are transferred. When the method applies a mutator method to a
parameter object, the caller will observe that change. But if a remote method mutates a serialized parameter, it
changes the copy, and the caller will never notice.

To summarize, there are two mechanisms for transferring values between virtual machines.

Objects of classes that implement the Remote interface are transferred as remote references.

Objects of classes that implement the Serializable interface but not the Remote interface are copied

using serialization.

All of this is automatic and requires no programmer intervention. Keep in mind that serialization can be slow for
large objects, and that the remote method cannot mutate serialized parameters. You can, of course, avoid these
issues by passing around remote references. That too comes at a cost: Invoking methods on remote references
is far more expensive than calling local methods. Being aware of these costs allows you to make informed
choices when designing remote services.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

Remote objects are garbage-collected automatically, just as local objects are.
However, the distributed collector is signifcantly more complex. When the local
garbage collector finds that there are further local uses of a remote reference, it
notifies the distributed collector that the server is no longer referenced by this
client. When a server is no longer used by any clients, it is marked as garbage.

Our next example program will illustrate the transfer of remote and serializable objects. We change the
Warehouse interface as shown in Listing 10-5. Given a list of keywords, the warehouse returns the Product that

is the best match.

Listing 10-5. Warehouse.java

 1. import java.rmi.*;

 2. import java.util.*;

 3.

 4. /**

 5. The remote interface for a simple warehouse.

 6. @version 1.0 2007-10-09

 7. @author Cay Horstmann

 8. */

 9. public interface Warehouse extends Remote

10. {

11. double getPrice(String description) throws RemoteException;

12. Product getProduct(List<String> keywords) throws RemoteException;

13. }

The parameter of the getProduct method has type List<String>. A parameter value must belong to a

serializable class that implements the List<String> interface, such as ArrayList<String>. (Our sample client

passes a value that is obtained by a call to Arrays.asList. Fortunately, that method is guaranteed to return a

serializable list as well.)

The return type Product encapsulates the description, price, and location of the product—see Listing 10-6.

Note that the Product class is serializable. The server constructs a Product object, and the client gets a copy
(see Figure 10-7).

Figure 10-7. Copying local parameter and result objects

[View full size image]

Listing 10-6. Product.java

Code View:
 1. import java.io.*;

 2.

 3. public class Product implements Serializable

 4. {

 5. public Product(String description, double price)

 6. {

 7. this.description = description;

 8. this.price = price;

 9. }

10.

11. public String getDescription()

12. {

13. return description;

14. }

15.

16. public double getPrice()

17. {

18. return price;

19. }

20.

21. public Warehouse getLocation()

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

22. {

23. return location;

24. }

25.

26. public void setLocation(Warehouse location)

27. {

28. this.location = location;

29. }

30.

31. private String description;

32. private double price;

33. private Warehouse location;

34. }

However, there is a subtlety. The Product class has an instance field of type Warehouse, a remote interface. The

warehouse object is not serialized, which is just as well as it might have a huge amount of state. Instead, the
client receives a stub to a remote Warehouse object. That stub might be different from the centralWarehouse

stub on which the getProduct method was called. In our implementation, we will have two kinds of products,

toasters and books, that are located in different warehouses.

Dynamic Class Loading

There is another subtlety to our next sample program. A list of keyword strings is sent to the server, and the
warehouse returns an instance of a class Product. Of course, the client program will need the class file

Product.class to compile. However, whenever our server program cannot find a match for the keywords, it

returns the one product that is sure to delight everyone: the Core Java book. That object is an instance of the
Book class, a subclass of Product.

When the client was compiled, it might have never seen the Book class. Yet when it runs, it needs to be able to

execute Book methods that override Product methods. This demonstrates that the client needs to have the

capability of loading additional classes at runtime. The client uses the same mechanism as the RMI registry.
Classes are served by a web server, the RMI server class communicates the URL to the client, and the client
makes an HTTP request to download the class files.

Whenever a program loads new code from another network location, there is a security issue. For that reason,
you need to use a security manager in RMI applications that dynamically load classes. (See Chapter 9 for more
information on class loaders and security managers.)

Programs that use RMI should install a security manager to control the activities of the dynamically loaded
classes. You install it with the instruction

System.setSecurityManager(new SecurityManager());

Note

If all classes are available locally, then you do not actually need a security manager.
If you know all class files of your program at deployment time, you can deploy them
all locally. However, it often happens that the client or server program evolves and
new classes are added over time. Then you benefit from dynamic class loading. Any
time you load code from another source, you need a security manager.

By default, the SecurityManager restricts all code in the program from establishing network connections.

However, the program needs to make network connections to three remote locations:

The web server that loads remote classes.

The RMI registry.

Remote objects.

To allow these operations, you supply a policy file. (We discussed policy files in greater detail in Chapter 9.)
Here is a policy file that allows an application to make any network connection to a port with port number of at

least 1024. (The RMI port is 1099 by default, and the remote objects also use ports 1024. We use port 8080
for dowloading classes.)

grant

{

 permission java.net.SocketPermission

 "*:1024-65535", "connect";

};

You need to instruct the security manager to read the policy file by setting the java.security.policy property
to the file name. You can use a call such as

System.setProperty("java.security.policy", "rmi.policy");

Alternatively, you can specify the system property setting on the command line:

-Djava.security.policy=rmi.policy

To run the sample application, be sure that you have killed the RMI registry, web server, and the server
program from the preceding sample. Open four console windows and follow these steps.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

1. Compile the source files for the interface, implementation, client, and server classes.

javac *.java

2. Make three directories, client, server, and download, and populate them as follows:

client/
 WarehouseClient.class
 Warehouse.class
 Product.class
 client.policy
server/
 Warehouse.class
 Product.class
 Book.class
 WarehouseImpl.class
 WarehouseServer.class
 server.policy
download
 Warehouse.class
 Product.class
 Book.class

3. In the first console window, change to a directory that has no class files. Start the RMI registry.

4. In the second console window, change to the download directory and start NanoHTTPD.

5. In the third console window, change to the server directory and start the server.

java -Djava.rmi.server.codebase=http://localhost:8080/ WarehouseServer

6. In the fourth console window, change to the client directory and run the client.

java WarehouseClient

Listing 10-7 shows the code of the Book class. Note that the getDescription method is overridden to show the

ISBN. When the client program runs, it shows the ISBN for the Core Java book, which proves that the Book class

was loaded dynamically. Listing 10-8 shows the warehouse implementation. A warehouse has a reference to a
backup warehouse. If an item cannot be found in the warehouse, the backup warehouse is searched. Listing 10-
9 shows the server program. Only the central warehouse is entered into the RMI registry. Note that a remote
reference to the backup warehouse can be passed to the client even though it is not included in the RMI
registry. This happens whenever no keyword matches and a Core Java book (whose location field references

the backup warehouse) is sent to the client.

Listing 10-7. Book.java

 1. /**

 2. * A book is a product with an ISBN number.

 3. * @version 1.0 2007-10-09

 4. * @author Cay Horstmann

 5. */

 6. public class Book extends Product

 7. {

 8. public Book(String title, String isbn, double price)

 9. {

10. super(title, price);

11. this.isbn = isbn;

12. }

13.

14. public String getDescription()

15. {

16. return super.getDescription() + " " + isbn;

17. }

18.

19. private String isbn;

20. }

Listing 10-8. WarehouseImpl.java

Code View:
 1. import java.rmi.*;

 2. import java.rmi.server.*;

 3. import java.util.*;

 4.

 5. /**

 6. * This class is the implementation for the remote Warehouse interface.

 7. * @version 1.0 2007-10-09

 8. * @author Cay Horstmann

 9. */

10. public class WarehouseImpl extends UnicastRemoteObject implements Warehouse

11. {

12. /**

13. * Constructs a warehouse implementation.

14. */

15. public WarehouseImpl(Warehouse backup) throws RemoteException

16. {

17. products = new HashMap<String, Product>();

18. this.backup = backup;

19. }

20.

21. public void add(String keyword, Product product)

22. {

23. product.setLocation(this);

24. products.put(keyword, product);

25. }

26.

27. public double getPrice(String description) throws RemoteException

28. {

29. for (Product p : products.values())

30. if (p.getDescription().equals(description)) return p.getPrice();

31. if (backup == null) return 0;

32. else return backup.getPrice(description);

33. }

34.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

35. public Product getProduct(List<String> keywords) throws RemoteException

36. {

37. for (String keyword : keywords)

38. {

39. Product p = products.get(keyword);

40. if (p != null) return p;

41. }

42. if (backup != null)

43. return backup.getProduct(keywords);

44. else if (products.values().size() > 0)

45. return products.values().iterator().next();

46. else

47. return null;

48. }

49.

50. private Map<String, Product> products;

51. private Warehouse backup;

52. }

Listing 10-9. WarehouseServer.java

Code View:
 1. import java.rmi.*;

 2. import javax.naming.*;

 3.

 4. /**

 5. * This server program instantiates a remote warehouse objects, registers it with the naming

 6. * service, and waits for clients to invoke methods.

 7. * @version 1.12 2007-10-09

 8. * @author Cay Horstmann

 9. */

10.

11. public class WarehouseServer

12. {

13. public static void main(String[] args) throws RemoteException, NamingException

14. {

15. System.setProperty("java.security.policy", "server.policy");

16. System.setSecurityManager(new SecurityManager());

17.

18. System.out.println("Constructing server implementation...");

19. WarehouseImpl backupWarehouse = new WarehouseImpl(null);

20. WarehouseImpl centralWarehouse = new WarehouseImpl(backupWarehouse);

21.

22. centralWarehouse.add("toaster", new Product("Blackwell Toaster", 23.95));

23. backupWarehouse.add("java", new Book("Core Java vol. 2", "0132354799", 44.95));

24.

25. System.out.println("Binding server implementation to registry...");

26. Context namingContext = new InitialContext();

27. namingContext.bind("rmi:central_warehouse", centralWarehouse);

28.

29. System.out.println("Waiting for invocations from clients...");

30. }

31. }

Remote References with Multiple Interfaces

A remote class can implement multiple interfaces. Consider a remote interface ServiceCenter.

public interface ServiceCenter extends Remote

{

 int getReturnAuthorization(Product prod) throws RemoteException;

}

Now suppose a WarehouseImpl class implements this interface as well as the Warehouse interface. When a
remote reference to such a service center is transferred to another virtual machine, the recipient obtains a stub
that has access to the remote methods in both the ServiceCenter and the Warehouse interface. You can use
the instanceof operator to find out whether a particular remote object implements an interface. Suppose you

receive a remote object through a variable of type Warehouse.

Warehouse location = product.getLocation();

The remote object might or might not be a service center. To find out, use the test

if (location instanceof ServiceCenter)

If the test passes, you can cast location to the ServiceCenter type and invoke the getReturnAuthorization

method.

Remote Objects and the equals, hashCode, and clone Methods

Objects inserted in sets must override the equals method. In the case of a hash set or hash map, the hashCode
method must be defined as well. However, there is a problem when trying to compare remote objects. To find
out if two remote objects have the same contents, the call to equals would need to contact the servers

containing the objects and compare their contents. Like any remote call, that call could fail. But the equals

method in the class Object is not declared to throw a RemoteException, whereas all methods in a remote

interface must throw that exception. Because a subclass method cannot throw more exceptions than the
superclass method it replaces, you cannot define an equals method in a remote interface. The same holds for

hashCode.

Instead, the equals and hashCode methods on stub objects simply look at the location of the remote objects.

The equals method deems two stubs equal if they refer to the same remote object. Two stubs that refer to

different remote objects are never equal, even if those objects have identical contents. Similarly, the hash code
is computed only from the object identifier.

For the same technical reasons, remote references do not have a clone method. If clone were to make a

remote call to tell the server to clone the implementation object, then the clone method would need to throw a

RemoteException. However, the clone method in the Object superclass promised never to throw any exception

other than CloneNotSupportedException.

To summarize, you can use remote references in sets and hash tables, but you must remember that equality
testing and hashing do not take into account the contents of the remote objects. You simply cannot clone
remote references.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Remote Object Activation

In the preceding sample programs, we used a server program to instantiate and register objects so that clients
could make remote calls on them. However, in some cases, it might be wasteful to instantiate lots of remote
objects and have them wait for connections, whether or not client objects use them. The activation mechanism
lets you delay the object construction so that a remote object is only constructed when at least one client
invokes a remote method on it.

To take advantage of activation, the client code is completely unchanged. The client simply requests a remote
reference and makes calls through it.

However, the server program is replaced by an activation program that constructs activation descriptors of the
objects that are to be constructed at a later time, and binds receivers for remote method calls with the naming
service. When a call is made for the first time, the information in the activation descriptor is used to construct
the object.

A remote object that is used in this way should extend the Activatable class instead of the
UnicastRemoteObject class. Of course, it also implements one or more remote interfaces. For example,

class WarehouseImpl

 extends Activatable

 implements Warehouse

{

 . . .
}

Because the object construction is delayed until a later time, it must happen in a standardized form. Therefore,
you must provide a constructor that takes two parameters:

An activation ID (which you simply pass to the superclass constructor).

A single object containing all construction information, wrapped in a MarshalledObject.

If you need multiple construction parameters, you must package them into a single object. You can always use
an Object[] array or an ArrayList for this purpose.

When you build the activation descriptor, you will construct a MarshalledObject from the construction

information like this:

MarshalledObject<T> param = new MarshalledObject<T>(constructionInfo);

In the constructor of the implementation object, use the get method of the MarshalledObject class to obtain

the deserialized construction information.

T constructionInfo = param.get();

To demonstrate activation, we modify the WarehouseImpl class so that the construction information is a map of

descriptions and prices. That information is wrapped into a MarshalledObject and unwrapped in the

constructor:

Code View:
public WarehouseImpl(ActivationID id, MarshalledObject<Map<String, Double>> param)

 throws RemoteException, ClassNotFoundException, IOException

{

 super(id, 0);

 prices = param.get();

 System.out.println("Warehouse implementation constructed.");

}

By passing 0 as the second parameter of the superclass constructor, we indicate that the RMI library should
assign a suitable port number to the listener port.

This constructor prints a message so that you can see that the warehouse object is activated on demand.

Note

Your remote objects don't actually have to extend the Activatable class. If they

don't, then place the static method call

Activatable.exportObject(this, id, 0)

in the constructor of the server class.

Now let us turn to the activation program. First, you need to define an activation group. An activation group
describes common parameters for launching the virtual machine that contains the remote objects. The most
important parameter is the security policy.

Construct an activation group descriptor as follows:

Properties props = new Properties();
props.put("java.security.policy", "/path/to/server.policy");

ActivationGroupDesc group = new ActivationGroupDesc(props, null);

The second parameter describes special command options. We don't need any for this example, so we pass a
null reference.

Next, create a group ID with the call

ActivationGroupID id = ActivationGroup.getSystem().registerGroup(group);

Now you are ready to construct activation descriptors. For each object that should be constructed on demand,
you need the following:

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The activation group ID for the virtual machine in which the object should be constructed.

The name of the class (such as "WarehouseImpl" or "com.mycompany.MyClassImpl").

The URL string from which to load the class files. This should be the base URL, not including package
paths.

The marshalled construction information.

For example,

Code View:
MarshalledObject param = new MarshalledObject(constructionInfo);

ActivationDesc desc = new ActivationDesc(id, "WarehouseImpl",
 "http://myserver.com/download/", param);

Pass the descriptor to the static Activatable.register method. It returns an object of some class that

implements the remote interfaces of the implementation class. You can bind that object with the naming
service:

Warehouse centralWarehouse = (Warehouse) Activatable.register(desc);

namingContext.bind("rmi:central_warehouse", centralWarehouse);

Unlike the server programs of the preceding examples, the activation program exits after registering and
binding the activation receivers. The remote objects are constructed only when the first remote method call
occurs.

Listings 10-10 and 10-11 show the code for the activation program and the activatable warehouse
implementation. The warehouse interface and the client program are unchanged.

To launch this program, follow these steps:

1. Compile all source files.

2. Distribute class files as follows:

client/
 WarehouseClient.class
 Warehouse.class
server/
 WarehouseActivator.class
 Warehouse.class
 WarehouseImpl.class
 server.policy
download/
 Warehouse.class
 WarehouseImpl.class
rmi/
 rmid.policy

3. Start the RMI registry in the rmi directory (which contains no class files).

4. Start the RMI activation daemon in the rmi directory.

rmid -J-Djava.security.policy=rmid.policy

The rmid program listens to activation requests and activates objects in a separate virtual machine. To

launch a virtual machine, the rmid program needs certain permissions. These are specified in a policy file

(see Listing 10-12). You use the -J option to pass an option to the virtual machine running the activation

daemon.

5. Start the NanoHTTPD web server in the download directory.

6. Run the activation program from the server directory.

java -Djava.rmi.server.codebase=http://localhost:8080/ WarehouseActivator

The program exits after the activation receivers have been registered with the naming service. (You might
wonder why you need to specify the codebase as it is also provided in the constructor of the activation
descriptor. However, that information is only processed by the RMI activation daemon. The RMI registry
still needs the codebase to load the remote interface classes.)

7. Run the client program from the client directory.

java WarehouseClient

The client will print the familiar product description. When you run the client for the first time, you will
also see the constructor messages in the shell window of the activation daemon.

Listing 10-10. WarehouseActivator.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. import java.io.*;

 2. import java.rmi.*;

 3. import java.rmi.activation.*;

 4. import java.util.*;

 5. import javax.naming.*;

 6.

 7. /**

 8. * This server program instantiates a remote warehouse object, registers it with the naming

 9. * service, and waits for clients to invoke methods.

10. * @version 1.12 2007-10-09

11. * @author Cay Horstmann

12. */

13.

14. public class WarehouseActivator

15. {

16. public static void main(String[] args) throws RemoteException, NamingException,

17. ActivationException, IOException

18. {

19. System.out.println("Constructing activation descriptors...");

20.

21. Properties props = new Properties();

22. // use the server.policy file in the current directory

23. props.put("java.security.policy", new File("server.policy").getCanonicalPath());

24. ActivationGroupDesc group = new ActivationGroupDesc(props, null);

25. ActivationGroupID id = ActivationGroup.getSystem().registerGroup(group);

26.

27. Map<String, Double> prices = new HashMap<String, Double>();

28. prices.put("Blackwell Toaster", 24.95);

29. prices.put("ZapXpress Microwave Oven", 49.95);

30.

31. MarshalledObject<Map<String, Double>> param = new MarshalledObject<Map<String, Double>>(

32. prices);

33.

34. String codebase = "http://localhost:8080/";

35.

36. ActivationDesc desc = new ActivationDesc(id, "WarehouseImpl", codebase, param);

37.

38. Warehouse centralWarehouse = (Warehouse) Activatable.register(desc);

39.

40. System.out.println("Binding activable implementation to registry...");

41. Context namingContext = new InitialContext();

42. namingContext.bind("rmi:central_warehouse", centralWarehouse);

43. System.out.println("Exiting...");

44. }

45. }

Listing 10-11. WarehouseImpl.java

Code View:
 1. import java.io.*;

 2. import java.rmi.*;

 3. import java.rmi.activation.*;

 4. import java.util.*;

 5.

 6. /**

 7. * This class is the implementation for the remote Warehouse interface.

 8. * @version 1.0 2007-10-20

 9. * @author Cay Horstmann

10. */

11. public class WarehouseImpl extends Activatable implements Warehouse

12. {

13. public WarehouseImpl(ActivationID id, MarshalledObject<Map<String, Double>> param)

14. throws RemoteException, ClassNotFoundException, IOException

15. {

16. super(id, 0);

17. prices = param.get();

18. System.out.println("Warehouse implementation constructed.");

19. }

20.

21. public double getPrice(String description) throws RemoteException

22. {

23. Double price = prices.get(description);

24. return price == null ? 0 : price;

25. }

26.

27. private Map<String, Double> prices;

28. }

Listing 10-12. rmid.policy

1. grant

2. {

3. permission com.sun.rmi.rmid.ExecPermission

4. "${java.home}${/}bin${/}java";

5. permission com.sun.rmi.rmid.ExecOptionPermission

6. "-Djava.security.policy=*";

7. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.rmi.activation.Activatable 1.2

protected Activatable(ActivationID id, int port)

constructs the activatable object and establishes a listener on the given
port. Use 0 for the port to have a port assigned automatically.

static Remote exportObject(Remote obj, ActivationID id, int

port)

makes a remote object activatable. Returns the activation receiver that
should be made available to remote callers. Use 0 for the port to have a
port assigned automatically.

static Remote register(ActivationDesc desc)

registers the descriptor for an activatable object and prepares it for
receiving remote calls. Returns the activation receiver that should be
made available to remote callers.

java.rmi.MarshalledObject 1.2

MarshalledObject(Object obj)

constructs an object containing the serialized data of a given object.

Object get()

deserializes the stored object data and returns the object.

java.rmi.activation.ActivationGroupDesc 1.2

ActivationGroupDesc(Properties props,

ActivationGroupDesc.CommandEnvironment env)

constructs an activation group descriptor that specifies virtual machine
properties for a virtual machine that hosts activated objects. The env

parameter contains the path to the virtual machine executable and
command-line options, or it is null if no special settings are required.

java.rmi.activation.ActivationGroup 1.2

static ActivationSystem getSystem()

returns a reference to the activation system.

java.rmi.activation.ActivationSystem 1.2

ActivationGroupID registerGroup(ActivationGroupDesc group)

registers an activation group and returns the group ID.

java.rmi.activation.ActivationDesc 1.2

ActivationDesc(ActivationGroupID id, String className, String

classFileURL, MarshalledObject data)

constructs an activation descriptor.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Web Services and JAX-WS

In recent years, web services have emerged as a popular technology for remote method calls. Technically, a web
service has two components:

A service that can be accessed with the SOAP transport protocol

A description of the service in the WSDL format

SOAP is an XML protocol for invoking remote methods, similar to the protocol that RMI uses for the communication
between clients and servers. Just as you can program RMI applications without knowing anything about the details of
the RMI protocol, you don't really need to know any details about SOAP to call a web service.

WSDL is an interface description language. It too is based on XML. A WSDL document describes the interface of a
web service: the methods that can be called, and their parameter and return types. In this section, we generate a
WSDL document from a service implemented in Java. This document contains all the information that a client
program needs to invoke the service, whether it is written in Java or another programming language. In the next
section, we write a Java program that invokes the Amazon e-commerce service, using the WSDL provided by
Amazon. We have no idea in which language that service was implemented.

Using JAX-WS

There are several toolkits for implementing web services in Java. In this section, we discuss the JAX-WS technology
that is included in Java SE 6 and above.

With JAX-WS, you do not provide an interface for a web service. Instead, you annotate a class with @WebService , as
shown in Listing 10-13 . Note also the @WebParam annotation of the description parameter. It gives the parameter a

humanly readable name in the WSDL file. (This annotation is optional. By default, the parameter would be called
arg0 .)

Listing 10-13. Warehouse.java

Code View:
 1. package com.horstmann.corejava;

 2. import java.util.*;

 3. import javax.jws.*;

 4.

 5. /**

 6. * This class is the implementation for a Warehouse web service

 7. * @version 1.0 2007-10-09

 8. * @author Cay Horstmann

 9. */

10.

11. @WebService

12. public class Warehouse

13. {

14. public Warehouse()

15. {

16. prices = new HashMap<String, Double>();

17. prices.put("Blackwell Toaster", 24.95);

18. prices.put("ZapXpress Microwave Oven", 49.95);

19. }

20.

21. public double getPrice(@WebParam(name="description") String description)

22. {

23. Double price = prices.get(description);

24. return price == null ? 0 : price;

25. }

26.

27. private Map<String, Double> prices;

28. }

In RMI, the stub classes were generated dynamically, but with JAX-WS, you run a tool to generate them. Change to
the base directory of the Webservices1 source and run the wsgen class as follows:

wsgen -classpath . com.horstmann.corejava.Warehouse

Note

The wsgen tool requires that the class that provides the web service is contained in a

package other than the default package.

The tool generates two rather mundane classes in the com.horstmann.corejava.jaxws package. The first class

encapsulates all parameters of the call:

Code View:
public class GetPrice

{

 private String description;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 public String getDescription() { return this.description; }

 public void setDescription(String description) { this.description = description; }

}

The second class encapsulates the return value:

public class GetPriceResponse

{

 private double _return;

 public double get_return() { return this._return; }

 public void set_return(double _return) { this._return = _return; }

}

Typically, one has a sophisticated server infrastructure for deploying web services, which we do not discuss here. The
JDK contains a very simple mechanism for testing a service. Simply call the Endpoint.publish method. A server is

started on the given URL—see Listing 10-14 .

Listing 10-14. WarehouseServer.java

Code View:
 1. package com.horstmann.corejava;

 2.

 3. import javax.xml.ws.*;

 4.

 5. public class WarehouseServer

 6. {

 7. public static void main(String[] args)

 8. {

 9. Endpoint.publish("http://localhost:8080/WebServices/warehouse", new Warehouse());

10. }

11. }

At this point, you should compile the server classes, run wsgen , and start the server:

java com.horstmann.corejava.WarehouseServer

Now point your web browser to http://localhost:8080/WebServices/warehouse?wsdl . You will get this WSDL

file:

Code View:
<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://corejava.horstmann.com/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 targetNamespace="http://corejava.horstmann.com/" name="WarehouseService">
 <types>

 <xsd:schema>

 <xsd:import schemaLocation="http://localhost:8080/WebServices/warehouse?xsd=1"

 namespace="http://corejava.horstmann.com/"></xsd:import>

http://localhost:8080/WebServices/warehouse?wsdl

 </xsd:schema>

 </types>

 <message name="getPrice">
 <part element="tns:getPrice" name="parameters"></part>

 </message>

 <message name="getPriceResponse">

 <part element="tns:getPriceResponse" name="parameters"></part>

 </message>

 <portType name="Warehouse">

 <operation name="getPrice">

 <input message="tns:getPrice"></input>

 <output message="tns:getPriceResponse"></output>

 </operation>

 </portType>
 <binding name="WarehousePortBinding" type="tns:Warehouse">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"></soap:binding>

 <operation name="getPrice">

 <soap:operation soapAction=""></soap:operation>

 <input><soap:body use="literal"></soap:body></input>

 <output><soap:body use="literal"></soap:body></output>

 </operation>

 </binding>

 <service name="WarehouseService">
 <port name="WarehousePort" binding="tns:WarehousePortBinding">

 <soap:address location="http://localhost:8080/WebServices/warehouse"></soap:address>

 </port>

 </service>

</definitions>

This description tells us that an operation getPrice is provided. Its input is a tns:getPrice and its output is a
tns:getPriceResponse . (Here, tns is the namespace alias for the target namespace,

http://corejava.horstmann.com .)

To understand these types, point your browser to http://localhost:8080/WebServices/warehouse?xsd=1 . You

will get this XSL document:

Code View:
<xs:schema targetNamespace="http://corejava.horstmann.com/" version="1.0">

 <xs:element name="getPrice" type="tns:getPrice"/>

 <xs:element name="getPriceResponse" type="tns:getPriceResponse"/>

 <xs:complexType name="getPrice">

 <xs:sequence><xs:element name="description" type="xs:string" minOccurs="0"/></xs:sequence>

 </xs:complexType>
 <xs:complexType name="getPriceResponse">

 <xs:sequence><xs:element name="return" type="xs:double"/></xs:sequence>

 </xs:complexType>

</xs:schema>

Now you can see that getPrice has a description element of type string , and getPriceResponse has a return

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://corejava.horstmann.com
http://localhost:8080/WebServices/warehouse?xsd=1

element of type double .

Note

The WSDL file does not specify what the service does. It only specifies the parameter
and return types.

A Web Service Client

Let's turn to implementing the client. Keep in mind that the client knows nothing about the server except what is
contained in the WSDL. To generate Java classes that can communicate with the server, you generate a set of client
classes, using the wsimport utility.

Code View:
wsimport -keep -p com.horstmann.corejava.server http://localhost:8080/WebServices/warehouse?wsdl

The -keep option keeps the source files, in case you want to look at them. The following classes and interfaces are

generated:

GetPrice

GetPriceResponse

Warehouse

WarehouseService
ObjectFactory

You already saw the GetPrice and GetPriceResponse classes.

The Warehouse interface defines the remote getPrice method:

Code View:
public interface Warehouse

{

 @WebMethod public double getPrice(@WebParam(name = "description") String description);
}

You only need to know one thing about the WarehouseService class: its getPort method yields a stub of type

Warehouse through which you invoke the service—see Listing 10-15 .

You can ignore the ObjectFactory class as well as the file package-info.java that defines a package-level

annotation. (We discuss annotations in detail in Chapter 11 .)

Note

You can use any convenient package for the generated classes. If you look closely, you
will notice that the GetPrice and GetPriceResponse classes are in different packages

on the server and client. This is not a problem. After all, neither the server nor the client
know about each other's Java implementation. They don't even know whether the other
is implemented in Java.

Listing 10-15. WarehouseClient.java

Code View:
 1. import java.rmi.*;

 2. import javax.naming.*;

 3. import com.horstmann.corejava.server.*;

 4.

 5. /**

 6. * The client for the warehouse program.

 7. * @version 1.0 2007-10-09

 8. * @author Cay Horstmann

 9. */

10. public class WarehouseClient

11. {

12. public static void main(String[] args) throws NamingException, RemoteException

13. {

14. WarehouseService service = new WarehouseService();

15. Warehouse port = service.getPort(Warehouse.class);

16.

17. String descr = "Blackwell Toaster";

18. double price = port.getPrice(descr);

19. System.out.println(descr + ": " + price);

20. }

21. }

Now you are ready to run the client program. Double-check that the server is still running, open another shell
window, and execute

java WarehouseClient

You will get the familiar message about the price of a toaster.

Note

You might wonder why there is no equivalent of a RMI registry. When you locate a
remote object for RMI, the client need not know on which server the object is located. It
merely needs to know how to locate the registry. However, to make a web service call,
the client needs the URL of the server. It is hardwired into the WarehouseService class.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

We used a network sniffer to see how the client and server actually communicate (see Figure 10-8). The client sends
the following request to the server:

Code View:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ns1="http://corejava.horstmann.com/">

 <soapenv:Body>

 <ns1:getPrice><description>Blackwell Toaster</description></ns1:getPrice>

 </soapenv:Body>

</soapenv:Envelope>

Figure 10-8. Analyzing SOAP traffic

[View full size image]

The server responds:

Code View:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ns1="http://corejava.horstmann.com/">

 <soapenv:Body>

 <ns1:getPriceResponse><return>24.95</return></ns1:getPriceResponse>
 </soapenv:Body>

</soapenv:Envelope>

In this section, you have seen the essentials about web services:

The services are defined in a WSDL document, which is formatted as XML.

The actual request and response methods use SOAP, another XML format.

Clients and servers can be written in any language.

The Amazon E-Commerce Service

To make the discussion of web services more interesting, we look at a concrete example: the Amazon e-commerce
web service, described at http://www.amazon.com/gp/aws/landing.html . The e-commerce web service allows a
programmer to interact with the Amazon system for a wide variety of purposes. For example, you can get listings of
all books with a given author or title, or you can fill shopping carts and place orders. Amazon makes this service
available for use by companies that want to sell items to their customers, using the Amazon system as a fulfillment
back end. To run our example program, you will need to sign up with Amazon and get a free developer token that
lets you connect to the service.

Alternatively, you can adapt the technique described in this section to any other web service. The site
http://www.xmethods.com lists many freely available web services that you can try.

Let us look more closely at the WSDL for the Amazon E-Commerce Service (located at
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl). It describes an ItemSearch

operation as follows:

<operation name="ItemSearch">

 <input message="tns:ItemSearchRequestMsg"/>

 <output message="tns:ItemSearchResponseMsg"/>

</operation>

...

<message name="ItemSearchRequestMsg">

 <part name="body" element="tns:ItemSearch"/>
</message>

<message name="ItemSearchResponseMsg">

 <part name="body" element="tns:ItemSearchResponse"/>

</message>

Here are the definitions of the ItemSearch and ItemSearchResponse types:

Code View:
<xs:element name="ItemSearch">

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.xmethods.com
http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

 <xs:complexType>

 <xs:sequence>

 <xs:element name="MarketplaceDomain" type="xs:string" minOccurs="0"/>
 <xs:element name="AWSAccessKeyId" type="xs:string" minOccurs="0"/>

 <xs:element name="SubscriptionId" type="xs:string" minOccurs="0"/>

 <xs:element name="AssociateTag" type="xs:string" minOccurs="0"/>

 <xs:element name="XMLEscaping" type="xs:string" minOccurs="0"/>

 <xs:element name="Validate" type="xs:string" minOccurs="0"/>

 <xs:element name="Shared" type="tns:ItemSearchRequest" minOccurs="0"/>

 <xs:element name="Request" type="tns:ItemSearchRequest" minOccurs="0"

 maxOcurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="ItemSearchResponse">
 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tns:OperationRequest" minOccurs="0"/>

 <xs:element ref="tns:Items" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>
</xs:element>

Using the JAX-WS technology, the ItemSearch operation becomes a method call:

Code View:
void itemSearch(String marketPlaceDomain, String awsAccessKeyId,

 String subscriptionId, String associateTag, String xmlEscaping, String validate,

 ItemSearchRequest shared, List<ItemSearchRequest> request,

 Holder<OperationRequest> opHolder, Holder<List<Items>> responseHolder)

The ItemSearchRequest parameter type is defined as

Code View:
<xs:complexType name="ItemSearchRequest">

 <xs:sequence>

 <xs:element name="Actor" type="xs:string" minOccurs="0"/>

 <xs:element name="Artist" type="xs:string" minOccurs="0"/>

 . . .

 <xs:element name="Author" type="xs:string" minOccurs="0"/>

 . . .
 <xs:element name="ResponseGroup" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 . . .

 <xs:element name="SearchIndex" type="xs:string" minOccurs="0"/>

 . . .

</xs:complexType>

This description is translated into a class.

public class ItemSearchRequest

{

 public ItemSearchRequest() { ... }

 public String getActor() { ... }
 public void setActor(String newValue) { ... }

 public String getArtist() { ... }

 public void setArtist(String newValue) { ... }

 ...

 public String getAuthor() { ... }

 public void setAuthor(String newValue) { ... }

 ...

 public List<String> getResponseGroup() { ... }

 ...

 public void setSearchIndex(String newValue) { ... }

 ...

}

To invoke the search service, construct an ItemSearchRequest object and call the itemSearch method of the "port"
object.

Code View:
ItemSearchRequest request = new ItemSearchRequest();

request.getResponseGroup().add("ItemAttributes");

request.setSearchIndex("Books");

Holder<List<Items>> responseHolder = new Holder<List<Items>>();

request.setAuthor(name);

port.itemSearch("", accessKey, "", "", "", "", request, null, null, responseHolder);

The port object translates the Java object into a SOAP message, passes it to the Amazon server, translates the
returned message into a ItemSearchResponse object, and places the response in the "holder" object.

Note

The Amazon documentation about the parameters and return values is extremely
sketchy. However, you can fill out forms at http://awszone.com/scratchpads/index.aws
to see the SOAP requests and responses. Those help you guess what parameter values
you need to supply and what return values you can expect.

Our sample application (in Listing 10-16) is straightforward. The user specifies an author name and clicks the Search
button. We simply show the first page of the response (see Figure 10-9). This shows that the web service is
successful. We leave it as the proverbial exercise for the reader to extend the functionality of the application.

Figure 10-9. Connecting to a web service

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

To run this program, you first generate the client-side artifact classes:

Code View:
wsimport -p com.horstmann.amazon

 http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

Then edit the AmazonTest.java file to include your Amazon key, compile, and run:

javac AmazonTest.java

java AmazonTest

Listing 10-16. AmazonTest.java

Code View:
 1. import com.horstmann.amazon.*;

 2. import java.awt.*;

 3. import java.awt.event.*;

 4. import java.util.List;

 5. import javax.swing.*;

 6. import javax.xml.ws.*;

 7.

 8. /**

 9. * The client for the Amazon e-commerce test program.

 10. * @version 1.10 2007-10-20

 11. * @author Cay Horstmann

 12. */

 13.

 14. public class AmazonTest

 15. {

 16. public static void main(String[] args)

 17. {

 18. JFrame frame = new AmazonTestFrame();

 19. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 20. frame.setVisible(true);

 21. }

 22. }

 23.

 24. /**

 25. * A frame to select the book author and to display the server response.

 26. */

 27. class AmazonTestFrame extends JFrame

 28. {

 29. public AmazonTestFrame()

 30. {

 31. setTitle("AmazonTest");

 32. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

 33.

 34. JPanel panel = new JPanel();

 35.

 36. panel.add(new JLabel("Author:"));

 37. author = new JTextField(20);

 38. panel.add(author);

 39.

 40. JButton searchButton = new JButton("Search");

 41. panel.add(searchButton);

 42. searchButton.addActionListener(new ActionListener()

 43. {

 44. public void actionPerformed(ActionEvent event)

 45. {

 46. result.setText("Please wait...");

 47. new SwingWorker<Void, Void>()

 48. {

 49. @Override

 50. protected Void doInBackground() throws Exception

 51. {

 52. String name = author.getText();

 53. String books = searchByAuthor(name);

 54. result.setText(books);

 55. return null;

 56. }

 57. }.execute();

 58. }

 59. });

 60.

 61. result = new JTextArea();

 62. result.setLineWrap(true);

 63. result.setEditable(false);

 64.

 65. if (accessKey.equals("your key here"))

 66. {

 67. result.setText("You need to edit the Amazon access key.");

 68. searchButton.setEnabled(false);

 69. }

 70.

 71. add(panel, BorderLayout.NORTH);

 72. add(new JScrollPane(result), BorderLayout.CENTER);

 73. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 74.

 75. /**

 76. * Calls the Amazon web service to find titles that match the author.

 77. * @param name the author name

 78. * @return a description of the matching titles

 79. */

 80. private String searchByAuthor(String name)

 81. {

 82. AWSECommerceService service = new AWSECommerceService();

 83. AWSECommerceServicePortType port = service.getPort(AWSECommerceServicePortType.class);

 84. ItemSearchRequest request = new ItemSearchRequest();

 85. request.getResponseGroup().add("ItemAttributes");

 86. request.setSearchIndex("Books");

 87.

 88. Holder<List<Items>> responseHolder = new Holder<List<Items>>();

 89. request.setAuthor(name);

 90. port.itemSearch("", accessKey, "", "", "", "", request, null, null, responseHolder);

 91.

 92. List<Item> response = responseHolder.value.get(0).getItem();

 93.

 94. StringBuilder r = new StringBuilder();

 95. for (Item item : response)

 96. {

 97. r.append("authors=");

 98. List<String> authors = item.getItemAttributes().getAuthor();

 99. r.append(authors);

100. r.append(",title=");

101. r.append(item.getItemAttributes().getTitle());

102. r.append(",publisher=");

103. r.append(item.getItemAttributes().getPublisher());

104. r.append(",pubdate=");

105. r.append(item.getItemAttributes().getPublicationDate());

106. r.append("\n");

107. }

108. return r.toString();

109. }

110.

111. private static final int DEFAULT_WIDTH = 450;

112. private static final int DEFAULT_HEIGHT = 300;

113.

114. private static final String accessKey = "12Y1EEATQ8DDYJCVQYR2";

115.

116. private JTextField author;

117. private JTextArea result;

118. }

This example shows that calling a web service is fundamentally the same as making any other remote method call.
The programmer calls a local method on a proxy object, and the proxy connects to a server. Because web services
are springing up everywhere, this is clearly an interesting technology for application programmers.

You have now seen the RMI mechanism, a sophisticated distributed programming model for Java programs that is
used extensively in the Java EE architecture. You have also had an introduction into web services, which allow you to
connect clients and servers, independent of the programming language. In the next chapter, we turn to a different
aspect of Java programming: interacting with "native" code in a different programming language on the same

machine.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 11. Scripting, Compiling, and Annotation Processing

SCRIPTING FOR THE JAVA PLATFORM

THE COMPILER API

USING ANNOTATIONS

ANNOTATION SYNTAX

STANDARD ANNOTATIONS

SOURCE-LEVEL ANNOTATION PROCESSING

BYTECODE ENGINEERING

This chapter introduces three techniques for processing code. The scripting API lets you invoke code in a
scripting language such as JavaScript or Groovy. You use the compiler API when you want to compile Java code
inside your application. Annotation processors operate on Java source or class files that contain annotations. As
you will see, there are many applications for annotation processing, ranging from simple diagnostics to
"bytecode engineering," the insertion of byte codes into class files or even running programs.

Scripting for the Java Platform

A scripting language is a language that avoids the usual edit/compile/link/run cycle by interpreting program text
at runtime. Scripting languages have a number of advantages:

Rapid turnaround, encouraging experimentation.

Changing the behavior of a running program.

Enabling customization by program users.

On the other hand, most scripting languages lack features that are beneficial for programming complex

applications, such as strong typing, encapsulation, and modularity.

It is therefore tempting to combine the advantages of scripting and traditional languages. The scripting API lets
you do just that for the Java platform. It enables you to invoke scripts written in JavaScript, Groovy, Ruby, and
even exotic languages such as Scheme and Haskell, from a Java program. (The other direction, accessing Java
from the scripting language, is the responsibility of the scripting language provider. Most scripting languages
that run on the Java virtual machine have this capability.)

In the following sections, we show you how to select an engine for a particular language, how to execute scripts,
and how to take advantage of advanced features that some scripting engines offer.

Getting a Scripting Engine

A scripting engine is a library that can execute scripts in a particular language. When the virtual machine starts,
it discovers the available scripting engines. To enumerate them, construct a ScriptEngineManager and invoke

the getEngineFactories method. You can ask each engine factory for the supported engine names, MIME

types, and file extensions. Table 11-1 shows typical values.

Table 11-1. Properties of Scripting Engine Factories

Engine Names MIME types Extensions

Rhino (included in
Java SE 6)

js, rhino, JavaScript,
javascript, ECMAScript,
ecmascript

application/javascript,
application/ecmascript,
text/javascript,
text/ecmascript]

js

Groovy groovy None groovy

SISC Scheme scheme, sisc None scc, sce, scm, shp

Usually, you know which engine you need, and you can simply request it by name, MIME type, or extension. For
example,

ScriptEngine engine = manager.getEngineByName("JavaScript");

Java SE 6 includes a version of Rhino, a JavaScript interpreter developed by the Mozilla foundation. You can add
additional languages by providing the necessary JAR files on the class path. You will generally need two sets of
JAR files. The scripting language itself is implemented by a single JAR file or a set of JARs. The engine that
adapts the language to the scripting API usually requires an additional JAR. The site
http://scripting.dev.java.net provides engines for a wide range of scripting languages. For example, to add
support for Groovy, the class path should contain groovy/lib/* (from http://groovy.codehaus.org) and groovy-

engine.jar (from http://scripting.dev.java.net).

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://scripting.dev.java.net
http://groovy.codehaus.org
http://scripting.dev.java.net

javax.script.ScriptEngineManager 6

List<ScriptEngineFactory> getEngineFactories()

gets a list of all discovered engine factories.

ScriptEngine getEngineByName(String name)

ScriptEngine getEngineByExtension(String extension)

ScriptEngine getEngineByMimeType(String mimeType)

gets the script engine with the given name, script file extension, or MIME
type.

javax.script.ScriptEngineFactory 6

List<String> getNames()

List<String> getExtensions()

List<String> getMimeTypes()

gets the names, script file extensions, and MIME types under which this
factory is known.

Script Evaluation and Bindings

Once you have an engine, you can call a script simply by invoking

Object result = engine.eval(scriptString);

If the script is stored in a file, then open a Reader and call

Object result = engine.eval(reader);

You can invoke multiple scripts on the same engine. If one script defines variables, functions, or classes, most
scripting engines retain the definitions for later use. For example,

engine.eval("n = 1728");

Object result = engine.eval("n + 1");

will return 1729.

Note

To find out whether it is safe to concurrently execute scripts in multiple threads, call

Object param = factory.getParameter("THREADING");

The returned value is one of the following:

null: Concurrent execution is not safe

"MULTITHREADED": Concurrent execution is safe. Effects from one thread

might be visible from another thread.

"THREAD-ISOLATED": In addition to "MULTITHREADED", different variable
bindings are maintained for each thread.

"STATELESS": In addition to "THREAD-ISOLATED", scripts do not alter variable

bindings.

You often want to add variable bindings to the engine. A binding consists of a name and an associated Java
object. For example, consider these statements:

engine.put(k, 1728);

Object result = engine.eval("k + 1");

The script code reads the definition of k from the bindings in the "engine scope." This is particularly important

because most scripting languages can access Java objects, often with a syntax that is simpler than the Java
syntax. For example,

engine.put(b, new JButton());

engine.eval("f.text = 'Ok'");

Conversely, you can retrieve variables that were bound by scripting statements:

engine.eval("n = 1728");

Object result = engine.get("n");

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

In addition to the engine scope, there is also a global scope. Any bindings that you add to the
ScriptEngineManager are visible to all engines.

Instead of adding bindings to the engine or global scope, you can collect them in an object of type Bindings

and pass them to the eval method:

Bindings scope = engine.createBindings();

scope.put(b, new JButton());

engine.eval(scriptString, scope);

This is useful if a set of bindings should not persist for future calls to the eval method.

Note

You might want to have scopes other than the engine and global scopes. For
example, a web container might need request and session scopes. However, then
you are on your own. You need to implement a class that implements the
ScriptContext interface, managing a collection of scopes. Each scope is identified

by an integer number, and scopes with lower numbers should be searched first.
(The standard library provides a SimpleScriptContext class, but it only holds

global and engine scopes.)

javax.script.ScriptEngine 6

Object eval(String script)

Object eval(Reader reader)

Object eval(String script, Bindings bindings)

Object eval(Reader reader, Bindings bindings)

evaluates the script given by the string or reader, subject to the given
bindings.

Object get(String key)

void put(String key, Object value)

gets or puts a binding in the engine scope.

Bindings createBindings()

creates an empty Bindings object suitable for this engine.

javax.script.ScriptEngineManager 6

Object get(String key)

void put(String key, Object value)

gets or puts a binding in the global scope.

javax.script.Bindings 6

Object get(String key)

void put(String key, Object value)

gets or puts a binding into the scope represented by this Bindings

object.

Redirecting Input and Output

You can redirect the standard input and output of a script by calling the setReader and setWriter method of
the script context. For example,

StringWriter writer = new StringWriter();

engine.getContext().setWriter(new PrintWriter(writer, true));

Any output written with the JavaScript print or println functions is sent to writer.

Caution

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You can pass any Writer to the setWriter method, but the Rhino engine throws an

exception if it is not a PrintWriter.

The setReader and setWriter methods only affect the scripting engine's standard input and output sources.

For example, if you execute the JavaScript code

println("Hello");

java.lang.System.out.println("World");

only the first output is redirected.

The Rhino engine does not have the notion of a standard input source. Calling setReader has no effect.

javax.script.ScriptEngine 6

ScriptContext getContext()

gets the default script context for this engine.

javax.script.ScriptContext 6

Reader getReader()

void setReader(Reader reader)

Writer getWriter()

void setWriter(Writer writer)

Writer getErrorWriter()

void setErrorWriter(Writer writer)

gets or sets the reader for input or writer for normal or error output.

Calling Scripting Functions and Methods

With many script engines, you can invoke a function in the scripting language without having to evaluate the
actual script code. This is useful if you allow users to implement a service in a scripting language of their choice.

The script engines that offer this functionality implement the Invocable interface. In particular, the Rhino

engine implements Invocable.

To call a function, call the invokeFunction method with the function name, followed by the function

parameters:

if (engine implements Invocable)

 ((Invocable) engine).invokeFunction("aFunction", param1, param2);

If the scripting language is object oriented, you call can a method like this:

Code View:
((Invocable) engine).invokeMethod(implicitParam, "aMethod", explicitParam1, explicitParam2);

Here, the implicitParam object is a proxy to an object in the scripting language. It must be the result of a prior

call to the scripting engine.

Note

If the script engine does not implement the Invocable interface, you might still be

able to call a method in a language-independent way. The getMethodCallSyntax

method of the ScriptEngineFactory class produces a string that you can pass to

the eval method. However, all method parameters must be bound to names,
whereas invokeMethod can be called with arbitrary values.

You can go a step further and ask the scripting engine to implement a Java interface. Then you can call scripting
functions and methods with the Java method call syntax.

The details depend on the scripting engine, but typically you need to supply a function for each method of the
interface. For example, consider a Java interface

public interface Greeter

{

 String greet(String whom);

}

In Rhino, you provide a function

function greet(x) { return "Hello, " + x + "!"; }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

This code must be evaluated first. Then you can call

Greeter g = ((Invocable) engine).getInterface(Greeter.class);

Now you can make a plain Java method call

String result = g.greet("World");

Behind the scenes, the JavaScript greet method is invoked. This approach is similar to making a remote

method call, as discussed in Chapter 10.

In an object-oriented scripting language, you can access a script class through a matching Java interface. For
example, consider this JavaScript code, which defines a SimpleGreeter class.

Code View:
function SimpleGreeter(salutation) { this.salutation = salutation; }

SimpleGreeter.prototype.greet = function(whom) { return this.salutation + ", " + whom + "!"; }

You can use this class to construct greeters with different salutations (such as Hello, Goodbye, and so on).

Note

For more information on how to define classes in JavaScript, see JavaScript—The
Definitive Guide, 5th ed., by David Flanagan (O'Reilly 2006).

After evaluating the JavaScript class definition, call

Code View:
Object goodbyeGreeter = engine.eval("new SimpleGreeter('Goodbye')");

Greeter g = ((Invocable) engine).getInterface(goodbyeGreeter, Greeter.class);

When you call g.greet("World"), the greet method is invoked on the JavaScript object goodbyeGreeter. The

result is a string "Goodbye, World!".

In summary, the Invocable interface is useful if you want to call scripting code from Java without worrying

about the scripting language syntax.

javax.script.Invocable 6

Object invokeFunction(String name, Object... parameters)

Object invokeMethod(Object implicitParameter, String name,

Object... explicitParameters)

invokes the function or method with the given name, passing the given
parameters.

<T> T getInterface(Class<T> iface)

returns an implementation of the given interface, implementing the
methods with functions in the scripting engine.

<T> T getInterface(Object implicitParameter, Class<T> iface)

returns an implementation of the given interface, implementing the
methods with methods of the given object.

Compiling a Script

Some scripting engines can compile scripting code into an intermediate form for efficient execution. Those
engines implement the Compilable interface. The following example shows how to compile and evaluate code

that is contained in a script file:

Reader reader = new FileReader("myscript.js");

CompiledScript script = null;

if (engine implements Compilable)

 CompiledScript script = ((Compilable) engine).compile(reader);

Once the script is compiled, you can execute it. The following code executes the compiled script if compilation
was successful, or the original script if the engine didn't support compilation.

if (script != null)

 script.eval();

else

 engine.eval(reader);

Of course, you only want to compile a script if you need to execute it repeatedly.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.script.Compilable 6

CompiledScript compile(String script)

CompiledScript compile(Reader reader)

compiles the script given by a string or reader.

javax.script.CompiledScript 6

Object eval()

Object eval(Bindings bindings)

evaluates this script.

An Example: Scripting GUI Events

To illustrate the scripting API, we will develop a sample program that allows users to specify event handlers in a
scripting language of their choice.

Have a look at the program in Listing 11-1. The ButtonFrame class is similar to the event handling demo in
Volume I, with two differences:

Each component has its name property set.

There are no event handlers.

The event handlers are defined in a properties file. Each property definition has the form

componentName.eventName = scriptCode

For example, if you choose to use JavaScript, you supply the event handlers in a file js.properties, like this:

yellowButton.action=panel.background = java.awt.Color.YELLOW

blueButton.action=panel.background = java.awt.Color.BLUE

redButton.action=panel.background = java.awt.Color.RED

The companion code also has files for Groovy and SISC Scheme.

The program starts by loading an engine for the language that is specified on the command line. If no language
is specified, we use JavaScript.

We then process a script init.language if it is present. This seems like a good idea in general. Moreover, the

Scheme interpreter needs some cumbersome initializations that we did not want to include in every event
handler script.

Next, we recursively traverse all child components and add the bindings (name, object) into the engine scope.

Then we read the file language.properties. For each property, we synthesize an event handler proxy that

causes the script code to be executed. The details are a bit technical. You might want to read the section on
proxies in Volume I, Chapter 6, together with the section on JavaBeans events in Chapter 8 of this volume, if
you want follow the implementation in detail. The essential part, however, is that each event handler calls

engine.eval(scriptCode);

Let us look at the yellowButton in more detail. When the line

yellowButton.action=panel.background = java.awt.Color.YELLOW

is processed, we find the JButton component with the name "yellowButton". We then attach an

ActionListener with an actionPerformed method that executes the script

panel.background = java.awt.Color.YELLOW

The engine contains a binding that binds the name "panel" to the JPanel object. When the event occurs, the

setBackground method of the panel is executed, and the color changes.

You can run this program with the JavaScript event handlers, simply by executing

java ScriptTest

For the Groovy handlers, use

Code View:

java -classpath .:groovy/lib/*:jsr223-engines/groovy/build/groovy-engine.jar ScriptTest groovy

Here, groovy is the directory into which you installed Groovy, and jsr223-engines is the directory that contains
the engine adapters from http://scripting.dev.java.net.

To try out Scheme, download SISC Scheme from http://sisc-scheme.org/ and run

Code View:

java -classpath .:sisc/*:jsr223-engines/scheme/build/scheme-engine.jar ScriptTest scheme

This application demonstrates how to use scripting for Java GUI programming. One could go one step further
and describe the GUI with an XML file, as you have seen in Chapter 2. Then our program would become an

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://scripting.dev.java.net
http://sisc-scheme.org/

interpreter for GUIs that have visual presentation defined by XML and behavior defined by a scripting language.
Note the similarity to a dynamic HTML page or a dynamic server-side scripting environment.

Listing 11-1. ScriptTest.java

Code View:
 1. import java.awt.*;

 2. import java.beans.*;

 3. import java.io.*;

 4. import java.lang.reflect.*;

 5. import java.util.*;

 6. import javax.script.*;

 7. import javax.swing.*;

 8.

 9. /**

 10. * @version 1.00 2007-10-28

 11. * @author Cay Horstmann

 12. */

 13. public class ScriptTest

 14. {

 15. public static void main(final String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. String language;

 22. if (args.length == 0) language = "js";

 23. else language = args[0];

 24.

 25. ScriptEngineManager manager = new ScriptEngineManager();

 26. System.out.println("Available factories: ");

 27. for (ScriptEngineFactory factory : manager.getEngineFactories())

 28. System.out.println(factory.getEngineName());

 29. final ScriptEngine engine = manager.getEngineByName(language);

 30.

 31. if (engine == null)

 32. {

 33. System.err.println("No engine for " + language);

 34. System.exit(1);

 35. }

 36.

 37. ButtonFrame frame = new ButtonFrame();

 38.

 39. try

 40. {

 41. File initFile = new File("init." + language);

 42. if (initFile.exists())

 43. {

 44. engine.eval(new FileReader(initFile));

 45. }

 46.

 47. getComponentBindings(frame, engine);

 48.

 49. final Properties events = new Properties();

 50. events.load(new FileReader(language + ".properties"));

 51. for (final Object e : events.keySet())

 52. {

 53. String[] s = ((String) e).split("\\.");

 54. addListener(s[0], s[1], (String) events.get(e), engine);

 55. }

 56. }

 57. catch (Exception e)

 58. {

 59. e.printStackTrace();

 60. }

 61.

 62. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 63. frame.setTitle("ScriptTest");

 64. frame.setVisible(true);

 65. }

 66. });

 67. }

 68.

 69. /**

 70. * Gathers all named components in a container.

 71. * @param c the component

 72. * @param namedComponents

 73. */

 74. private static void getComponentBindings(Component c, ScriptEngine engine)

 75. {

 76. String name = c.getName();

 77. if (name != null) engine.put(name, c);

 78. if (c instanceof Container)

 79. {

 80. for (Component child : ((Container) c).getComponents())

 81. getComponentBindings(child, engine);

 82. }

 83. }

 84.

 85. /**

 86. * Adds a listener to an object whose listener method executes a script.

 87. * @param beanName the name of the bean to which the listener should be added

 88. * @param eventName the name of the listener type, such as "action" or "change"

 89. * @param scriptCode the script code to be executed

 90. * @param engine the engine that executes the code

 91. * @param bindings the bindings for the execution

 92. */

 93. private static void addListener(String beanName, String eventName, final String scriptCode,

 94. final ScriptEngine engine) throws IllegalArgumentException, IntrospectionException,

 95. IllegalAccessException, InvocationTargetException

 96. {

 97. Object bean = engine.get(beanName);

 98. EventSetDescriptor descriptor = getEventSetDescriptor(bean, eventName);

 99. if (descriptor == null) return;

100. descriptor.getAddListenerMethod().invoke(

101. bean,

102. Proxy.newProxyInstance(null, new Class[] { descriptor.getListenerType() },

103. new InvocationHandler()

104. {

105. public Object invoke(Object proxy, Method method, Object[] args)

106. throws Throwable

107. {

108. engine.eval(scriptCode);

109. return null;

110. }

111. }));

112.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

113. }

114.

115. private static EventSetDescriptor getEventSetDescriptor(Object bean, String eventName)

116. throws IntrospectionException

117. {

118. for (EventSetDescriptor descriptor : Introspector.getBeanInfo(bean.getClass())

119. .getEventSetDescriptors())

120. if (descriptor.getName().equals(eventName)) return descriptor;

121. return null;

122. }

123. }

124.

125. class ButtonFrame extends JFrame

126. {

127. public ButtonFrame()

128. {

129. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

130.

131. panel = new JPanel();

132. panel.setName("panel");

133. add(panel);

134.

135. yellowButton = new JButton("Yellow");

136. yellowButton.setName("yellowButton");

137. blueButton = new JButton("Blue");

138. blueButton.setName("blueButton");

139. redButton = new JButton("Red");

140. redButton.setName("redButton");

141.

142. panel.add(yellowButton);

143. panel.add(blueButton);

144. panel.add(redButton);

145. }

146.

147. public static final int DEFAULT_WIDTH = 300;

148. public static final int DEFAULT_HEIGHT = 200;

149.

150. private JPanel panel;

151. private JButton yellowButton;

152. private JButton blueButton;

153. private JButton redButton;

154. }

Chapter 11. Scripting, Compiling, and Annotation Processing

SCRIPTING FOR THE JAVA PLATFORM

THE COMPILER API

USING ANNOTATIONS

ANNOTATION SYNTAX

STANDARD ANNOTATIONS

SOURCE-LEVEL ANNOTATION PROCESSING

BYTECODE ENGINEERING

This chapter introduces three techniques for processing code. The scripting API lets you invoke code in a
scripting language such as JavaScript or Groovy. You use the compiler API when you want to compile Java code
inside your application. Annotation processors operate on Java source or class files that contain annotations. As
you will see, there are many applications for annotation processing, ranging from simple diagnostics to
"bytecode engineering," the insertion of byte codes into class files or even running programs.

Scripting for the Java Platform

A scripting language is a language that avoids the usual edit/compile/link/run cycle by interpreting program text
at runtime. Scripting languages have a number of advantages:

Rapid turnaround, encouraging experimentation.

Changing the behavior of a running program.

Enabling customization by program users.

On the other hand, most scripting languages lack features that are beneficial for programming complex

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

applications, such as strong typing, encapsulation, and modularity.

It is therefore tempting to combine the advantages of scripting and traditional languages. The scripting API lets
you do just that for the Java platform. It enables you to invoke scripts written in JavaScript, Groovy, Ruby, and
even exotic languages such as Scheme and Haskell, from a Java program. (The other direction, accessing Java
from the scripting language, is the responsibility of the scripting language provider. Most scripting languages
that run on the Java virtual machine have this capability.)

In the following sections, we show you how to select an engine for a particular language, how to execute scripts,
and how to take advantage of advanced features that some scripting engines offer.

Getting a Scripting Engine

A scripting engine is a library that can execute scripts in a particular language. When the virtual machine starts,
it discovers the available scripting engines. To enumerate them, construct a ScriptEngineManager and invoke

the getEngineFactories method. You can ask each engine factory for the supported engine names, MIME

types, and file extensions. Table 11-1 shows typical values.

Table 11-1. Properties of Scripting Engine Factories

Engine Names MIME types Extensions

Rhino (included in
Java SE 6)

js, rhino, JavaScript,
javascript, ECMAScript,
ecmascript

application/javascript,
application/ecmascript,
text/javascript,
text/ecmascript]

js

Groovy groovy None groovy

SISC Scheme scheme, sisc None scc, sce, scm, shp

Usually, you know which engine you need, and you can simply request it by name, MIME type, or extension. For
example,

ScriptEngine engine = manager.getEngineByName("JavaScript");

Java SE 6 includes a version of Rhino, a JavaScript interpreter developed by the Mozilla foundation. You can add
additional languages by providing the necessary JAR files on the class path. You will generally need two sets of
JAR files. The scripting language itself is implemented by a single JAR file or a set of JARs. The engine that
adapts the language to the scripting API usually requires an additional JAR. The site
http://scripting.dev.java.net provides engines for a wide range of scripting languages. For example, to add
support for Groovy, the class path should contain groovy/lib/* (from http://groovy.codehaus.org) and groovy-

engine.jar (from http://scripting.dev.java.net).

http://scripting.dev.java.net
http://groovy.codehaus.org
http://scripting.dev.java.net

javax.script.ScriptEngineManager 6

List<ScriptEngineFactory> getEngineFactories()

gets a list of all discovered engine factories.

ScriptEngine getEngineByName(String name)

ScriptEngine getEngineByExtension(String extension)

ScriptEngine getEngineByMimeType(String mimeType)

gets the script engine with the given name, script file extension, or MIME
type.

javax.script.ScriptEngineFactory 6

List<String> getNames()

List<String> getExtensions()

List<String> getMimeTypes()

gets the names, script file extensions, and MIME types under which this
factory is known.

Script Evaluation and Bindings

Once you have an engine, you can call a script simply by invoking

Object result = engine.eval(scriptString);

If the script is stored in a file, then open a Reader and call

Object result = engine.eval(reader);

You can invoke multiple scripts on the same engine. If one script defines variables, functions, or classes, most
scripting engines retain the definitions for later use. For example,

engine.eval("n = 1728");

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Object result = engine.eval("n + 1");

will return 1729.

Note

To find out whether it is safe to concurrently execute scripts in multiple threads, call

Object param = factory.getParameter("THREADING");

The returned value is one of the following:

null: Concurrent execution is not safe

"MULTITHREADED": Concurrent execution is safe. Effects from one thread

might be visible from another thread.

"THREAD-ISOLATED": In addition to "MULTITHREADED", different variable
bindings are maintained for each thread.

"STATELESS": In addition to "THREAD-ISOLATED", scripts do not alter variable

bindings.

You often want to add variable bindings to the engine. A binding consists of a name and an associated Java
object. For example, consider these statements:

engine.put(k, 1728);

Object result = engine.eval("k + 1");

The script code reads the definition of k from the bindings in the "engine scope." This is particularly important

because most scripting languages can access Java objects, often with a syntax that is simpler than the Java
syntax. For example,

engine.put(b, new JButton());

engine.eval("f.text = 'Ok'");

Conversely, you can retrieve variables that were bound by scripting statements:

engine.eval("n = 1728");

Object result = engine.get("n");

In addition to the engine scope, there is also a global scope. Any bindings that you add to the
ScriptEngineManager are visible to all engines.

Instead of adding bindings to the engine or global scope, you can collect them in an object of type Bindings

and pass them to the eval method:

Bindings scope = engine.createBindings();

scope.put(b, new JButton());

engine.eval(scriptString, scope);

This is useful if a set of bindings should not persist for future calls to the eval method.

Note

You might want to have scopes other than the engine and global scopes. For
example, a web container might need request and session scopes. However, then
you are on your own. You need to implement a class that implements the
ScriptContext interface, managing a collection of scopes. Each scope is identified

by an integer number, and scopes with lower numbers should be searched first.
(The standard library provides a SimpleScriptContext class, but it only holds

global and engine scopes.)

javax.script.ScriptEngine 6

Object eval(String script)

Object eval(Reader reader)

Object eval(String script, Bindings bindings)

Object eval(Reader reader, Bindings bindings)

evaluates the script given by the string or reader, subject to the given
bindings.

Object get(String key)

void put(String key, Object value)

gets or puts a binding in the engine scope.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Bindings createBindings()

creates an empty Bindings object suitable for this engine.

javax.script.ScriptEngineManager 6

Object get(String key)

void put(String key, Object value)

gets or puts a binding in the global scope.

javax.script.Bindings 6

Object get(String key)

void put(String key, Object value)

gets or puts a binding into the scope represented by this Bindings

object.

Redirecting Input and Output

You can redirect the standard input and output of a script by calling the setReader and setWriter method of
the script context. For example,

StringWriter writer = new StringWriter();

engine.getContext().setWriter(new PrintWriter(writer, true));

Any output written with the JavaScript print or println functions is sent to writer.

Caution

You can pass any Writer to the setWriter method, but the Rhino engine throws an

exception if it is not a PrintWriter.

The setReader and setWriter methods only affect the scripting engine's standard input and output sources.

For example, if you execute the JavaScript code

println("Hello");

java.lang.System.out.println("World");

only the first output is redirected.

The Rhino engine does not have the notion of a standard input source. Calling setReader has no effect.

javax.script.ScriptEngine 6

ScriptContext getContext()

gets the default script context for this engine.

javax.script.ScriptContext 6

Reader getReader()

void setReader(Reader reader)

Writer getWriter()

void setWriter(Writer writer)

Writer getErrorWriter()

void setErrorWriter(Writer writer)

gets or sets the reader for input or writer for normal or error output.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Calling Scripting Functions and Methods

With many script engines, you can invoke a function in the scripting language without having to evaluate the
actual script code. This is useful if you allow users to implement a service in a scripting language of their choice.

The script engines that offer this functionality implement the Invocable interface. In particular, the Rhino

engine implements Invocable.

To call a function, call the invokeFunction method with the function name, followed by the function

parameters:

if (engine implements Invocable)

 ((Invocable) engine).invokeFunction("aFunction", param1, param2);

If the scripting language is object oriented, you call can a method like this:

Code View:
((Invocable) engine).invokeMethod(implicitParam, "aMethod", explicitParam1, explicitParam2);

Here, the implicitParam object is a proxy to an object in the scripting language. It must be the result of a prior

call to the scripting engine.

Note

If the script engine does not implement the Invocable interface, you might still be

able to call a method in a language-independent way. The getMethodCallSyntax

method of the ScriptEngineFactory class produces a string that you can pass to

the eval method. However, all method parameters must be bound to names,
whereas invokeMethod can be called with arbitrary values.

You can go a step further and ask the scripting engine to implement a Java interface. Then you can call scripting
functions and methods with the Java method call syntax.

The details depend on the scripting engine, but typically you need to supply a function for each method of the
interface. For example, consider a Java interface

public interface Greeter

{

 String greet(String whom);

}

In Rhino, you provide a function

function greet(x) { return "Hello, " + x + "!"; }

This code must be evaluated first. Then you can call

Greeter g = ((Invocable) engine).getInterface(Greeter.class);

Now you can make a plain Java method call

String result = g.greet("World");

Behind the scenes, the JavaScript greet method is invoked. This approach is similar to making a remote

method call, as discussed in Chapter 10.

In an object-oriented scripting language, you can access a script class through a matching Java interface. For
example, consider this JavaScript code, which defines a SimpleGreeter class.

Code View:
function SimpleGreeter(salutation) { this.salutation = salutation; }

SimpleGreeter.prototype.greet = function(whom) { return this.salutation + ", " + whom + "!"; }

You can use this class to construct greeters with different salutations (such as Hello, Goodbye, and so on).

Note

For more information on how to define classes in JavaScript, see JavaScript—The
Definitive Guide, 5th ed., by David Flanagan (O'Reilly 2006).

After evaluating the JavaScript class definition, call

Code View:
Object goodbyeGreeter = engine.eval("new SimpleGreeter('Goodbye')");

Greeter g = ((Invocable) engine).getInterface(goodbyeGreeter, Greeter.class);

When you call g.greet("World"), the greet method is invoked on the JavaScript object goodbyeGreeter. The

result is a string "Goodbye, World!".

In summary, the Invocable interface is useful if you want to call scripting code from Java without worrying

about the scripting language syntax.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.script.Invocable 6

Object invokeFunction(String name, Object... parameters)

Object invokeMethod(Object implicitParameter, String name,

Object... explicitParameters)

invokes the function or method with the given name, passing the given
parameters.

<T> T getInterface(Class<T> iface)

returns an implementation of the given interface, implementing the
methods with functions in the scripting engine.

<T> T getInterface(Object implicitParameter, Class<T> iface)

returns an implementation of the given interface, implementing the
methods with methods of the given object.

Compiling a Script

Some scripting engines can compile scripting code into an intermediate form for efficient execution. Those
engines implement the Compilable interface. The following example shows how to compile and evaluate code

that is contained in a script file:

Reader reader = new FileReader("myscript.js");

CompiledScript script = null;

if (engine implements Compilable)

 CompiledScript script = ((Compilable) engine).compile(reader);

Once the script is compiled, you can execute it. The following code executes the compiled script if compilation
was successful, or the original script if the engine didn't support compilation.

if (script != null)

 script.eval();

else

 engine.eval(reader);

Of course, you only want to compile a script if you need to execute it repeatedly.

javax.script.Compilable 6

CompiledScript compile(String script)

CompiledScript compile(Reader reader)

compiles the script given by a string or reader.

javax.script.CompiledScript 6

Object eval()

Object eval(Bindings bindings)

evaluates this script.

An Example: Scripting GUI Events

To illustrate the scripting API, we will develop a sample program that allows users to specify event handlers in a
scripting language of their choice.

Have a look at the program in Listing 11-1. The ButtonFrame class is similar to the event handling demo in
Volume I, with two differences:

Each component has its name property set.

There are no event handlers.

The event handlers are defined in a properties file. Each property definition has the form

componentName.eventName = scriptCode

For example, if you choose to use JavaScript, you supply the event handlers in a file js.properties, like this:

yellowButton.action=panel.background = java.awt.Color.YELLOW

blueButton.action=panel.background = java.awt.Color.BLUE

redButton.action=panel.background = java.awt.Color.RED

The companion code also has files for Groovy and SISC Scheme.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The program starts by loading an engine for the language that is specified on the command line. If no language
is specified, we use JavaScript.

We then process a script init.language if it is present. This seems like a good idea in general. Moreover, the

Scheme interpreter needs some cumbersome initializations that we did not want to include in every event
handler script.

Next, we recursively traverse all child components and add the bindings (name, object) into the engine scope.

Then we read the file language.properties. For each property, we synthesize an event handler proxy that

causes the script code to be executed. The details are a bit technical. You might want to read the section on
proxies in Volume I, Chapter 6, together with the section on JavaBeans events in Chapter 8 of this volume, if
you want follow the implementation in detail. The essential part, however, is that each event handler calls

engine.eval(scriptCode);

Let us look at the yellowButton in more detail. When the line

yellowButton.action=panel.background = java.awt.Color.YELLOW

is processed, we find the JButton component with the name "yellowButton". We then attach an

ActionListener with an actionPerformed method that executes the script

panel.background = java.awt.Color.YELLOW

The engine contains a binding that binds the name "panel" to the JPanel object. When the event occurs, the

setBackground method of the panel is executed, and the color changes.

You can run this program with the JavaScript event handlers, simply by executing

java ScriptTest

For the Groovy handlers, use

Code View:

java -classpath .:groovy/lib/*:jsr223-engines/groovy/build/groovy-engine.jar ScriptTest groovy

Here, groovy is the directory into which you installed Groovy, and jsr223-engines is the directory that contains
the engine adapters from http://scripting.dev.java.net.

To try out Scheme, download SISC Scheme from http://sisc-scheme.org/ and run

Code View:

java -classpath .:sisc/*:jsr223-engines/scheme/build/scheme-engine.jar ScriptTest scheme

This application demonstrates how to use scripting for Java GUI programming. One could go one step further
and describe the GUI with an XML file, as you have seen in Chapter 2. Then our program would become an

http://scripting.dev.java.net
http://sisc-scheme.org/

interpreter for GUIs that have visual presentation defined by XML and behavior defined by a scripting language.
Note the similarity to a dynamic HTML page or a dynamic server-side scripting environment.

Listing 11-1. ScriptTest.java

Code View:
 1. import java.awt.*;

 2. import java.beans.*;

 3. import java.io.*;

 4. import java.lang.reflect.*;

 5. import java.util.*;

 6. import javax.script.*;

 7. import javax.swing.*;

 8.

 9. /**

 10. * @version 1.00 2007-10-28

 11. * @author Cay Horstmann

 12. */

 13. public class ScriptTest

 14. {

 15. public static void main(final String[] args)

 16. {

 17. EventQueue.invokeLater(new Runnable()

 18. {

 19. public void run()

 20. {

 21. String language;

 22. if (args.length == 0) language = "js";

 23. else language = args[0];

 24.

 25. ScriptEngineManager manager = new ScriptEngineManager();

 26. System.out.println("Available factories: ");

 27. for (ScriptEngineFactory factory : manager.getEngineFactories())

 28. System.out.println(factory.getEngineName());

 29. final ScriptEngine engine = manager.getEngineByName(language);

 30.

 31. if (engine == null)

 32. {

 33. System.err.println("No engine for " + language);

 34. System.exit(1);

 35. }

 36.

 37. ButtonFrame frame = new ButtonFrame();

 38.

 39. try

 40. {

 41. File initFile = new File("init." + language);

 42. if (initFile.exists())

 43. {

 44. engine.eval(new FileReader(initFile));

 45. }

 46.

 47. getComponentBindings(frame, engine);

 48.

 49. final Properties events = new Properties();

 50. events.load(new FileReader(language + ".properties"));

 51. for (final Object e : events.keySet())

 52. {

 53. String[] s = ((String) e).split("\\.");

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 54. addListener(s[0], s[1], (String) events.get(e), engine);

 55. }

 56. }

 57. catch (Exception e)

 58. {

 59. e.printStackTrace();

 60. }

 61.

 62. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 63. frame.setTitle("ScriptTest");

 64. frame.setVisible(true);

 65. }

 66. });

 67. }

 68.

 69. /**

 70. * Gathers all named components in a container.

 71. * @param c the component

 72. * @param namedComponents

 73. */

 74. private static void getComponentBindings(Component c, ScriptEngine engine)

 75. {

 76. String name = c.getName();

 77. if (name != null) engine.put(name, c);

 78. if (c instanceof Container)

 79. {

 80. for (Component child : ((Container) c).getComponents())

 81. getComponentBindings(child, engine);

 82. }

 83. }

 84.

 85. /**

 86. * Adds a listener to an object whose listener method executes a script.

 87. * @param beanName the name of the bean to which the listener should be added

 88. * @param eventName the name of the listener type, such as "action" or "change"

 89. * @param scriptCode the script code to be executed

 90. * @param engine the engine that executes the code

 91. * @param bindings the bindings for the execution

 92. */

 93. private static void addListener(String beanName, String eventName, final String scriptCode,

 94. final ScriptEngine engine) throws IllegalArgumentException, IntrospectionException,

 95. IllegalAccessException, InvocationTargetException

 96. {

 97. Object bean = engine.get(beanName);

 98. EventSetDescriptor descriptor = getEventSetDescriptor(bean, eventName);

 99. if (descriptor == null) return;

100. descriptor.getAddListenerMethod().invoke(

101. bean,

102. Proxy.newProxyInstance(null, new Class[] { descriptor.getListenerType() },

103. new InvocationHandler()

104. {

105. public Object invoke(Object proxy, Method method, Object[] args)

106. throws Throwable

107. {

108. engine.eval(scriptCode);

109. return null;

110. }

111. }));

112.

113. }

114.

115. private static EventSetDescriptor getEventSetDescriptor(Object bean, String eventName)

116. throws IntrospectionException

117. {

118. for (EventSetDescriptor descriptor : Introspector.getBeanInfo(bean.getClass())

119. .getEventSetDescriptors())

120. if (descriptor.getName().equals(eventName)) return descriptor;

121. return null;

122. }

123. }

124.

125. class ButtonFrame extends JFrame

126. {

127. public ButtonFrame()

128. {

129. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

130.

131. panel = new JPanel();

132. panel.setName("panel");

133. add(panel);

134.

135. yellowButton = new JButton("Yellow");

136. yellowButton.setName("yellowButton");

137. blueButton = new JButton("Blue");

138. blueButton.setName("blueButton");

139. redButton = new JButton("Red");

140. redButton.setName("redButton");

141.

142. panel.add(yellowButton);

143. panel.add(blueButton);

144. panel.add(redButton);

145. }

146.

147. public static final int DEFAULT_WIDTH = 300;

148. public static final int DEFAULT_HEIGHT = 200;

149.

150. private JPanel panel;

151. private JButton yellowButton;

152. private JButton blueButton;

153. private JButton redButton;

154. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The Compiler API

In the preceding sections, you saw how to interact with code in a scripting language. Now we turn to a different
scenario: Java programs that compile Java code. There are quite a few tools that need to invoke the Java
compiler, such as:

Development environments.

Java teaching and tutoring programs.

Build and test automation tools.

Templating tools that process snippets of Java code, such as JavaServer Pages (JSP).

In the past, applications invoked the Java compiler by calling undocumented classes in the jdk/lib/tools.jar

library. As of Java SE 6, a public API for compilation is a part of the Java platform, and it is no longer necessary
to use tools.jar. This section explains the compiler API.

Compiling the Easy Way

It is very easy to invoke the compiler. Here is a sample call:

Code View:
JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

OutputStream outStream = ..., errStream = ...;
int result = compiler.run(null, outStream, errStream, "-sourcepath", "src", "Test.java");

A result value of 0 indicates successful compilation.

The compiler sends output and error messages to the provided streams. You can set these parameters to null,

in which case System.out and System.err are used. The first parameter of the run method is an input stream.

Because the compiler takes no console input, you always leave it as null. (The run method is inherited from a

generic Tool interface, which allows for tools that read input.)

The remaining parameters of the run method are simply the arguments that you would pass to javac if you

invoked it on the command line. These can be options or file names.

Using Compilation Tasks

You can have even more control over the compilation process with a CompilationTask object. In particular, you

can

Control the source of program code, for example, by providing code in a string builder instead of a file.

Control the placement of class files, for example, by storing them in a database.

Listen to error and warning messages as they occur during compilation.

Run the compiler in the background.

The location of source and class files is controlled by a JavaFileManager. It is responsible for determining

JavaFileObject instances for source and class files. A JavaFileObject can correspond to a disk file, or it can

provide another mechanism for reading and writing its contents.

To listen to error messages, you install a DiagnosticListener. The listener receives a Diagnostic object

whenever the compiler reports a warning or error message. The DiagnosticCollector class implements this
interface. It simply collects all diagnostics so that you can iterate through them after the compilation is
complete.

A Diagnostic object contains information about the problem location (including the file name, line number, and

column number) as well as a human-readable description.

You obtain a CompilationTask object by calling the getTask method of the JavaCompiler class. You need to

specify:

A Writer for any compiler output that is not reported as a Diagnostic, or null to use System.err.

A JavaFileManager, or null to use the compiler's standard file manager.

A DiagnosticListener.

Option strings, or null for no options.

Class names for annotation processing, or null if none are specified. (We discuss annotation processing

later in this chapter.)

JavaFileObject instances for source files.

You need to provide the last three arguments as Iterable objects. For example, a sequence of options might

be specified as

Iterable<String> options = Arrays.asList("-g", "-d", "classes");

Alternatively, you can use any collection class.

If you want the compiler to read source files from disk, then you can ask the StandardJavaFileManager to

translate file name strings or File objects to JavaFileObject instances. For example,

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
StandardJavaFileManager fileManager = compiler.getStandardFileManager(null, null, null);

Iterable<JavaFileObject> fileObjects = fileManager.getJavaFileObjectsFromStrings(fileNames);

However, if you want the compiler to read source code from somewhere other than a disk file, then you supply
your own JavaFileObject subclass. Listing 11-2 shows the code for a source file object with data that are

contained in a StringBuilder. The class extends the SimpleJava FileObject convenience class and overrides

the getCharContent method to return the content of the string builder. We use this class in our example

program in which we dynamically produce the code for a Java class and then compile it.

The CompilationTask class implements the Callable<Boolean> interface. You can pass it to an Executor for
execution in another thread, or you can simply invoke the call method. A return value of Boolean.FALSE

indicates failure.

Code View:
Callable<Boolean> task = new JavaCompiler.CompilationTask(null, fileManager, diagnostics,

 options, null, fileObjects);
if (!task.call())

 System.out.println("Compilation failed");

If you simply want the compiler to produce class files on disk, you need not customize the JavaFileManager.

However, our sample application will generate class files in byte arrays and later read them from memory, using
a special class loader. Listing 11-3 defines a class that implements the JavaFileObject interface. Its

openOutputStream method returns the ByteArrayOutputStream into which the compiler will deposit the byte

codes.

It turns out a bit tricky to tell the compiler's file manager to uses these file objects. The library doesn't supply a
class that implements the StandardJavaFileManager interface. Instead, you subclass the

ForwardingJavaFileManager class that delegates all calls to a given file manager. In our situation, we only

want to change the getJavaFileForOutput method. We achieve this with the following outline:

Code View:
JavaFileManager fileManager = compiler.getStandardFileManager(diagnostics, null, null);

fileManager = new ForwardingJavaFileManager<JavaFileManager>(fileManager)
 {

 public JavaFileObject getJavaFileForOutput(Location location, final String className,

 Kind kind, FileObject sibling) throws IOException

 {

 return custom file object

 }

 };

In summary, you call the run method of the JavaCompiler task if you simply want to invoke the compiler in the

usual way, reading and writing disk files. You can capture the output and error messages, but you need to parse
them yourself.

If you want more control over file handling or error reporting, you use the CompilationTask class instead. Its

API is quite complex, but you can control every aspect of the compilation process.

Listing 11-2. StringBuilderJavaSource.java

Code View:
 1. import java.net.*;

 2. import javax.tools.*;

 3.

 4. /**

 5. * A Java source that holds the code in a string builder.

 6. * @version 1.00 2007-11-02

 7. * @author Cay Horstmann

 8. */

 9. public class StringBuilderJavaSource extends SimpleJavaFileObject

10. {

11. /**

12. * Constructs a new StringBuilderJavaSource

13. * @param name the name of the source file represented by this file object

14. */

15. public StringBuilderJavaSource(String name)

16. {

17. super(URI.create("string:///" + name.replace('.', '/') + Kind.SOURCE.extension),

18. Kind.SOURCE);

19. code = new StringBuilder();

20. }

21.

22. public CharSequence getCharContent(boolean ignoreEncodingErrors)

23. {

24. return code;

25. }

26.

27. public void append(String str)

28. {

29. code.append(str);

30. code.append('\n');

31. }

32.

33. private StringBuilder code;

34. }

Listing 11-3. ByteArrayJavaClass.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. import java.io.*;

 2. import java.net.*;

 3. import javax.tools.*;

 4.

 5. /**

 6. * A Java class that holds the bytecodes in a byte array.

 7. * @version 1.00 2007-11-02

 8. * @author Cay Horstmann

 9. */

10. public class ByteArrayJavaClass extends SimpleJavaFileObject

11. {

12. /**

13. * Constructs a new ByteArrayJavaClass

14. * @param name the name of the class file represented by this file object

15. */

16. public ByteArrayJavaClass(String name)

17. {

18. super(URI.create("bytes:///" + name), Kind.CLASS);

19. stream = new ByteArrayOutputStream();

20. }

21.

22. public OutputStream openOutputStream() throws IOException

23. {

24. return stream;

25. }

26.

27. public byte[] getBytes()

28. {

29. return stream.toByteArray();

30. }

31.

32. private ByteArrayOutputStream stream;

33. }

javax.tools.Tool 6

int run(InputStream in, OutputStream out, OutputStream err,

String... arguments)

runs the tool with the given input, output, and error streams, and the
given arguments. Returns 0 for success, a nonzero value for failure.

javax.tools.JavaCompiler 6

StandardJavaFileManager

getStandardFileManager(DiagnosticListener<? super
JavaFileObject> diagnosticListener, Locale locale, Charset

charset)

gets the standard file manager for this compiler. You can supply null for

default error reporting, locale, and character set.

JavaCompiler.CompilationTask getTask(Writer out,
JavaFileManager fileManager, DiagnosticListener<? super

JavaFileObject> diagnosticListener, Iterable<String> options,

Iterable<String> classesForAnnotationProcessing, Iterable<?

extends JavaFileObject> sourceFiles)

gets a compilation task that, when called, will compile the given source
files. See the discussion in the preceding section for details.

javax.tools.StandardJavaFileManager 6

Iterable<? extends JavaFileObject>
getJavaFileObjectsFromStrings(Iterable<String> fileNames)

Iterable<? extends JavaFileObject>

getJavaFileObjectsFromFiles(Iterable<? extends File> files)

translates a sequence of file names or files into a sequence of
JavaFileObject instances.

javax.tools.JavaCompiler.CompilationTask 6

Boolean call()

performs the compilation task.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

javax.tools.DiagnosticCollector<S> 6

DiagnosticCollector()

constructs an empty collector.

List<Diagnostic<? extends S>> getDiagnostics()

gets the collected diagnostics.

javax.tools.Diagnostic<S> 6

S getSource()

gets the source object associated with this diagnostic.

Diagnostic.Kind getKind()

gets the type of this diagnostic, one of ERROR, WARNING,

MANDATORY_WARNING, NOTE, or OTHER.

String getMessage(Locale locale)

gets the message describing the issue raised in this diagnostic. Pass
null for the default locale.

long getLineNumber()

long getColumnNumber()

gets the position of the issue raised in this diagnostic.

javax.tools.SimpleJavaFileObject 6

CharSequence getCharContent(boolean ignoreEncodingErrors)

override this method for a file object that represents a source file, and
produce the source code.

OutputStream openOutputStream()

override this method for a file object that represents a class file, and
produce a stream to which the byte codes can be written.

javax.tools.ForwardingJavaFileManager<M extends
JavaFileManager> 6

protected ForwardingJavaFileManager(M fileManager)

constructs a JavaFileManager that delegates all calls to the given file

manager.

FileObject getFileForOutput(JavaFileManager.Location

location, String className, JavaFileObject.Kind kind,

FileObject sibling)

intercept this call if you want to substitute a file object for writing class
files. kind is one of SOURCE, CLASS, HTML, or OTHER.

An Example: Dynamic Java Code Generation

In JSP technology for dynamic web pages, you can mix HTML with snippets of Java code, such as

<p>The current date and time is <%= new java.util.Date() %>.</p>

The JSP engine dynamically compiles the Java code into a servlet. In our sample application, we use a simpler
example and generate dynamic Swing code instead. The idea is that you use a GUI builder to lay out the
components in a frame and specify the behavior of the components in an external file. Listing 11-4 shows a very
simple example of a frame class, and Listing 11-5 shows the code for the button actions. Note that the
constructor of the frame class calls an abstract method addEventHandlers. Our code generator will produce a

subclass that implements the addEventHandlers method, adding an action listener for each line in the

action.properties class. (We leave it as the proverbial exercise to the reader to extend the code generation

to other event types.)

We place the subclass into a package with the name x, which we hope is not used anywhere else in the

program. The generated code has the form

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
package x;

public class Frame extends SuperclassName {

 protected void addEventHandlers() {

 componentName1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent) {

 code for event handler1
 } });

 // repeat for the other event handlers ...

 } }

The buildSource method in the program of Listing 11-6 builds up this code and places it into a

StringBuilderJavaSource object. That object is passed to the Java compiler.

We use a ForwardingJavaFileManager with a getJavaFileForOutput method that constructs a

ByteArrayJavaClass object for every class in the x package. These objects capture the class files that are

generated when the x.Frame class is compiled. The method adds each file object to a list before returning it so

that we can locate the byte codes later. Note that compiling the x.Frame class produces a class file for the main

class and one class file per listener class.

After compilation, we build a map that associates class names with bytecode arrays. A simple class loader
(shown in Listing 11-7) loads the classes stored in this map.

We ask the class loader to load the class that we just compiled, and then we construct and display the
application's frame class.

ClassLoader loader = new MapClassLoader(byteCodeMap);

Class<?> cl = loader.loadClass("x.Frame");

Frame frame = (JFrame) cl.newInstance();

frame.setVisible(true);

When you click the buttons, the background color changes in the usual way. To see that the actions are
dynamically compiled, change one of the lines in action.properties, for example like this:

Code View:
yellowButton=panel.setBackground(java.awt.Color.YELLOW); yellowButton.setEnabled(false);

Run the program again. Now the Yellow button is disabled after you click it. Also have a look at the code
directories. You will not find any source or class files for the classes in the x package. This example

demonstrates how you can use dynamic compilation with in-memory source and class files.

Listing 11-4. ButtonFrame.java

Code View:
 1. package com.horstmann.corejava;

 2. import javax.swing.*;

 3.

 4. /**

 5. * @version 1.00 2007-11-02

 6. * @author Cay Horstmann

 7. */

 8. public abstract class ButtonFrame extends JFrame

 9. {

10. public ButtonFrame()

11. {

12. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

13.

14. panel = new JPanel();

15. add(panel);

16.

17. yellowButton = new JButton("Yellow");

18. blueButton = new JButton("Blue");

19. redButton = new JButton("Red");

20.

21. panel.add(yellowButton);

22. panel.add(blueButton);

23. panel.add(redButton);

24.

25. addEventHandlers();

26. }

27.

28. protected abstract void addEventHandlers();

29.

30. public static final int DEFAULT_WIDTH = 300;

31. public static final int DEFAULT_HEIGHT = 200;

32.

33. protected JPanel panel;

34. protected JButton yellowButton;

35. protected JButton blueButton;

36. protected JButton redButton;

37. }

Listing 11-5. action.properties

1. yellowButton=panel.setBackground(java.awt.Color.YELLOW);

2. blueButton=panel.setBackground(java.awt.Color.BLUE);

3. redButton=panel.setBackground(java.awt.Color.RED);

Listing 11-6. CompilerTest.java

Code View:
 1. import java.awt.*;

 2. import java.io.*;

 3. import java.util.*;

 4. import java.util.List;

 5. import javax.swing.*;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 6. import javax.tools.*;

 7. import javax.tools.JavaFileObject.*;

 8.

 9. /**

 10. * @version 1.00 2007-11-02

 11. * @author Cay Horstmann

 12. */

 13. public class CompilerTest

 14. {

 15. public static void main(final String[] args) throws IOException

 16. {

 17. JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

 18.

 19. final List<ByteArrayJavaClass> classFileObjects = new ArrayList<ByteArrayJavaClass>();

 20.

 21. DiagnosticCollector<JavaFileObject> diagnostics = new DiagnosticCollector<JavaFileObject>()

 22.

 23. JavaFileManager fileManager = compiler.getStandardFileManager(diagnostics, null, null);

 24. fileManager = new ForwardingJavaFileManager<JavaFileManager>(fileManager)

 25. {

 26. public JavaFileObject getJavaFileForOutput(Location location,

 27. final String className, Kind kind, FileObject sibling) throws IOException

 28. {

 29. if (className.startsWith("x."))

 30. {

 31. ByteArrayJavaClass fileObject = new ByteArrayJavaClass(className);

 32. classFileObjects.add(fileObject);

 33. return fileObject;

 34. }

 35. else return super.getJavaFileForOutput(location, className, kind, sibling);

 36. }

 37. };

 38.

 39. JavaFileObject source = buildSource("com.horstmann.corejava.ButtonFrame");

 40. JavaCompiler.CompilationTask task = compiler.getTask(null, fileManager, diagnostics,

 41. null, null, Arrays.asList(source));

 42. Boolean result = task.call();

 43.

 44. for (Diagnostic<? extends JavaFileObject> d : diagnostics.getDiagnostics())

 45. System.out.println(d.getKind() + ": " + d.getMessage(null));

 46. fileManager.close();

 47. if (!result)

 48. {

 49. System.out.println("Compilation failed.");

 50. System.exit(1);

 51. }

 52.

 53. EventQueue.invokeLater(new Runnable()

 54. {

 55. public void run()

 56. {

 57. try

 58. {

 59. Map<String, byte[]> byteCodeMap = new HashMap<String, byte[]>();

 60. for (ByteArrayJavaClass cl : classFileObjects)

 61. byteCodeMap.put(cl.getName().substring(1), cl.getBytes());

 62. ClassLoader loader = new MapClassLoader(byteCodeMap);

 63. Class<?> cl = loader.loadClass("x.Frame");

 64. JFrame frame = (JFrame) cl.newInstance();

 65. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 66. frame.setTitle("CompilerTest");

 67. frame.setVisible(true);

 68. }

 69. catch (Exception ex)

 70. {

 71. ex.printStackTrace();

 72. }

 73. }

 74. });

 75. }

 76.

 77. /*

 78. * Builds the source for the subclass that implements the addEventHandlers method.

 79. * @return a file object containing the source in a string builder

 80. */

 81. static JavaFileObject buildSource(String superclassName) throws IOException

 82. {

 83. StringBuilderJavaSource source = new StringBuilderJavaSource("x.Frame");

 84. source.append("package x;\n");

 85. source.append("public class Frame extends " + superclassName + " {");

 86. source.append("protected void addEventHandlers() {");

 87. Properties props = new Properties();

 88. props.load(new FileReader("action.properties"));

 89. for (Map.Entry<Object, Object> e : props.entrySet())

 90. {

 91. String beanName = (String) e.getKey();

 92. String eventCode = (String) e.getValue();

 93. source.append(beanName + ".addActionListener(new java.awt.event.ActionListener() {");

 94. source.append("public void actionPerformed(java.awt.event.ActionEvent event) {");

 95. source.append(eventCode);

 96. source.append("} });");

 97. }

 98. source.append("} }");

 99. return source;

100. }

101. }

Listing 11-7. MapClassLoader.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. import java.util.*;

 2.

 3. /**

 4. * A class loader that loads classes from a map whose keys are class names and whose

 5. * values are byte code arrays.

 6. * @version 1.00 2007-11-02

 7. * @author Cay Horstmann

 8. */

 9. public class MapClassLoader extends ClassLoader

10. {

11. public MapClassLoader(Map<String, byte[]> classes)

12. {

13. this.classes = classes;

14. }

15.

16. protected Class<?> findClass(String name) throws ClassNotFoundException

17. {

18. byte[] classBytes = classes.get(name);

19. if (classBytes == null) throw new ClassNotFoundException(name);

20. Class<?> cl = defineClass(name, classBytes, 0, classBytes.length);

21. if (cl == null) throw new ClassNotFoundException(name);

22. return cl;

23. }

24.

25. private Map<String, byte[]> classes;

26. }

Using Annotations

Annotations are tags that you insert into your source code so that some tool can process them. The tools can
operate on the source level, or they can process class files into which the compiler has placed annotations.

Annotations do not change the way in which your programs are compiled. The Java compiler generates the
same virtual machine instructions with or without the annotations.

To benefit from annotations, you need to select a processing tool. You insert annotations into your code that
your processing tool understands, and then apply the processing tool.

There is a wide range of uses for annotations, and that generality can be initially confusing. Here are some uses
for annotations:

Automatic generation of auxiliary files, such as deployment descriptors or bean information classes.

Automatic generation of code for testing, logging, transaction semantics, and so on.

We start our discussion of annotations with the basic concepts and put them to use in a concrete example: We
mark methods as event listeners for AWT components, and show you an annotation processor that analyzes the
annotations and hooks up the listeners. We then discuss the syntax rules in detail. We finish the chapter with
two advanced examples for annotation processing. One of them processes source-level annotations. The other
uses the Apache Bytecode Engineering Library to process class files, injecting additional bytecodes into
annotated methods.

Here is an example of a simple annotation:

public class MyClass
{

 . . .

 @Test public void checkRandomInsertions()

}

The annotation @Test annotates the checkRandomInsertions method.

In Java, an annotation is used like a modifier, and it is placed before the annotated item, without a semicolon.
(A modifier is a keyword such as public or static.) The name of each annotation is preceded by an @ symbol,

similar to Javadoc comments. However, Javadoc comments occur inside /** . . . */ delimiters, whereas

annotations are part of the code.

By itself, the @Test annotation does not do anything. It needs a tool to be useful. For example, the JUnit 4

testing tool (available at http://junit.org) calls all methods that are labeled as @Test when testing a class.

Another tool might remove all test methods from a class file so that they are not shipped with the program after
it has been tested.

Annotations can be defined to have elements, such as

@Test(timeout="10000")

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://junit.org

These elements can be processed by the tools that read the annotations. Other forms of elements are possible;
we discuss them later in this chapter.

Besides methods, you can annotate classes, fields, and local variables—an annotation can be anywhere you
could put a modifier such as public or static.

Each annotation must be defined by an annotation interface. The methods of the interface correspond to the
elements of the annotation. For example, the JUnit Test annotation is defined by the following interface:

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface Test

{

 long timeout() default 0L;

 . . .

}

The @interface declaration creates an actual Java interface. Tools that process annotations receive objects that

implement the annotation interface. A tool would call the timeout method to retrieve the timeout element of a

particular Test annotation.

The Target and Retention annotations are meta-annotations. They annotate the Test annotation, marking it

as an annotation that can be applied to methods only and that is retained when the class file is loaded into the
virtual machine. We discuss them in detail in the section "Meta-Annotations" on page 917.

You have now seen the basic concepts of program metadata and annotations. In the next section, we walk
through a concrete example of annotation processing.

An Example: Annotating Event Handlers

One of the more boring tasks in user interface programming is the wiring of listeners to event sources. Many
listeners are of the form

myButton.addActionListener(new

 ActionListener()

 {

 public void actionPerformed(ActionEvent event)

 {
 doSomething();

 }

 });

In this section, we design an annotation to avoid this drudgery. The annotation has the form

@ActionListenerFor(source="myButton") void doSomething() { . . . }

The programmer no longer has to make calls to addActionListener. Instead, each method is simply tagged

with an annotation. Listing 11-8 shows the ButtonFrame class from Volume I, Chapter 8, reimplemented with

these annotations.

We also need to define an annotation interface. The code is in Listing 11-9.

Listing 11-8. ButtonFrame.java

Code View:
 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. /**

 5. * A frame with a button panel

 6. * @version 1.00 2004-08-17

 7. * @author Cay Horstmann

 8. */

 9. public class ButtonFrame extends JFrame

10. {

11. public ButtonFrame()

12. {

13. setTitle("ButtonTest");

14. setSize(DEFAULT_WIDTH, DEFAULT_HEIGHT);

15.

16. panel = new JPanel();

17. add(panel);

18.

19. yellowButton = new JButton("Yellow");

20. blueButton = new JButton("Blue");

21. redButton = new JButton("Red");

22.

23. panel.add(yellowButton);

24. panel.add(blueButton);

25. panel.add(redButton);

26.

27. ActionListenerInstaller.processAnnotations(this);

28. }

29.

30. @ActionListenerFor(source = "yellowButton")

31. public void yellowBackground()

32. {

33. panel.setBackground(Color.YELLOW);

34. }

35.

36. @ActionListenerFor(source = "blueButton")

37. public void blueBackground()

38. {

39. panel.setBackground(Color.BLUE);

40. }

41.

42. @ActionListenerFor(source = "redButton")

43. public void redBackground()

44. {

45. panel.setBackground(Color.RED);

46. }

47.

48. public static final int DEFAULT_WIDTH = 300;

49. public static final int DEFAULT_HEIGHT = 200;

50.

51. private JPanel panel;

52. private JButton yellowButton;

53. private JButton blueButton;

54. private JButton redButton;

55. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 11-9. ActionListenerFor.java

 1. import java.lang.annotation.*;

 2.

 3. /**

 4. * @version 1.00 2004-08-17

 5. * @author Cay Horstmann

 6. */

 7.

 8. @Target(ElementType.METHOD)

 9. @Retention(RetentionPolicy.RUNTIME)

10. public @interface ActionListenerFor

11. {

12. String source();

13. }

Of course, the annotations don't do anything by themselves. They sit in the source file. The compiler places
them in the class file, and the virtual machine loads them. We now need a mechanism to analyze them and
install action listeners. That is the job of the ActionListenerInstaller class. The ButtonFrame constructor

calls

ActionListenerInstaller.processAnnotations(this);

The static processAnnotations method enumerates all methods of the object that it received. For each

method, it gets the ActionListenerFor annotation object and processes it.

Class<?> cl = obj.getClass();

for (Method m : cl.getDeclaredMethods())

{

 ActionListenerFor a = m.getAnnotation(ActionListenerFor.class);
 if (a != null) . . .

}

Here, we use the getAnnotation method that is defined in the AnnotatedElement interface. The classes

Method, Constructor, Field, Class, and Package implement this interface.

The name of the source field is stored in the annotation object. We retrieve it by calling the source method, and

then look up the matching field.

String fieldName = a.source();
Field f = cl.getDeclaredField(fieldName);

This shows a limitation of our annotation. The source element must be the name of a field. It cannot be a local
variable.

The remainder of the code is rather technical. For each annotated method, we construct a proxy object that
implements the ActionListener interface and with an actionPerformed method that calls the annotated

method. (For more information about proxies, see Volume I, Chapter 6.) The details are not important. The key
observation is that the functionality of the annotations was established by the processAnnotations method.

Figure 11-1 shows how annotations are handled in this example.

Figure 11-1. Processing annotations at runtime

[View full size image]

In this example, the annotations were processed at runtime. It would also have been possible to process them
at the source level. A source code generator might have produced the code for adding the listeners.
Alternatively, the annotations might have been processed at the bytecode level. A bytecode editor might have
injected the calls to addActionListener into the frame constructor. This sounds complex, but libraries are

available to make this task relatively straightforward. You can see an example in the section "Bytecode
Engineering" on page 926.

Our example was not intended as a serious tool for user interface programmers. A utility method for adding a
listener could be just as convenient for the programmer as the annotation. (In fact, the
java.beans.EventHandler class tries to do just that. You could easily refine the class to be truly useful by

supplying a method that adds the event handler instead of just constructing it.)

However, this example shows the mechanics of annotating a program and of analyzing the annotations. Having
seen a concrete example, you are now more prepared (we hope) for the following sections that describe the
annotation syntax in complete detail.

Listing 11-10. ActionListenerInstaller.java

Code View:
 1. import java.awt.event.*;

 2. import java.lang.reflect.*;

 3.

 4. /**

 5. * @version 1.00 2004-08-17

 6. * @author Cay Horstmann

 7. */

 8. public class ActionListenerInstaller

 9. {

10. /**

11. * Processes all ActionListenerFor annotations in the given object.

12. * @param obj an object whose methods may have ActionListenerFor annotations

13. */

14. public static void processAnnotations(Object obj)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

15. {

16. try

17. {

18. Class<?> cl = obj.getClass();

19. for (Method m : cl.getDeclaredMethods())

20. {

21. ActionListenerFor a = m.getAnnotation(ActionListenerFor.class);

22. if (a != null)

23. {

24. Field f = cl.getDeclaredField(a.source());

25. f.setAccessible(true);

26. addListener(f.get(obj), obj, m);

27. }

28. }

29. }

30. catch (Exception e)

31. {

32. e.printStackTrace();

33. }

34. }

35.

36. /**

37. * Adds an action listener that calls a given method.

38. * @param source the event source to which an action listener is added

39. * @param param the implicit parameter of the method that the listener calls

40. * @param m the method that the listener calls

41. */

42. public static void addListener(Object source, final Object param, final Method m)

43. throws NoSuchMethodException, IllegalAccessException, InvocationTargetException

44. {

45. InvocationHandler handler = new InvocationHandler()

46. {

47. public Object invoke(Object proxy, Method mm, Object[] args) throws Throwable

48. {

49. return m.invoke(param);

50. }

51. };

52.

53. Object listener = Proxy.newProxyInstance(null,

54. new Class[] { java.awt.event.ActionListener.class }, handler);

55. Method adder = source.getClass().getMethod("addActionListener", ActionListener.class);

56. adder.invoke(source, listener);

57. }

58. }

java.lang.AnnotatedElement 5.0

boolean isAnnotationPresent(Class<? extends Annotation>

annotationType)

returns true if this item has an annotation of the given type.

<T extends Annotation> T getAnnotation(Class<T>

annotationType)

gets the annotation of the given type, or null if this item has no such

annotation.

Annotation[] getAnnotations()

gets all annotations that are present for this item, including inherited
annotations. If no annotations are present, an array of length 0 is
returned.

Annotation[] getDeclaredAnnotations()

gets all annotations that are declared for this item, excluding inherited
annotations. If no annotations are present, an array of length 0 is
returned.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Annotation Syntax

In this section, we cover everything you need to know about the annotation syntax.

An annotation is defined by an annotation interface:

modifiers @interface AnnotationName

{

 element declaration1
 element declaration2
 . . .

}

Each element declaration has the form

type elementName();

or

type elementName() default value;

For example, the following annotation has two elements, assignedTo and severity.

public @interface BugReport

{

 String assignedTo() default "[none]";

 int severity() = 0;

}

Each annotation has the format

@AnnotationName(elementName1=value1, elementName2=value2, . . .)

For example,

@BugReport(assignedTo="Harry", severity=10)

The order of the elements does not matter. The annotation

@BugReport(severity=10, assignedTo="Harry")

is identical to the preceding one.

The default value of the declaration is used if an element value is not specified. For example, consider the
annotation

@BugReport(severity=10)

The value of the assignedTo element is the string "[none]".

Caution

Defaults are not stored with the annotation; instead, they are dynamically
computed. For example, if you change the default for the assignedTo element to

"[]" and recompile the BugReport interface, then the annotation

@BugReport(severity=10) uses the new default, even in class files that have been

compiled before the default changed.

Two special shortcuts can simplify annotations.

If no elements are specified, either because the annotation doesn't have any or because all of them use the
default value, then you don't need to use parentheses. For example,

@BugReport

is the same as

@BugReport(assignedTo="[none]", severity=0)

Such an annotation is called a marker annotation.

The other shortcut is the single value annotation. If an element has the special name value, and no other

element is specified, then you can omit the element name and the = symbol. For example, had we defined the
ActionListenerFor annotation interface of the preceding section as

public @interface ActionListenerFor

{

 String value();

}

then we could have written the annotations as

@ActionListenerFor("yellowButton")

instead of

@ActionListenerFor(value="yellowButton")

All annotation interfaces implicitly extend the interface java.lang.annotation.Annotation. That interface is a

regular interface, not an annotation interface. See the API notes at the end of this section for the methods
provided by this interface.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You cannot extend annotation interfaces. In other words, all annotation interfaces directly extend
java.lang.annotation.Annotation.

You never supply classes that implement annotation interfaces. Instead, the virtual machine generates proxy
classes and objects when needed. For example, when requesting an ActionListenerFor annotation, the virtual

machine carries out an operation similar to the following:

Code View:

return Proxy.newProxyInstance(classLoader, ActionListenerFor.class,

 new

 InvocationHandler()

 {

 public Object invoke(Object proxy, Method m, Object[] args) throws Throwable

 {

 if (m.getName().equals("source")) return value of source annotation;
 . . .

 }

 });

The element declarations in the annotation interface are actually method declarations. The methods of an
annotation interface can have no parameters and no throws clauses, and they cannot be generic.

The type of an annotation element is one of the following:

A primitive type (int, short, long, byte, char, double, float, or boolean)

String

Class (with an optional type parameter such as Class<? extends MyClass>)

An enum type

An annotation type

An array of the preceding types (an array of arrays is not a legal element type)

Here are examples for valid element declarations:

public @interface BugReport

{

 enum Status { UNCONFIRMED, CONFIRMED, FIXED, NOTABUG };
 boolean showStopper() default false;

 String assignedTo() default "[none]";

 Class<?> testCase() default Void.class;

 Status status() default Status.UNCONFIRMED;

 Reference ref() default @Reference(); // an annotation type

 String[] reportedBy();

}

Because annotations are evaluated by the compiler, all element values must be compile-time constants. For
example,

@BugReport(showStopper=true, assignedTo="Harry", testCase=MyTestCase.class,

 status=BugReport.Status.CONFIRMED, . . .)

Caution

An annotation element can never be set to null. Not even a default of null is

permissible. This can be rather inconvenient in practice. You will need to find other
defaults, such as "" or Void.class.

If an element value is an array, you enclose its values in braces, like this:

@BugReport(. . ., reportedBy={"Harry", "Carl"})

You can omit the braces if the element has a single value:

@BugReport(. . ., reportedBy="Joe") // OK, same as {"Joe"}

Because an annotation element can be another annotation, you can build arbitrarily complex annotations. For
example,

@BugReport(ref=@Reference(id="3352627"), . . .)

Note

It is an error to introduce circular dependencies in annotations. For example,
because BugReport has an element of the annotation type Reference, then

Reference can't have an element of type BugReport.

You can add annotations to the following items:

Packages

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Classes (including enum)

Interfaces (including annotation interfaces)

Methods

Constructors

Instance fields (including enum constants)

Local variables

Parameter variables

However, annotations for local variables can only be processed at the source level. Class files do not describe
local variables. Therefore, all local variable annotations are discarded when a class is compiled. Similarly,
annotations for packages are not retained beyond the source level.

Note

You annotate a package in a file package-info.java that contains only the package

statement, preceded by annotations.

An item can have multiple annotations, provided they belong to different types. You cannot use the same
annotation type more than once when annotating a particular item. For example,

@BugReport(showStopper=true, reportedBy="Joe")

@BugReport(reportedBy={"Harry", "Carl"})

void myMethod()

is a compile-time error. If this is a problem, you can design an annotation that has a value of an array of
simpler annotations:

@BugReports({

 @BugReport(showStopper=true, reportedBy="Joe"),

 @BugReport(reportedBy={"Harry", "Carl"}))

void myMethod()

java.lang.annotation.Annotation 5.0

Class<? extends Annotation> annotationType()

returns the Class object that represents the annotation interface of this

annotation object. Note that calling getClass on an annotation object

would return the actual class, not the interface.

boolean equals(Object other)

returns true if other is an object that implements the same annotation
interface as this annotation object and if all elements of this object and
other are equal to another.

int hashCode()

returns a hash code that is compatible with the equals method, derived

from the name of the annotation interface and the element values.

String toString()

returns a string representation that contains the annotation interface
name and the element values, for example,
@BugReport(assignedTo=[none], severity=0)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Standard Annotations

Java SE defines a number of annotation interfaces in the java.lang, java.lang.annotation, and

javax.annotation packages. Four of them are meta-annotations that describe the behavior of annotation

interfaces. The others are regular annotations that you can use to annotate items in your source code. Table 11-
2 shows these annotations. We discuss them in detail in the following two sections.

Table 11-2. The Standard Annotations

Annotation Interface Applicable To Purpose

Deprecated All Marks item as deprecated

SuppressWarnings All but packages and
annotations

Suppresses warnings of the given type

Override Methods Checks that this method overrides a
superclass method

PostConstruct

PreDestroy

Methods The marked method should be invoked
immediately after construction or before
removal

Resource Classes, interfaces,
methods, fields

On a class or interface: marks it as a
resource to be used elsewhere. On a
method or field: marks it for "injection"

Resources Classes, interfaces An array of resources

Generated All Marks item as source code that has been
generated by a tool

Target Annotations Specifies the items to which this
annotation can be applied

Retention Annotations Specifies how long this annotation is
retained

Documented Annotations Specifies that this annotation should be
included in the documentation of
annotated items

Inherited Annotations Specifies that this annotation, when
applied to a class, is automatically
inherited by its subclasses

Annotations for Compilation

The @Deprecated annotation can be attached to any items for which use is no longer encouraged. The compiler

will warn when you use a deprecated item. This annotation has the same role as the @deprecated Javadoc tag.

The @SuppressWarnings annotation tells the compiler to suppress warnings of a particular type, for example,

@SuppressWarnings("unchecked")

The @Override annotation applies only to methods. The compiler checks that a method with this annotation

really overrides a method from the superclass. For example, if you declare

public MyClass

{

 @Override public boolean equals(MyClass other);

 . . .
}

then the compiler will report an error. After all, the equals method does not override the equals method of the

Object class. That method has a parameter of type Object, not MyClass.

The @Generated annotation is intended for use by code generator tools. Any generated source code can be

annotated to differentiate it from programmer-provided code. For example, a code editor can hide the
generated code, or a code generator can remove older versions of generated code. Each annotation must
contain a unique identifier for the code generator. A date string (in ISO8601 format) and a comment string are
optional. For example,

@Generated("com.horstmann.beanproperty", "2008-01-04T12:08:56.235-0700");

Annotations for Managing Resources

The @PostConstruct and @PreDestroy annotations are used in environments that control the lifecycle of

objects, such as web containers and application servers. Methods tagged with these annotations should be
invoked immediately after an object has been constructed or immediately before it is being removed.

The @Resource annotation is intended for resource injection. For example, consider a web application that

accesses a database. Of course, the database access information should not be hardwired into the web
application. Instead, the web container has some user interface for setting connection parameters and a JNDI
name for a data source. In the web application, you can reference the data source like this:

@Resource(name="jdbc/mydb")

private DataSource source;

When an object containing this field is constructed, the container "injects" a reference to the data source.

Meta-Annotations

The @Target meta-annotation is applied to an annotation, restricting the items to which the annotation applies.

For example,

@Target({ElementType.TYPE, ElementType.METHOD})

public @interface BugReport

Table 11-3 shows all possible values. They belong to the enumerated type ElementType. You can specify any

number of element types, enclosed in braces.

Table 11-3. Element Types for the @Target Annotation

Element Type Annotation Applies To

ANNOTATION_TYPE Annotation type declarations

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Element Type Annotation Applies To

PACKAGE Packages

TYPE Classes (including enum) and interfaces (including annotation

types)

METHOD Methods

CONSTRUCTOR Constructors

FIELD Fields (including enum constants)

PARAMETER Method or constructor parameters

LOCAL_VARIABLE Local variables

An annotation without an @Target restriction can be applied to any item. The compiler checks that you apply an

annotation only to a permitted item. For example, if you apply @BugReport to a field, a compile-time error

results.

The @Retention meta-annotation specifies how long an annotation is retained. You specify at most one of the
values in Table 11-4. The default is RetentionPolicy.CLASS.

Table 11-4. Retention Policies for the @Retention Annotation

Retention Policy Description

SOURCE Annotations are not included in class files.

CLASS Annotations are included in class files, but the virtual machine
need not load them.

RUNTIME Annotations are included in class files and loaded by the virtual
machine. They are available through the reflection API.

In Listing 11-9, the @ActionListenerFor annotation was declared with RetentionPolicy.RUNTIME because we

used reflection to process annotations. In the following two sections, you will see examples of processing
annotations at the source and class file levels.

The @Documented meta-annotation gives a hint to documentation tools such as Javadoc. Documented

annotations should be treated just like other modifiers such as protected or static for documentation

purposes. The use of other annotations is not included in the documentation. For example, suppose we declare
@ActionListenerFor as a documented annotation:

@Documented

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface ActionListenerFor

Now the documentation of each annotated method contains the annotation, as shown in Figure 11-2.

Figure 11-2. Documented annotations

PACKAGE Packages

TYPE Classes (including enum) and interfaces (including annotation

types)

METHOD Methods

CONSTRUCTOR Constructors

FIELD Fields (including enum constants)

PARAMETER Method or constructor parameters

LOCAL_VARIABLE Local variables

An annotation without an @Target restriction can be applied to any item. The compiler checks that you apply an

annotation only to a permitted item. For example, if you apply @BugReport to a field, a compile-time error

results.

The @Retention meta-annotation specifies how long an annotation is retained. You specify at most one of the
values in Table 11-4. The default is RetentionPolicy.CLASS.

Table 11-4. Retention Policies for the @Retention Annotation

Retention Policy Description

SOURCE Annotations are not included in class files.

CLASS Annotations are included in class files, but the virtual machine
need not load them.

RUNTIME Annotations are included in class files and loaded by the virtual
machine. They are available through the reflection API.

In Listing 11-9, the @ActionListenerFor annotation was declared with RetentionPolicy.RUNTIME because we

used reflection to process annotations. In the following two sections, you will see examples of processing
annotations at the source and class file levels.

The @Documented meta-annotation gives a hint to documentation tools such as Javadoc. Documented

annotations should be treated just like other modifiers such as protected or static for documentation

purposes. The use of other annotations is not included in the documentation. For example, suppose we declare
@ActionListenerFor as a documented annotation:

@Documented

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

public @interface ActionListenerFor

Now the documentation of each annotated method contains the annotation, as shown in Figure 11-2.

Figure 11-2. Documented annotations

[View full size image]

If an annotation is transient (such as @BugReport), you should probably not document its use.

Note

It is legal to apply an annotation to itself. For example, the @Documented annotation
is itself annotated as @Documented. Therefore, the Javadoc documentation for

annotations shows whether they are documented.

The @Inherited meta-annotation applies only to annotations for classes. When a class has an inherited

annotation, then all of its subclasses automatically have the same annotation. This makes it easy to create
annotations that work in the same way as marker interfaces such as Serializable.

In fact, an annotation @Serializable would be more appropriate than the Serializable marker interfaces with

no methods. A class is serializable because there is runtime support for reading and writing its fields, not
because of any principles of object-oriented design. An annotation describes this fact better than does interface
inheritance. Of course, the Serializable interface was created in JDK 1.1, long before annotations existed.

Suppose you define an inherited annotation @Persistent to indicate that objects of a class can be saved in a
database. Then the subclasses of persistent classes are automatically annotated as persistent.

@Inherited @Persistent { }

@Persistent class Employee { . . . }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

class Manager extends Employee { . . . } // also @Persistent

When the persistence mechanism searches for objects to store in the database, it will detect both Employee and

Manager objects.

Source-Level Annotation Processing

One use for annotation is the automatic generation of "side files" that contain additional information about
programs. In the past, the Enterprise Edition of Java was notorious for making programmers fuss with lots of
boilerplate code. Java EE 5 uses annotations to greatly simplify the programming model.

In this section, we demonstrate this technique with a simpler example. We write a program that automatically
produces bean info classes. You tag bean properties with an annotation and then run a tool that parses the source
file, analyzes the annotations, and writes out the source file of the bean info class.

Recall from Chapter 8 that a bean info class describes a bean more precisely than the automatic introspection
process can. The bean info class lists all of the properties of the bean. Properties can have optional property editors.
The ChartBeanBeanInfo class in Chapter 8 is a typical example.

To eliminate the drudgery of writing bean info classes, we supply an @Property annotation. You can tag either the

property getter or setter, like this:

@Property String getTitle() { return title; }

or

@Property(editor="TitlePositionEditor")

public void setTitlePosition(int p) { titlePosition = p; }

Listing 11-11 contains the definition of the @Property annotation. Note that the annotation has a retention policy of

SOURCE . We analyze the annotation at the source level only. It is not included in class files and not available during

reflection.

Listing 11-11. Property.java

 1. package com.horstmann.annotations;

 2. import java.lang.annotation.*;

 3.

 4. @Documented

 5. @Target(ElementType.METHOD)

 6. @Retention(RetentionPolicy.SOURCE)

 7. public @interface Property

 8. {

 9. String editor() default "";

10. }

Note

It would have made sense to declare the editor element to have type Class .
However, the annotation processor cannot retrieve annotations of type Class because

the meaning of a class can depend on external factors (such as the class path or class
loaders). Therefore, we use a string to specify the editor class name.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

To automatically generate the bean info class of a class with name BeanClass , we carry out the following tasks:

1. Write a source file BeanClass BeanInfo.java . Declare the BeanClass BeanInfo class to extend
SimpleBeanInfo , and override the getPropertyDescriptors method.

2. For each annotated method, recover the property name by stripping off the get or set prefix and

"decapitalizing" the remainder.

3. For each property, write a statement for constructing a PropertyDescriptor .

4. If the property has an editor, write a method call to setPropertyEditorClass .

5. Write code for returning an array of all property descriptors.

For example, the annotation

@Property(editor="TitlePositionEditor")

public void setTitlePosition(int p) { titlePosition = p; }

in the ChartBean class is translated into

Code View:
public class ChartBeanBeanInfo extends java.beans.SimpleBeanInfo

{

 public java.beans.PropertyDescriptor[] getProperties()
 {

 java.beans.PropertyDescriptor titlePositionDescriptor

 = new java.beans.PropertyDescriptor("titlePosition", ChartBean.class);

 titlePositionDescriptor.setPropertyEditorClass(TitlePositionEditor.class)

 . . .

 return new java.beans.PropertyDescriptor[]

 {
 titlePositionDescriptor,

 . . .

 }

 }
}

(The boilerplate code is printed in the lighter gray.)

All this is easy enough to do, provided we can locate all methods that have been tagged with the @Property

annotation.

As of Java SE 6, you can add annotation processors to the Java compiler. (In Java SE 5, a stand-alone tool, called
apt , was used for the same purpose.) To invoke annotation processing, run

javac -processor ProcessorClassName1,ProcessorClassName2,... sourceFiles

The compiler locates the annotations of the source files. It then selects the annotation processors that should be
applied. Each annotation processor is executed in turn. If an annotation processor creates a new source file, then
the process is repeated. If a processing round yields no further source files, then all source files are compiled.
Figure 11-3 shows how the @Property annotations are processed.

Figure 11-3. Processing source-level annotations

[View full size image]

We do not discuss the annotation processing API in detail, but the program in Listing 11-12 will give you a flavor of
its capabilities.

An annotation processor implements the Processor interface, generally by extending the AbstractProcessor class.

You need to specify which annotations your processor supports. Because the designers of the API love annotations,
they use an annotation for this purpose:

@SupportedAnnotationTypes("com.horstmann.annotations.Property")

public class BeanInfoAnnotationProcessor extends AbstractProcessor

A processor can claim specific annotation types, wildcards such as "com.horstmann.* " (all annotations in the
com.horstmann package or any subpackage), or even "*" (all annotations).

The BeanInfoAnnotationProcessor has a single public method, process , that is called for each file. The process

method has two parameters, the set of annotations that is being processed in this round, and a RoundEnv reference
that contains information about the current processing round.

In the process method, we iterate through all annotated methods. For each method, we get the property name by

stripping off the get , set , or is prefix and changing the next letter to lower case. Here is the outline of the code:

Code View:
public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv)

 {

 for (TypeElement t : annotations)
 {

 Map<String, Property> props = new LinkedHashMap<String, Property>();

 for (Element e : roundEnv.getElementsAnnotatedWith(t))

 {

 props.put(property name, e.getAnnotation(Property.class));

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 }

 }

 write bean info source file

 }

 return true;

}

The process method should return true if it claims all the annotations presented to it; that is, if those annotations

should not be passed on to other processors.

The code for writing the source file is straightforward, just a sequence of out.print statements. Note that we
create the output writer as follows:

Code View:
JavaFileObject sourceFile = processingEnv.getFiler().createSourceFile(beanClassName + "BeanInfo");

PrintWriter out = new PrintWriter(sourceFile.openWriter());

The AbstractProcessor class has a protected field processingEnv for accessing various processing services. The

Filer interface is responsible for creating new files and tracking them so that they can be processed in subsequent

processing rounds.

When an annotation processor detects an error, it uses the Messager to communicate with the user. For example,

we issue an error message if a method has been annotated with @Property but its name doesn't start with get ,

set , or is :

if (!found) processingEnv.getMessager().printMessage(Kind.ERROR,

 "@Property must be applied to getXxx, setXxx, or isXxx method", e);

In the companion code for this book, we supply you with an annotated file, ChartBean.java . Compile the
annotation processor:

javac BeanInfoAnnotationProcessor.java

Then run

Code View:
javac -processor BeanInfoAnnotationProcessor com/horstmann/corejava/ChartBean.java

and have a look at the automatically generated file ChartBeanBeanInfo.java .

To see the annotation processing in action, add the command-line option XprintRounds to the javac command.
You will get this output:

Round 1:

 input files: {com.horstmann.corejava.ChartBean}

 annotations: [com.horstmann.annotations.Property]

 last round: false

Round 2:
 input files: {com.horstmann.corejava.ChartBeanBeanInfo}

 annotations: []

 last round: false

Round 3:

 input files: {}

 annotations: []

 last round: true

This example demonstrates how tools can harvest source file annotations to produce other files. The generated files
don't have to be source files. Annotation processors may choose to generate XML descriptors, property files, shell
scripts, HTML documentation, and so on.

Note

Some people have suggested using annotations to remove an even bigger drudgery.
Wouldn't it be nice if trivial getters and setters were generated automatically? For
example, the annotation

@Property private String title;

could produce the methods

public String getTitle() { return title; }

public void setTitle(String title) { this.title = title; }

However, those methods need to be added to the same class . This requires editing a
source file, not just generating another file, and is beyond the capabilities of annotation
processors. It would be possible to build another tool for this purpose, but such a tool
would go beyond the mission of annotations. An annotation is intended as a description
about a code item, not a directive for adding or changing code.

Listing 11-12. BeanInfoAnnotationFactory.java

Code View:
 1. import java.beans.*;

 2. import java.io.*;

 3. import java.util.*;

 4. import javax.annotation.processing.*;

 5. import javax.lang.model.*;

 6. import javax.lang.model.element.*;

 7. import javax.tools.*;

 8. import javax.tools.Diagnostic.*;

 9. import com.horstmann.annotations.*;

 10.

 11. /**

 12. * This class is the processor that analyzes Property annotations.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 13. * @version 1.10 2007-10-27

 14. * @author Cay Horstmann

 15. */

 16.

 17. @SupportedAnnotationTypes("com.horstmann.annotations.Property")

 18. @SupportedSourceVersion(SourceVersion.RELEASE_6)

 19. public class BeanInfoAnnotationProcessor extends AbstractProcessor

 20. {

 21. @Override

 22. public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv)

 23. {

 24. for (TypeElement t : annotations)

 25. {

 26. Map<String, Property> props = new LinkedHashMap<String, Property>();

 27. String beanClassName = null;

 28. for (Element e : roundEnv.getElementsAnnotatedWith(t))

 29. {

 30. String mname = e.getSimpleName().toString();

 31. String[] prefixes = { "get", "set", "is" };

 32. boolean found = false;

 33. for (int i = 0; !found && i < prefixes.length; i++)

 34. if (mname.startsWith(prefixes[i]))

 35. {

 36. found = true;

 37. int start = prefixes[i].length();

 38. String name = Introspector.decapitalize(mname.substring(start));

 39. props.put(name, e.getAnnotation(Property.class));

 40. }

 41.

 42. if (!found) processingEnv.getMessager().printMessage(Kind.ERROR,

 43. "@Property must be applied to getXxx, setXxx, or isXxx method", e);

 44. else if (beanClassName == null)

 45. beanClassName = ((TypeElement) e.getEnclosingElement()).getQualifiedName()

 46. .toString();

 47. }

 48. try

 49. {

 50. if (beanClassName != null) writeBeanInfoFile(beanClassName, props);

 51. }

 52. catch (IOException e)

 53. {

 54. e.printStackTrace();

 55. }

 56. }

 57. return true;

 58. }

 59.

 60. /**

 61. * Writes the source file for the BeanInfo class.

 62. * @param beanClassName the name of the bean class

 63. * @param props a map of property names and their annotations

 64. */

 65. private void writeBeanInfoFile(String beanClassName, Map<String, Property> props)

 66. throws IOException

 67. {

 68. JavaFileObject sourceFile = processingEnv.getFiler().createSourceFile(

 69. beanClassName + "BeanInfo");

 70. PrintWriter out = new PrintWriter(sourceFile.openWriter());

 71. int i = beanClassName.lastIndexOf(".");

 72. if (i > 0)

 73. {

 74. out.print("package ");

 75. out.print(beanClassName.substring(0, i));

 76. out.println(";");

 77. }

 78. out.print("public class ");

 79. out.print(beanClassName.substring(i + 1));

 80. out.println("BeanInfo extends java.beans.SimpleBeanInfo");

 81. out.println("{");

 82. out.println(" public java.beans.PropertyDescriptor[] getPropertyDescriptors()");

 83. out.println(" {");

 84. out.println(" try");

 85. out.println(" {");

 86. for (Map.Entry<String, Property> e : props.entrySet())

 87. {

 88. out.print(" java.beans.PropertyDescriptor ");

 89. out.print(e.getKey());

 90. out.println("Descriptor");

 91. out.print(" = new java.beans.PropertyDescriptor(\"");

 92. out.print(e.getKey());

 93. out.print("\", ");

 94. out.print(beanClassName);

 95. out.println(".class);");

 96. String ed = e.getValue().editor().toString();

 97. if (!ed.equals(""))

 98. {

 99. out.print(" ");

100. out.print(e.getKey());

101. out.print("Descriptor.setPropertyEditorClass(");

102. out.print(ed);

103. out.println(".class);");

104. }

105. }

106. out.println(" return new java.beans.PropertyDescriptor[]");

107. out.print(" {");

108. boolean first = true;

109. for (String p : props.keySet())

110. {

111. if (first) first = false;

112. else out.print(",");

113. out.println();

114. out.print(" ");

115. out.print(p);

116. out.print("Descriptor");

117. }

118. out.println();

119. out.println(" };");

120. out.println(" }");

121. out.println(" catch (java.beans.IntrospectionException e)");

122. out.println(" {");

123. out.println(" e.printStackTrace();");

124. out.println(" return null;");

125. out.println(" }");

126. out.println(" }");

127. out.println("}");

128. out.close();

129. }

130. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Bytecode Engineering

You have seen how annotations can be processed at runtime or at the source code level. There is a third possibility: processing at the
bytecode level. Unless annotations are removed at the source level, they are present in the class files. The class file format is documented
(see http://java.sun.com/docs/books/vmspec). The format is rather complex, and it would be challenging to process class files without
special libraries. One such library is the Bytecode Engineering Library (BCEL), available at http://jakarta.apache.org/bcel .

In this section, we use BCEL to add logging messages to annotated methods. If a method is annotated with

@LogEntry(logger=loggerName)

then we add the bytecodes for the following statement at the beginning of the method:

Logger.getLogger(loggerName).entering(className, methodName);

For example, if you annotate the hashCode method of the Item class as

@LogEntry(logger="global") public int hashCode()

then a message similar to the following is printed whenever the method is called:

Aug 17, 2004 9:32:59 PM Item hashCode

FINER: ENTRY

To achieve this task, we do the following:

1. Load the bytecodes in the class file.

2. Locate all methods.

3. For each method, check whether it has a LogEntry annotation.

4. If it does, add the bytecodes for the following instructions at the beginning of the method:

Code View:
ldc loggerName
invokestatic java/util/logging/Logger.getLogger:(Ljava/lang/String;)Ljava/util/logging/Logger;
ldc className
ldc methodName
invokevirtual java/util/logging/Logger.entering:(Ljava/lang/String;Ljava/lang/String;)V

Inserting these bytecodes sounds tricky, but BCEL makes it fairly straightforward. We don't describe the process of analyzing and inserting
bytecodes in detail. The important point is that the program in Listing 11-13 edits a class file and inserts a logging call at the beginning of
the methods that are annotated with the LogEntry annotation.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Note

If you are interested in the details of bytecode engineering, we suggest that you read through the BCEL
manual at http://jakarta.apache.org/bcel/manual.html .

You need version 5.3 or later of the BCEL library to compile and run the EntryLogger program. (As this chapter was written, version 5.3 was

still a work in progress. If it isn't finished when you read this, check out the trunk from the Subversion repository.)

For example, here is how you add the logging instructions to Item.java in Listing 11-14 :

javac Item.java

javac -classpath .:bcel-version.jar EntryLogger.java

java -classpath .:bcel-version.jar EntryLogger Item

Try running

javap -c Item

before and after modifying the Item class file. You can see the inserted instructions at the beginning of the hashCode , equals , and

compareTo methods.

Code View:
public int hashCode();

 Code:

 0: ldc #85; //String global

 2: invokestatic #80; //Method java/util/logging/Logger.getLogger:(Ljava/lang/String;)Ljava/util/logging/Logger;

 5: ldc #86; //String Item

 7: ldc #88; //String hashCode

 9: invokevirtual #84; //Method java/util/logging/Logger.entering:(Ljava/lang/String;Ljava/lang/String;)V
 12: bipush 13

 14: aload_0

 15: getfield #2; //Field description:Ljava/lang/String;

 18: invokevirtual #15; //Method java/lang/String.hashCode:()I

 21: imul

 22: bipush 17

 24: aload_0

 25: getfield #3; //Field partNumber:I

 28: imul

 29: iadd

 30: ireturn

The SetTest program in Listing 11-15 inserts Item objects into a hash set. When you run it with the modified class file, you will see the

logging messages.

Code View:
Aug 18, 2004 10:57:59 AM Item hashCode

FINER: ENTRY

Aug 18, 2004 10:57:59 AM Item hashCode

FINER: ENTRY
Aug 18, 2004 10:57:59 AM Item hashCode

FINER: ENTRY

Aug 18, 2004 10:57:59 AM Item equals

FINER: ENTRY

[[descripion=Toaster, partNumber=1729], [descripion=Microwave, partNumber=4104]]

Note the call to equals when we insert the same item twice.

This example shows the power of bytecode engineering. Annotations are used to add directives to a program. A bytecode editing tool picks
up the directives and modifies the virtual machine instructions.

Listing 11-13. EntryLogger.java

Code View:
 1. import java.io.*;

 2. import org.apache.bcel.*;

 3. import org.apache.bcel.classfile.*;

 4. import org.apache.bcel.generic.*;

 5.

 6. /**

 7. * Adds "entering" logs to all methods of a class that have the LogEntry annotation.

 8. * @version 1.10 2007-10-27

 9. * @author Cay Horstmann

 10. */

 11. public class EntryLogger

 12. {

 13. /**

 14. * Adds entry logging code to the given class

 15. * @param args the name of the class file to patch

 16. */

 17. public static void main(String[] args)

 18. {

 19. try

 20. {

 21. if (args.length == 0) System.out.println("USAGE: java EntryLogger classname");

 22. else

 23. {

 24. JavaClass jc = Repository.lookupClass(args[0]);

 25. ClassGen cg = new ClassGen(jc);

 26. EntryLogger el = new EntryLogger(cg);

 27. el.convert();

 28. File f = new File(Repository.lookupClassFile(cg.getClassName()).getPath());

 29. cg.getJavaClass().dump(f.getPath());

 30. }

 31. }

 32. catch (Exception e)

 33. {

 34. e.printStackTrace();

 35. }

 36. }

 37.

 38. /**

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 39. * Constructs an EntryLogger that inserts logging into annotated methods of a given class

 40. * @param cg the class

 41. */

 42. public EntryLogger(ClassGen cg)

 43. {

 44. this.cg = cg;

 45. cpg = cg.getConstantPool();

 46. }

 47.

 48. /**

 49. * converts the class by inserting the logging calls.

 50. */

 51. public void convert() throws IOException

 52. {

 53. for (Method m : cg.getMethods())

 54. {

 55. AnnotationEntry[] annotations = m.getAnnotationEntries();

 56. for (AnnotationEntry a : annotations)

 57. {

 58. if (a.getAnnotationType().equals("LLogEntry;"))

 59. {

 60. for (ElementValuePair p : a.getElementValuePairs())

 61. {

 62. if (p.getNameString().equals("logger"))

 63. {

 64. String loggerName = p.getValue().stringifyValue();

 65. cg.replaceMethod(m, insertLogEntry(m, loggerName));

 66. }

 67. }

 68. }

 69. }

 70. }

 71. }

 72.

 73. /**

 74. * Adds an "entering" call to the beginning of a method.

 75. * @param m the method

 76. * @param loggerName the name of the logger to call

 77. */

 78. private Method insertLogEntry(Method m, String loggerName)

 79. {

 80. MethodGen mg = new MethodGen(m, cg.getClassName(), cpg);

 81. String className = cg.getClassName();

 82. String methodName = mg.getMethod().getName();

 83. System.out.printf("Adding logging instructions to %s.%s%n", className, methodName);

 84.

 85. int getLoggerIndex = cpg.addMethodref("java.util.logging.Logger", "getLogger",

 86. "(Ljava/lang/String;)Ljava/util/logging/Logger;");

 87. int enteringIndex = cpg.addMethodref("java.util.logging.Logger", "entering",

 88. "(Ljava/lang/String;Ljava/lang/String;)V");

 89.

 90. InstructionList il = mg.getInstructionList();

 91. InstructionList patch = new InstructionList();

 92. patch.append(new PUSH(cpg, loggerName));

 93. patch.append(new INVOKESTATIC(getLoggerIndex));

 94. patch.append(new PUSH(cpg, className));

 95. patch.append(new PUSH(cpg, methodName));

 96. patch.append(new INVOKEVIRTUAL(enteringIndex));

 97. InstructionHandle[] ihs = il.getInstructionHandles();

 98. il.insert(ihs[0], patch);

 99.

100. mg.setMaxStack();

101. return mg.getMethod();

102. }

103.

104. private ClassGen cg;

105. private ConstantPoolGen cpg;

106. }

Listing 11-14. Item.java

Code View:
 1. /**

 2. * An item with a description and a part number.

 3. * @version 1.00 2004-08-17

 4. * @author Cay Horstmann

 5. */

 6. public class Item

 7. {

 8. /**

 9. * Constructs an item.

10. * @param aDescription the item's description

11. * @param aPartNumber the item's part number

12. */

13. public Item(String aDescription, int aPartNumber)

14. {

15. description = aDescription;

16. partNumber = aPartNumber;

17. }

18.

19. /**

20. * Gets the description of this item.

21. * @return the description

22. */

23. public String getDescription()

24. {

25. return description;

26. }

27.

28. public String toString()

29. {

30. return "[description=" + description + ", partNumber=" + partNumber + "]";

31. }

32.

33. @LogEntry(logger = "global")

34. public boolean equals(Object otherObject)

35. {

36. if (this == otherObject) return true;

37. if (otherObject == null) return false;

38. if (getClass() != otherObject.getClass()) return false;

39. Item other = (Item) otherObject;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

40. return description.equals(other.description) && partNumber == other.partNumber;

41. }

42.

43. @LogEntry(logger = "global")

44. public int hashCode()

45. {

46. return 13 * description.hashCode() + 17 * partNumber;

47. }

48.

49. private String description;

50. private int partNumber;

51. }

Listing 11-15. SetTest.java

Code View:
 1. import java.util.*;

 2. import java.util.logging.*;

 3.

 4. /**

 5. * @version 1.01 2007-10-27

 6. * @author Cay Horstmann

 7. */

 8. public class SetTest

 9. {

10. public static void main(String[] args)

11. {

12. Logger.getLogger(Logger.GLOBAL_LOGGER_NAME).setLevel(Level.FINEST);

13. Handler handler = new ConsoleHandler();

14. handler.setLevel(Level.FINEST);

15. Logger.getLogger(Logger.GLOBAL_LOGGER_NAME).addHandler(handler);

16.

17. Set<Item> parts = new HashSet<Item>();

18. parts.add(new Item("Toaster", 1279));

19. parts.add(new Item("Microwave", 4104));

20. parts.add(new Item("Toaster", 1279));

21. System.out.println(parts);

22. }

23. }

Modifying Bytecodes at Load Time

In the preceding section, you saw a tool that edits class files. However, it can be cumbersome to add yet another tool into the build process.
An attractive alternative is to defer the bytecode engineering until load time , when the class loader loads the class.

Before Java SE 5.0, you had to write a custom classloader to achieve this task. Now, the instrumentation API has a hook for installing a
bytecode transformer. The transformer must be installed before the main method of the program is called. You handle this requirement by

defining an agent , a library that is loaded to monitor a program in some way. The agent code can carry out initializations in a premain

method.

Here are the steps required to build an agent:

1. Implement a class with a method

public static void premain(String arg, Instrumentation instr)

This method is called when the agent is loaded. The agent can get a single command-line argument, which is passed in the arg

parameter. The instr parameter can be used to install various hooks.

2. Make a manifest file that sets the Premain-Class attribute, for example:

Premain-Class: EntryLoggingAgent

3. Package the agent code and the manifest into a JAR file, for example:

javac -classpath .:bcel-version.jar EntryLoggingAgent
jar cvfm EntryLoggingAgent.jar EntryLoggingAgent.mf Entry*.class

To launch a Java program together with the agent, use the following command-line options:

java -javaagent:AgentJARFile=agentArgument . . .

For example, to run the SetTest program with the entry logging agent, call

Code View:
javac SetTest.java

java -javaagent:EntryLoggingAgent.jar=Item -classpath .:bcel-version.jar SetTest

The Item argument is the name of the class that the agent should modify.

Listing 11-16 shows the agent code. The agent installs a class file transformer. The transformer first checks whether the class name matches
the agent argument. If so, it uses the EntryLogger class from the preceding section to modify the bytecodes. However, the modified

bytecodes are not saved to a file. Instead, the transformer returns them for loading into the virtual machine (see Figure 11-4). In other
words, this technique carries out "just in time" modification of the bytecodes.

Figure 11-4. Modifying classes at load time

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Listing 11-16. EntryLoggingAgent.java

Code View:
 1. import java.lang.instrument.*;

 2. import java.io.*;

 3. import java.security.*;

 4. import org.apache.bcel.classfile.*;

 5. import org.apache.bcel.generic.*;

 6.

 7. /**

 8. * @version 1.00 2004-08-17

 9. * @author Cay Horstmann

10. */

11. public class EntryLoggingAgent

12. {

13. public static void premain(final String arg, Instrumentation instr)

14. {

15. instr.addTransformer(new ClassFileTransformer()

16. {

17. public byte[] transform(ClassLoader loader, String className, Class<?> cl,

18. ProtectionDomain pd, byte[] data)

19. {

20. if (!className.equals(arg)) return null;

21. try

22. {

23. ClassParser parser = new ClassParser(new ByteArrayInputStream(data),

24. className + ".java");

25. JavaClass jc = parser.parse();

26. ClassGen cg = new ClassGen(jc);

27. EntryLogger el = new EntryLogger(cg);

28. el.convert();

29. return cg.getJavaClass().getBytes();

30. }

31. catch (Exception e)

32. {

33. e.printStackTrace();

34. return null;

35. }

36. }

37. });

38. }

39. }

In this chapter, you have learned how to

Add annotations to Java programs.

Design your own annotation interfaces.

Implement tools that make use of the annotations.

You have seen three technologies for processing code: scripting, compiling Java programs, and processing annotations. The first two were
quite straightforward. On the other hand, building annotation tools is undeniably complex and not something that most developers will need
to tackle. This chapter gave you the background knowledge for understanding the inner workings of the annotation tools that you will
encounter, and perhaps piqued your interest in developing your own tools.

In the final chapter of this book, we tackle the API for native methods. That API allows you to mix Java and C/C++ code.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Chapter 12. Native Methods

CALLING A C FUNCTION FROM A JAVA PROGRAM

NUMERIC PARAMETERS AND RETURN VALUES

STRING PARAMETERS

ACCESSING FIELDS

ENCODING SIGNATURES

CALLING JAVA METHODS

ACCESSING ARRAY ELEMENTS

HANDLING ERRORS

USING THE INVOCATION API

A COMPLETE EXAMPLE: ACCESSING THE WINDOWS REGISTRY

While a "100% Pure Java" solution is nice in principle, there are situations in which you will want to write (or
use) code written in another language. (Such code is usually called native code.)

Particularly in the early days of Java, many people assumed that it would be a good idea to use C or C++ to
speed up critical parts of a Java application. However, in practice, this was rarely useful. A presentation at the
1996 JavaOne conference showed this clearly. The implementors of the cryptography library at Sun
Microsystems reported that a pure Java platform implementation of their cryptographic functions was more than
adequate. It was true that the code was not as fast as a C implementation would have been, but it turned out
not to matter. The Java platform implementation was far faster than the network I/O. This turned out to be the
real bottleneck.

Of course, there are drawbacks to going native. If a part of your application is written in another language, you
must supply a separate native library for every platform you want to support. Code written in C or C++ offers
no protection against overwriting memory through invalid pointer usage. It is easy to write native methods that
corrupt your program or infect the operating system.

Thus, we suggest using native code only when you need to. In particular, there are three reasons why native
code might be the right choice:

Your application requires access to system features or devices that are not accessible through the Java
platform.

You have substantial amounts of tested and debugged code in another language, and you know how to
port it to all desired target platforms.

You have found, through benchmarking, that the Java code is much slower than the equivalent code in
another language.

The Java platform has an API for interoperating with native C code called the Java Native Interface (JNI). We
discuss JNI programming in this chapter.

C++ Note

You can also use C++ instead of C to write native methods. There are a few
advantages—type checking is slightly stricter, and accessing the JNI functions is a
bit more convenient. However, JNI does not support any mapping between Java and
C++ classes.

Calling a C Function from a Java Program

Suppose you have a C function that does something you like and, for one reason or another, you don't want to
bother reimplementing it in Java. For the sake of illustration, we start with a simple C function that prints a
greeting.

The Java programming language uses the keyword native for a native method, and you will obviously need to

place a method in a class. The result is shown in Listing 12-1.

The native keyword alerts the compiler that the method will be defined externally. Of course, native methods

will contain no code in the Java programming language, and the method header is followed immediately by a
terminating semicolon. Therefore, native method declarations look similar to abstract method declarations.

Listing 12-1. HelloNative.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

1. /**

2. * @version 1.11 2007-10-26

3. * @author Cay Horstmann

4. */

5. class HelloNative

6. {

7. public static native void greeting();

8. }

In this particular example, the native method is also declared as static. Native methods can be both static and

nonstatic. We start with a static method because we do not yet want to deal with parameter passing.

You actually can compile this class, but when you go to use it in a program, then the virtual machine will tell
you it doesn't know how to find greeting—reporting an UnsatisfiedLinkError. To implement the native code,

write a corresponding C function. You must name that function exactly the way the Java virtual machine
expects. Here are the rules:

Use the full Java method name, such as HelloNative.greeting. If the class is in a package, then prepend

the package name, such as com.horstmann.HelloNative.greeting.

1.

Replace every period with an underscore, and append the prefix Java_. For example,

Java_HelloNative_greeting or Java_com_horstmann_HelloNative_greeting.

2.

If the class name contains characters that are not ASCII letters or digits—that is, '_', '$', or Unicode

characters with code greater than '\u007F'—replace them with _0xxxx, where xxxx is the sequence of

four hexadecimal digits of the character's Unicode value.

3.

Note

If you overload native methods, that is, if you provide multiple native methods with
the same name, then you must append a double underscore followed by the
encoded argument types. (We describe the encoding of the argument types later in
this chapter.) For example, if you have a native method, greeting, and another

native method, greeting(int repeat), then the first one is called

Java_HelloNative_greeting__, and the second, Java_HelloNative_greeting__I.

Actually, nobody does this by hand; instead, you run the javah utility, which automatically generates the

function names. To use javah, first, compile the source file in Listing 12-1:

javac HelloNative.java

Next, call the javah utility, which produces a C header file from the class file. The javah executable can be

found in the jdk/bin directory. You invoke it with the name of the class, just as you would invoke the Java

compiler. For example,

javah HelloNative

This command creates a header file, HelloNative.h, which is shown in Listing 12-2.

Listing 12-2. HelloNative.h

 1. /* DO NOT EDIT THIS FILE - it is machine generated */

 2. #include <jni.h>

 3. /* Header for class HelloNative */

 4.

 5. #ifndef _Included_HelloNative

 6. #define _Included_HelloNative

 7. #ifdef __cplusplus

 8. extern "C" {

 9. #endif

10. /*

11. * Class: HelloNative

12. * Method: greeting

13. * Signature: ()V

14. */

15. JNIEXPORT void JNICALL Java_HelloNative_greeting

16. (JNIEnv *, jclass);

17.

18. #ifdef __cplusplus

19. }

20. #endif

21. #endif

As you can see, this file contains the declaration of a function Java_HelloNative_greeting. (The macros

JNIEXPORT and JNICALL are defined in the header file jni.h. They denote compiler-dependent specifiers for

exported functions that come from a dynamically loaded library.)

Now, you simply copy the function prototype from the header file into the source file and give the
implementation code for the function, as shown in Listing 12-3.

Listing 12-3. HelloNative.c

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. /*

 2. @version 1.10 1997-07-01

 3. @author Cay Horstmann

 4. */

 5.

 6. #include "HelloNative.h"

 7. #include <stdio.h>

 8.

 9. JNIEXPORT void JNICALL Java_HelloNative_greeting(JNIEnv* env, jclass cl)

10. {

11. printf("Hello Native World!\n");

12. }

In this simple function, ignore the env and cl arguments. You'll see their use later.

C++ Note

You can use C++ to implement native methods. However, you must then declare the
functions that implement the native methods as extern "C". (This stops the C++

compiler from "mangling" the method name.) For example,

extern "C"

JNIEXPORT void JNICALL Java_HelloNative_greeting(JNIEnv* env, jclass cl)

{

 cout << "Hello, Native World!" << endl;

}

You compile the native C code into a dynamically loaded library. The details depend on your compiler.

For example, with the Gnu C compiler on Linux, use these commands:

Code View:

gcc -fPIC -I jdk/include -I jdk/include/linux -shared -o libHelloNative.so HelloNative.c

With the Sun compiler under the Solaris Operating System, the command is

Code View:

cc -G -I jdk/include -I jdk/include/solaris -o libHelloNative.so HelloNative.c

With the Microsoft compiler under Windows, the command is

cl -I jdk\include -I jdk\include\win32 -LD HelloNative.c -FeHelloNative.dll

Here, jdk is the directory that contains the JDK.

Tip

If you use the Microsoft compiler from a command shell, first run the batch file
vcvars32.bat or vsvars32.bat. That batch file sets up the path and the

environment variables needed by the compiler. You can find it in the directory
c:\Program Files\Microsoft Visual Studio .NET 2003\Common7\tools,

c:\Program Files\Microsoft Visual Studio 8\VC, or a similar monstrosity.

You can also use the freely available Cygwin programming environment, available from http://www.cygwin.com.
It contains the Gnu C compiler and libraries for UNIX-style programming on Windows. With Cygwin, use the
command

gcc -mno-cygwin -D __int64="long long" -I jdk/include/ -I jdk/include/win32

 -shared -Wl,--add-stdcall-alias -o HelloNative.dll HelloNative.c

Type the entire command on a single line.

Note

The Windows version of the header file jni_md.h contains the type declaration

typedef __int64 jlong;

which is specific to the Microsoft compiler. If you use the Gnu compiler, you might
want to edit that file, for example,

#ifdef __GNUC__

 typedef long long jlong;
#else

 typedef __int64 jlong;

#endif

Alternatively, compile with -D __int64="long long", as shown in the sample

compiler invocation.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://www.cygwin.com

Finally, add a call to the System.loadLibrary method in your program. To ensure that the virtual machine will

load the library before the first use of the class, use a static initialization block, as in Listing 12-4.

Figure 12-1 gives a summary of the native code processing.

Figure 12-1. Processing native code

[View full size image]

Listing 12-4. HelloNativeTest.java

 1. /**

 2. * @version 1.11 2007-10-26

 3. * @author Cay Horstmann

 4. */

 5. class HelloNativeTest

 6. {

 7. public static void main(String[] args)

 8. {

 9. HelloNative.greeting();

10. }

11.

12. static

13. {

14. System.loadLibrary("HelloNative");

15. }

16. }

If you compile and run this program, the message "Hello, Native World!" is displayed in a terminal window.

Note

If you run Linux, you must add the current directory to the library path. Either set
the LD_LIBRARY_PATH environment variable,

export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

or set the java.library.path system property:

java -Djava.library.path=. HelloNativeTest

Of course, this is not particularly impressive by itself. However, if you keep in mind that this message is
generated by the C printf command and not by any Java programming language code, you will see that we

have taken the first steps toward bridging the gap between the two languages!

In summary, you follow these steps to link a native method to a Java program:

1. Declare a native method in a Java class.

2. Run javah to get a header file with a C declaration for the method.

3. Implement the native method in C.

4. Place the code in a shared library.

5. Load that library in your Java program.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

java.lang.System 1.0

void loadLibrary(String libname)

loads the library with the given name. The library is located in the library
search path. The exact method for locating the library is operating-
system dependent.

Note

Some shared libraries for native code must run initialization code. You can place any
initialization code into a JNI_OnLoad method. Similarly, when the virtual machine

(VM) shuts down, it will call the JNI_OnUnload method if you provide it. The
prototypes are

jint JNI_OnLoad(JavaVM* vm, void* reserved);

void JNI_OnUnload(JavaVM* vm, void* reserved);

The JNI_OnLoad method needs to return the minimum version of the VM that it

requires, such as JNI_VERSION_1_2.

Chapter 12. Native Methods

CALLING A C FUNCTION FROM A JAVA PROGRAM

NUMERIC PARAMETERS AND RETURN VALUES

STRING PARAMETERS

ACCESSING FIELDS

ENCODING SIGNATURES

CALLING JAVA METHODS

ACCESSING ARRAY ELEMENTS

HANDLING ERRORS

USING THE INVOCATION API

A COMPLETE EXAMPLE: ACCESSING THE WINDOWS REGISTRY

While a "100% Pure Java" solution is nice in principle, there are situations in which you will want to write (or
use) code written in another language. (Such code is usually called native code.)

Particularly in the early days of Java, many people assumed that it would be a good idea to use C or C++ to
speed up critical parts of a Java application. However, in practice, this was rarely useful. A presentation at the
1996 JavaOne conference showed this clearly. The implementors of the cryptography library at Sun
Microsystems reported that a pure Java platform implementation of their cryptographic functions was more than
adequate. It was true that the code was not as fast as a C implementation would have been, but it turned out
not to matter. The Java platform implementation was far faster than the network I/O. This turned out to be the
real bottleneck.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Of course, there are drawbacks to going native. If a part of your application is written in another language, you
must supply a separate native library for every platform you want to support. Code written in C or C++ offers
no protection against overwriting memory through invalid pointer usage. It is easy to write native methods that
corrupt your program or infect the operating system.

Thus, we suggest using native code only when you need to. In particular, there are three reasons why native
code might be the right choice:

Your application requires access to system features or devices that are not accessible through the Java
platform.

You have substantial amounts of tested and debugged code in another language, and you know how to
port it to all desired target platforms.

You have found, through benchmarking, that the Java code is much slower than the equivalent code in
another language.

The Java platform has an API for interoperating with native C code called the Java Native Interface (JNI). We
discuss JNI programming in this chapter.

C++ Note

You can also use C++ instead of C to write native methods. There are a few
advantages—type checking is slightly stricter, and accessing the JNI functions is a
bit more convenient. However, JNI does not support any mapping between Java and
C++ classes.

Calling a C Function from a Java Program

Suppose you have a C function that does something you like and, for one reason or another, you don't want to
bother reimplementing it in Java. For the sake of illustration, we start with a simple C function that prints a
greeting.

The Java programming language uses the keyword native for a native method, and you will obviously need to

place a method in a class. The result is shown in Listing 12-1.

The native keyword alerts the compiler that the method will be defined externally. Of course, native methods

will contain no code in the Java programming language, and the method header is followed immediately by a
terminating semicolon. Therefore, native method declarations look similar to abstract method declarations.

Listing 12-1. HelloNative.java

1. /**

2. * @version 1.11 2007-10-26

3. * @author Cay Horstmann

4. */

5. class HelloNative

6. {

7. public static native void greeting();

8. }

In this particular example, the native method is also declared as static. Native methods can be both static and

nonstatic. We start with a static method because we do not yet want to deal with parameter passing.

You actually can compile this class, but when you go to use it in a program, then the virtual machine will tell
you it doesn't know how to find greeting—reporting an UnsatisfiedLinkError. To implement the native code,

write a corresponding C function. You must name that function exactly the way the Java virtual machine
expects. Here are the rules:

Use the full Java method name, such as HelloNative.greeting. If the class is in a package, then prepend

the package name, such as com.horstmann.HelloNative.greeting.

1.

Replace every period with an underscore, and append the prefix Java_. For example,

Java_HelloNative_greeting or Java_com_horstmann_HelloNative_greeting.

2.

If the class name contains characters that are not ASCII letters or digits—that is, '_', '$', or Unicode

characters with code greater than '\u007F'—replace them with _0xxxx, where xxxx is the sequence of

four hexadecimal digits of the character's Unicode value.

3.

Note

If you overload native methods, that is, if you provide multiple native methods with
the same name, then you must append a double underscore followed by the
encoded argument types. (We describe the encoding of the argument types later in
this chapter.) For example, if you have a native method, greeting, and another

native method, greeting(int repeat), then the first one is called

Java_HelloNative_greeting__, and the second, Java_HelloNative_greeting__I.

Actually, nobody does this by hand; instead, you run the javah utility, which automatically generates the

function names. To use javah, first, compile the source file in Listing 12-1:

javac HelloNative.java

Next, call the javah utility, which produces a C header file from the class file. The javah executable can be

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

found in the jdk/bin directory. You invoke it with the name of the class, just as you would invoke the Java

compiler. For example,

javah HelloNative

This command creates a header file, HelloNative.h, which is shown in Listing 12-2.

Listing 12-2. HelloNative.h

 1. /* DO NOT EDIT THIS FILE - it is machine generated */

 2. #include <jni.h>

 3. /* Header for class HelloNative */

 4.

 5. #ifndef _Included_HelloNative

 6. #define _Included_HelloNative

 7. #ifdef __cplusplus

 8. extern "C" {

 9. #endif

10. /*

11. * Class: HelloNative

12. * Method: greeting

13. * Signature: ()V

14. */

15. JNIEXPORT void JNICALL Java_HelloNative_greeting

16. (JNIEnv *, jclass);

17.

18. #ifdef __cplusplus

19. }

20. #endif

21. #endif

As you can see, this file contains the declaration of a function Java_HelloNative_greeting. (The macros

JNIEXPORT and JNICALL are defined in the header file jni.h. They denote compiler-dependent specifiers for

exported functions that come from a dynamically loaded library.)

Now, you simply copy the function prototype from the header file into the source file and give the
implementation code for the function, as shown in Listing 12-3.

Listing 12-3. HelloNative.c

Code View:
 1. /*

 2. @version 1.10 1997-07-01

 3. @author Cay Horstmann

 4. */

 5.

 6. #include "HelloNative.h"

 7. #include <stdio.h>

 8.

 9. JNIEXPORT void JNICALL Java_HelloNative_greeting(JNIEnv* env, jclass cl)

10. {

11. printf("Hello Native World!\n");

12. }

In this simple function, ignore the env and cl arguments. You'll see their use later.

C++ Note

You can use C++ to implement native methods. However, you must then declare the
functions that implement the native methods as extern "C". (This stops the C++

compiler from "mangling" the method name.) For example,

extern "C"

JNIEXPORT void JNICALL Java_HelloNative_greeting(JNIEnv* env, jclass cl)

{

 cout << "Hello, Native World!" << endl;

}

You compile the native C code into a dynamically loaded library. The details depend on your compiler.

For example, with the Gnu C compiler on Linux, use these commands:

Code View:

gcc -fPIC -I jdk/include -I jdk/include/linux -shared -o libHelloNative.so HelloNative.c

With the Sun compiler under the Solaris Operating System, the command is

Code View:

cc -G -I jdk/include -I jdk/include/solaris -o libHelloNative.so HelloNative.c

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

With the Microsoft compiler under Windows, the command is

cl -I jdk\include -I jdk\include\win32 -LD HelloNative.c -FeHelloNative.dll

Here, jdk is the directory that contains the JDK.

Tip

If you use the Microsoft compiler from a command shell, first run the batch file
vcvars32.bat or vsvars32.bat. That batch file sets up the path and the

environment variables needed by the compiler. You can find it in the directory
c:\Program Files\Microsoft Visual Studio .NET 2003\Common7\tools,

c:\Program Files\Microsoft Visual Studio 8\VC, or a similar monstrosity.

You can also use the freely available Cygwin programming environment, available from http://www.cygwin.com.
It contains the Gnu C compiler and libraries for UNIX-style programming on Windows. With Cygwin, use the
command

gcc -mno-cygwin -D __int64="long long" -I jdk/include/ -I jdk/include/win32

 -shared -Wl,--add-stdcall-alias -o HelloNative.dll HelloNative.c

Type the entire command on a single line.

Note

The Windows version of the header file jni_md.h contains the type declaration

typedef __int64 jlong;

which is specific to the Microsoft compiler. If you use the Gnu compiler, you might
want to edit that file, for example,

#ifdef __GNUC__

 typedef long long jlong;
#else

 typedef __int64 jlong;

#endif

Alternatively, compile with -D __int64="long long", as shown in the sample

compiler invocation.

http://www.cygwin.com

Finally, add a call to the System.loadLibrary method in your program. To ensure that the virtual machine will

load the library before the first use of the class, use a static initialization block, as in Listing 12-4.

Figure 12-1 gives a summary of the native code processing.

Figure 12-1. Processing native code

[View full size image]

Listing 12-4. HelloNativeTest.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 1. /**

 2. * @version 1.11 2007-10-26

 3. * @author Cay Horstmann

 4. */

 5. class HelloNativeTest

 6. {

 7. public static void main(String[] args)

 8. {

 9. HelloNative.greeting();

10. }

11.

12. static

13. {

14. System.loadLibrary("HelloNative");

15. }

16. }

If you compile and run this program, the message "Hello, Native World!" is displayed in a terminal window.

Note

If you run Linux, you must add the current directory to the library path. Either set
the LD_LIBRARY_PATH environment variable,

export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

or set the java.library.path system property:

java -Djava.library.path=. HelloNativeTest

Of course, this is not particularly impressive by itself. However, if you keep in mind that this message is
generated by the C printf command and not by any Java programming language code, you will see that we

have taken the first steps toward bridging the gap between the two languages!

In summary, you follow these steps to link a native method to a Java program:

1. Declare a native method in a Java class.

2. Run javah to get a header file with a C declaration for the method.

3. Implement the native method in C.

4. Place the code in a shared library.

5. Load that library in your Java program.

java.lang.System 1.0

void loadLibrary(String libname)

loads the library with the given name. The library is located in the library
search path. The exact method for locating the library is operating-
system dependent.

Note

Some shared libraries for native code must run initialization code. You can place any
initialization code into a JNI_OnLoad method. Similarly, when the virtual machine

(VM) shuts down, it will call the JNI_OnUnload method if you provide it. The
prototypes are

jint JNI_OnLoad(JavaVM* vm, void* reserved);

void JNI_OnUnload(JavaVM* vm, void* reserved);

The JNI_OnLoad method needs to return the minimum version of the VM that it

requires, such as JNI_VERSION_1_2.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Numeric Parameters and Return Values

When passing numbers between C and Java, you should understand which types correspond to each other. For
example, although C does have data types called int and long, their implementation is platform dependent. On

some platforms, ints are 16-bit quantities, and on others they are 32-bit quantities. In the Java platform, of

course, an int is always a 32-bit integer. For that reason, JNI defines types jint, jlong, and so on.

Table 12-1 shows the correspondence between Java types and C types.

Table 12-1. Java Types and C Types

Java Programming Language C Programming Language Bytes

boolean jboolean 1

byte jbyte 1

char jchar 2

short jshort 2

int jint 4

long jlong 8

float jfloat 4

double jdouble 8

In the header file jni.h, these types are declared with typedef statements as the equivalent types on the

target platform. That header file also defines the constants JNI_FALSE = 0 and JNI_TRUE = 1.

Using printf for Formatting Numbers

Until Java SE 5.0, Java had no direct analog to the C printf function. In the following examples, we will

suppose you are stuck with an ancient JDK release and decide to implement the same functionality by calling
the C printf function in a native method.

Listing 12-5 shows a class called Printf1 that uses a native method to print a floating-point number with a

given field width and precision.

Listing 12-5. Printf1.java

 1. /**

 2. * @version 1.10 1997-07-01

 3. * @author Cay Horstmann

 4. */

 5. class Printf1

 6. {

 7. public static native int print(int width, int precision, double x);

 8.

 9. static

10. {

11. System.loadLibrary("Printf1");

12. }

13. }

Notice that when the method is implemented in C, all int and double parameters are changed to jint and

jdouble, as shown in Listing 12-6.

Listing 12-6. Printf1.c

 1. /**

 2. @version 1.10 1997-07-01

 3. @author Cay Horstmann

 4. */

 5.

 6. #include "Printf1.h"

 7. #include <stdio.h>

 8.

 9. JNIEXPORT jint JNICALL Java_Printf1_print(JNIEnv* env, jclass cl,

10. jint width, jint precision, jdouble x)

11. {

12. char fmt[30];

13. jint ret;

14. sprintf(fmt, "%%%d.%df", width, precision);

15. ret = printf(fmt, x);

16. fflush(stdout);

17. return ret;

18. }

The function simply assembles a format string "%w.pf" in the variable fmt, then calls printf. It then returns

the number of characters printed.

Listing 12-7 shows the test program that demonstrates the Printf1 class.

Listing 12-7. Printf1Test.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 1. /**

 2. * @version 1.10 1997-07-01

 3. * @author Cay Horstmann

 4. */

 5. class Printf1Test

 6. {

 7. public static void main(String[] args)

 8. {

 9. int count = Printf1.print(8, 4, 3.14);

10. count += Printf1.print(8, 4, count);

11. System.out.println();

12. for (int i = 0; i < count; i++)

13. System.out.print("-");

14. System.out.println();

15. }

16. }

String Parameters

Next, we want to consider how to transfer strings to and from native methods. As you know, strings in the Java
programming language are sequences of UTF-16 code points whereas C strings are null-terminated sequences of
bytes, so strings are quite different in the two languages. JNI has two sets of functions for manipulating strings,
one that converts Java strings to "modified UTF-8" byte sequences and one that converts them to arrays of UTF-
16 values, that is, to jchar arrays. (The UTF-8, "modified UTF-8", and UTF-16 formats were discussed in Volume

I, Chapter 12. Recall that the "modified UTF-8" encoding leaves ASCII characters unchanged, but all other
Unicode characters are encoded as multibyte sequences.)

Note

The standard UTF-8 encoding and the "modified UTF-8" encoding differ only for
"supplementary" characters with code higher than 0xFFFF. In the standard UTF-8
encoding, these characters are encoded as a 4-byte sequence. However, in the
"modified" encoding, the character is first encoded as a pair of "surrogates" in the
UTF-16 encoding, and then each surrogate is encoded with UTF-8, yielding a total of
6 bytes. This is clumsy, but it is a historical accident—the JVM specification was
written when Unicode was still limited to 16 bits.

If your C code already uses Unicode, you'll want to use the second set of conversion functions. On the other
hand, if all your strings are restricted to ASCII characters, you can use the "modified UTF-8" conversion
functions.

A native method with a String parameter actually receives a value of an opaque type called jstring. A native

method with a return value of type String must return a value of type jstring. JNI functions read and construct

these jstring objects. For example, the NewStringUTF function makes a new jstring object out of a char array

that contains ASCII characters or, more generally, "modified UTF-8"-encoded byte sequences.

JNI functions have a somewhat odd calling convention. Here is a call to the NewStringUTF function.

Code View:
JNIEXPORT jstring JNICALL Java_HelloNative_getGreeting(JNIEnv* env, jclass cl)

{

 jstring jstr;

 char greeting[] = "Hello, Native World\n";

 jstr = (*env)->NewStringUTF(env, greeting);

 return jstr;
}

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Unless explicitly mentioned otherwise, all code in this chapter is C code.

All calls to JNI functions use the env pointer that is the first argument of every native method. The env pointer is

a pointer to a table of function pointers (see Figure 12-2). Therefore, you must prefix every JNI call with (*env)-

> to actually dereference the function pointer. Furthermore, env is the first parameter of every JNI function.

Figure 12-2. The env pointer

C++ Note

It is simpler to access JNI functions in C++. The C++ version of the JNIEnv class has

inline member functions that take care of the function pointer lookup for you. For
example, you can call the NewStringUTF function as

jstr = env->NewStringUTF(greeting);

Note that you omit the JNIEnv pointer from the parameter list of the call.

The NewStringUTF function lets you construct a new jstring. To read the contents of an existing jstring object,

use the GetStringUTFChars function. This function returns a const jbyte* pointer to the "modified UTF-8"

characters that describe the character string. Note that a specific virtual machine is free to choose this character
encoding for its internal string representation, so you might get a character pointer into the actual Java string.
Because Java strings are meant to be immutable, it is very important that you treat the const seriously and do

not try to write into this character array. On the other hand, if the virtual machine uses UTF-16 or UTF-32
characters for its internal string representation, then this function call allocates a new memory block that will be
filled with the "modified UTF-8" equivalents.

The virtual machine must know when you are finished using the string so that it can garbage-collect it. (The
garbage collector runs in a separate thread, and it can interrupt the execution of native methods.) For that
reason, you must call the ReleaseStringUTFChars function.

Alternatively, you can supply your own buffer to hold the string characters by calling the GetStringRegion or

GetStringUTFRegion methods.

Finally, the GetStringUTFLength function returns the number of characters needed for the "modified UTF-8"

encoding of the string.

Note

You can find the JNI API at
http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html.

Accessing Java Strings from C Code

jstring NewStringUTF(JNIEnv* env, const char bytes[])

returns a new Java string object from a zero byte-terminated "modified UTF-
8" byte sequence, or NULL if the string cannot be constructed.

jsize GetStringUTFLength(JNIEnv* env, jstring string)

returns the number of bytes required for the "modified UTF-8" encoding (not
counting a zero byte terminator).

const jbyte* GetStringUTFChars(JNIEnv* env, jstring string,

jboolean* isCopy)

returns a pointer to the "modified UTF-8" encoding of a string, or NULL if the

character array cannot be constructed. The pointer is valid until
ReleaseStringUTFChars is called. isCopy points to a jboolean that is filled

with JNI_TRUE if a copy is made; with JNI_FALSE otherwise.

void ReleaseStringUTFChars(JNIEnv* env, jstring string, const

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html

jbyte bytes[])

informs the virtual machine that the native code no longer needs access to
the Java string through bytes (a pointer returned by GetStringUTFChars).

void GetStringRegion(JNIEnv *env, jstring string, jsize start,

jsize length, jchar *buffer)

copies a sequence of UTF-16 double-bytes from a string to a user-supplied
buffer of size at least 2 x length.

void GetStringUTFRegion(JNIEnv *env, jstring string, jsize start,
jsize length, jbyte *buffer)

copies a sequence of "modified UTF-8" bytes from a string to a user-supplied
buffer. The buffer must be long enough to hold the bytes. In the worst case,
3 x length bytes are copied.

jstring NewString(JNIEnv* env, const jchar chars[], jsize length)

returns a new Java string object from a Unicode string, or NULL if the string

cannot be constructed.

Parameters: env The JNI interface pointer

 chars The null-terminated UTF16 string

 length The number of characters in the string

jsize GetStringLength(JNIEnv* env, jstring string)

returns the number of characters in the string.

const jchar* GetStringChars(JNIEnv* env, jstring string,

jboolean* isCopy)

returns a pointer to the Unicode encoding of a string, or NULL if the character
array cannot be constructed. The pointer is valid until ReleaseStringChars

is called. isCopy is either NULL or points to a jboolean that is filled with

JNI_TRUE if a copy is made; with JNI_FALSE otherwise.

void ReleaseStringChars(JNIEnv* env, jstring string, const jchar

chars[])

informs the virtual machine that the native code no longer needs access to
the Java string through chars (a pointer returned by GetStringChars).

Let us put these functions to work and write a class that calls the C function sprintf. We would like to call the

function as shown in Listing 12-8.

Listing 12-8. Printf2Test.java

 1. /**

 2. * @version 1.10 1997-07-01

 3. * @author Cay Horstmann

 4. */

 5. class Printf2Test

 6. {

 7. public static void main(String[] args)

 8. {

 9. double price = 44.95;

10. double tax = 7.75;

11. double amountDue = price * (1 + tax / 100);

12.

13. String s = Printf2.sprint("Amount due = %8.2f", amountDue);

14. System.out.println(s);

15. }

16. }

Listing 12-9 shows the class with the native sprint method.

Listing 12-9. Printf2.java

 1. /**

 2. * @version 1.10 1997-07-01

 3. * @author Cay Horstmann

 4. */

 5. class Printf2

 6. {

 7. public static native String sprint(String format, double x);

 8.

 9. static

10. {

11. System.loadLibrary("Printf2");

12. }

13. }

Therefore, the C function that formats a floating-point number has the prototype

Code View:
JNIEXPORT jstring JNICALL Java_Printf2_sprint(JNIEnv* env, jclass cl, jstring format, jdouble x)

Listing 12-10 shows the code for the C implementation. Note the calls to GetStringUTFChars to read the format

argument, NewStringUTF to generate the return value, and ReleaseStringUTFChars to inform the virtual

machine that access to the string is no longer required.

Listing 12-10. Printf2.c

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Code View:
 1. /**

 2. @version 1.10 1997-07-01

 3. @author Cay Horstmann

 4. */

 5.

 6. #include "Printf2.h"

 7. #include <string.h>

 8. #include <stdlib.h>

 9. #include <float.h>

10.

11. /**

12. @param format a string containing a printf format specifier

13. (such as "%8.2f"). Substrings "%%" are skipped.

14. @return a pointer to the format specifier (skipping the '%')

15. or NULL if there wasn't a unique format specifier

16. */

17. char* find_format(const char format[])

18. {

19. char* p;

20. char* q;

21.

22. p = strchr(p + 2, '%');

23. if (p == NULL) return NULL;

24. /* now check that % is unique */

25. p = strchr(format, '%');

26. while (p != NULL && *(p + 1) == '%') /* skip %% */

27. p++;

28. q = strchr(p, '%');

29. while (q != NULL && *(q + 1) == '%') /* skip %% */

30. q = strchr(q + 2, '%');

31. if (q != NULL) return NULL; /* % not unique */

32. q = p + strspn(p, " -0+#"); /* skip past flags */

33. q += strspn(q, "0123456789"); /* skip past field width */

34. if (*q == '.') { q++; q += strspn(q, "0123456789"); }

35. /* skip past precision */

36. if (strchr("eEfFgG", *q) == NULL) return NULL;

37. /* not a floating-point format */

38. return p;

39. }

40.

41. JNIEXPORT jstring JNICALL Java_Printf2_sprint(JNIEnv* env, jclass cl,

42. jstring format, jdouble x)

43. {

44. const char* cformat;

45. char* fmt;

46. jstring ret;

47.

48. cformat = (*env)->GetStringUTFChars(env, format, NULL);

49. fmt = find_format(cformat);

50. if (fmt == NULL)

51. ret = format;

52. else

53. {

54. char* cret;

55. int width = atoi(fmt);

56. if (width == 0) width = DBL_DIG + 10;

57. cret = (char*) malloc(strlen(cformat) + width);

58. sprintf(cret, cformat, x);

59. ret = (*env)->NewStringUTF(env, cret);

60. free(cret);

61. }

62. (*env)->ReleaseStringUTFChars(env, format, cformat);

63. return ret;

64. }

In this function, we chose to keep the error handling simple. If the format code to print a floating-point number is
not of the form %w.pc, where c is one of the characters e, E, f, g, or G, then we simply do not format the number.

We show you later how to make a native method throw an exception.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Accessing Fields

All the native methods that you saw so far were static methods with number and string parameters. We next
consider native methods that operate on objects. As an exercise, we implement a method of the Employee class

that was introduced in Volume I, Chapter 4, using a native method. Again, this is not something you would normally
want to do, but it does illustrate how to access fields from a native method when you need to do so.

Accessing Instance Fields

To see how to access instance fields from a native method, we will reimplement the raiseSalary method. Here is

the code in Java:

public void raiseSalary(double byPercent)
{

 salary *= 1 + byPercent / 100;

}

Let us rewrite this as a native method. Unlike the previous examples of native methods, this is not a static method.
Running javah gives the following prototype:

Code View:
JNIEXPORT void JNICALL Java_Employee_raiseSalary(JNIEnv *, jobject, jdouble);

Note the second argument. It is no longer of type jclass but of type jobject . In fact, it is the equivalent of the

this reference. Static methods obtain a reference to the class, whereas nonstatic methods obtain a reference to the

implicit this argument object.

Now we access the salary field of the implicit argument. In the "raw" Java-to-C binding of Java 1.0, this was

easy—a programmer could directly access object data fields. However, direct access requires all virtual machines to
expose their internal data layout. For that reason, the JNI requires programmers to get and set the values of data
fields by calling special JNI functions.

In our case, we need to use the GetDoubleField and SetDoubleField functions because the type of salary is a

double . There are other functions—GetIntField/SetIntField , GetObjectField/SetObjectField , and so

on—for other field types. The general syntax is:

x = (*env)->GetXxxField(env, this_obj, fieldID);

(*env)->SetXxxField(env, this_obj, fieldID, x);

Here, class is a value that represents a Java object of type Class , fieldID is a value of a special type, jfieldID ,

that identifies a field in a structure, and Xxx represents a Java data type (Object , Boolean , Byte , and so on).

There are two ways to obtain the class object. The GetObjectClass function returns the class of any object. For

example:

jclass class_Employee = (*env)->GetObjectClass(env, this_obj);

The FindClass function lets you specify the class name as a string (curiously, with / instead of periods as package

name separators).

jclass class_String = (*env)->FindClass(env, "java/lang/String");

Use the GetFieldID function to obtain the fieldID . You must supply the name of the field and its signature , an

encoding of its type. For example, here is the code to obtain the field ID of the salary field.

Code View:
jfieldID id_salary = (*env)->GetFieldID(env, class_Employee, "salary", "D");

The string "D" denotes the type double . You learn the complete rules for encoding signatures in the next section.

You might be thinking that accessing a data field seems quite convoluted. The designers of the JNI did not want to
expose the data fields directly, so they had to supply functions for getting and setting field values. To minimize the
cost of these functions, computing the field ID from the field name—which is the most expensive step—is factored
out into a separate step. That is, if you repeatedly get and set the value of a particular field, you incur the cost of
computing the field identifier only once.

Let us put all the pieces together. The following code reimplements the raiseSalary method as a native method.

Code View:
JNIEXPORT void JNICALL Java_Employee_raiseSalary(JNIEnv* env, jobject this_obj, jdouble byPercent)

{

 /* get the class */

 jclass class_Employee = (*env)->GetObjectClass(env, this_obj);

 /* get the field ID */

 jfieldID id_salary = (*env)->GetFieldID(env, class_Employee, "salary", "D");

 /* get the field value */

 jdouble salary = (*env)->GetDoubleField(env, this_obj, id_salary);

 salary *= 1 + byPercent / 100;

 /* set the field value */

 (*env)->SetDoubleField(env, this_obj, id_salary, salary);

}

Caution

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Class references are only valid until the native method returns. Thus, you cannot cache
the return values of GetObjectClass in your code. Do not store away a class reference
for reuse in a later method call. You must call GetObjectClass every time the native

method executes. If this is intolerable, you can lock the reference with a call to
NewGlobalRef :

static jclass class_X = 0;

static jfieldID id_a;

. . .

if (class_X == 0)

{

 jclass cx = (*env)->GetObjectClass(env, obj);

 class_X = (*env)->NewGlobalRef(env, cx);

 id_a = (*env)->GetFieldID(env, cls, "a", ". . .");

}

Now you can use the class reference and field IDs in subsequent calls. When you are
done using the class, make sure to call

(*env)->DeleteGlobalRef(env, class_X);

Listings 12-11 and 12-12 show the Java code for a test program and the Employee class. Listing 12-13 contains the

C code for the native raiseSalary method.

Listing 12-11. EmployeeTest.java

 1. /**

 2. * @version 1.10 1999-11-13

 3. * @author Cay Horstmann

 4. */

 5.

 6. public class EmployeeTest

 7. {

 8. public static void main(String[] args)

 9. {

10. Employee[] staff = new Employee[3];

11.

12. staff[0] = new Employee("Harry Hacker", 35000);

13. staff[1] = new Employee("Carl Cracker", 75000);

14. staff[2] = new Employee("Tony Tester", 38000);

15.

16. for (Employee e : staff)

17. e.raiseSalary(5);

18. for (Employee e : staff)

19. e.print();

20. }

21. }

Listing 12-12. Employee.java

Code View:
 1. /**

 2. * @version 1.10 1999-11-13

 3. * @author Cay Horstmann

 4. */

 5.

 6. public class Employee

 7. {

 8. public Employee(String n, double s)

 9. {

10. name = n;

11. salary = s;

12. }

13.

14. public native void raiseSalary(double byPercent);

15.

16. public void print()

17. {

18. System.out.println(name + " " + salary);

19. }

20.

21. private String name;

22. private double salary;

23.

24. static

25. {

26. System.loadLibrary("Employee");

27. }

28. }

Listing 12-13. Employee.c

Code View:
 1. /**

 2. @version 1.10 1999-11-13

 3. @author Cay Horstmann

 4. */

 5.

 6. #include "Employee.h"

 7.

 8. #include <stdio.h>

 9.

10. JNIEXPORT void JNICALL Java_Employee_raiseSalary(JNIEnv* env, jobject this_obj,

11. jdouble byPercent)

12. {

13. /* get the class */

14. jclass class_Employee = (*env)->GetObjectClass(env, this_obj);

15.

16. /* get the field ID */

17. jfieldID id_salary = (*env)->GetFieldID(env, class_Employee, "salary", "D");

18.

19. /* get the field value */

20. jdouble salary = (*env)->GetDoubleField(env, this_obj, id_salary);

21.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

22. salary *= 1 + byPercent / 100;

23.

24. /* set the field value */

25. (*env)->SetDoubleField(env, this_obj, id_salary, salary);

26. }

Accessing Static Fields

Accessing static fields is similar to accessing nonstatic fields. You use the GetStaticFieldID and GetStatic Xxx

Field/SetStatic Xxx Field functions. They work almost identically to their nonstatic counterpart, with two

differences:

Because you have no object, you must use FindClass instead of GetObjectClass to obtain the class

reference.

You supply the class, not the instance object, when accessing the field.

For example, here is how you can get a reference to System.out .

Code View:
 /* get the class */

 jclass class_System = (*env)->FindClass(env, "java/lang/System");

 /* get the field ID */

 jfieldID id_out = (*env)->GetStaticFieldID(env, class_System, "out",

 "Ljava/io/PrintStream;");

 /* get the field value */
 jobject obj_out = (*env)->GetStaticObjectField(env, class_System, id_out);

Accessing Fields

jfieldID GetFieldID(JNIEnv *env, jclass cl, const char name[],

const char fieldSignature[])

returns the identifier of a field in a class.

Xxx Get Xxx Field(JNIEnv *env, jobject obj, jfieldID id)

returns the value of a field. The field type Xxx is one of Object , Boolean ,

Byte , Char , Short , Int , Long , Float , or Double .

void Set Xxx Field(JNIEnv *env, jobject obj, jfieldID id, Xxx

value)

sets a field to a new value. The field type Xxx is one of Object , Boolean ,

Byte , Char , Short , Int , Long , Float , or Double .

jfieldID GetStaticFieldID(JNIEnv *env, jclass cl, const char

name[], const char fieldSignature[])

returns the identifier of a static field in a class.

Xxx GetStatic Xxx Field(JNIEnv *env, jclass cl, jfieldID id)

returns the value of a static field. The field type Xxx is one of Object ,

Boolean , Byte , Char , Short , Int , Long , Float , or Double .

void SetStatic Xxx Field(JNIEnv *env, jclass cl, jfieldID id, Xxx

value)

sets a static field to a new value. The field type Xxx is one of Object ,

Boolean , Byte , Char , Short , Int , Long , Float , or Double .

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Encoding Signatures

To access instance fields and call methods that are defined in the Java programming language, you need to
learn the rules for "mangling" the names of data types and method signatures. (A method signature describes
the parameters and return type of the method.) Here is the encoding scheme:

B byte

C char

D double

F float

I int

J long

Lclassname; a class type

S short

V void

Z boolean

To describe an array type, use a [. For example, an array of strings is

[Ljava/lang/String;

A float[][] is mangled into

[[F

For the complete signature of a method, you list the parameter types inside a pair of parentheses and then list
the return type. For example, a method receiving two integers and returning an integer is encoded as

(II)I

The print method that we used in the preceding example has a mangled signature of

(Ljava/lang/String;)V

That is, the method receives a string and returns void.

Note that the semicolon at the end of the L expression is the terminator of the type expression, not a separator

between parameters. For example, the constructor

Employee(java.lang.String, double, java.util.Date)

has a signature

"(Ljava/lang/String;DLjava/util/Date;)V"

Note that there is no separator between the D and Ljava/util/Date;. Also note that in this encoding scheme,

you must use / instead of . to separate the package and class names. The V at the end denotes a return type of

void. Even though you don't specify a return type for constructors in Java, you need to add a V to the virtual

machine signature.

Tip

You can use the javap command with option -s to generate the method signatures

from class files. For example, run

javap -s -private Employee

You get the following output, displaying the signatures of all fields and methods.

Compiled from "Employee.java"

public class Employee extends java.lang.Object{

private java.lang.String name;
 Signature: Ljava/lang/String;

private double salary;

 Signature: D

public Employee(java.lang.String, double);

 Signature: (Ljava/lang/String;D)V

public native void raiseSalary(double);

 Signature: (D)V
public void print();

 Signature: ()V

static {};

 Signature: ()V

}

Note

There is no rationale whatsoever for forcing programmers to use this mangling
scheme for describing signatures. The designers of the native calling mechanism
could have just as easily written a function that reads signatures in the Java
programming language style, such as void(int,java.lang.String), and encodes

them into whatever internal representation they prefer. Then again, using the
mangled signatures lets you partake in the mystique of programming close to the
virtual machine.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Calling Java Methods

Of course, Java programming language functions can call C functions—that is what native methods are for. Can
we go the other way? Why would we want to do this anyway? The answer is that it often happens that a native
method needs to request a service from an object that was passed to it. We first show you how to do it for
instance methods, and then we show you how to do it for static methods.

Instance Methods

As an example of calling a Java method from native code, let's enhance the Printf class and add a method that

works similarly to the C function fprintf. That is, it should be able to print a string on an arbitrary

PrintWriter object. Here is the definition of the method in Java:

class Printf3

{

 public native static void fprint(PrintWriter out, String s, double x);
 . . .

}

We first assemble the string to be printed into a String object str, as in the sprint method that we already

implemented. Then, we call the print method of the PrintWriter class from the C function that implements

the native method.

You can call any Java method from C by using the function call

Code View:

(*env)->CallXxxMethod(env, implicit parameter, methodID, explicit parameters)

Replace Xxx with Void, Int, Object, and so on, depending on the return type of the method. Just as you need a

fieldID to access a field of an object, you need a method ID to call a method. You obtain a method ID by

calling the JNI function GetMethodID and supplying the class, the name of the method, and the method

signature.

In our example, we want to obtain the ID of the print method of the PrintWriter class. As you saw in Volume

I, Chapter 12, the PrintWriter class has several overloaded methods called print. For that reason, you must
also supply a string describing the parameters and return the value of the specific function that you want to use.
For example, we want to use void print(java.lang.String). As described in the preceding section, we must

now "mangle" the signature into the string "(Ljava/lang/String;)V".

Here is the complete code to make the method call, by

Obtaining the class of the implicit parameter.1.

Obtaining the method ID.2.

3.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

2.

Making the call.

Code View:
/* get the class */

class_PrintWriter = (*env)->GetObjectClass(env, out);

/* get the method ID */

id_print = (*env)->GetMethodID(env, class_PrintWriter, "print", "(Ljava/lang/String;)V");

/* call the method */

(*env)->CallVoidMethod(env, out, id_print, str);

3.

Listings 12-14 and 12-15 show the Java code for a test program and the Printf3 class. Listing 12-16 contains

the C code for the native fprint method.

Note

The numerical method IDs and field IDs are conceptually similar to Method and Field

objects in the reflection API. You can convert between them with the following
functions:

jobject ToReflectedMethod(JNIEnv* env, jclass class, jmethodID methodID);

 // returns Method object
methodID FromReflectedMethod(JNIEnv* env, jobject method);

jobject ToReflectedField(JNIEnv* env, jclass class, jfieldID fieldID);

 // returns Field object

fieldID FromReflectedField(JNIEnv* env, jobject field);

Static Methods

Calling static methods from native methods is similar to calling instance methods. There are two differences.

You use the GetStaticMethodID and CallStaticXxxMethod functions.

You supply a class object, not an implicit parameter object, when invoking the method.

As an example of this, let's make the call to the static method

System.getProperty("java.class.path")

from a native method. The return value of this call is a string that gives the current class path.

First, we have to find the class to use. Because we have no object of the class System readily available, we use

FindClass rather than GetObjectClass.

jclass class_System = (*env)->FindClass(env, "java/lang/System");

Next, we need the ID of the static getProperty method. The encoded signature of that method is

"(Ljava/lang/String;)Ljava/lang/String;"

because both the parameter and the return value are a string. Hence, we obtain the method ID as follows:

Code View:
jmethodID id_getProperty = (*env)->GetStaticMethodID(env, class_System, "getProperty",

 "(Ljava/lang/String;)Ljava/lang/String;");

Finally, we can make the call. Note that the class object is passed to the CallStaticObjectMethod function.

Code View:
jobject obj_ret = (*env)->CallStaticObjectMethod(env, class_System, id_getProperty,

 (*env)->NewStringUTF(env, "java.class.path"));

The return value of this method is of type jobject. If we want to manipulate it as a string, we must cast it to

jstring:

jstring str_ret = (jstring) obj_ret;

C++ Note

In C, the types jstring and jclass, as well as the array types that are introduced

later, are all type equivalent to jobject. The cast of the preceding example is

therefore not strictly necessary in C. But in C++, these types are defined as
pointers to "dummy classes" that have the correct inheritance hierarchy. For
example, the assignment of a jstring to a jobject is legal without a cast in C++,
but the assignment from a jobject to a jstring requires a cast.

Constructors

A native method can create a new Java object by invoking its constructor. You invoke the constructor by calling
the NewObject function.

Code View:

jobject obj_new = (*env)->NewObject(env, class, methodID, construction parameters);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

You obtain the method ID needed for this call from the GetMethodID function by specifying the method name as

"<init>" and the encoded signature of the constructor (with return type void). For example, here is how a

native method can create a FileOutputStream object.

Code View:
const char[] fileName = ". . .";

jstring str_fileName = (*env)->NewStringUTF(env, fileName);

jclass class_FileOutputStream = (*env)->FindClass(env, "java/io/FileOutputStream");

jmethodID id_FileOutputStream

 = (*env)->GetMethodID(env, class_FileOutputStream, "<init>", "(Ljava/lang/String;)V");

jobject obj_stream

 = (*env)->NewObject(env, class_FileOutputStream, id_FileOutputStream, str_fileName);

Note that the signature of the constructor takes a parameter of type java.lang.String and has a return type

of void.

Alternative Method Invocations

Several variants of the JNI functions call a Java method from native code. These are not as important as the
functions that we already discussed, but they are occasionally useful.

The CallNonvirtualXxxMethod functions receive an implicit argument, a method ID, a class object (which must

correspond to a superclass of the implicit argument), and explicit arguments. The function calls the version of
the method in the specified class, bypassing the normal dynamic dispatch mechanism.

All call functions have versions with suffixes "A" and "V" that receive the explicit parameters in an array or a
va_list (as defined in the C header stdarg.h).

Listing 12-14. Printf3Test.java

 1. import java.io.*;

 2.

 3. /**

 4. * @version 1.10 1997-07-01

 5. * @author Cay Horstmann

 6. */

 7. class Printf3Test

 8. {

 9. public static void main(String[] args)

10. {

11. double price = 44.95;

12. double tax = 7.75;

13. double amountDue = price * (1 + tax / 100);

14. PrintWriter out = new PrintWriter(System.out);

15. Printf3.fprint(out, "Amount due = %8.2f\n", amountDue);

16. out.flush();

17. }

18. }

Listing 12-15. Printf3.java

Code View:
 1. import java.io.*;

 2.

 3. /**

 4. * @version 1.10 1997-07-01

 5. * @author Cay Horstmann

 6. */

 7. class Printf3

 8. {

 9. public static native void fprint(PrintWriter out, String format, double x);

10.

11. static

12. {

13. System.loadLibrary("Printf3");

14. }

15. }

Listing 12-16. Printf3.c

Code View:
 1. /**

 2. @version 1.10 1997-07-01

 3. @author Cay Horstmann

 4. */

 5.

 6. #include "Printf3.h"

 7. #include <string.h>

 8. #include <stdlib.h>

 9. #include <float.h>

10.

11. /**

12. @param format a string containing a printf format specifier

13. (such as "%8.2f"). Substrings "%%" are skipped.

14. @return a pointer to the format specifier (skipping the '%')

15. or NULL if there wasn't a unique format specifier

16. */

17. char* find_format(const char format[])

18. {

19. char* p;

20. char* q;

21.

22. p = strchr(format, '%');

23. while (p != NULL && *(p + 1) == '%') /* skip %% */

24. p = strchr(p + 2, '%');

25. if (p == NULL) return NULL;

26. /* now check that % is unique */

27. p++;

28. q = strchr(p, '%');

29. while (q != NULL && *(q + 1) == '%') /* skip %% */

30. q = strchr(q + 2, '%');

31. if (q != NULL) return NULL; /* % not unique */

32. q = p + strspn(p, " -0+#"); /* skip past flags */

33. q += strspn(q, "0123456789"); /* skip past field width */

34. if (*q == '.') { q++; q += strspn(q, "0123456789"); }

35. /* skip past precision */

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

36. if (strchr("eEfFgG", *q) == NULL) return NULL;

37. /* not a floating-point format */

38. return p;

39. }

40.

41. JNIEXPORT void JNICALL Java_Printf3_fprint(JNIEnv* env, jclass cl,

42. jobject out, jstring format, jdouble x)

43. {

44. const char* cformat;

45. char* fmt;

46. jstring str;

47. jclass class_PrintWriter;

48. jmethodID id_print;

49.

50. cformat = (*env)->GetStringUTFChars(env, format, NULL);

51. fmt = find_format(cformat);

52. if (fmt == NULL)

53. str = format;

54. else

55. {

56. char* cstr;

57. int width = atoi(fmt);

58. if (width == 0) width = DBL_DIG + 10;

59. cstr = (char*) malloc(strlen(cformat) + width);

60. sprintf(cstr, cformat, x);

61. str = (*env)->NewStringUTF(env, cstr);

62. free(cstr);

63. }

64. (*env)->ReleaseStringUTFChars(env, format, cformat);

65.

66. /* now call ps.print(str) */

67.

68. /* get the class */

69. class_PrintWriter = (*env)->GetObjectClass(env, out);

70.

71. /* get the method ID */

72. id_print = (*env)->GetMethodID(env, class_PrintWriter, "print", "(Ljava/lang/String;)V");

73.

74. /* call the method */

75. (*env)->CallVoidMethod(env, out, id_print, str);

76. }

Executing Java Methods

jmethodID GetMethodID(JNIEnv *env, jclass cl, const char
name[], const char methodSignature[])

returns the identifier of a method in a class.

Xxx CallXxxMethod(JNIEnv *env, jobject obj, jmethodID id,

args)

Xxx CallXxxMethodA(JNIEnv *env, jobject obj, jmethodID id,

jvalue args[])

Xxx CallXxxMethodV(JNIEnv *env, jobject obj, jmethodID id,

va_list args)

calls a method. The return type Xxx is one of Object, Boolean, Byte,

Char, Short, Int, Long, Float, or Double. The first function has a

variable number of arguments—simply append the method parameters
after the method ID. The second function receives the method
arguments in an array of jvalue, where jvalue is a union defined as

typedef union jvalue

{
 jboolean z;

 jbyte b;

 jchar c;

 jshort s;

 jint i;

 jlong j;

 jfloat f;
 jdouble d;

 jobject l;

} jvalue;

The third function receives the method parameters in a va_list, as

defined in the C header stdarg.h.

Xxx CallNonvirtualXxxMethod(JNIEnv *env, jobject obj, jclass

cl, jmethodID id, args)

Xxx CallNonvirtualXxxMethodA(JNIEnv *env, jobject obj, jclass
cl, jmethodID id, jvalue args[])

Xxx CallNonvirtualXxxMethodV(JNIEnv *env, jobject obj, jclass

cl, jmethodID id, va_list args)

calls a method, bypassing dynamic dispatch. The return type Xxx is one
of Object, Boolean, Byte, Char, Short, Int, Long, Float, or Double.

The first function has a variable number of arguments—simply append
the method parameters after the method ID. The second function
receives the method arguments in an array of jvalue. The third function

receives the method parameters in a va_list, as defined in the C
header stdarg.h.

jmethodID GetStaticMethodID(JNIEnv *env, jclass cl, const

char name[], const char methodSignature[])

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

returns the identifier of a static method in a class.

Xxx CallStaticXxxMethod(JNIEnv *env, jclass cl, jmethodID id,

args)

Xxx CallStaticXxxMethodA(JNIEnv *env, jclass cl, jmethodID id,

jvalue args[])

Xxx CallStaticXxxMethodV(JNIEnv *env, jclass cl, jmethodID id,

va_list args)

calls a static method. The return type Xxx is one of Object, Boolean,

Byte, Char, Short, Int, Long, Float, or Double. The first function has a

variable number of arguments—simply append the method parameters
after the method ID. The second function receives the method
arguments in an array of jvalue. The third function receives the method

parameters in a va_list, as defined in the C header stdarg.h.

jobject NewObject(JNIEnv *env, jclass cl, jmethodID id, args)

jobject NewObjectA(JNIEnv *env, jclass cl, jmethodID id,

jvalue args[])

jobject NewObjectV(JNIEnv *env, jclass cl, jmethodID id,

va_list args)

calls a constructor. The method ID is obtained from GetMethodID with a

method name of "<init>" and a return type of void. The first function

has a variable number of arguments—simply append the method
parameters after the method ID. The second function receives the
method arguments in an array of jvalue. The third function receives the

method parameters in a va_list, as defined in the C header stdarg.h.

Accessing Array Elements

All array types of the Java programming language have corresponding C types, as shown in Table 12-2.

Table 12-2. Correspondence Between Java Array Types and
C Types

Java Type C Type

boolean[] jbooleanArray

byte[] jbyteArray

char[] jcharArray

int[] jintArray

short[] jshortArray

long[] jlongArray

float[] jfloatArray

double[] jdoubleArray

Object[] jobjectArray

C++ Note

In C, all these array types are actually type synonyms of jobject. In C++,

however, they are arranged in the inheritance hierarchy shown in Figure 12-3. The
type jarray denotes a generic array.

Figure 12-3. Inheritance hierarchy of array types

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The GetArrayLength function returns the length of an array.

jarray array = . . .;
jsize length = (*env)->GetArrayLength(env, array);

How you access elements in the array depends on whether the array stores objects or a primitive type (bool,

char, or a numeric type). You access elements in an object array with the GetObjectArrayElement and

SetObjectArrayElement methods.

jobjectArray array = . . .;

int i, j;

jobject x = (*env)->GetObjectArrayElement(env, array, i);

(*env)->SetObjectArrayElement(env, array, j, x);

Although simple, this approach is also clearly inefficient; you want to be able to access array elements directly,
especially when doing vector and matrix computations.

The GetXxxArrayElements function returns a C pointer to the starting element of the array. As with ordinary

strings, you must remember to call the corresponding ReleaseXxxArrayElements function to tell the virtual

machine when you no longer need that pointer. Here, the type Xxx must be a primitive type; that is, not
Object. You can then read and write the array elements directly. However, because the pointer might point to a

copy, any changes that you make are guaranteed to be reflected in the original array only when you call the
corresponding ReleaseXxxArrayElements function!

Note

You can find out if an array is a copy by passing a pointer to a jboolean variable as

the third parameter to a GetXxxArrayElements method. The variable is filled with

JNI_TRUE if the array is a copy. If you aren't interested in that information, just

pass a NULL pointer.

Here is a code sample that multiplies all elements in an array of double values by a constant. We obtain a C

pointer a into the Java array and then access individual elements as a[i].

jdoubleArray array_a = . . .;

double scaleFactor = . . .;
double* a = (*env)->GetDoubleArrayElements(env, array_a, NULL);

for (i = 0; i < (*env)->GetArrayLength(env, array_a); i++)

 a[i] = a[i] * scaleFactor;

(*env)->ReleaseDoubleArrayElements(env, array_a, a, 0);

Whether the virtual machine actually copies the array depends on how it allocates arrays and does its garbage
collection. Some "copying" garbage collectors routinely move objects around and update object references. That
strategy is not compatible with "pinning" an array to a particular location, because the collector cannot update
the pointer values in native code.

Note

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

In the Sun JVM implementation, boolean arrays are represented as packed arrays

of 32-bit words. The GetBooleanArrayElements method copies them into unpacked

arrays of jboolean values.

To access just a few elements of a large array, use the GetXxxArrayRegion and SetXxxArrayRegion methods

that copy a range of elements from the Java array into a C array and back.

You can create new Java arrays in native methods with the NewXxxArray function. To create a new array of

objects, you specify the length, the type of the array elements, and an initial element for all entries (typically,
NULL). Here is an example.

Code View:
jclass class_Employee = (*env)->FindClass(env, "Employee");

jobjectArray array_e = (*env)->NewObjectArray(env, 100, class_Employee, NULL);

Arrays of primitive types are simpler. You just supply the length of the array.

jdoubleArray array_d = (*env)->NewDoubleArray(env, 100);

The array is then filled with zeroes.

Note

Java SE 1.4 added three methods to the JNI API:

jobject NewDirectByteBuffer(JNIEnv* env, void* address, jlong capacity)

void* GetDirectBufferAddress(JNIEnv* env, jobject buf)
jlong GetDirectBufferCapacity(JNIEnv* env, jobject buf)

Direct buffers are used in the java.nio package to support more efficient

input/output operations and to minimize the copying of data between native and
Java arrays.

Manipulating Java Arrays

jsize GetArrayLength(JNIEnv *env, jarray array)

returns the number of elements in the array.

jobject GetObjectArrayElement(JNIEnv *env, jobjectArray

array, jsize index)

returns the value of an array element.

void SetObjectArrayElement(JNIEnv *env, jobjectArray array,

jsize index, jobject value)

sets an array element to a new value.

Xxx* GetXxxArrayElements(JNIEnv *env, jarray array, jboolean*

isCopy)

yields a C pointer to the elements of a Java array. The field type Xxx is
one of Boolean, Byte, Char, Short, Int, Long, Float, or Double. The

pointer must be passed to ReleaseXxxArrayElements when it is no

longer needed.isCopy is either NULL or points to a jboolean that is filled

with JNI_TRUE if a copy is made; with JNI_FALSE otherwise.

void ReleaseXxxArrayElements(JNIEnv *env, jarray array, Xxx

elems[], jint mode)

notifies the virtual machine that a pointer obtained by
GetXxxArrayElements is no longer needed. mode is one of 0 (free the

elems buffer after updating the array elements), JNI_COMMIT (do not

free the elems buffer after updating the array elements), or JNI_ABORT

(free the elems buffer without updating the array elements)

void GetXxxArrayRegion(JNIEnv *env, jarray array, jint start,

jint length, Xxx elems[])

copies elements from a Java array to a C array. The field type Xxx is one
of Boolean, Byte, Char, Short, Int, Long, Float, or Double.

void SetXxxArrayRegion(JNIEnv *env, jarray array, jint start,

jint length, Xxx elems[])

copies elements from a C array to a Java array. The field type Xxx is one
of Boolean, Byte, Char, Short, Int, Long, Float, or Double.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Handling Errors

Native methods are a significant security risk to programs in the Java programming language. The C runtime
system has no protection against array bounds errors, indirection through bad pointers, and so on. It is
particularly important that programmers of native methods handle all error conditions to preserve the integrity of
the Java platform. In particular, when your native method diagnoses a problem that it cannot handle, it should
report this problem to the Java virtual machine. Then, you would naturally throw an exception in this situation.
However, C has no exceptions. Instead, you must call the Throw or ThrowNew function to create a new exception

object. When the native method exits, the Java virtual machine throws that exception.

To use the Throw function, call NewObject to create an object of a subtype of Throwable. For example, here we

allocate an EOFException object and throw it.

Code View:
jclass class_EOFException = (*env)->FindClass(env, "java/io/EOFException");

jmethodID id_EOFException = (*env)->GetMethodID(env, class_EOFException, "<init>", "()V");

 /* ID of default constructor */

jthrowable obj_exc = (*env)->NewObject(env, class_EOFException, id_EOFException);
(*env)->Throw(env, obj_exc);

It is usually more convenient to call ThrowNew, which constructs an exception object, given a class and a

"modified UTF-8" byte sequence.

Code View:
(*env)->ThrowNew(env, (*env)->FindClass(env, "java/io/EOFException"), "Unexpected end of file");

Both Throw and ThrowNew merely post the exception; they do not interrupt the control flow of the native method.

Only when the method returns does the Java virtual machine throw the exception. Therefore, every call to Throw
and ThrowNew should always immediately be followed by a return statement.

C++ Note

If you implement native methods in C++, you cannot throw a Java exception object
in your C++ code. In a C++ binding, it would be possible to implement a translation
between exceptions in the C++ and Java programming languages—however, this is
not currently implemented. Use Throw or ThrowNew to throw a Java exception in a

native C++ method, and make sure that your native methods throw no C++
exceptions.

Normally, native code need not be concerned with catching Java exceptions. However, when a native method
calls a Java method, that method might throw an exception. Moreover, a number of the JNI functions throw

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

exceptions as well. For example, SetObjectArrayElement throws an ArrayIndexOutOfBoundsException if the

index is out of bounds, and an ArrayStoreException if the class of the stored object is not a subclass of the

element class of the array. In situations like these, a native method should call the ExceptionOccurred method
to determine whether an exception has been thrown. The call

jthrowable obj_exc = (*env)->ExceptionOccurred(env);

returns NULL if no exception is pending, or it returns a reference to the current exception object. If you just want

to check whether an exception has been thrown, without obtaining a reference to the exception object, use

jboolean occurred = (*env)->ExceptionCheck(env);

Normally, a native method should simply return when an exception has occurred so that the virtual machine can
propagate it to the Java code. However, a native method may analyze the exception object to determine if it can
handle the exception. If it can, then the function

(*env)->ExceptionClear(env);

must be called to turn off the exception.

In our next example, we implement the fprint native method with the paranoia that is appropriate for a native

method. Here are the exceptions that we throw:

A NullPointerException if the format string is NULL.

An IllegalArgumentException if the format string doesn't contain a % specifier that is appropriate for

printing a double.

An OutOfMemoryError if the call to malloc fails.

Finally, to demonstrate how to check for an exception when calling a Java method from a native method, we send
the string to the stream, a character at a time, and call ExceptionOccurred after each call. Listing 12-17 shows
the code for the native method, and Listing 12-18 contains the definition of the class containing the native
method. Notice that the native method does not immediately terminate when an exception occurs in the call to
PrintWriter.print—it first frees the cstr buffer. When the native method returns, the virtual machine again

raises the exception. The test program in Listing 12-19 demonstrates how the native method throws an exception
when the formatting string is not valid.

Listing 12-17. Printf4.c

Code View:
 1. /**

 2. @version 1.10 1997-07-01

 3. @author Cay Horstmann

 4. */

 5.

 6. #include "Printf4.h"

 7. #include <string.h>

 8. #include <stdlib.h>

 9. #include <float.h>

 10.

 11. /**

 12. @param format a string containing a printf format specifier

 13. (such as "%8.2f"). Substrings "%%" are skipped.

 14. @return a pointer to the format specifier (skipping the '%')

 15. or NULL if there wasn't a unique format specifier

 16. */

 17. char* find_format(const char format[])

 18. {

 19. char* p;

 20. char* q;

 21.

 22. p = strchr(format, '%');

 23. while (p != NULL && *(p + 1) == '%') /* skip %% */

 24. p = strchr(p + 2, '%');

 25. if (p == NULL) return NULL;

 26. /* now check that % is unique */

 27. p++;

 28. q = strchr(p, '%');

 29. while (q != NULL && *(q + 1) == '%') /* skip %% */

 30. q = strchr(q + 2, '%');

 31. if (q != NULL) return NULL; /* % not unique */

 32. q = p + strspn(p, " -0+#"); /* skip past flags */

 33. q += strspn(q, "0123456789"); /* skip past field width */

 34. if (*q == '.') { q++; q += strspn(q, "0123456789"); }

 35. /* skip past precision */

 36. if (strchr("eEfFgG", *q) == NULL) return NULL;

 37. /* not a floating-point format */

 38. return p;

 39. }

 40.

 41. JNIEXPORT void JNICALL Java_Printf4_fprint(JNIEnv* env, jclass cl,

 42. jobject out, jstring format, jdouble x)

 43. {

 44. const char* cformat;

 45. char* fmt;

 46. jclass class_PrintWriter;

 47. jmethodID id_print;

 48. char* cstr;

 49. int width;

 50. int i;

 51.

 52. if (format == NULL)

 53. {

 54. (*env)->ThrowNew(env,

 55. (*env)->FindClass(env,

 56. "java/lang/NullPointerException"),

 57. "Printf4.fprint: format is null");

 58. return;

 59. }

 60.

 61. cformat = (*env)->GetStringUTFChars(env, format, NULL);

 62. fmt = find_format(cformat);

 63.

 64. if (fmt == NULL)

 65. {

 66. (*env)->ThrowNew(env,

 67. (*env)->FindClass(env,

 68. "java/lang/IllegalArgumentException"),

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 69. "Printf4.fprint: format is invalid");

 70. return;

 71. }

 72.

 73. width = atoi(fmt);

 74. if (width == 0) width = DBL_DIG + 10;

 75. cstr = (char*)malloc(strlen(cformat) + width);

 76.

 77. if (cstr == NULL)

 78. {

 79. (*env)->ThrowNew(env,

 80. (*env)->FindClass(env, "java/lang/OutOfMemoryError"),

 81. "Printf4.fprint: malloc failed");

 82. return;

 83. }

 84.

 85. sprintf(cstr, cformat, x);

 86.

 87. (*env)->ReleaseStringUTFChars(env, format, cformat);

 88.

 89. /* now call ps.print(str) */

 90.

 91. /* get the class */

 92. class_PrintWriter = (*env)->GetObjectClass(env, out);

 93.

 94. /* get the method ID */

 95. id_print = (*env)->GetMethodID(env, class_PrintWriter, "print", "(C)V");

 96.

 97. /* call the method */

 98. for (i = 0; cstr[i] != 0 && !(*env)->ExceptionOccurred(env); i++)

 99. (*env)->CallVoidMethod(env, out, id_print, cstr[i]);

100.

101. free(cstr);

102. }

Listing 12-18. Printf4.java

Code View:
 1. import java.io.*;

 2.

 3. /**

 4. * @version 1.10 1997-07-01

 5. * @author Cay Horstmann

 6. */

 7. class Printf4

 8. {

 9. public static native void fprint(PrintWriter ps, String format, double x);

10.

11. static

12. {

13. System.loadLibrary("Printf4");

14. }

15. }

Listing 12-19. Printf4Test.java

 1. import java.io.*;

 2.

 3. /**

 4. * @version 1.10 1997-07-01

 5. * @author Cay Horstmann

 6. */

 7. class Printf4Test

 8. {

 9. public static void main(String[] args)

10. {

11. double price = 44.95;

12. double tax = 7.75;

13. double amountDue = price * (1 + tax / 100);

14. PrintWriter out = new PrintWriter(System.out);

15. /* This call will throw an exception--note the %% */

16. Printf4.fprint(out, "Amount due = %%8.2f\n", amountDue);

17. out.flush();

18. }

19. }

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Handling Java Exceptions

jint Throw(JNIEnv *env, jthrowable obj)

prepares an exception to be thrown upon exiting from the native code.
Returns 0 on success, a negative value on failure.

jint ThrowNew(JNIEnv *env, jclass cl, const char msg[])

prepares an exception of type cl to be thrown upon exiting from the

native code. Returns 0 on success, a negative value on failure. msg is a
"modified UTF-8" byte sequence denoting the String construction

argument of the exception object.

jthrowable ExceptionOccurred(JNIEnv *env)

returns the exception object if an exception is pending, or NULL

otherwise.

jboolean ExceptionCheck(JNIEnv *env)

returns true if an exception is pending.

void ExceptionClear(JNIEnv *env)

clears any pending exceptions.

Using the Invocation API

Up to now, we have considered programs in the Java programming language that made a few C calls,
presumably because C was faster or allowed access to functionality that was inaccessible from the Java
platform. Suppose you are in the opposite situation. You have a C or C++ program and would like to make calls
to Java code. The invocation API enables you to embed the Java virtual machine into a C or C++ program. Here
is the minimal code that you need to initialize a virtual machine:

JavaVMOption options[1];

JavaVMInitArgs vm_args;

JavaVM *jvm;

JNIEnv *env;

options[0].optionString = "-Djava.class.path=.";

memset(&vm_args, 0, sizeof(vm_args));

vm_args.version = JNI_VERSION_1_2;
vm_args.nOptions = 1;

vm_args.options = options;

JNI_CreateJavaVM(&jvm, (void**) &env, &vm_args);

The call to JNI_CreateJavaVM creates the virtual machine and fills in a pointer, jvm, to the virtual machine and

a pointer, env, to the execution environment.

You can supply any number of options to the virtual machine. Simply increase the size of the options array and

the value of vm_args.nOptions. For example,

options[i].optionString = "-Djava.compiler=NONE";

deactivates the just-in-time compiler.

Tip

When you run into trouble and your program crashes, refuses to initialize the JVM,
or can't load your classes, then turn on the JNI debugging mode. Set an option to

options[i].optionString = "-verbose:jni";

You will see a flurry of messages that indicate the progress in initializing the JVM. If
you don't see your classes loaded, check both your path and your class path
settings.

Once you have set up the virtual machine, you can call Java methods in the way described in the preceding

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

sections: Simply use the env pointer in the usual way.

You need the jvm pointer only to call other functions in the invocation API. Currently, there are only four such
functions. The most important one is the function to terminate the virtual machine:

(*jvm)->DestroyJavaVM(jvm);

Unfortunately, under Windows, it has become difficult to dynamically link to the JNI_CreateJavaVM function in

the jre/bin/client/jvm.dll library, due to changed linking rules in Vista and Sun's reliance on an older C

runtime library. Our sample program overcomes this problem by loading the library manually. This is the same
approach used by the java program—see the file launcher/java_md.c in the src.jar file that is a part of the

JDK.

The C program in Listing 12-20 sets up a virtual machine and then calls the main method of the Welcome class,

which was discussed in Volume I, Chapter 2. (Make sure to compile the Welcome.java file before starting the

invocation test program.)

Listing 12-20. InvocationTest.c

Code View:
 1. /**

 2. @version 1.20 2007-10-26

 3. @author Cay Horstmann

 4. */

 5.

 6. #include <jni.h>

 7. #include <stdlib.h>

 8.

 9. #ifdef _WINDOWS

 10.

 11. #include <windows.h>

 12. static HINSTANCE loadJVMLibrary(void);

 13. typedef jint (JNICALL *CreateJavaVM_t)(JavaVM **, void **, JavaVMInitArgs *);

 14.

 15. #endif

 16.

 17. int main()

 18. {

 19. JavaVMOption options[2];

 20. JavaVMInitArgs vm_args;

 21. JavaVM *jvm;

 22. JNIEnv *env;

 23. long status;

 24.

 25. jclass class_Welcome;

 26. jclass class_String;

 27. jobjectArray args;

 28. jmethodID id_main;

 29.

 30. #ifdef _WINDOWS

 31. HINSTANCE hjvmlib;

 32. CreateJavaVM_t createJavaVM;

 33. #endif

 34.

 35. options[0].optionString = "-Djava.class.path=.";

 36.

 37. memset(&vm_args, 0, sizeof(vm_args));

 38. vm_args.version = JNI_VERSION_1_2;

 39. vm_args.nOptions = 1;

 40. vm_args.options = options;

 41.

 42.

 43. #ifdef _WINDOWS

 44. hjvmlib = loadJVMLibrary();

 45. createJavaVM = (CreateJavaVM_t) GetProcAddress(hjvmlib, "JNI_CreateJavaVM");

 46. status = (*createJavaVM)(&jvm, (void **) &env, &vm_args);

 47. #else

 48. status = JNI_CreateJavaVM(&jvm, (void **) &env, &vm_args);

 49. #endif

 50.

 51. if (status == JNI_ERR)

 52. {

 53. fprintf(stderr, "Error creating VM\n");

 54. return 1;

 55. }

 56.

 57. class_Welcome = (*env)->FindClass(env, "Welcome");

 58. id_main = (*env)->GetStaticMethodID(env, class_Welcome, "main", "([Ljava/lang/String;)V");

 59.

 60. class_String = (*env)->FindClass(env, "java/lang/String");

 61. args = (*env)->NewObjectArray(env, 0, class_String, NULL);

 62. (*env)->CallStaticVoidMethod(env, class_Welcome, id_main, args);

 63.

 64. (*jvm)->DestroyJavaVM(jvm);

 65.

 66. return 0;

 67. }

 68.

 69. #ifdef _WINDOWS

 70.

 71. static int GetStringFromRegistry(HKEY key, const char *name, char *buf, jint bufsize)

 72. {

 73. DWORD type, size;

 74.

 75. return RegQueryValueEx(key, name, 0, &type, 0, &size) == 0

 76. && type == REG_SZ

 77. && size < (unsigned int) bufsize

 78. && RegQueryValueEx(key, name, 0, 0, buf, &size) == 0;

 79. }

 80.

 81. static void GetPublicJREHome(char *buf, jint bufsize)

 82. {

 83. HKEY key, subkey;

 84. char version[MAX_PATH];

 85.

 86. /* Find the current version of the JRE */

 87. char *JRE_KEY = "Software\\JavaSoft\\Java Runtime Environment";

 88. if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, JRE_KEY, 0, KEY_READ, &key) != 0)

 89. {

 90. fprintf(stderr, "Error opening registry key '%s'\n", JRE_KEY);

 91. exit(1);

 92. }

 93.

 94. if (!GetStringFromRegistry(key, "CurrentVersion", version, sizeof(version)))

 95. {

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 96. fprintf(stderr, "Failed reading value of registry key:\n\t%s\\CurrentVersion\n", JRE_KEY);

 97. RegCloseKey(key);

 98. exit(1);

 99. }

100.

101. /* Find directory where the current version is installed. */

102. if (RegOpenKeyEx(key, version, 0, KEY_READ, &subkey) != 0)

103. {

104. fprintf(stderr, "Error opening registry key '%s\\%s'\n", JRE_KEY, version);

105. RegCloseKey(key);

106. exit(1);

107. }

108.

109. if (!GetStringFromRegistry(subkey, "JavaHome", buf, bufsize))

110. {

111. fprintf(stderr, "Failed reading value of registry key:\n\t%s\\%s\\JavaHome\n",

112. JRE_KEY, version);

113. RegCloseKey(key);

114. RegCloseKey(subkey);

115. exit(1);

116. }

117.

118. RegCloseKey(key);

119. RegCloseKey(subkey);

120. }

121.

122. static HINSTANCE loadJVMLibrary(void)

123. {

124. HINSTANCE h1, h2;

125. char msvcdll[MAX_PATH];

126. char javadll[MAX_PATH];

127. GetPublicJREHome(msvcdll, MAX_PATH);

128. strcpy(javadll, msvcdll);

129. strncat(msvcdll, "\\bin\\msvcr71.dll", MAX_PATH - strlen(msvcdll));

130. msvcdll[MAX_PATH - 1] = '\0';

131. strncat(javadll, "\\bin\\client\\jvm.dll", MAX_PATH - strlen(javadll));

132. javadll[MAX_PATH - 1] = '\0';

133.

134. h1 = LoadLibrary(msvcdll);

135. if (h1 == NULL)

136. {

137. fprintf(stderr, "Can't load library msvcr71.dll\n");

138. exit(1);

139. }

140.

141. h2 = LoadLibrary(javadll);

142. if (h2 == NULL)

143. {

144. fprintf(stderr, "Can't load library jvm.dll\n");

145. exit(1);

146. }

147. return h2;

148. }

149.

150. #endif

To compile this program under Linux, use

gcc -I jdk/include -I jdk/include/linux -o InvocationTest

 -L jdk/jre/lib/i386/client -ljvm InvocationTest.c

Under Solaris, use

cc -I jdk/include -I jdk/include/solaris -o InvocationTest

 -L jdk/jre/lib/sparc -ljvm InvocationTest.c

When compiling in Windows with the Microsoft compiler, use the command line

Code View:

cl -D_WINDOWS -I jdk\include -I jdk\include\win32 InvocationTest.c jdk\lib\jvm.lib advapi32.lib

You will need to make sure that the INCLUDE and LIB environment variables include the paths to the Windows

API header and library files.

With Cygwin, you compile with

Code View:

gcc -D_WINDOWS -mno-cygwin -I jdk\include -I jdk\include\win32 -D__int64="long long"

 -I c:\cygwin\usr\include\w32api -o InvocationTest

Before you run the program under Linux/UNIX, make sure that the LD_LIBRARY_PATH contains the directories

for the shared libraries. For example, if you use the bash shell on Linux, issue the following command:

export LD_LIBRARY_PATH=jdk/jre/lib/i386/client:$LD_LIBRARY_PATH

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Invocation API Functions

jint JNI_CreateJavaVM(JavaVM** p_jvm, void** p_env, JavaVMInitArgs* vm_args)

initializes the Java virtual machine. The function returns 0 if successful, JNI_ERR on failure.

Parameters: p_jvm Filled with a pointer to the invocation API function table

 p_env Filled with a pointer to the JNI function table

 vm_args The virtual machine arguments

jint DestroyJavaVM(JavaVM* jvm)

destroys the virtual machine. Returns 0 on success, a negative number on failure. This

function must be called through a virtual machine pointer, i.e., (*jvm)-

>DestroyJavaVM(jvm).

A Complete Example: Accessing the Windows Registry

In this section, we describe a full, working example that covers everything we discussed in this chapter: using
native methods with strings, arrays, objects, constructor calls, and error handling. We show you how to put a
Java platform wrapper around a subset of the ordinary C-based API used to work with the Windows registry. Of
course, being a Windows-specific feature, a program using the Windows registry is inherently nonportable. For
that reason, the standard Java library has no support for the registry, and it makes sense to use native methods
to gain access to it.

Overview of the Windows Registry

The Windows registry is a data depository that holds configuration information for the Windows operating
system and application programs. It provides a single point for administration and backup of system and
application preferences. On the downside, the registry is also a single point of failure—if you mess up the
registry, your computer could malfunction or even fail to boot!

We don't suggest that you use the registry to store configuration parameters for your Java programs. The Java
preferences API is a better solution—see Volume I, Chapter 10 for more information. We simply use the registry
to demonstrate how to wrap a nontrivial native API into a Java class.

The principal tool for inspecting the registry is the registry editor. Because of the potential for error by naive but
enthusiastic users, there is no icon for launching the registry editor. Instead, start a DOS shell (or open the
Start -> Run dialog box) and type regedit. Figure 12-4 shows the registry editor in action.

Figure 12-4. The registry editor

[View full size image]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

The left side shows the keys, which are arranged in a tree structure. Note that each key starts with one of the
HKEY nodes like

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

. . .

The right side shows the name/value pairs that are associated with a particular key. For example, if you
installed Java SE 6, the key

HKEY_LOCAL_MACHINE\Software\JavaSoft\Java Runtime Environment

contains a name/value pair such as

CurrentVersion="1.6.0_03"

In this case, the value is a string. The values can also be integers or arrays of bytes.

A Java Platform Interface for Accessing the Registry

We implement a simple interface to access the registry from Java code, and then implement this interface with
native code. Our interface allows only a few registry operations; to keep the code size down, we omitted other
important operations such as adding, deleting, and enumerating keys. (It would be easy to add the remaining
registry API functions.)

Even with the limited subset that we supply, you can

Enumerate all names stored in a key.

Read the value stored with a name.

Set the value stored with a name.

Here is the Java class that encapsulates a registry key.

public class Win32RegKey

{

 public Win32RegKey(int theRoot, String thePath) { . . . }

 public Enumeration names() { . . . }

 public native Object getValue(String name);

 public native void setValue(String name, Object value);

 public static final int HKEY_CLASSES_ROOT = 0x80000000;

 public static final int HKEY_CURRENT_USER = 0x80000001;

 public static final int HKEY_LOCAL_MACHINE = 0x80000002;

 . . .

}

The names method returns an enumeration that holds all the names stored with the key. You can get at them

with the familiar hasMoreElements/nextElement methods. The getValue method returns an object that is

either a string, an Integer object, or a byte array. The value parameter of the setValue method must also be

of one of these three types.

Implementation of Registry Access Functions as Native Methods

We need to implement three actions:

Get the value of a key.

Set the value of a key.

Iterate through the names of a key.

Fortunately, you have seen essentially all the tools that are required, such as the conversion between Java
strings and arrays and those of C. You also saw how to raise a Java exception in case something goes wrong.

Two issues make these native methods more complex than the preceding examples. The getValue and
setValue methods deal with the type Object, which can be one of String, Integer, or byte[]. The

enumeration object stores the state between successive calls to hasMoreElements and nextElement.

Let us first look at the getValue method. The method (which is shown in Listing 12-22) goes through the

following steps:

1. Opens the registry key. To read their values, the registry API requires that keys be open.

2. Queries the type and size of the value that is associated with the name.

3. Reads the data into a buffer.

4. Calls NewStringUTF to create a new string with the value data if the type is REG_SZ (a string).

5. Invokes the Integer constructor if the type is REG_DWORD (a 32-bit integer).

6. Calls NewByteArray to create a new byte array, then SetByteArrayRegion to copy the value data into the

byte array, if the type is REG_BINARY.

7. If the type is none of these or if an error occurred when an API function was called, throws an exception
and releases all resources that had been acquired up to that point.

8. Closes the key and returns the object (String, Integer, or byte[]) that had been created.

As you can see, this example illustrates quite nicely how to generate Java objects of different types.

In this native method, coping with the generic return type is not difficult. The jstring, jobject, or jarray

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

reference is simply returned as a jobject. However, the setValue method receives a reference to an Object

and must determine the Object's exact type to save the Object as a string, integer, or byte array. We can

make this determination by querying the class of the value object, finding the class references for
java.lang.String, java.lang.Integer, and byte[], and comparing them with the IsAssignableFrom

function.

If class1 and class2 are two class references, then the call

(*env)->IsAssignableFrom(env, class1, class2)

returns JNI_TRUE when class1 and class2 are the same class or when class1 is a subclass of class2. In either

case, references to objects of class1 can be cast to class2. For example, when

Code View:
(*env)->IsAssignableFrom(env, (*env)->GetObjectClass(env, value), (*env)->FindClass(env, "[B"))

is true, then we know that value is a byte array.

Here is an overview of the steps in the setValue method.

1. Opens the registry key for writing.

2. Finds the type of the value to write.

3. Calls GetStringUTFChars to get a pointer to the characters if the type is String.

4. Calls the intValue method to get the integer stored in the wrapper object if the type is Integer.

5. Calls GetByteArrayElements to get a pointer to the bytes if the type is byte[].

6. Passes the data and length to the registry.

7. Closes the key

8. Releases the pointer to the data if the type is String or byte[].

Finally, let us turn to the native methods that enumerate keys. These are methods of the
Win32RegKeyNameEnumeration class (see Listing 12-21). When the enumeration process starts, we must open

the key. For the duration of the enumeration, we must retain the key handle. That is, the key handle must be
stored with the enumeration object. The key handle is of type DWORD, a 32-bit quantity, and, hence, can be

stored in a Java integer. It is stored in the hkey field of the enumeration class. When the enumeration starts,

the field is initialized with SetIntField. Subsequent calls read the value with GetIntField.

In this example, we store three other data items with the enumeration object. When the enumeration first
starts, we can query the registry for the count of name/value pairs and the length of the longest name, which
we need so we can allocate C character arrays to hold the names. These values are stored in the count and

maxsize fields of the enumeration object. Finally, the index field is initialized with -1 to indicate the start of the

enumeration, is set to 0 once the other instance fields are initialized, and is incremented after every

enumeration step.

Let's walk through the native methods that support the enumeration. The hasMoreElements method is simple:

1. Retrieves the index and count fields.

2. If the index is -1, calls the startNameEnumeration function, which opens the key, queries the count and

maximum length, and initializes the hkey, count, maxsize, and index fields.

3. Returns JNI_TRUE if index is less than count; JNI_FALSE otherwise.

The nextElement method needs to work a little harder:

1. Retrieves the index and count fields.

2. If the index is -1, calls the startNameEnumeration function, which opens the key, queries the count and

maximum length, and initializes the hkey, count, maxsize, and index fields.

3. If index equals count, throws a NoSuchElementException.

4. Reads the next name from the registry.

5. Increments index.

6. If index equals count, closes the key.

Before compiling, remember to run javah on both Win32RegKey and Win32RegKeyNameEnumeration. The

complete command line for the Microsoft compiler is

Code View:

cl -I jdk\include -I jdk\include\win32 -LD Win32RegKey.c advapi32.lib -FeWin32RegKey.dll

With Cygwin, use

Code View:

gcc -mno-cygwin -D __int64="long long" -I jdk\include -I jdk\include\win32

 -I c:\cygwin\usr\include\w32api -shared -Wl,--add-stdcall-alias -o Win32RegKey.dll

Win32RegKey.c

Because the registry API is specific to Windows, this program will not work on other operating systems.

Listing 12-23 shows a program to test our new registry functions. We add three name/value pairs, a string, an
integer, and a byte array to the key.

HKEY_CURRENT_USER\Software\JavaSoft\Java Runtime Environment

We then enumerate all names of that key and retrieve their values. The program will print

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Default user=Harry Hacker

Lucky number=13

Small primes=2 3 5 7 11 13

Although adding these name/value pairs to that key probably does no harm, you might want to use the registry
editor to remove them after running this program.

Listing 12-21. Win32RegKey.java

Code View:
 1. import java.util.*;

 2.

 3. /**

 4. * A Win32RegKey object can be used to get and set values of a registry key in the Windows

 5. * registry.

 6. * @version 1.00 1997-07-01

 7. * @author Cay Horstmann

 8. */

 9. public class Win32RegKey

10. {

11. /**

12. * Construct a registry key object.

13. * @param theRoot one of HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE,

14. * HKEY_USERS, HKEY_CURRENT_CONFIG, HKEY_DYN_DATA

15. * @param thePath the registry key path

16. */

17. public Win32RegKey(int theRoot, String thePath)

18. {

19. root = theRoot;

20. path = thePath;

21. }

22.

23. /**

24. * Enumerates all names of registry entries under the path that this object describes.

25. * @return an enumeration listing all entry names

26. */

27. public Enumeration<String> names()

28. {

29. return new Win32RegKeyNameEnumeration(root, path);

30. }

31.

32. /**

33. * Gets the value of a registry entry.

34. * @param name the entry name

35. * @return the associated value

36. */

37. public native Object getValue(String name);

38. /**

39. * Sets the value of a registry entry.

40. * @param name the entry name

41. * @param value the new value

42. */

43.

44. public native void setValue(String name, Object value);

45.

46. public static final int HKEY_CLASSES_ROOT = 0x80000000;

47. public static final int HKEY_CURRENT_USER = 0x80000001;

48. public static final int HKEY_LOCAL_MACHINE = 0x80000002;

49. public static final int HKEY_USERS = 0x80000003;

50. public static final int HKEY_CURRENT_CONFIG = 0x80000005;

51. public static final int HKEY_DYN_DATA = 0x80000006;

52.

53. private int root;

54. private String path;

55.

56. static

57. {

58. System.loadLibrary("Win32RegKey");

59. }

60. }

61.

62. class Win32RegKeyNameEnumeration implements Enumeration<String>

63. {

64. Win32RegKeyNameEnumeration(int theRoot, String thePath)

65. {

66. root = theRoot;

67. path = thePath;

68. }

69.

70. public native String nextElement();

71.

72. public native boolean hasMoreElements();

73.

74. private int root;

75. private String path;

76. private int index = -1;

77. private int hkey = 0;

78. private int maxsize;

79. private int count;

80. }

81.

82. class Win32RegKeyException extends RuntimeException

83. {

84. public Win32RegKeyException()

85. {

86. }

87.

88. public Win32RegKeyException(String why)

89. {

90. super(why);

91. }

92. }

Listing 12-22. Win32RegKey.c

Code View:
 1. /**

 2. @version 1.00 1997-07-01

 3. @author Cay Horstmann

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 4. */

 5.

 6. #include "Win32RegKey.h"

 7. #include "Win32RegKeyNameEnumeration.h"

 8. #include <string.h>

 9. #include <stdlib.h>

 10. #include <windows.h>

 11.

 12. JNIEXPORT jobject JNICALL Java_Win32RegKey_getValue(JNIEnv* env, jobject this_obj, jobject name)

 13. {

 14. const char* cname;

 15. jstring path;

 16. const char* cpath;

 17. HKEY hkey;

 18. DWORD type;

 19. DWORD size;

 20. jclass this_class;

 21. jfieldID id_root;

 22. jfieldID id_path;

 23. HKEY root;

 24. jobject ret;

 25. char* cret;

 26.

 27. /* get the class */

 28. this_class = (*env)->GetObjectClass(env, this_obj);

 29.

 30. /* get the field IDs */

 31. id_root = (*env)->GetFieldID(env, this_class, "root", "I");

 32. id_path = (*env)->GetFieldID(env, this_class, "path", "Ljava/lang/String;");

 33.

 34. /* get the fields */

 35. root = (HKEY) (*env)->GetIntField(env, this_obj, id_root);

 36. path = (jstring)(*env)->GetObjectField(env, this_obj, id_path);

 37. cpath = (*env)->GetStringUTFChars(env, path, NULL);

 38.

 39. /* open the registry key */

 40. if (RegOpenKeyEx(root, cpath, 0, KEY_READ, &hkey) != ERROR_SUCCESS)

 41. {

 42. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

 43. "Open key failed");

 44. (*env)->ReleaseStringUTFChars(env, path, cpath);

 45. return NULL;

 46. }

 47.

 48. (*env)->ReleaseStringUTFChars(env, path, cpath);

 49. cname = (*env)->GetStringUTFChars(env, name, NULL);

 50.

 51. /* find the type and size of the value */

 52. if (RegQueryValueEx(hkey, cname, NULL, &type, NULL, &size) != ERROR_SUCCESS)

 53. {

 54. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

 55. "Query value key failed");

 56. RegCloseKey(hkey);

 57. (*env)->ReleaseStringUTFChars(env, name, cname);

 58. return NULL;

 59. }

 60.

 61. /* get memory to hold the value */

 62. cret = (char*)malloc(size);

 63.

 64. /* read the value */

 65. if (RegQueryValueEx(hkey, cname, NULL, &type, cret, &size) != ERROR_SUCCESS)

 66. {

 67. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

 68. "Query value key failed");

 69. free(cret);

 70. RegCloseKey(hkey);

 71. (*env)->ReleaseStringUTFChars(env, name, cname);

 72. return NULL;

 73. }

 74.

 75. /* depending on the type, store the value in a string,

 76. integer or byte array */

 77. if (type == REG_SZ)

 78. {

 79. ret = (*env)->NewStringUTF(env, cret);

 80. }

 81. else if (type == REG_DWORD)

 82. {

 83. jclass class_Integer = (*env)->FindClass(env, "java/lang/Integer");

 84. /* get the method ID of the constructor */

 85. jmethodID id_Integer = (*env)->GetMethodID(env, class_Integer, "<init>", "(I)V");

 86. int value = *(int*) cret;

 87. /* invoke the constructor */

 88. ret = (*env)->NewObject(env, class_Integer, id_Integer, value);

 89. }

 90. else if (type == REG_BINARY)

 91. {

 92. ret = (*env)->NewByteArray(env, size);

 93. (*env)->SetByteArrayRegion(env, (jarray) ret, 0, size, cret);

 94. }

 95. else

 96. {

 97. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

 98. "Unsupported value type");

 99. ret = NULL;

100. }

101.

102. free(cret);

103. RegCloseKey(hkey);

104. (*env)->ReleaseStringUTFChars(env, name, cname);

105.

106. return ret;

107. }

108.

109. JNIEXPORT void JNICALL Java_Win32RegKey_setValue(JNIEnv* env, jobject this_obj,

110. jstring name, jobject value)

111. {

112. const char* cname;

113. jstring path;

114. const char* cpath;

115. HKEY hkey;

116. DWORD type;

117. DWORD size;

118. jclass this_class;

119. jclass class_value;

120. jclass class_Integer;

121. jfieldID id_root;

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

122. jfieldID id_path;

123. HKEY root;

124. const char* cvalue;

125. int ivalue;

126.

127. /* get the class */

128. this_class = (*env)->GetObjectClass(env, this_obj);

129.

130. /* get the field IDs */

131. id_root = (*env)->GetFieldID(env, this_class, "root", "I");

132. id_path = (*env)->GetFieldID(env, this_class, "path", "Ljava/lang/String;");

133.

134. /* get the fields */

135. root = (HKEY)(*env)->GetIntField(env, this_obj, id_root);

136. path = (jstring)(*env)->GetObjectField(env, this_obj, id_path);

137. cpath = (*env)->GetStringUTFChars(env, path, NULL);

138.

139. /* open the registry key */

140. if (RegOpenKeyEx(root, cpath, 0, KEY_WRITE, &hkey) != ERROR_SUCCESS)

141. {

142. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

143. "Open key failed");

144. (*env)->ReleaseStringUTFChars(env, path, cpath);

145. return;

146. }

147.

148. (*env)->ReleaseStringUTFChars(env, path, cpath);

149. cname = (*env)->GetStringUTFChars(env, name, NULL);

150.

151. class_value = (*env)->GetObjectClass(env, value);

152. class_Integer = (*env)->FindClass(env, "java/lang/Integer");

153. /* determine the type of the value object */

154. if ((*env)->IsAssignableFrom(env, class_value, (*env)->FindClass(env, "java/lang/String")))

155. {

156. /* it is a string--get a pointer to the characters */

157. cvalue = (*env)->GetStringUTFChars(env, (jstring) value, NULL);

158. type = REG_SZ;

159. size = (*env)->GetStringLength(env, (jstring) value) + 1;

160. }

161. else if ((*env)->IsAssignableFrom(env, class_value, class_Integer))

162. {

163. /* it is an integer--call intValue to get the value */

164. jmethodID id_intValue = (*env)->GetMethodID(env, class_Integer, "intValue", "()I");

165. ivalue = (*env)->CallIntMethod(env, value, id_intValue);

166. type = REG_DWORD;

167. cvalue = (char*)&ivalue;

168. size = 4;

169. }

170. else if ((*env)->IsAssignableFrom(env, class_value, (*env)->FindClass(env, "[B")))

171. {

172. /* it is a byte array--get a pointer to the bytes */

173. type = REG_BINARY;

174. cvalue = (char*)(*env)->GetByteArrayElements(env, (jarray) value, NULL);

175. size = (*env)->GetArrayLength(env, (jarray) value);

176. }

177. else

178. {

179. /* we don't know how to handle this type */

180. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

181. "Unsupported value type");

182. RegCloseKey(hkey);

183. (*env)->ReleaseStringUTFChars(env, name, cname);

184. return;

185. }

186.

187. /* set the value */

188. if (RegSetValueEx(hkey, cname, 0, type, cvalue, size) != ERROR_SUCCESS)

189. {

190. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

191. "Set value failed");

192. }

193.

194. RegCloseKey(hkey);

195. (*env)->ReleaseStringUTFChars(env, name, cname);

196.

197. /* if the value was a string or byte array, release the pointer */

198. if (type == REG_SZ)

199. {

200. (*env)->ReleaseStringUTFChars(env, (jstring) value, cvalue);

201. }

202. else if (type == REG_BINARY)

203. {

204. (*env)->ReleaseByteArrayElements(env, (jarray) value, (jbyte*) cvalue, 0);

205. }

206. }

207.

208. /* helper function to start enumeration of names */

209. static int startNameEnumeration(JNIEnv* env, jobject this_obj, jclass this_class)

210. {

211. jfieldID id_index;

212. jfieldID id_count;

213. jfieldID id_root;

214. jfieldID id_path;

215. jfieldID id_hkey;

216. jfieldID id_maxsize;

217.

218. HKEY root;

219. jstring path;

220. const char* cpath;

221. HKEY hkey;

222. DWORD maxsize = 0;

223. DWORD count = 0;

224.

225. /* get the field IDs */

226. id_root = (*env)->GetFieldID(env, this_class, "root", "I");

227. id_path = (*env)->GetFieldID(env, this_class, "path", "Ljava/lang/String;");

228. id_hkey = (*env)->GetFieldID(env, this_class, "hkey", "I");

229. id_maxsize = (*env)->GetFieldID(env, this_class, "maxsize", "I");

230. id_index = (*env)->GetFieldID(env, this_class, "index", "I");

231. id_count = (*env)->GetFieldID(env, this_class, "count", "I");

232.

233. /* get the field values */

234. root = (HKEY)(*env)->GetIntField(env, this_obj, id_root);

235. path = (jstring)(*env)->GetObjectField(env, this_obj, id_path);

236. cpath = (*env)->GetStringUTFChars(env, path, NULL);

237.

238. /* open the registry key */

239. if (RegOpenKeyEx(root, cpath, 0, KEY_READ, &hkey) != ERROR_SUCCESS)

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

240. {

241. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

242. "Open key failed");

243. (*env)->ReleaseStringUTFChars(env, path, cpath);

244. return -1;

245. }

246. (*env)->ReleaseStringUTFChars(env, path, cpath);

247.

248. /* query count and max length of names */

249. if (RegQueryInfoKey(hkey, NULL, NULL, NULL, NULL, NULL, NULL, &count, &maxsize,

250. NULL, NULL, NULL) != ERROR_SUCCESS)

251. {

252. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

253. "Query info key failed");

254. RegCloseKey(hkey);

255. return -1;

256. }

257.

258. /* set the field values */

259. (*env)->SetIntField(env, this_obj, id_hkey, (DWORD) hkey);

260. (*env)->SetIntField(env, this_obj, id_maxsize, maxsize + 1);

261. (*env)->SetIntField(env, this_obj, id_index, 0);

262. (*env)->SetIntField(env, this_obj, id_count, count);

263. return count;

264. }

265.

266. JNIEXPORT jboolean JNICALL Java_Win32RegKeyNameEnumeration_hasMoreElements(JNIEnv* env,

267. jobject this_obj)

268. { jclass this_class;

269. jfieldID id_index;

270. jfieldID id_count;

271. int index;

272. int count;

273. /* get the class */

274. this_class = (*env)->GetObjectClass(env, this_obj);

275.

276. /* get the field IDs */

277. id_index = (*env)->GetFieldID(env, this_class, "index", "I");

278. id_count = (*env)->GetFieldID(env, this_class, "count", "I");

279.

280. index = (*env)->GetIntField(env, this_obj, id_index);

281. if (index == -1) /* first time */

282. {

283. count = startNameEnumeration(env, this_obj, this_class);

284. index = 0;

285. }

286. else

287. count = (*env)->GetIntField(env, this_obj, id_count);

288. return index < count;

289. }

290.

291. JNIEXPORT jobject JNICALL Java_Win32RegKeyNameEnumeration_nextElement(JNIEnv* env,

292. jobject this_obj)

293. {

294. jclass this_class;

295. jfieldID id_index;

296. jfieldID id_hkey;

297. jfieldID id_count;

298. jfieldID id_maxsize;

299.

300. HKEY hkey;

301. int index;

302. int count;

303. DWORD maxsize;

304.

305. char* cret;

306. jstring ret;

307.

308. /* get the class */

309. this_class = (*env)->GetObjectClass(env, this_obj);

310.

311. /* get the field IDs */

312. id_index = (*env)->GetFieldID(env, this_class, "index", "I");

313. id_count = (*env)->GetFieldID(env, this_class, "count", "I");

314. id_hkey = (*env)->GetFieldID(env, this_class, "hkey", "I");

315. id_maxsize = (*env)->GetFieldID(env, this_class, "maxsize", "I");

316.

317. index = (*env)->GetIntField(env, this_obj, id_index);

318. if (index == -1) /* first time */

319. {

320. count = startNameEnumeration(env, this_obj, this_class);

321. index = 0;

322. }

323. else

324. count = (*env)->GetIntField(env, this_obj, id_count);

325.

326. if (index >= count) /* already at end */

327. {

328. (*env)->ThrowNew(env, (*env)->FindClass(env, "java/util/NoSuchElementException"),

329. "past end of enumeration");

330. return NULL;

331. }

332.

333. maxsize = (*env)->GetIntField(env, this_obj, id_maxsize);

334. hkey = (HKEY)(*env)->GetIntField(env, this_obj, id_hkey);

335. cret = (char*)malloc(maxsize);

336.

337. /* find the next name */

338. if (RegEnumValue(hkey, index, cret, &maxsize, NULL, NULL, NULL, NULL) != ERROR_SUCCESS)

339. {

340. (*env)->ThrowNew(env, (*env)->FindClass(env, "Win32RegKeyException"),

341. "Enum value failed");

342. free(cret);

343. RegCloseKey(hkey);

344. (*env)->SetIntField(env, this_obj, id_index, count);

345. return NULL;

346. }

347.

348. ret = (*env)->NewStringUTF(env, cret);

349. free(cret);

350.

351. /* increment index */

352. index++;

353. (*env)->SetIntField(env, this_obj, id_index, index);

354.

355. if (index == count) /* at end */

356. {

357. RegCloseKey(hkey);

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

358. }

359.

360. return ret;

361. }

Listing 12-23. Win32RegKeyTest.java

Code View:
 1. import java.util.*;

 2.

 3. /**

 4. @version 1.02 2007-10-26

 5. @author Cay Horstmann

 6. */

 7. public class Win32RegKeyTest

 8. {

 9. public static void main(String[] args)

10. {

11. Win32RegKey key = new Win32RegKey(

12. Win32RegKey.HKEY_CURRENT_USER, "Software\\JavaSoft\\Java Runtime Environment");

13.

14. key.setValue("Default user", "Harry Hacker");

15. key.setValue("Lucky number", new Integer(13));

16. key.setValue("Small primes", new byte[] { 2, 3, 5, 7, 11 });

17.

18. Enumeration<String> e = key.names();

19.

20. while (e.hasMoreElements())

21. {

22. String name = e.nextElement();

23. System.out.print(name + "=");

24.

25. Object value = key.getValue(name);

26.

27. if (value instanceof byte[])

28. for (byte b : (byte[]) value) System.out.print((b & 0xFF) + " ");

39. else

30. System.out.print(value);

31.

32. System.out.println();

33. }

34. }

35. }

Type Inquiry Functions

jboolean IsAssignableFrom(JNIEnv *env, jclass cl1, jclass

cl2)

returns JNI_TRUE if objects of the first class can be assigned to objects

of the second class; JNI_FALSE otherwise. This is the case in which the

classes are the same, cl1 is a subclass of cl2, or cl2 represents an

interface that is implemented by cl1 or one of its superclasses.

jclass GetSuperclass(JNIEnv *env, jclass cl)

returns the superclass of a class. If cl represents the class Object or an

interface, returns NULL.

You have now reached the end of the second volume of Core Java, completing a long journey in which you
encountered many advanced APIs. We started out with topics that every Java programmer needs to know:
streams, XML, networking, datatabases, and internationalization. Three long chapters covered graphics and GUI
programming. We concluded with very technical chapters on security, remote methods, annotation processing,
and native methods. We hope that you enjoyed your tour through the the vast breadth of the Java APIs, and
that you can apply your newly gained knowledge in your projects.

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

character, in a choice format

$ (dollar sign), matching beginning and end of a line

% character, in a LIKE clause

@ operator, in XPath

@ symbol, preceding the name of each annotation

[] operator, in XPath

\ (backslash)

 as an escape character
 in a Windows environment
\\ (backslashes), for Windows-style path names

\\ escape sequence, in a Windows file name

"\\|" expression

/ (forward slash) [See Forward slash (/).]

]]> string

^, matching beginning and end of a line

| characters, in a choice format

+ (possessive or greedy match)

< symbol, in a choice format

<= symbol, in a choice format

<> operator, in SQL

= operator, in SQL

= = operator, testing for object equality

? (question mark)

 in a prepared query
 in date output
? (reluctant or stingy match)

; (semicolon), annotation placed without

- character, in a LIKE clause

. symbol, matching any character

"2D", classes with a name ending in
2D graphics, printing
3D rectangle
8-bit Unicode Transformation Format
32-bit cyclic redundancy checksum [See CRC32 checksum.]

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Absolute identifiers
Absolute nonopaque URIs
Absolute path name
Absolute URI
Abstract method declarations
ABSTRACT modifier

Abstract syntax notation #1 [See ASN.1.]
AbstractCellEditor class 2nd

AbstractFormatter class

AbstractListModel class

AbstractProcessor class

AbstractSpinnerModel class 2nd

AbstractTableModel class 2nd

accept method

acceptChanges method

Access control mechanism
Accessor methods
Action event listener
Action listeners, installing
ActionListener interface

ActionListenerFor.java

ActionListenerInstaller class

ActionListenerInstaller.java

Actions lists, for permissions
Activatable class 2nd 3rd

Activatable warehouse implementation 2nd
ACTIVATED value, for getEventType

Activation, of remote objects
Activation descriptors, constructing 2nd
Activation group
Activation ID
Activation program 2nd
ActivationDesc class

ActivationGroup class

ActivationGroupDesc class

ActivationSystem class

add method, of the SystemTray class

add operation 2nd

addBatch method

addChangeListener method

addColumn method

addEventHandlers method

addPropertyChangeListener method 2nd

addTab method

addTreeSelectionListener method

addVetoableChangeListener method

addWindowListener method

AES (Advanced Encryption Standard) algorithm
AES key 2nd
AESTest.java

Affine transformation
Affine transforms, constructing
AffineTransform class 2nd

AffineTransform object

AffineTransformOp class 2nd

Agent
Aliases
 for ISO-8859-1
 iterating through
 for namespaces in XML
aliases method

Allows children node property
AllPermission permission

Alnum character class

Alpha channel
Alpha character class

Alpha composites
AlphaComposite class 2nd

AlphaComposite object 2nd

AlreadyBoundException

Altered class files, constructing
Amazon e-commerce web service
AmazonTest.java

Anchor rectangle
andFilter method

Angle swept out, for an arc
AnnotatedElement class

Annotation(s)
 circular dependencies for
 for compilation
 defined
 for event handlers
 example of simple
 for managing resources
 passing at runtime
 processing source-level
 shortcuts simplifying
 using
Annotation elements 2nd
Annotation interfaces 2nd
 defined by Java SE
 defining an annotation 2nd
 extending
Annotation objects, source fields locked in
Annotation processors
Annotation syntax
Anonymous type definition
Antialiasing technique 2nd
Apache Batik viewer 2nd
Apache Derby database [See Derby database.]
append methods 2nd

Appendable interface 2nd 3rd

Applet class 2nd

Applet viewer, security policy
Applets
 executing safely
 JDBC in
 not exiting the virtual machine
Application(s) [See also Java applications.]
 building in Visual Basic
 deploying RMI
 managing frames
 using beans to build
Application class loader [See System class loader.]
Application classes, loading
Application data, storing

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Application programs, file locking in
Application servers, structure for
apt stand-alone tool

Arbitrary data, using JavaBeans persistence
Arbitrary sequences, building
Arc(s) 2nd
Arc angles 2nd 3rd
Arc2D class

Arc2D.CHORD arc type

Arc2D.Double class

Arc2D.OPEN arc type

Arc2D.PIE arc type

ArcMaker class 2nd

Area class

Areas
ARGB color value 2nd 3rd
Array(s)
 creating Java in native methods
 element values as
 manipulating Java
 multiplying elements in by a constant
 properties specifying
 saving in object serialization format
ARRAY data type, in SQL

Array elements, accessing
Array types 2nd
Array values, fetching
ArrayIndexOutOfBoundsException

ArrayStoreException

ASCII (American Standard Code for Information Exchange)
ASCII character class

ASCII encoding, using plain
ASCII files, storing properties
ASN.1 2nd
ASN.1 - Communication Between Heterogeneous Systems (Dubuisson)
ASN.1 Complete (Larmouth)
Asymmetry, of the Swing table
Attribute(s) [See also Printing attributes.]
 advantage for enumerated types
 checking the value of
 compared to elements
 enumerating all in LDAP
 for grid bag constraints
 groups of
 LDAP 2nd
 retrieving
 in SVG
 in XML
 in XML elements
 in XML Schema
Attribute class 2nd

Attribute hierarchy, class diagram of
Attribute interface

Attribute names, in HTML
Attribute set(s)
 constructing
 hierarchy
 interfaces and classes for
 as a specialized kind of map
Attribute types
Attribute values
 copying with XSLT
 in XML

Attributes class 2nd

AttributeSet superinterface 2nd

AttributesImpl class

AudioPermission permission

Authentication
 to SMTP
 of users
Authentication problem
AuthenticationException

authority part, of server-based URIs

Authorization, of users
AuthPermission permission

AuthTest.java

Autoboxing
Autocommit mode
Autoflush mode
Autogenerated keys
Automatic registration
Automatic resizing, of table columns
Auto-numbering rows, in a database
Auxiliary files, automatic generation of
available method 2nd

availableCharsets method

Average value, replacement of each pixel with
AWTPermission permission

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Background color, of a cell
Backslash (\) [See \ (backslash).]

Bad words, not allowing into a text area
Banding, in dot-matrix and inkjet printers
Banner, printing 2nd
Base URI
BASE64Encoder class

Basic encoding rules (BER)
BasicAttributes class

BasicAttributes constructor

BasicAttributes object

BasicPermission class

BasicStroke class 2nd

BasicStroke constructer 2nd

Batch updates
BCEL (Bytecode Engineering Library) 2nd
Bean Builder, experimental
Bean descriptor
Bean info classes 2nd 3rd
BeanDescriptor class

BeanInfo classes

 API notes 2nd 3rd
 setting a property using
 supplying 2nd
BeanInfoAnnotationFactory.java

BeanInfoAnnotationProcessor

Beans [See also JavaBeans.]
 composing in a builder environment
 defined
 packaging in JAR files
 property types
 rules for designing
 saving to a stream
 using to build an application
 writing
Beans class

BER (basic encoding rules)
Bevel join 2nd
BIG_ENDIAN constant

Big-endian method
Bilinear interpolation
Binary data
 from a Blob

 reading and writing
 reading from a file
 writing
Binary format, for saving data
Binary values, reading
Bindings
Bindings class

Biometric login modules
BitSet object, re-creating

Blank character class

Blending, of source and destination

Blob class

BLOB data type, in SQL 2nd

BLOBs (binary large objects)
Blocking, by read and write methods

Blur filter
Book class 2nd

Book.java

Books table, view of 2nd

BooksAuthors table

BookTest.java

boolean arrays

BOOLEAN data type, in SQL 2nd

Boolean valued properties

Bootstrap class loader 2nd
Bootstrap registry service
Bound properties
Boundary matchers
Bounding box, for an arc
Breadth-first enumeration 2nd
Breadth-first search algorithm
Breadth-first traversal
Browsers 2nd
Buffer(s) 2nd 3rd
Buffer class 2nd 3rd

Buffer data structure
Buffer objects

Buffered image, obtaining
Buffered stream, creating 2nd
BufferedImage class 2nd 3rd

BufferedImage object

BufferedImageOp class

BufferedImageOp interface 2nd

BufferedInputStream

BufferedOutputStream

BufferedReader class

Builder environments 2nd
Builder tools
buildSource method 2nd

Bundle classes
Business logic 2nd
Butt cap
ButtonFrame class

ButtonFrame.java 2nd

bypass methods

Byte(s)
Byte array, saving data into
Byte sequences, decoding
byte values, converting

BYTE_ARRAY data source

ByteArrayJavaClass object

ByteArrayJavaClass.java

ByteBuffer class 2nd 3rd

Bytecode engineering
Bytecode Engineering Library [See BCEL (Bytecode Engineering Library).]
Bytecode level 2nd
Bytecode verification
Bytecodes, modifying 2nd
ByteLookupTable subclass 2nd

Byte-oriented streams, Unicode and

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C code
 accessing Java strings from
 calling any Java method from
 making calls to Java code
 for the native fprint method 2nd

C functions
 calling from Java programs
 calling Java methods
 naming
C header file, producing
C strings
C types, compared to Java types
C#
C++
 accessing JNI functions in
 implementing native methods
 inheritance hierarchy of array types
 making calls to Java code
CA (certificate authority) 2nd
CA script, running

Cached row sets
CachedRowSet class

CachedRowSet interface

CachedRowSet object

Caching, prepared statements
Caesar cipher
Caesar.java 2nd

Calendar display, locating dates in 2nd
CalendarBean 2nd

call escape

Call functions, versions of
call method, invoking

Call methods, accessing
Call stack, during permission checking
Call transitional event
Callback interface

CallbackHandler class

CallNonvirtualXxxMethod functions

CallStaticObjectMethod function

CallStaticXxxMethod function

Cancel button, in a progress monitor dialog box
cancelCellEditing method 2nd

Cancellation requests
cancelRowUpdates method

canImport method

canInsertImage method

CANON_EQ flag

Canonical path name
CANONICAL_DECOMPOSITION collator value

Capacity, of a buffer
Cascading windows
Case sensitivity, of XML
CASE_INSENSITIVE flag

Catalog, describing schemas

Category, of an attribute
Category character class
CDATA attribute value

CDATA sections, in XML documents
Cell(s) 2nd
Cell color
Cell editing 2nd
Cell renderers 2nd
Cell selection
CellEditor class

Certificate authority [See CA (certificate authority).]
Certificates
 importing into keystores
 set of
 signing
 in the X.509 format
CertificateSigner class

Chain of trust, assuming
ChangeListener

ChangeTrackingTest.java

changeUpdate method, of DocumentListener

Channel(s)
 avoiding multiple on the same locked file
 from a file
 read and write methods of

 turning into an output stream
Channels class

char arrays, converting strings to

CHAR_ARRAY data source

Character(s) 2nd
Character classes
 predefined 2nd 3rd
 predefined names
 in regular expressions
Character data, getting
CHARACTER data type, in SQL 2nd

Character encoding 2nd 3rd
Character outlines
Character references, in XML documents
Character sets
CharacterData class

CharBuffer class 2nd 3rd 4th

CharSequence interface 2nd

Charset class 2nd

Chart bean 2nd
ChartBean2Customizer.java

ChartBeanBeanInfo class

ChartBeanBeanInfo.java

Checkbox editor, installed by JTable

checkError method 2nd

checkExit method

checkPermission method 2nd

checkRandomInsertions method

Child elements
 inheriting namespace of parent
 in an XML document
Child nodes 2nd 3rd
Children
 adding to the root node
 analyzing in XML documents
Chinese characters and messages
Choice formats

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

CHORD arc type

CIE (Commission Internationale de l'Eclairage)
Cipher class 2nd

Cipher object, initializing
Cipher streams, in the JCE library
Circular dependencies, in annotations
Class(es)
 loading different with the same name
 with the same class and package name
 separating from different web pages
 undocumented
Class browser, example
Class class 2nd

Class descriptors 2nd
Class files
 controlling the placement of
 names of
 producing unsafe
 program loading encrypted
Class fingerprint
Class identifier
Class IDs
Class loader hierarchy
Class loaders
 described
 in every Java program
 as namespaces
 simple 2nd
 specifying
 writing for specialized purposes
class object, obtaining

CLASS retention policy, for annotations

Class tree program
ClassLoader class 2nd

Classloader inversion
ClassLoaderTest.java

CLASSPATH environment variable
ClassTree.java

clear method, calling

CLEAR rule 2nd

Client(s)
 configuration of
 configuring Java security
 connecting to a server port
 enumerating all registered RMI objects
 getting a stub to access a remote object
 implementing for a web service
 installing proxy objects on
 invoking a method on another machine
 loading additional classes at runtime
 role in distributed programming
 serving multiple
Client classes, generating
Client program, running for a web service
Client/server application, traditional
Client-side artifact classes
Clip area, restoring
clip method 2nd

Clipboard [See also Local clipboard; System clipboard.]
 reading a string from
 transferring images into
Clipboard class 2nd 3rd 4th

Clipboard services

ClipboardOwner interface 2nd

Clipping, shapes
Clipping area 2nd
Clipping region, setting
Clipping shape
Clob class

CLOB data type, in SQL 2nd

Clob object, retrieving

CLOBs (character large objects)
clone method, remote references not having

Cloneable interface

CloneNotSupportedException

Cloning, using serialization for
Close box, adding
close method

 calling immediately
 for streams 2nd
Close property, user vetoing
Closeable interface 2nd

Closed nonleaf icon
closed property, of the JInternalFrame class

closeEntry method

closePath method

Closure type, for an arc
Cntrl character class

Code [See also Java code.]
 automatic generation of
 techniques for processing
Code base 2nd 3rd
Code generator tools, annotations used by
Code Page 437, for file names
Code signing 2nd
Code sources
codebase entry

Codebase URL, ending with a slash (/)
The Codebreakers (Kahn)
CodeSource class

Collation, localizing
Collation key object
Collation order
CollationKey class

CollationTest.java

Collator, default
Collator class

Collator object

Collators, cutting the strength of
Color, dragging into a text field
Color chooser
Color class 2nd

Color constructor

Color model
Color rendering
Color space conversions
Color type, cells of

Color values 2nd
ColorConvertOp operation

Colored rectangles, expressing a set of
ColorModel class

Color-model-specific description
Column classes, in Swing
Column names
 changing

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 prefixing with table names
 for a table
Columns
 accessing
 in a database
 determining which are selected
 hiding and displaying in tables
 rearranging
 resizing
 selecting
 selection and filtering of
 setting in a text field
 specifying comparators for
Combo box
Combo box editor
Command-line arguments
Commands
 in comments
 terminating in SQL
Comma-separated data file, script sending back
Comments, in XML documents
Commit behavior, with setFocusLostBehavior method

commit method, calling for transactions

Commit or revert behavior 2nd
Commited text string
Committed transactions 2nd
Common Dialog control, in Visual Basic
Common Gateway Interface (CGI) scripts
Common Name (CN) component
Common Object Request Broker Architecture (CORBA)
Comparator, installing for each column
Comparator interface

compareTo method

Compatibility characters, decomposing
Compilable interface 2nd

Compilation, annotations for
Compilation tasks
CompilationTask class 2nd 3rd

CompilationTask objects 2nd

CompiledScript class

Compiler [See also Microsoft compiler.]
Compiler API
CompilerTest.java

Compiling, scripts
Completion percentage, progress bar computing
Complex area, constructing
Complex types 2nd
Component class 2nd

Component organizers
Composing, transformations 2nd
Composite interface

CompositeTest.java

Composition
Composition rules
 designing 2nd
 program exploring
 selecting
 setting
Compressed format, storing files in
Compression method, setting
Computer Graphics: Principles and Practice, Second Edition in C (Foley/Dam/Feiner) 2nd 3rd
Concurrency setting, of a result set
Concurrency values, for result sets

Concurrent connections
Confidential information, transferring
Configuration file
connect method

Connection class

 API notes 2nd 3rd 4th 5th 6th
 close method of

Connection management
Connection object

Connection pool
Connections
 managing
 pooling
 starting new threads
Constrained properties
Construction parameters, packaging
Constructive area geometry operations
Constructor(s) [See also specific constructors.]
 constructing trees out of a collection of elements
 native methods invoking
 specifying for the InputStreamReader

@ConstructorProperties annotation

Content handlers 2nd
ContentHandler class

ContentHandler interface

Context, closing
Context class

Context class loader
Context interface

Contexts, beans usable in a variety of
CONTIGUOUS_TREE_SELECTION

Control points 2nd
Controls, in Visual Basic
convertColumnIndexToModel method

convertRowIndexToModel method

Convolution, mathematical
Convolution operator
ConvolveOp object

ConvolveOp operation 2nd

Coordinate system, translating
Coordinate transformations
Copies attribute

Copies class

CORBA (Common Object Request Broker Architecture)
Core Java Foundation Classes (Topley) 2nd
Core Swing: Advanced Programming (Topley) 2nd
COREJAVA database

Corner area, for a RoundRectangle2D

Country (C) component
Country code, ISO codes for
CRC32 checksum 2nd 3rd 4th
CRC32 class

CREATE TABLE statement, in SQL

createBlob method

createClob method

createElement method

CreateJavaVM

createNewFile method

createSubcontext method

createTextNode method

createTransferable method

Cross-platform print dialog box

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Cryptographic algorithms
Cryptography and Network Security (Stallings)
CTRL key, dragging and
CTRL+V keystroke
Cubic curves 2nd
CubicCurve2D.Double class

Currencies, formatting
Currency class 2nd

Currency identifiers
Cursor, moving by a number of rows
curveTo method

Custom cell editor
Custom editor dialog box
Custom editors
Custom formatters
Custom permissions
Custom tree models
Customizer class, writing

Customizer interface 2nd

Customizers
Cut and paste
Cyclic gradient paint
cyclic parameter, of GradientPaint

Cygwin programming environment 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

DamageReport objects

DamageReporter.java

DamageReport.java

Dash pattern
Dashed lines, program specifying
Data
 avoiding duplication of
 changing in a database 2nd
 digital fingerprint of a block of
 encrypting to a file
 posting to a script
 reading in text format
 sending back to web servers and programs
Data Definition Language (DDL) statements
Data Encryption Standard (DES)
Data field descriptors
Data fields 2nd 3rd
Data file [See also File(s).]
Data sources
 defined
 for JDBC
 for print services
Data transfer
 API
 capabilities of the clipboard
 classes and interfaces for
 support in Swing
Data types
 Java
 for print services
 print services for
 in SQL
Database
 combining queries
 connecting to 2nd
 creating for experimental use
 driver reporting nonfatal conditions
 example for this book
 integrity
 populating
 programs
 starting
 URLs
 vendors
Database configuration
Database connections
 cost of establishing
 keeping in a queue
 opening in Java
Database server, starting and stopping
Database-independent protocol
DatabaseMetaData class

 API notes 2nd 3rd
 giving data about the database
 methods inquiring about the database

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

DatabaseMetaData method

DatabaseMetaData type

DataFlavor class 2nd

DataFormat class

Datagrams
DataI0 helper class

DataInput interface

DataInputStream methods

DataInputStream subclass

DataOutput interface 2nd

DataOutputStream subclass

DataSource interface

DataTruncation class

Date(s)
 convenient way of entering 2nd
 display of
 incrementing or decrementing in a spinner
Date and time
 formatting
 literals, embedding
Date class

DATE data type, in SQL 2nd

Date editor, for a spinner
Date filter
Date format, as lenient
Date models, for spinners
DateEditor class

dateFilter method

DateFormat class 2nd

DateFormatTest.java

DDL (Data Definition Language) statement
Decapitalization
DECIMAL data type, in SQL 2nd

decode method

Decomposition mode
Decryption key
Default(s), not stored with an annotation
Default cell editor
Default collator
Default constructor, for a bean
Default mutable tree node
Default rendering actions
Default tree model
Default value, for integer input
DefaultCellEditor class

 API notes
 variations of
DefaultFormatter class 2nd 3rd

DefaultHandler class

DefaultListModel class

DefaultMutableTreeNode class 2nd 3rd 4th

DefaultPersistenceDelegate class

defaultReadObject method

DefaultRowSorter class

DefaultTableCellRenderer class

DefaultTableModel

DefaultTreeCellRenderer class 2nd 3rd

DefaultTreeModel class

 API notes 2nd
 automatic notification by
 constructing

 example not using
defaultWriteObject method

defineClass method

Degree, of normalization
Delayed formatting, of complex data
DELETE query, in SQL

deleteRow method

Delimiters, separating instance fields
@Deprecated annotation 2nd

@Deprecated Javadoc tag

Depth-first enumeration
Depth-first traversal
depthFirstEnumeration method

DER (distinguished encoding rules)
Derby database 2nd 3rd 4th
derbyclient.jar file

DES algorithm
Design patterns
DeskTop, populating
Desktop applications, launching
Desktop class 2nd

Desktop pane
DesktopAppTest.java

DesktopManager class

Destination pixel
DestroyJavaVM function 2nd

destroySubcontext method

Device coordinates 2nd [See also Pixels.]
Diagnostic class

Diagnostic objects

DiagnosticCollector class

DiagnosticListener, installing

DialogCallbackHandler

DianosticCollector class

digest method

Digit character class

Digital Signature Algorithm keys [See DSA (Digital Signature Algorithm) keys.]
Digital signatures
 described
 verifying 2nd
DirContext class

Direct buffers
Directory 2nd
Directory context 2nd
Directory tree, in LDAP 2nd 3rd
DISCONTIGUOUS_TREE_SELECTION

Disk files, as random access
displayMessage method

Distinguished encoding rules (DER)
Distinguished name 2nd
Distributed collector
Distributed programming
Dithering
doAsPrivileged method

Doc attributes
Doc interface

DocAttribute interface 2nd

DocFlavor class

DocPrintJob class 2nd

DOCTYPE declaration, in a DTD

DOCTYPE node, including in output

Document(s), XML files called

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Document class 2nd 3rd

Document filter 2nd
Document flavors, for print services
Document interface

Document listener, installing
Document object

Document Object Model parser [See DOM parser.]
Document structure
Document type definitions [See DTDs (Document Type Definitions).]
DocumentBuilder class 2nd 3rd

DocumentBuilder object

DocumentBuilderFactory class 2nd 3rd

@Documented meta-annotation

DocumentEvent class

DocumentFilter class 2nd

DocumentListener, attaching to a text field

DocumentListener class

DocumentListener methods

doFinal method, calling once

DOM (Document Oject Model) approach
DOM parser 2nd 3rd
DOM tree 2nd 3rd
DOMResult class 2nd

DOMSource class

DOMTreeModel class

DOMTreeTest.java

doPost method

DOTALL flag, in a pattern

DOUBLE data type, in SQL 2nd

Double underscores, in native method names
DRAFT constant

Drag and drop 2nd
Drag sources, configuring
Drag-and-drop user interface
Dragging, activating
draw method 2nd

draw operation

draw3DRect method

Drawing, shapes
Drawing operations, constraining
Driver class, registering
DriverManager 2nd

Drivers, types of JDBC
drivers property

Drop actions
Drop cursor shapes
Drop location, obtaining
Drop modes, supported by Swing components
Drop targets 2nd
DropLocation classes

DSA (Digital Signature Algorithm) keys 2nd
DST rules 2nd 3rd

DTDs (Document Type Definitions) 2nd 3rd
Dynamic class loading

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Echo server, accessing
EchoServer.java

e-commerce web service
Edge detection
EDGE_NO_OP edge condition

EDGE_ZERO_FILL edge condition

Edit dialog box
Edited value, for a cell
Editor pane 2nd
EditorPaneTest.java

Editors, custom
EJBs (Enterprise JavaBeans) 2nd 3rd
Element(s)
 of annotations
 of attributes
 compared to attributes 2nd
 constructing for documents
 describing data
 legal attributes of
Element attributes
Element class 2nd

Element content
 rules for
 whitespace
Element declarations, for an annotation
ELEMENT rule, in a DTD

Ellipse2D class

Elliptical arc 2nd
E-mail 2nd
Employee records, storing 2nd
Employee.java

EmployeeTest.java

Encoder class

-encoding flag

-encoding option

Encoding process
Encoding schemes
Encryption
End cap styles 2nd
End points, of quadratic and cubic curves
End tags, in XML and HTML
End-of-line character
Engine [See Scripting, engine.]
English, retirement calculator in
ENTERED value, for getEventType

Enterprise JavaBeans (EJBs) 2nd 3rd
Entities, defined by DTDs
ENTITY attribute value

Entity references 2nd
Entity resolver, installing
EntityResolver interface 2nd

Entry class 2nd

EntryLogger.java

EntryLoggingAgent.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

enum construct

EnumCombo helper class 2nd

EnumCombo.java

Enumerated type
Enumeration, native methods supporting
Enumeration objects 2nd 3rd
Enumeration values, for attributes
EnumSyntax class

env pointer

EOFException object

Equals comparison, in SQL
equals method

 of the File class

 looking at the location of remote objects
 remote objects overriding
 of a set class
Error handler, installing
Error handling, in batch mode
ErrorHandler interface 2nd

Errors, handling in native methods
Escape hatch mechanism
Escapes
 in regular expressions
 in SQL
Euro symbol
evaluate method

Event firing 2nd
Event handlers 2nd 3rd
Event listeners, adding
EventHandler class

EventListenerList convenience class

EventObject

Events 2nd
ExceptionListener class

ExceptionOccurred method

exclusive flag, locking a file

Exclusive lock
exclusiveOr operation 2nd

ExecSQL.java

Executable applets, delivering
Executable programs, signing
execute method

execute statement

EXECUTE_FAILED value

executeQuery method

executeQuery object

executeUpdate method 2nd

exists method

exit method

EXITED value

exitInternal method

exportDone method

exportObject method

Expression class

Extensible Stylesheet Language Transformations [See XSLT (XSL Transformations).]
Extension class loader 2nd
extern "C", native methods as

Externalizable classes
Externalizable interface 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Factoring algorithms
Factory methods 2nd 3rd 4th
FeatureDescriptor class

Field(s)
 accessing from native methods
 marking as transient
 preventing from being serialized
 in a variable
Field identifier, cost of computing
Field IDs, compared to Field objects

fieldID, obtaining

File(s)
 counting lines in
 creating from a File object

 determining the total number of bytes in
 locking a portion of
 memory-mapped
 with multiple images
 reading numbers from
File class 2nd

File extensions, indexed property for
File formats
 for object serialization
 supported
File locking
File management
File names, specifying
File object 2nd 3rd

File objects, substituting
File operations, timing data for
File output stream
File permission targets
File pointer
File separator character
File suffixes 2nd
file URLs
FileChannel class 2nd 3rd

FileInputStream 2nd 3rd

FileInputStream class 2nd

FileLock class

fileName property

FileNameBean component 2nd

FileNameBean.java

FilenameFilter 2nd 3rd

FileOutputStream 2nd 3rd 4th

FilePermission permission

Filer interface

FileReadApplet.java

FileReader class

FileWriter class

FileWriter constructor

fill methods 2nd

Filling, shapes

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Filter(s)
 combining
 image processing operations
 implementing
 nesting
 predefined
 for user input
Filter classes
FilteredRowSet interface

Filtering
 images
 rows
FilterInputStream class

FilterOutputStream class

fin object, reading

finally block

find method

FindClass function 2nd 3rd

findClass method

FindDirectories.java

Fingerprint 2nd 3rd
fireIndexedPropertyChange method

firePropertyChange method

fireVetoableChange method

Fixed cell size
Fixed-size record
Flag byte
FlavorListener 2nd

flip method

float coordinates

FLOAT data type, in SQL 2nd

Floating-point numbers, storing
flush method 2nd

Flushable interface 2nd

Flushing, the buffer
Focus, text field losing
Focus listener
Folder icons
Font(s), antialiasing 2nd
Font choices, displaying
Font dialog
Font name, showing its own font
Font render context
fontdialog.xml

Forest 2nd 3rd
Form data, posting
Form view, creating
Format class

format method, using the current locale

Format names
Format string, in a choice format
Formatter objects
Formatters
 custom
 supported by JFormattedTextField

FormatTest example program 2nd

FormatTest.java

Forms, filled out by users
forName method

Fortune cookie icon
Forward slash (/)
 as a directory separator in Windows

 ending the codebase URL with
 as a file separator
 in a UNIX environment
ForwardingJavaFileManager class 2nd 3rd

fprint native method

Fractals
Fractional character dimensions
Frame(s)
 applications managing
 closing
 dragging across the desktop
 making visible
 setting to be resizable
 tiling
 with two nested split panes
Frame class 2nd
Frame icon
Frame state
Frame window
FROM clause, in SQL

FULL OUTER JOIN

Functions, built-in to SQL

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Garbage collectors 2nd
Gasp table, of a font
Gawor, Jarek
GeneralPath class 2nd 3rd

GeneralPath object

@Generated annotation

German, retirement calculator in
Gesture, initiating a drag operation
get methods

 for beans
 in ByteBuffer

 calling
 for reading and writing
 of ResultSet

 of URI

GET response command

getAbsolutePath method

getAllByName method

getAllFrames method

getAnnotation method

getArray method

getAsText method

getAsText/setAsText methods

getAttribute method 2nd

getAttributes method 2nd

getAvailableLocales method 2nd

getBeanInfo method

getBlob method

GetBooleanArrayElements method

getBundle method

getByName method

getCanonicalPath method

getCategory method

getCellEditorValue method 2nd 3rd

getCellRenderer method

getChannel method

getCharacterStream method

getChild method 2nd

getChildNodes method

getClob method

getCollationKey method

getColorModel method

getColumn method

getColumnClass method

getColumnCount method 2nd

getColumnName method

getConcurrency method

getConnection method 2nd

getContent method

getCurrencyInstance method 2nd

getData method

getDataElements method

getDateInstance method

getDefault method

getDisplayName method

getDocumentElement method 2nd

getDrive method

getDropLocation method

getElementAt method

getEngineFactories method

getErrorCode

getErrorStream method

getEventType method

getFieldDescription method

GetFieldID function

getFields method

getFilePointer method 2nd

getFirstChild method

getFontRenderContext method

getHeaderField method

getHeaderFieldKey method 2nd

getHeaderFields method

getHeight method

getIcon method

getImageableHeight method

getImageableWidth method

getImageableX method

getImageableY method

getImageReadersByMIMEType method

getImageReadersBySuffix method

getIndexOfChild method

getInputStream method 2nd 3rd

getInstance factory method

getInstance method

 of AlphaComposite

 of Cipher

 of Currency

getIntegerInstance method

getJavaFileForOutput method

getJavaInitializationString method

getLastChild method

getLastPathComponent method

getLastSelectedPathComponent method

getLength method

getLocalHost method

getMaxStatements method

getMethodCallSyntax method

GetMethodID function 2nd

getModel method

getMoreResults method

getName method

getNewValue method

getNextEntry method

getNextException method

getNextSibling method

getNextValue method 2nd

getNodeName method

getNodeValue method

getNumberInstance method

getNumImages method

getNumThumbnails method

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

getObject method

GetObjectArrayElement method

GetObjectClass function 2nd

getOrientation method

getOutline method

getOutputStream method

getPageCount method

getParameter method

getPathToRoot method

getPercentInstance method

getPixel method

getPixels method

getPointCount method

getPreviousValue method 2nd

getPrintService method

getProperty method

getPropertyDescriptors method 2nd

getRaster method

getReaderFileSuffixes method

getResource method

getReturnAuthorization method

getRGB method

getRoot method

getRowCount method 2nd

getSecurityManager method

getSelectedColumns method

getSelectedIndex method

getSelectedRows method

getSelectedValue convenience method

getSelectedValues method

getSelectionModel

getSelectionPath method 2nd

getSelectionPaths method

get/set naming pattern, exception to

getSourceActions method

getSQLState method

getSQLStateType method

GetStaticFieldID function

GetStaticMethodID function

GetStringRegion method

GetStringUTFChars function 2nd

GetStringUTFLength method

GetStringUTFRegion method

GetSuperclass method

getSystemClipboard method

getTableCellEditorComponent method

getTableCellRendererComponent method

getTables method

getTagName method

getTags method

getTask method

getTime method

getTransferable method 2nd

getTreeCellRendererComponent method

getType method

getUpdateCount method

getURL method

getValue method 2nd

 defining for a spinner

 of JSpinner

 returning the integer value of an attribute
getValueAt method 2nd

getWidth method

getWriteFormatNames method

getWriterFormats helper method

GetXxxArrayElements function

GetXxxArrayRegion method

GIF files, writing
GIF image
Global scope
Gnu C compiler
Gödel's theorem
GradientPaint class 2nd

GradientPaint object

grant clause 2nd

grant entries, in a policy file

Graph character class

Graphic Java 2: Mastering the JFC, Volume II: Swing (Geary) 2nd
Graphics, printing
Graphics class 2nd 3rd 4th

Graphics classes, using float coordinates

Graphics object, clipped

Graphics2D class 2nd 3rd 4th 5th

Grid bag
Grid bag pane
Grid width
gridbag.dtd 2nd

GridBagLayout

GridBagPane class

GridBagPane.java

GridBagTest.java

gridbag.xsd

Groovy engine 2nd 3rd
groupCount method

Grouping, in regular expressions
Groups
 defining subexpressions
 nested
GSS-API
GUI design tools
GUI events
GUI-based property editors

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Half-close
The Handbook of Applied Cryptography
Handles, for subtrees
hashCode method

Header(s)
 table rendering
 of an XML document
Header information, querying the server for
Header types, querying values
HelloNative.java

HelloNativeTest.java

Hex editor, modifying byte codes
Hidden commands, in comments
Hiding, table columns
Hierarchical databases 2nd
Hierarchical URIs
Hierarchy
 array types
 attribute sets
 attributes for printing
 for bundles
 class loader
 of countries, states, and cities
 for input and output streams 2nd
 permission classes
 property files
 reader and writer
 of text components and documents
HIGH constant

Hints [See Rendering, hints.]
Horizontal line style, tree with
HORIZONTAL_SPLIT, for a split pane

HORIZONTAL_WRAP, for a list box

Host names 2nd
Host variable, in a prepared query
Hot deployment
HrefMatch.java

HTML
 compared to XML 2nd
 displaying program help in
 displaying with JEditorPane

 form
 help system
 making XML compliant
 opening with snippets of Java code
 page 2nd 3rd
 rule for attribute usage
 table 2nd
 transforming XML files into
HTMLDocument class

HTTP
HTTP request, response header fields from
/https: URLs, accessing

HttpURLConnection class

Human-readable name, of a data flavor
Hyperlink(s) 2nd
HyperlinkEvent class

HyperlinkListener class

HyperlinkListener interface

hyperlinkUpdate method

Hypertext references, locating all

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IANA Character Set Registry
IBM Tivoli Directory Server
ICC profiles 2nd
Icon(s) 2nd
Icon images, loading
Icon objects, list filled with

Icon state, of a frame
ID construct

Identical character differences
Identity transformation
IDL (Interface Definition Language)
IDREF attribute value

IDREFS attribute value

ifModifiedSince property

IIOImage class

IIOImage object

IIOP (Inter-ORB Protocol)
IIOServiceProvider class

Illegal input, provided by users
IllegalAccessException

IllegalArgumentException 2nd 3rd 4th

IllegalStateException

Image(s)
 blurring
 building
 creating
 filtering
 readers and writers for
 rotating about the center
 storing
 superimposing on existing
 transferring into the clipboard
Image class

Image control, in Visual Basic
Image file types
Image format
Image icon
Image manipulation
Image processing operations
Image size, getting
Image types, menu of all supported
Imageable area
ImageInputStream

ImageIO class 2nd

ImageIOTest.java

ImageList drag-and-drop application

ImageListDragDrop.java

ImageProcessingTest.java

ImageReader class

ImageReaderWriterSpi class

ImageTransferTest.java

ImageViewer bean 2nd
ImageViewerBean component

ImageViewerBean.java

ImageWriter class 2nd

IMAP (Internet Message Access Protocol)
implies method 2nd

importData method 2nd

InBlock character class

InCategory character class

include method

Incremental rendering, of images
Indented output
Indeterminate progress bar
Indeterminate property
Indexed properties
IndexedPropertyChangeEvent class

IndexedPropertyDescriptor class

IndexOutOfBoundsException

Inequality testing, in SQL
InetAddress class 2nd

InetAddress object 2nd

InetAddressTest.java

InetSocketAddress class

Infinite tree
Information
 locating in an XML document
 using URLConnection to retrieve

Inheritance trees 2nd
@Inherited meta-annotation

InitialContext class

InitialDirContext class

Initialization code, for shared libraries
initialize method

Input, splitting into an array
Input fields, formatted
Input reader, reading keystrokes
Input stream(s)
 as an input source
 keeping open
 monitoring the progress of
Input stream filter
Input validation mask
INPUT_STREAM data source

InputSource class

InputStream class 2nd

InputStream object

InputStreamReader class

InputVerifier class

Insert row
INSERT statement, in SQL

Insert string command
insertNodeInto method

insertRow method 2nd

insertString method

insertTab method

insertUpdate method

Inside Java 2 Platform Security: Architecture, API Design, and Implementation (Gong/Ellison/Dageforde)
Instance fields 2nd 3rd
Instance methods, calling from native code
instanceof operator

Instrumentation API, installing a bytecode transformer
Integer(s), methods of storing
INTEGER (INT) data type, in SQL 2nd

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Integer constructor

Integer formatter
Integer identifier type

Integer input, text field for
Interactive scripting tool
@interface declaration

Interface Definition Language (IDL)
Interface description
Internal frames
 cascading on the desktop
 dialogs in
 displaying multiple
 setting the size of
 tiled
internalFrameClosing method

InternalFrameListener

InternalFrameTest.java

International Color Consortium (ICC) 2nd
International currency character, Euro symbol replacing
International Organization for Standardization [See ISO ; specific standards.]
Internationalization
Internet, delivery over the public
Internet addresses
Internet hosts, services provided by
Internet Message Access Protocol (IMAP)
Internet Printing Protocol 1.1 (RFC 2911)
Inter-ORB Protocol [See IIOP (Inter-ORB Protocol).]
Interpolation strategies
Interruptible sockets
intersect operation 2nd

intranet, delivery in
Introspector class

InverseEditor.java

InverseEditorPanel.java

Investment, growth of
InvestmentTable.java

Invocable interface 2nd

Invocation API
InvocationTest.c

invokeFunction method

IOException 2nd

IP addresses, customizing 4-byte
IPv6 Internet addresses, supporting
isAdjusting method

IsAssignableFrom method

isCanceled method

isCellEditable method 2nd

isDesktopSupported method

isDirectory method

isEditValid method 2nd

isFile method

isIcon method

isIndeterminate method

isLeaf method 2nd

ISO 216 paper sizes
ISO 639-1
ISO 3166-1
ISO 4217
ISO 8859-1
ISO-8859-1 2nd
ISO-8859-15
iSQL-Viewer

is/set naming pattern

isShared method

isStringPainted method

isSupported method 2nd

item method

Item.java

Items, selecting in a list box
ItemSearch operation

ItemSearchRequest parameter type

Iterable objects

Iterator interface

iterator method

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JAAS
JAAS login modules
JAASTest.java

JAR file(s)
 for the database driver
 packaging beans in
 registering the driver class
 signing
 signing and verifying
 as ZIP file with a manifest
JAR file resources
jarsigner tool 2nd

Java 2D API 2nd
Java API, for SQL access
Java applications [See also Application(s).]
 data copying between two instances of
 splash screens difficult for
 with three internal frames 2nd
 writing internationalized
Java code [See also Code.]
 dynamic generation
 iterating through multiple result sets
Java compiler, tools invoking
Java data types
Java Database Connectivity
Java deployment directory
Java exception, native C++ method in
Java method name, for a C function
Java methods, calling from native code
Java Native Interface [See JNI (Java Native Interface).]
Java objects, transferring via the system clipboard
Java platform security
Java Plug-in tool
Java program
 copying a native program to
 copying to a native program
Java RMI technology [See RMI (Remote Method Invocation).]
Java servlets
Java String objects, converting

Java types, compared to C types
Java virtual machine [See Virtual machine(s).]
The Java Virtual Machine Specification (Lindholm/Yellin)
java.awt.datatransfer package

java.awt.Desktop class

java.awt.dnd package

java.awt.geom package

JavaBeans 2nd [See also Beans.]
JavaBeans persistence
 for arbitrary data
 complete example
java.beans.Beans class

JavaCompiler class

JavaDB [See Derby database.]
Javadoc comments

JavaFileManager

JavaFileObject interface

JavaFileObject subclass

javah utility

JavaHelp
javaLowerCase character class

JavaMail API
javaMirrored character class

java.nio package

 making memory mapping simple
 new I/O in
 unifying characterset conversion
java.policy files

JavaScript—The Definitive Guide (Flanagan)
java.security configuration file

JavaServer Faces (JSF) 2nd
JavaServer Pages (JSP)
javaUpperCase character class

javaWhitespace character class

javax.imageio package

javax.sql.rowset package

JAX-WS technology 2nd
jclass type, in C

JComponent, attaching a verifier to

JComponent class 2nd 3rd 4th 5th

JDBC
 application deploying
 configuration
 design of
 driver types
 drivers currently available
 requests
 syntax describing data sources
 tracing, enabling
 typical uses of
 ultimate goal of
 version numbers
JDBC 4
JDBC API
JDBC driver 2nd 3rd
JDBC Driver API
JDBC/ODBC bridge
JDBC-related problems, debugging
JdbcRowSet interface

JDesktopPane 2nd 3rd

JDialog class

JEditorPane class

 API notes
 displaying HTML with
 in edit mode by default
 extending JTextComponent

 showing and editing styled text
JFormattedTextField class 2nd

JFrame class

JFrame object

JInternalFrame class 2nd 3rd 4th

JInternalFrame windows, constructing

JList class

 API notes 2nd 3rd 4th
 calling get methods of

 configuring for writing custom renderers
 responsible for visual appearance of data

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

JList component

JList constructors

JList object

JNDI service
JNI (Java Native Interface) 2nd
JNI API, finding
JNI debugging mode
JNI functions 2nd 3rd
JNI_CreateJavaVM

JNI_OnLoad method

JobAttributes class, as obsolete

Join style, for thick strokes
Joining, tables 2nd
JoinRowSet interface

Joint styles
JPEG files
JProgressBar 2nd

JSP engine
JSpinner class

JSpinner component 2nd

JSplitPane class 2nd

jstring type 2nd

JTabbedPane class

JTabbedPane object

JTable class

 API notes 2nd 3rd
 picking a renderer
JTable component

JTextPane subclass

JTree, constructing 2nd

JTree class

 API notes 2nd 3rd
 calling methods to find tree nodes
JTree constructor

JUnit 4 testing tool
jvm pointer

JXplorer

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kerberos protocol
Kernel, of a convolution operation
Kernel object 2nd

Keyboard, reading information from
KeyGenerator class

Keys
 distributing
 generating 2nd
 native methods enumerating 2nd
 retrieving autogenerated
Keystore(s) 2nd
Keystore password
Keystrokes
 monitoring
 reading from the console
 trying to filter
keytool

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Label
Language design features, of Java
Language locales
Large objects (LOBs) 2nd
A Layman's Guide to a Subset of ASN.1, BER, and DER (Kaliski)
Layout algorithm
Layout orientation, for a list box
layoutPages method

LCD values
LD_LIBRARY.PATH

LDAP (Lightweight Directory Access Protocol) 2nd
LDAP Browser
LDAP directory
 accessing
 keeping all data in a tree structure
 modifying
LDAP server
LDAP user, configuring 2nd
LDAPTest.java

LDIF data
LDIF file
Least common denominator approach
Leaves, of a tree 2nd 3rd 4th
Legacy classes
Legacy code, containing an enumerated type
Legacy data, converting into XML
Legion of Bouncy Castle provider
length method 2nd

Lenient date format
lenient flag

Levels of security
Lightweight Directory Access Protocol [See LDAP (Lightweight Directory Access Protocol).]
Lightweight Directory Interchange Format data [See LDIF data.]
LIKE operator, in SQL

Limit, of a buffer
Line segments, testing the miter limit
Lines
 counting in a file
 terminating in e-mail
lineTo method

Link action
Link to the file, placing
Linux 2nd
List(s)
 very long
List box(es)
 adding or removing items in
 filled with strings program
 populating with planets
 with rendered cells
 scrolling
 of strings
List cell renderers 2nd
List components, reacting to double clicks
List display

list method 2nd

List models
List selection listener
List values
List<String> interface

ListCellRenderer 2nd

ListDataListener

Listener interface, for events
Listener management methods
Listeners 2nd
Listening
 to hyperlinks
 to tree events
listFiles method

ListModel class

ListModel interface

ListRenderingTest.java

ListResourceBundle class

ListSelectionEvent method

ListSelectionListener class

ListSelectionModel class

ListTest.java

LITTLE_ENDIAN constant

Little-endian method
Load time
loadClass method

loadImage convenience method

loadLibrary method

LOBs (large objects) 2nd
Local clipboard
Local encoding schemes
Local host
Local language
 ISO codes for
 translating to
Local name, in the DOM parser
Local parameter and result objects
Local variables, annotations for
Locale(s)
 defined
 described
 formatting numbers for
 getting a list of currently supported
 no connection with character encodings
 program for selecting
 for the retirement calculator
Locale class 2nd

Locale objects 2nd
Locale-dependent utility classes
Location (L) component
lock method 2nd

Logging, RMI activity
Logging instructions
LoggingPermission permission

Login(s)
 management of
 separating from action code
Login code
 basic outline of
 separating from business logic
Login information, storing
Login modules 2nd 3rd

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Login policy
LoginContext class

LoginModule class

LONG NVARCHAR data type, in SQL

LONG VARCHAR data type, in SQL

LongListTest.java

Long-term storage, JavaBeans persistence suitable for
Lookup table
LookupOp operation 2nd

lookupPrintServices method

LookupTable class

lostOwnership method

Lower character class

Lower limit, in a choice format

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Macintosh
 clipboard implementation of
 executable program
Magic number, beginning every file
Mail header, sending
Mail messages [See also E-mail.]
 sending
 using sockets to send plain text
MailTest.java

main method, executing

makehtml.xsl

makeprop.xsl

makeShape methods

makeVisible method

Mandelbrot set, drawing
Mangled signatures
Mangling, rules for
Manifest entry, in JAR files
Manifest file
Map interface

map method

MapClassLoader.java

MappedByteBuffer

Mapping modes
Mark, of a buffer
mark method, of InputStream

Marker annotation
MarshalledObject class 2nd

MaskFormatter 2nd

Mastering Regular Expressions (Friedl)
match attribute, in XSLT

Matcher class

Matcher object 2nd

matches method

Matching, in SQL
Matrices 2nd
Matrix transformations
Maximum state, of a frame
Maximum value, for a progress bar
maxoccurs attribute, in XML Schema

MD5 algorithm
MDI (multiple document interface)
Memory mapping
Message digests
Message formatting
Message signing
Message strings, defining in an external location
MessageDigest class 2nd

MessageDigestTest.java

MessageFormat class 2nd

Messages, varying
Meta-annotations 2nd 3rd
Metadata
Metal look and feel

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

 frame icon displayed
 grabber areas of internal frames
 selected frame in
 selecting multiple items
 for a tree
Method(s)
 of an annotation interface
 executing Java
 of graphics classes
Method IDs
 compared to Method objects

 needed to call a method
 obtaining
Method names
 for beans
 for a C function
 capitalization pattern for
Method signatures 2nd
Method verification error
Metric system, adoption of
Microsoft Active Directory
Microsoft Active Server Pages (ASP)
Microsoft compiler
Microsoft Windows, clipboard implementation of
MIME (Multipurpose Internet Mail Extension) standard
MIME type name, of a data flavor
MIME types
 for print services
 reader or writer matching
 transferring an arbitrary Java object reference
 transferring local, serialized, and remote Java objects
MimeUtility class

Minimum value, for a progress bar
minoccurs attribute, in XML Schema

MissingResourceException

Miter join 2nd
Miter limit
Mixed contents
 parsing
 in the XML specification
mkdir method

Mnemonics, for tab labels
Model, obtaining a reference to
model object

Modernist painting 2nd 3rd
Modifier, annotation used like
modifyAttributes method

Mouse events, trapping
Move action, changing to a copy action 2nd
moveColumn method

moveToCurrentRow

moveToInsertRow method

Moving, a column in a table
Multicast lookup, of remote objects
MULTILINE flag

Multipage printout
Multiple document interface (MDI)
Multiple images
 program displaying
 reading and writing files with
 writing a file with
Multiple-page printing
multithreaded server

MULTITHREADED value, for scripts

MutableTreeNode class

MutableTreeNode interface

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

NameCallback class

NameClassPair helper class 2nd

NamedNodeMap class

NamedNodeMap object

Namespace(s)
 turning on support for
 using
 using class loaders as
Namespace mechanism, in XML
Namespace processing 2nd
Namespace URI, in the DOM parser
Namespace URL
Name/value pairs, in a property file
Naming class

Naming convention, for resource bundles
Naming pattern, for properties
NamingEnumeration class

NamingEnumeration<T> class

NanoHTTPD web server 2nd 3rd

 starting
National character string (NCHAR)

Native C code, compiling
Native character encoding, changing
Native code 2nd
native keyword

Native methods
 calling Java methods
 enumerating keys 2nd
 example
 handling error conditions
 implementing registry access functions as
 implementing with C++ 2nd
 overloading
 throwing exceptions 2nd
Native print dialog box
Native program
 copying a Java program to
 copying to a Java program
Native storage, for XML data
native2ascii utility

NCHAR data type, in SQL

NCLOB data type, in SQL

Negative byte values
Nested groups
Nesting filters
NetBeans integrated development environment
NetBeans version 6, importing beans into
NetPermission permission

Network address, for a remote object
Network connections, to remote locations
Network password dialog box
Network programming, debugging tool
Network sniffer
New I/O

New Project dialog box, in NetBeans 6
NewByteArray

newDocument method

NewGlobalRef

Newline character, displaying
NewObject function

newOutputStream method

NewStringUTF function 2nd

 calling to create a new string
 constructing a new jstring

NewXxxArray function

next method

nextElement method 2nd

nextPage method

NIOTest.java

NMTOKEN attribute value

NMTOKENS attribute value

NO_DECOMPOSITION collator value

Node(s)
 changing the appearance of
 displaying as leaves
 generating on demand
 identifying in a tree
 rendering
 in a tree 2nd
Node class 2nd 3rd

Node enumeration
Node interface, with subinterfaces
Node label, formatting
Node renderer
Node set, converting to a string
nodeChanged method

NodeList class

NodeList collection type

Non-ASCII characters, changing to Unicode
Non-deterministic parsing
Nonremote objects 2nd
Non-XML legacy data, converting into XML
NORMAL constant

Normalization forms
Normalization process
Normalized attribute value
Normalized color values
Normalizer class 2nd

NoSuchAlgorithmException

NoSuchElementException

NOT NULL constraint, in SQL

NotBoundException

notFilter method

Novell eDirectory
-noverify option

n-tier models
NULL, in SQL

Null references, storing
NullPointerException

Number filter
Number formats
Number formatters
Number models, for spinners
Number superclass

NumberFormat class 2nd

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

NumberFormat type

NumberFormatException

NumberFormatTest.java

Numbers
 formatting
 printf formatting

 reading from a file
 writing to a buffer
NUMERIC data type, in SQL 2nd

NVARCHAR data type, in SQL

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Object(s)
 allowing arbitrary inside cells
 reading back in
 saving a network of 2nd
 saving in object serialization format
 saving in text format
 serial numbers for
 shared by several objects
 as the solution to all problems
 storing in object serialization format
 transferring via the clipboard
 transmitting between client and server
 writing and reading
 writing to a stream and reading back
Object array, accessing elements in
Object classes, in LDAP
Object data fields, accessing
Object data, saving
Object files, evolution of classes
Object inspection tree
Object references, transferring 2nd
Object serialization
 associating serial numbers
 compared to JavaBeans persistence
 file format
 modifying the default mechanism
Object stream 2nd
Object values

ObjectInputStream 2nd

ObjectInspectorTest.java

ObjectOutputStream 2nd

ObjectRefTest program

ObjectStreamConstants

ObjectStreamTest.java

ODBC 2nd
One-touch expand icons
Opaque absolute URI
OPEN arc type

openConnection method

Opened nonleaf icon
OpenLDAP 2nd
OpenSSL software package
openStream method

Operating systems, character encoding
optional module

Ordering, of permissions
orFilter method

Organization (O) component
Organizational Unit (OU) component
Orientation, for a progress bar
Original PC encoding, for file names
Outer join
Outline dragging
Outline shape

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Output stream 2nd 3rd 4th
OutputStream class 2nd

OutputStreamWriter class

OverlappingFileLockException

Overloading, native methods
@Override annotation

Overtype mode, mask formatter in
Overwrite mode, DefaultFormatter in

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Packages
 annotations for
 using to avoid name clashes
Packets, sending
Padding scheme
Page, multiple calls for
Page format measurements
Page orientation
Page setup dialog box 2nd 3rd 4th
Page size
Pageable interface

PageAttributes class, as obsolete

pageDialog method

PageFormat class

PageFormat parameter

Paint 2nd
Paint interface

paint method

paintComponent method 2nd 3rd

paintValue method

Paper margins
Paper sizes 2nd
Parameter marshalling
Parameters
 attaching the end of a URL
 parsing by serializing
Parent, of every node 2nd
Parent nodes
Parent/child relationships
 of class loaders
 establishing between tree nodes
parse method 2nd 3rd

Parse tree
ParseException 2nd 3rd 4th

Parsers 2nd 3rd
Parsing
 experimenting with
 by URIs
 XML documents
PasswordCallback class

Password-protected file by FTP
Password-protected web page
Path(s)
 finding from an ancestor to a given node
 of objects
 program creating sample
Path names, resolving
path parameter

Path2D class

Path2D.Float class

pathFromAncestorEnumeration method

Pattern class

Pattern object

Patterns 2nd

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

#PCDATA 2nd

PCDATA abbreviation

PEM (Privacy Enhanced Mail) format
Periods, replacing with underscores
Permission classes 2nd
Permission files
Permissions
 attaching a set of
 custom
 defined
 describing in the policy file
 implying other permissions
 listing of
 restricting to certain users
 structure of
PermissionText.java

Permutations, algorithm determining
Persist behavior, with setFocusLostBehavior

Persistence delegate
PersistenceDelegate class

PersistenceDelegatTest.java

PersistentFrameTest.java

Phase, of the dash pattern
PIE arc type

Pixels [See also Device coordinates.]
 composing
 interpolating
 reading
 setting individual
 setting to a particular color
Placeholder character 2nd
Placeholder index
Placeholders
Plain text, turning an XML file into 2nd
PlainDocument class

Planet data, table with
PlanetTable.java

Platform integration
Platform-specific code, installing onto the client
Plugins [See also Java Plug-in tool.]
 packaged as JAR files
Point2D class

Point2D.Double class

Points, paper size measured in
Policy class 2nd

Policy files
 adding role-based permissions into
 building to grant specific permissions
 creating 2nd
 locations for
 sample 2nd
 security
 supplying
Policy URLs, in the policy file
policytool

Polygon
Polygon2D class [See GeneralPath class.]

Pooling, connections
POP before SMTP rule
Populating, a database
Pop-up menu, for a tray icon
PopupMenu class

Port

Port ranges
Porter-Duff composition rules
Position, of a buffer 2nd
position function

POST data 2nd

POST response command 2nd

@PostConstruct annotation 2nd

PostgreSQL
 database
 drivers
Postorder traversal
postOrderTraversal method

PostScript files
PostTest.java

Predefined filters
@PreDestroy annotation

preOrderTraversal method

Prepared statements
PreparedStatement class

PreparedStatement object

Primary character differences
Primitive type values
Primitive types, arrays of
Principal class

Principal objects

Principals
Print character class

Print dialog box 2nd
Print job 2nd 3rd
print methods

 of the Printable object

 of the Printable sections

 of PrinterJob

 of PrintWriter 2nd

 for a table
Print preview
Print request attributes
Print service attributes
Print services
 compared to stream print services
 document flavors for
 finding
 printing an image file
Print writer
Printable interface 2nd 3rd

Printable.NO_SUCH_PAGE value

Printable.PAGE_EXISTS value

printDialog method

Printer graphics context
Printer settings
PrinterException

PrinterJob class 2nd 3rd

printf, formatting numbers

Printf1 class

Printf1.java

Printf1Test.java

Printf2.java

Printf2Test.java

Printf3Test.java

Printf4.java

printIn method

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Printing
 attribute hierarchy
 attribute set hierarchy
 multiple-page
Printing attributes
 listing of
PrintJobAttribute interface 2nd

Printouts, generating
PrintPreviewDialog class

PrintQuality attribute

PrintRequestAttribute interface 2nd

PrintRequestAttributeSet interface

PrintService class 2nd

PrintService objects

PrintServiceAttribute interface

PrintServiceLookup class

PrintServiceTest.java

PrintStream class

PrintTest.java

PrintWriter class 2nd 3rd

Privacy Enhanced Mail (PEM) format
Private keys 2nd
PRIVATE mapping mode

PrivilegedAction interface 2nd

PrivilegedExceptionAction interface 2nd

processAnnotations method 2nd

Processing instructions, in XML documents
Processing tools, for annotations
Processor interface

Product class

Product.java

Program code, controlling the source of
Programs [See also Java program.]
 launching from the command line
 signing executable
 supporting cut and paste of data types
 switching the default locale of
Progress bars 2nd
Progress indicators
Progress monitor dialog box
Progress monitors 2nd
Progress value, setting
ProgressBarTest.java

ProgressMonitor 2nd 3rd

ProgressMonitorInputStream 2nd 3rd

ProgressMonitorInputStreamTest.java

ProgressMonitorTest.java

Properties
 array of descriptors for
 Boolean valued

 bound
 changing the setting of in the NetBeans environment
 constrained
 constructing objects from
 exposing in beans
 at a higher level than instance fields
 indexed
 in the NetBeans environment
 simple
 transient
Properties class

Properties window, in Visual Basic

@Property annotation

Property editors
 in builder tools
 GUI-based
 string-based
 supplying customizers
 writing
Property files
 describing program configuration
 flat hierarchy of
 specifying string resources
 for strings
 unique key requirement
Property inspectors
 displaying current property values in
 listing bean property names 2nd
 in Visual Basic
Property permission targets
Property setter statements
Property settings, vetoing
Property values, editing
PropertyChange event

PropertyChangeEvent class 2nd 3rd

PropertyChangeEvent object 2nd

PropertyChangeListener interface 2nd

PropertyChangeSupport class 2nd

PropertyDescriptor 2nd 3rd

PropertyEditor class

PropertyEditor interface

PropertyEditorSupport class 2nd

Property.java

PropertyPermission permission

PropertyVetoException

 API notes 2nd
 catching
 throwing 2nd 3rd 4th 5th
Protection domain
ProtectionDomain class

Prototype cell value
Proxies, communicating
Proxy classes, for annotation interfaces
Proxy objects 2nd
Public certificates, keystore for
Public class, permission class as
PUBLIC identifier 2nd

Public key
Public key algorithms
Public key ciphers
Public key cryptography
Public Key Cryptography Standard (PKCS) #5
Pull parser
Punct character class

Pure rule
Pushback input stream
PushbackInputStream

put methods 2nd

putNextEntry method 2nd

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QuadCurve2D.Double class

Quadratic curves
quadTo method

Qualified name, in the DOM parser
Quantifiers 2nd
Queries
 building manually
 constraining
 executing
 using SQL
Query by example (QBE) tools
Query results
Query statements
QueryDB application

QueryDB.java

Question-mark characters, in date output
Quotation marks, optional in HTML

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

"r"

 for read access
 read-only mode
raiseSalary method 2nd 3rd

Random access 2nd
Random input, from a hardware device
Random numbers
Random-access files
RandomAccessFile class 2nd 3rd

RandomFileTest.java

Randomness
Ranges of cells
Raster class

Raster images, constructing
Raster point
RasterImageTest.java

read method

 of DataInput interface

 of ImageIO

 of InputStream 2nd

 of the progress monitor stream
 of Reader

 of ZipInputStream

Read permission
READ_ONLY mapping mode

READ_WRITE mapping mode

Readable interface 2nd 3rd

ReadableByteChannel interface

Reader class

READER data source

readExternal method

readFixedString method

Reading, text input
readLine method

readObject method

 of the Date class

 of ObjectInputStream 2nd

 as private
 of a serializable class
readResolve method

Read/write property
REAL data type, in SQL 2nd

Records
 computing size of fixed
 reading
Rectangle2D class

Rectangle2D.Double class

RectangularShape superclass

Redundancy elimination
Reflection 2nd 3rd
ReflectPermission permission

regedit command, in the DOS shell

regexFilter method 2nd

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

RegexTest.java

register method

Registered objects, displaying names of
Registration mechanism
Registry
 accessing
 Java platform interface for accessing
 overview of
Registry access functions, implementing as native methods
Registry editor
Registry functions, program testing 2nd
Registry keys 2nd
Registry object references
Regular expressions
 in an element specification
 replacing all occurrences of
 rows having a string value matching
 syntax of 2nd
 uses for
 vertical bar character in
Relational database
Relational model, distributing data
Relative identifiers, handling
Relative URI
Relative URLs 2nd
Relativization, of a URI
Relax NG
ReleaseStringUTFChars function 2nd

ReleaseXxxArrayElements function

Reliability, of remote method calls
reload method

remaining method

Remote interface

Remote method call(s) 2nd
Remote method invocation [See RMI (Remote Method Invocation).]
Remote methods
Remote objects
 activation of
 clone method

 comparing
 equals method

 garbage-collecting
 hashCode method

 interfaces for
 passing
 registering 2nd
 transferring
Remote references
 invoking methods on
 with multiple interfaces
 passing
 transferring objects as
Remote resource, connecting to
Remote Warehouse interface
RemoteException 2nd 3rd

removeColumn method

removeElement method

removeMode property

removeNodeFromParent method

removePropertyChangeListener method 2nd

removeTabAt method

removeUpdate method

removeVetoableChangeListener method

Rendered cells, in a list box
RenderHints class 2nd

Rendering
 actions
 hints 2nd
 list values
 nodes
 pipeline
 shapes
RenderingHints class

RenderQualityTest.java

Rental car, damage report for
replace method

replaceAll method

replaceFirst method

Representation class
Request headers
required module

requisite module

Rescale operator
RescaleOp operation 2nd

Rescaling operation
reset method

reshape method

Resizable state, of a frame
Resizing
 columns
 columns in a table
 rows in JTable

resolveEntity method

Resolving
 a class
 a relative URL
Resource(s)
 alternate mechanisms for storing
 annotations for managing
 bundle classes
 bundles
 data
 files
 hierarchy, for bundles
 injection
 kinds of
Resource annotation

@Resource annotation

Response header fields
Response page
Result interface

Result sets
 analyzing
 concurrency values
 enhancements to
 managing
 retrieving multiple
 scrollable and updatable
 type value
 updatable 2nd
Results, query returning multiple
ResultSet class 2nd 3rd 4th 5th

ResultSet type

ResultSetMetaData class 2nd

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

@Retention meta-annotation

Retention policies
Retire.java

Retirement calculator applet
RetireResources_de.java

RetireResources_zh.java

RetireResources.java

Return character, displaying
Reverting, an input string
RFC 2279
RFC 2368
RFC 2396
RFC 2781
RGB color model
Rhino engine 2nd 3rd 4th
Rhino interpreter
Rich text format (RTF)
RIGHT OUTER JOIN

Rivest, Ronald
RMI (Remote Method Invocation)
 activation daemon
 activity, logging
 applications, deploying
 communication between client and middle tier
 deploying applications using
 loggers, listing of
 method calls between distributed objects
 programming model
 protocol
 registry
 registry, starting
 URLs
rmid program 2nd

rmiregistry service

Role-based authentication
Roles, login module supporting
rollback method

Rolled back transactions 2nd
Root
 certificate
 element, of an XML document
 handle, tree with
 hiding altogether
 node 2nd 3rd 4th
rotate method 2nd

Rotation transformation
Round cap
Round join 2nd
Rounded rectangle
RoundRectangle2D class 2nd

RoundRectangle2D.Double class

Row(s)
 adding to the database
 in a database
 determining selected
 filtering
 inspecting individual
 resizing
 selecting 2nd
 selection and filtering of
 sorting 2nd
Row height, setting
Row position, of a node

Row sets
RowFilter class 2nd 3rd

ROWID data type, in SQL

ROWID values

RowSet class

RowSet interface

RSA algorithm 2nd
RSATest.java

RTF (rich text format)
Rules, in a DTD
run method

RUNTIME retention policy, for annotations

RuntimePermission permission

"rw"

 read/write access
 read/write mode
"rwd", read/write mode

"rws", read/write mode

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Sample values 2nd
Sandbox
SASL (Simple Authentication and Security Layer)
Save points
Savepoint class

SAX parser
SAX XML reader
SAXParseException class

SAXParser class

SAXParserFactory class

SAXSource 2nd

SAXTest.java

Scalable Vector Graphics (SVG) format
Scalar functions
scale method 2nd

Scaling operation
Scaling transformation 2nd
Scanner, constructing

Scanner class 2nd

Schema
Schema file
schemeSpecificPart, of a URI

Scopes, collection of
Script(s)
 compiling
 executing in multiple threads
 invoking
 redirecting
 for server-side programs
Script class, accessing
Script engines, invoking functions
ScriptContext class

ScriptContext interface

ScriptEngine class 2nd

ScriptEngineFactory class

ScriptEngineManager 2nd 3rd

Scripting
 API
 GUI events
 engine 2nd 3rd
 engine factories
 for the Java platform
 languages
 statements, variables bound by
ScriptTest.java

Scroll pane, scrolling
Scrollable result
 sets 2nd
Scrolling
 mode
scrollPathToVisible method

Secondary character differences
Secret key, generating
SecretKeyFactory 2nd

SecretKeySpec class

Secure Hash Algorithm [See SHA (Secure Hash Algorithm).]
Secure random generator
Secure web pages
SecureRandom class

Securing Java: Getting Down to Business with Mobile Code (McGraw/Felten)
Security
 levels of
 mechanisms
Security manager class
Security managers
 configuring standard
 reading policy files
 in RMI applications
Security policy 2nd
Security policy files [See Policy files.]
SecurityException 2nd

SecurityManager class 2nd

SecurityPermission permission

Seek forward only mode
seek method 2nd

SELECT queries

SELECT statement

 adding to a batch
 executing to read a LOB
 in SQL 2nd
Selected frame
Selection(s)
 choosing from a very long list of
 moving from current frame to the next
Selection model, for rows
Selection state, setting for tree nodes
Semicolon (;), annotation placed without
separator field

Serial number, saving objects with
Serial version unique ID
SerialCloneable class

SerialCloneTest.java

@Serializable annotation

Serializable class
Serializable interface 2nd

SerializablePermission permission

Serialization
 copying objects using
 mechanism 2nd
 performance of
 unsuitable for long-term storage
 using for cloning
Serialized Java objects
SerialTransferTest.java

serialver program

serialVersionUID constant

Server(s)
 connecting to
 harvesting information from
 implementing
 role in distributed programming
 starting on a given URL
Server calls
Server program
Server-side script
ServerSocket class 2nd

Service provider interface, of a reader

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

SERVICE_FORMATTED data source

set methods 2nd 3rd

Set of nodes, XPath describing
Set operations, in regular expressions
setAllowsChildren method

setAllowUserInteraction method

setAsksAllowsChildren method

setAsText method

setAttribute method

setAutoCreateRowSorter method 2nd

setAutoResizeMode method

setBackground method

setCellRenderer method

setCellSelectionEnabled method

setClip operation

setClosed method

setColor method

setColumns method

setColumnSelectionAllowed method

setComparator method

setComposite method 2nd

setContextClassLoader method

setContinuousLayout method

setCurrency method

setDataElements method

setDefaultRenderer method

setDoInput method

setDoOutput method 2nd

setDragEnabled method 2nd

setDragMode method

setDropMode method

setEditable method

setEntityResolver method

setErrorHandler method

setFillsViewportHeight method

setFocusLostBehavior method

setHeaderRenderer method

setHeaderValue method

setIfModifiedSince method

setIndeterminate method

setLenient method

setMaximum method 2nd

setMaxWidth method

setMillisToDecideToPopup method

setMinimum method

setMinWidth method

setMnemonicAt method

setNamespaceAware method

setObject method

setObjectArrayElement method

setOneTouchExpandable method

setOverwriteMode method

setPage method

setPageable method

setPageSize method

setPaint method 2nd

setPixel methods 2nd

setPlaceholderCharacter method

setPreferredWidth method

setProgress method

setPropertyEditorClass method

setReader method

setRenderingHint method

setRenderingHints method 2nd

setRequestProperty method

setResizable method

setRootVisible method

setRowFilter method 2nd

setRowHeight method

setRowMargin method

setRowSelectionAllowed method

setSecurityManager method

setSeed method

setSelected method

setSelectedIndex method

setSelectionMode method 2nd

setSoTimeout method

setStringPainted method

setStroke method 2nd

setTabComponentAt method

setTabLayoutPolicy method

setTable method

SetTest program 2nd

SetTest.java

setText method

setTitle method

setTransform operation

setUseCaches method

setValue method 2nd 3rd

setValueAt method

setVisible method 2nd

setVisibleRowCount method

setWidth method

setWriter method

SetXxxArrayRegion method

SGML (Standard Generalized Markup Language)
SHA (Secure Hash Algorithm)
SHA1 (secure hash algorithm #1)
Shape classes
 relationships between
 using
Shape interface 2nd

Shape maker classes
Shape makers
ShapeMaker abstract superclass

ShapePanel class

Shapes
 composing from areas
 creating
 drawing
 rendering
 superimposing
ShapeTest.java

shared locks

shear method

Shear transformation 2nd
short values

ShortLookupTable subclass 2nd

shouldSelectCell method

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

showInternalXxxDialog methods

showWindowWithoutWarningBanner target

Side files
Signatures
 encoding
 of a field
 mangling
Signed applet 2nd
Simple Authentication and Security Layer (SASL)
Simple Mail Transport Protocol [See SMTP (Simple Mail Transport Protocol).]
Simple Object Access Protocol [See SOAP (Simple Object Access Protocol).]
Simple properties
Simple type
SimpleBeanInfo convenience class 2nd

SimpleCallbackHandler.java

SimpleDateFormat class

SimpleDoc class 2nd

SimpleJavaFileObject class

SimpleLoginModule.java

SimplePrincipal.java

SimpleTree.java

SimulatedActivity class

Single quotes, in SQL
Single value annotation
SINGLE_TREE_SELECTION

Singleton object, splash screen as
Singletons, serializing
SISC Scheme engine 2nd
size element

Skewed angle, for an elliptical arc
skip method

slapd.conf file

Slow activity, progress of
SMALLINT data type, in SQL 2nd

SMTP (Simple Mail Transport Protocol)
 specification
SOAP (Simple Object Access Protocol) 2nd
 message
 traffic
Social Security numbers
Socket(s) 2nd
Socket class 2nd 3rd

Socket constructor

Socket object

Socket operation, interrupting
Socket permission targets
Socket timeouts
SocketChannel class

SocketChannel feature, of java.nio

SocketPermission permission

SocketTest.java

SocketTimeoutException

Software developer certificates
Solaris, compiling InvocationTest.c

Sorting, rows
Source file annotations, tools harvesting
Source files 2nd
Source interface

Source level, processing annotations at
Source pixel
SOURCE retention policy

Source-level annotation process

Space character class

Spelling rule sets, in Norway
Spinner(s) 2nd
Spinner model
SpinnerDateModel class

SpinnerListModel 2nd

SpinnerNumberModel 2nd

SpinnerTest.java

Splash screens
 drawing directly on
 indicating the loading process on
 replacing with a follow-up window
SplashScreen class

SplashScreenTest.java

split method

 of Pattern

 of String

Split panes
SplitPaneTest.java

Splitter bar
sprintf C function

SQL (Structured Query Language) 2nd
 changing data inside a database
 data types 2nd
 exceptions
 types
 writing keywords in capital letters
SQL ARRAY

SQL statement file, program reading 2nd
SQL statements
 executing
 executing arbitrary
SQLException class 2nd

SQLPermission permission

SQLWarning class

SQLXML data type, in SQL

SQLXML interface

Square cap
SQuirrel
SRC rule

SRC_ATOP rule

SRC_IN rule 2nd

SRC_OUT rule 2nd

SRC_OVER rule 2nd 3rd

sRGB standard
SSL
Standard annotations
Standard extensions, loading
Standard Generalized Markup Language (SGML)
StandardJavaFileManager class

Start angle, of an arc 2nd 3rd
startElement method

startNameEnumeration function

State (ST) component
stateChanged method

STATELESS value, for scripts

Statement class 2nd 3rd 4th

Statement object 2nd

Statements, managing
Static fields
Static initialization block 2nd
Static methods, calling from native methods

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

StAX parser 2nd
StAXTest.java

stopCellEditing method 2nd

Stored procedures
Stream(s)
 assembling bytes into data types
 classes 2nd
 closing
 filters 2nd
 in the Java API
 keeping track of intermediate
 print services
 retrieving bytes from files
 sending print data to
 types
Streaming parsers 2nd
StreamPrintService class

StreamPrintServiceFactory class

StreamResult class 2nd

StreamSource 2nd

Strength, of a collator
String(s)
 converting into normalized forms
 filter looking for matching
 internationalizing
 objects, saving [See also Java String objects, converting.]

 painted property
 parameters
 patterns, specifying with regular expressions
 transferring to and from native methods
 writing and reading fixed-size
STRING data source

String parameter, of getPrice

StringBuffer class

StringBuilder class

StringBuilderJavaSource.java

StringSelection class 2nd

stringToValue method

Stroke interface

Strokes
 control over
 controlling placement of
 selecting
StrokeTest.java

Structure of a database
Structured Query Language [See SQL (Structured Query Language).]
Stub classes
Stubs
Style, in a placeholder index
style attribute

Style sheet 2nd
StyledDocument interface

Subcontext
Subject, login authenticating
Subject class

subtract operation 2nd

Subtrees
SUCCESS_NO_INFO value

sufficient module

Sun compiler
Sun DOM parser
Sun Java System Directory Server for Solaris

supportCustomEditor

@SupportedAnnotationTypes annotation

SupportedValuesAttribute interface

supportsBatchUpdates method

supportsResultSetConcurrency method

supportsResultSetType method

@SuppressWarnings annotation 2nd

SVG (Scalable Vector Graphics) format
Swing, data transfer support in
Swing code, generating dynamic
Swing components
 drag-and-drop behavior of
 layout manager for
Swing table, as asymmetric
Swing user interface toolkit
SwingDnDTest.java

SwingWorker class

Symbols [See also specific symbols.]
 in choice formats
 in a mask formatter
Symmetric ciphers 2nd
SyncProviderException 2nd

SysPropAction.java

System class

System class loader 2nd 3rd
System clipboard 2nd
SYSTEM declaration, in a DTD

SYSTEM identifier

System properties, in policy files
System tray
System.err

System.in

System.out

SystemTray class 2nd

SystemTrayTest.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Tab
 labels
 layout
 layout policy
 titles
Tabbed pane(s) 2nd
 user interface
TabbedPaneTest.java

Table(s)
 constructing from arrays
 inserting values into
 inspecting and linking
 joining 2nd
 manipulating rows and columns in
 with planet data
 printing
 producing
 selecting data from multiple
 simple
 types array for

Table cell renderers
Table classes 2nd
Table columns 2nd
Table index values
Table models 2nd
Table names 2nd
Table view, removing a column from
TableCellEditor class

TableCellEditor interface

TableCellRenderer class

TableCellRenderer interface

TableCellRenderTest.java

TableColumn class 2nd

TableColumn object 2nd

TableColumn type

TableColumnModel class

TableColumnModel object

TableModel class 2nd

TableRowSorter <M> object

TableRowSorter class

TableSelectionTest.java

TableStringConverter class

Tabs 2nd
Tag name, of an element
@Target meta-annotation

Target names, for permissions
TCP (Transmission Control Protocol)
telnet
 accessing an HTTP port
 activating in Windows Vista
 connecting to java.sun.com

Telnet windows
Tertiary character differences
@Test annotation

TestDB.java

Text
 components, in the Swing library
 input and output
 transferring to and from the clipboard
 transmitting through sockets
Text field(s)
 editor
 for integer input
 losing focus
 program showing various formatted
 tracking changes in
 user supplying input to
Text file, inside a ZIP file
Text format
 for saving data
 saving objects in
Text fragments
Text input, reading
Text nodes
 constructing
 as only children
Text output, writing
Text strings
 converting back to a property value
 property editors working with
 saving
TextFileTest.java

TextLayout class

TextLayout object

TextTransferTest.java

TexturePaint class 2nd 3rd

TexturePaint object

this argument object

Thread(s)
 executing scripts in multiple
 forcing loading in a separate
 making connections using
 referencing class loaders
Thread class

ThreadedEchoHandler class

ThreadedEchoServer.java

THREAD-ISOLATED value

Three-tier applications
Three-tier model
Throw function

ThrowNew function

Thumbnails
Tiled internal frames
Tiling
 frames
 windows
Time
 computing in different time zones
 formatting
TIME data type, in SQL 2nd

Time of day service
Time picker
Timeout value, selecting
Timer, updating progress measurement
TIMESTAMP data type, in SQL 2nd

TimeZone class 2nd

TitlePositionEditor.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Tödter, Kai
Tool class

Toolkit class

Tools, processing annotations
tools.jar, as no longer necessary

Tooltip, for a tray icon
Top-left corner, shifting
toString method

 calling to get a string
 displaying table objects
 returning a class name
 of the Variable class

Tracing
Tracking, in text components
Transactions
Transfer handler
 adding 2nd
 constructing
 installing
Transfer wrapper 2nd
Transferable interface 2nd 3rd

Transferable object

Transferable wrapper

TransferHandler class 2nd 3rd 4th

TransferSupport class

transform method 2nd 3rd 4th

Transformations
 composing 2nd
 supplying
 types of
 from user space to device space
 using 2nd
Transformer class

TransformerFactory class 2nd

TransformTest.java

Transient fields
transient keyword

Transient properties
Transitional events
translate method 2nd

Translation transformation
Transmission Control Protocol (TCP)
Transparency
Traversal order
Traversals
Tray icons 2nd
TrayIcon class

TrayIcon instance

Tree(s)
 cell renderer 2nd 3rd
 classes
 composed of nodes 2nd
 describing an infinite
 editing
 events
 leaves of 2nd
 parsers
 paths 2nd
 program displaying with a few nodes 2nd 3rd
 selection listener
 simple
 structures 2nd
 with/without connecting lines

Tree model(s)
 constructing 2nd
 custom
 linking nodes together
 obtaining
Tree nodes
 accessing with XPath
 changing font for individual
 determining currently selected
 editing
 iterating through
TreeCellRenderer class

TreeCellRenderer interface 2nd

TreeEditTest.java

TreeModel class 2nd

TreeModel interface 2nd 3rd

TreeModelEvent class

TreeModelEvent object

TreeModelListener class

TreeModelListener interface

TreeNode array

TreeNode class 2nd

TreeNode interface 2nd

treeNodesChanged method

treeNodesInserted method

treeNodesRemoved method

TreePath class 2nd

TreePath constructor

TreePath objects

TreeSelectionEvent class 2nd

TreeSelectionListener class

TreeSelectionListener interface

TreeSelectionModel

treeStructureChanged method

trim method

True Odds: How Risks Affect Your Everyday Life (Walsh)
Trust, giving to an applet
Trust models, assuming a chain of trust
try/catch block

try/finally block

tryLock method 2nd

Type(s)
 defined by a schema
 of images
 nesting definitions for
 in a placeholder index
Type drivers
TYPE_INT_ARGB

TYPE_INT_ARGB type

Typesafe enumerations

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UDP (User Datagram Protocol)
UI-intensive Windows programs, Visual Basic optimized for
Unambiguous DTD
Unicast
UnicastRemoteObject class 2nd

Unicode
 characters 2nd
 "replacement character" ('\uFFFD')

 strings
 using for all strings
UNICODE_CASE flag

Uniform Resource Identifier [See URI (Uniform Resource Identifier).]
Uniform resource name (URN)
Unique identifier, for a remote object
UNIX user, checking the name of
UNIX_LINES flag

UnknownHostException

UnsatisfiedLinkError

Unwrap mode
Updatable result sets 2nd
update methods 2nd

UPDATE statement 2nd

updateRow method 2nd

Upper case, turning characters of a string to
Upper character class

URI (Uniform Resource Identifier) 2nd
URI class

URL(s)
 compared to URIs
 connections
 forms of
 specifying a Derby database
 specifying for a DTD
 types of
URL class 2nd 3rd

URL data source

URL object

URLClassLoader class

URLConnection

URLConnection class

 API notes
 compared to Socket

 methods
 using to retrieve information
URLConnection object 2nd

URLConnectionTest.java

URLDecoder class

URLEncoder class

URN (uniform resource name)
US-ASCII character encoding
User(s)
 authentication
 coordinates, in transformations 2nd

 drop action
 interface components
 names
 objects 2nd
 providing illegal input
 restricting permissions to certain
User Datagram Protocol (UDP)
UTF-8 character encoding 2nd 3rd
UTF-16 character encoding 2nd 3rd

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Validating, XML documents
Validation
 of input
 languages
 turning on
VALUE_RENDER_QUALITY

VALUE_STROKE_NORMALIZE

valueChanged method 2nd

valueToString method

VARCHAR data type, in SQL 2nd

Variable class

Variable-byte encodings
Variants, in locales
Vendor name, of a reader
Verification
Verifiers 2nd
VerifierTest.java

verify method

VeriSign, Inc. 2nd
VeriSign certificate
Version number
 of the object serialization format
 of a reader
Versioning
VERTICAL, for a list box

VERTICAL_SPLIT, for a split pane

VERTICAL_WRAP, for a list box

Very long lists
Vetoable change listeners
vetoableChange method

VetoableChangeListener 2nd 3rd 4th

VetoableChangeSupport class 2nd

Vetoing 2nd
ViewDB application
ViewDB.java

Virtual machine(s)
 embedding into C or C++ programs
 function terminating
 launching
 loading class files
 setting up and calling the main method of Welcome

 terminating
 transferring values between
 writing strings intended for
Visual Basic 2nd
Visual feedback 2nd
Visual presentation

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WarehouseActivator.java

WarehouseClient program 2nd

WarehouseImpl.java 2nd 3rd

Warehouse.java

WarehouseServer server program

WarehouseServer.java 2nd

WarehouseService class

Warning class

Warnings, retrieving
Weak certificates
WeakReference objects

Web applications
Web browser 2nd
Web crawler program
 code for
 implemented with the StAX parser
 implementing
Web or enterprise environment, JDBC applications in
Web pages, accessing secure
Web servers, invoking programs
Web service client
Web services
 architecture
 components of
 concrete example of
 in Java
Web Services Description Language [See WSDL (Web Services Description Language).]
Web Start applications
@WebParam annotation

WebRowSet interface

@WebService

WHERE clause, in SQL

Whitespace 2nd 3rd
Wild card characters, in SQL
Win32RegKey class

Win32RegKey.java

Win32RegKeyn class

Win32RegKeyNameEnumeration class

Win32RegKeyTest.java

Window listener
Windows [See also Microsoft Windows.]
 cascading all
 compiling InvocationTest.c

Windows executable program
Windows look and feel
 standard commands for cascading and tiling
 tree with 2nd
Windows Vista, activating telnet
Word check permissions
WordCheckPermission class

WordCheckPermission.java

Worker thread, blocking indefinitely
Working directory, finding

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

wrap method

Wrap mode
Wrapper class
WritableByteChannel interface

WritableRaster class

WritableRaster type

Write, then read cycle
write method

 of ImageIO

 of OutputStream 2nd

 of Writer

 writing out the first image
writeAttribute

writeCharacters

writeData method

writeDouble method

writeEmptyElement

writeEndDocument

writeEndElement

writeExternal method

writeFixedString method

writeInt method

writeObject method

 of the Date class

 of ObjectOutputStream 2nd

 as private
 of a serializable class
Write-only property
Writer class

writeStartDocument

writeStartElement

writeUTF method

Writing, text output
WS-* [See Web services.]
WSDL (Web Services Description Language) 2nd
 for the Amazon E-Commerce Service
 file
wsgen class

wsimport utility

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

x- prefix, indicating an experimental name

X Window System
X.500 distinguished names
X.509 certificate format
XDigit character class

XHTML 2nd
XML
 approaches for writing
 compared to HTML
 describing a grid bag layout
 format, expressing hierarchical structures
 header
 introducing
 layout, defining a font dialog
 output 2nd 3rd
 parsers
 protocol, advantage of
 reader, generating SAX events
 standard
 use of in a realistic setting
XML documents
 generating
 parsing
 reading
 structure of
 transforming into other formats
 validating
 writing with StAX
XML files
 describing a gridbag layout
 describing a program configuration
 format of
 parsing with a schema
 transforming into HTML
XML Schema 2nd
XMLDecoder 2nd

XMLEncoder 2nd 3rd

XMLInputFactory class

XMLOutputFactory class

XMLReader interface 2nd

XMLStreamReader class

XMLStreamWriter 2nd

XMLWriteTest.java

XOR rule

XPath
 expressions
 functions
 language
XPath class

XPath object

XPathFactory class

XPathTest.java

xsd prefix

xsd:choice construct

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

xsd:schema element

xsd:sequence construct

xsl:output element

XSLT (XSL Transformations) 2nd
XSLT processor 2nd 3rd
XSLT style sheet 2nd
xsl:value-of statement

Xxx2D classes

Xxx2D.Double class

Xxx2D.Float class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ZIP archives
ZIP file
 opening
 reading numbers from 2nd
 reading through
 writing
ZIP input stream
ZIP streams
ZipEntry class

ZipEntry constructor

ZipEntry object

ZipException

ZipFile

ZipInputStream 2nd 3rd

ZipOutputStream 2nd 3rd

ZipTest.java

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

UNREGISTERED VERSION OF CHM TO PDF CONVERTER PRO BY THETA-SOFTWARE

	Core Java Volume II-Advanced Features, Eighth Edition - Graphically Rich Book
	Table of Contents
	Copyright
	Preface
	Acknowledgments
	Chapter 1. Streams and Files
	Streams
	Text Input and Output
	Reading and Writing Binary Data
	ZIP Archives
	Object Streams and Serialization
	File Management
	New I/O
	Regular Expressions

	Chapter 2. XML
	Introducing XML
	Parsing an XML Document
	Validating XML Documents
	Locating Information with XPath
	Using Namespaces
	Streaming Parsers
	Generating XML Documents
	XSL Transformations

	Chapter 3. Networking
	Connecting to a Server
	Implementing Servers
	Interruptible Sockets
	Sending E-Mail
	Making URL Connections

	Chapter 4. Database Programming
	The Design of JDBC
	The Structured Query Language
	JDBC Configuration
	Executing SQL Statements
	Query Execution
	Scrollable and Updatable Result Sets
	Row Sets
	Metadata
	Transactions
	Connection Management in Web and Enterprise Applications
	Introduction to LDAP

	Chapter 5. Internationalization
	Locales
	Number Formats
	Date and Time
	Collation
	Message Formatting
	Text Files and Character Sets
	Resource Bundles
	A Complete Example

	Chapter 6. Advanced Swing
	Lists
	Tables
	Trees
	Text Components
	Progress Indicators
	Component Organizers

	Chapter 7. Advanced AWT
	The Rendering Pipeline
	Shapes
	Areas
	Strokes
	Paint
	Coordinate Transformations
	Clipping
	Transparency and Composition
	Rendering Hints
	Readers and Writers for Images
	Image Manipulation
	Printing
	The Clipboard
	Drag and Drop
	Platform Integration

	Chapter 8. JavaBeans Components
	Why Beans?
	The Bean-Writing Process
	Using Beans to Build an Application
	Naming Patterns for Bean Properties and Events
	Bean Property Types
	BeanInfo Classes
	Property Editors
	Customizers
	JavaBeans Persistence

	Chapter 9. Security
	Class Loaders
	Bytecode Verification
	Security Managers and Permissions
	User Authentication
	Digital Signatures
	Code Signing
	Encryption

	Chapter 10. Distributed Objects
	The Roles of Client and Server
	Remote Method Calls
	The RMI Programming Model
	Parameters and Return Values in Remote Methods
	Remote Object Activation
	Web Services and JAX-WS

	Chapter 11. Scripting, Compiling, and Annotation Processing
	Scripting for the Java Platform
	The Compiler API
	Using Annotations
	Annotation Syntax
	Standard Annotations
	Source-Level Annotation Processing
	Bytecode Engineering

	Chapter 12. Native Methods
	Calling a C Function from a Java Program
	Numeric Parameters and Return Values
	String Parameters
	Accessing Fields
	Encoding Signatures
	Calling Java Methods
	Accessing Array Elements
	Handling Errors
	Using the Invocation API
	A Complete Example: Accessing the Windows Registry

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

